3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
128 #ifdef CONFIG_DEBUG_SLAB
131 #define FORCED_DEBUG 1
135 #define FORCED_DEBUG 0
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
140 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
142 #ifndef cache_line_size
143 #define cache_line_size() L1_CACHE_BYTES
146 #ifndef ARCH_KMALLOC_MINALIGN
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
156 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
159 #ifndef ARCH_SLAB_MINALIGN
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
167 #define ARCH_SLAB_MINALIGN 0
170 #ifndef ARCH_KMALLOC_FLAGS
171 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
174 /* Legal flag mask for kmem_cache_create(). */
176 # define CREATE_MASK (SLAB_RED_ZONE | \
177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
183 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
185 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
186 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
192 * Bufctl's are used for linking objs within a slab
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
208 typedef unsigned int kmem_bufctl_t
;
209 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
210 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
211 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
212 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
222 struct list_head list
;
223 unsigned long colouroff
;
224 void *s_mem
; /* including colour offset */
225 unsigned int inuse
; /* num of objs active in slab */
227 unsigned short nodeid
;
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
244 * We assume struct slab_rcu can overlay struct slab when destroying.
247 struct rcu_head head
;
248 struct kmem_cache
*cachep
;
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
260 * The limit is stored in the per-cpu structure to reduce the data cache
267 unsigned int batchcount
;
268 unsigned int touched
;
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init
{
283 struct array_cache cache
;
284 void *entries
[BOOT_CPUCACHE_ENTRIES
];
288 * The slab lists for all objects.
291 struct list_head slabs_partial
; /* partial list first, better asm code */
292 struct list_head slabs_full
;
293 struct list_head slabs_free
;
294 unsigned long free_objects
;
295 unsigned int free_limit
;
296 unsigned int colour_next
; /* Per-node cache coloring */
297 spinlock_t list_lock
;
298 struct array_cache
*shared
; /* shared per node */
299 struct array_cache
**alien
; /* on other nodes */
300 unsigned long next_reap
; /* updated without locking */
301 int free_touched
; /* updated without locking */
305 * Need this for bootstrapping a per node allocator.
307 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
309 #define CACHE_CACHE 0
311 #define SIZE_L3 (1 + MAX_NUMNODES)
313 static int drain_freelist(struct kmem_cache
*cache
,
314 struct kmem_list3
*l3
, int tofree
);
315 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
317 static int enable_cpucache(struct kmem_cache
*cachep
);
318 static void cache_reap(struct work_struct
*unused
);
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
324 static __always_inline
int index_of(const size_t size
)
326 extern void __bad_size(void);
328 if (__builtin_constant_p(size
)) {
336 #include "linux/kmalloc_sizes.h"
344 static int slab_early_init
= 1;
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
349 static void kmem_list3_init(struct kmem_list3
*parent
)
351 INIT_LIST_HEAD(&parent
->slabs_full
);
352 INIT_LIST_HEAD(&parent
->slabs_partial
);
353 INIT_LIST_HEAD(&parent
->slabs_free
);
354 parent
->shared
= NULL
;
355 parent
->alien
= NULL
;
356 parent
->colour_next
= 0;
357 spin_lock_init(&parent
->list_lock
);
358 parent
->free_objects
= 0;
359 parent
->free_touched
= 0;
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
382 /* 1) per-cpu data, touched during every alloc/free */
383 struct array_cache
*array
[NR_CPUS
];
384 /* 2) Cache tunables. Protected by cache_chain_mutex */
385 unsigned int batchcount
;
389 unsigned int buffer_size
;
390 u32 reciprocal_buffer_size
;
391 /* 3) touched by every alloc & free from the backend */
393 unsigned int flags
; /* constant flags */
394 unsigned int num
; /* # of objs per slab */
396 /* 4) cache_grow/shrink */
397 /* order of pgs per slab (2^n) */
398 unsigned int gfporder
;
400 /* force GFP flags, e.g. GFP_DMA */
403 size_t colour
; /* cache colouring range */
404 unsigned int colour_off
; /* colour offset */
405 struct kmem_cache
*slabp_cache
;
406 unsigned int slab_size
;
407 unsigned int dflags
; /* dynamic flags */
409 /* constructor func */
410 void (*ctor
)(struct kmem_cache
*, void *);
412 /* 5) cache creation/removal */
414 struct list_head next
;
418 unsigned long num_active
;
419 unsigned long num_allocations
;
420 unsigned long high_mark
;
422 unsigned long reaped
;
423 unsigned long errors
;
424 unsigned long max_freeable
;
425 unsigned long node_allocs
;
426 unsigned long node_frees
;
427 unsigned long node_overflow
;
435 * If debugging is enabled, then the allocator can add additional
436 * fields and/or padding to every object. buffer_size contains the total
437 * object size including these internal fields, the following two
438 * variables contain the offset to the user object and its size.
444 * We put nodelists[] at the end of kmem_cache, because we want to size
445 * this array to nr_node_ids slots instead of MAX_NUMNODES
446 * (see kmem_cache_init())
447 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
448 * is statically defined, so we reserve the max number of nodes.
450 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
452 * Do not add fields after nodelists[]
456 #define CFLGS_OFF_SLAB (0x80000000UL)
457 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
459 #define BATCHREFILL_LIMIT 16
461 * Optimization question: fewer reaps means less probability for unnessary
462 * cpucache drain/refill cycles.
464 * OTOH the cpuarrays can contain lots of objects,
465 * which could lock up otherwise freeable slabs.
467 #define REAPTIMEOUT_CPUC (2*HZ)
468 #define REAPTIMEOUT_LIST3 (4*HZ)
471 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
472 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
473 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
474 #define STATS_INC_GROWN(x) ((x)->grown++)
475 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
476 #define STATS_SET_HIGH(x) \
478 if ((x)->num_active > (x)->high_mark) \
479 (x)->high_mark = (x)->num_active; \
481 #define STATS_INC_ERR(x) ((x)->errors++)
482 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
483 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
484 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
485 #define STATS_SET_FREEABLE(x, i) \
487 if ((x)->max_freeable < i) \
488 (x)->max_freeable = i; \
490 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
491 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
492 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
493 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
495 #define STATS_INC_ACTIVE(x) do { } while (0)
496 #define STATS_DEC_ACTIVE(x) do { } while (0)
497 #define STATS_INC_ALLOCED(x) do { } while (0)
498 #define STATS_INC_GROWN(x) do { } while (0)
499 #define STATS_ADD_REAPED(x,y) do { } while (0)
500 #define STATS_SET_HIGH(x) do { } while (0)
501 #define STATS_INC_ERR(x) do { } while (0)
502 #define STATS_INC_NODEALLOCS(x) do { } while (0)
503 #define STATS_INC_NODEFREES(x) do { } while (0)
504 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
505 #define STATS_SET_FREEABLE(x, i) do { } while (0)
506 #define STATS_INC_ALLOCHIT(x) do { } while (0)
507 #define STATS_INC_ALLOCMISS(x) do { } while (0)
508 #define STATS_INC_FREEHIT(x) do { } while (0)
509 #define STATS_INC_FREEMISS(x) do { } while (0)
515 * memory layout of objects:
517 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
518 * the end of an object is aligned with the end of the real
519 * allocation. Catches writes behind the end of the allocation.
520 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
522 * cachep->obj_offset: The real object.
523 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
524 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
525 * [BYTES_PER_WORD long]
527 static int obj_offset(struct kmem_cache
*cachep
)
529 return cachep
->obj_offset
;
532 static int obj_size(struct kmem_cache
*cachep
)
534 return cachep
->obj_size
;
537 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
539 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
540 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
541 sizeof(unsigned long long));
544 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
546 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
547 if (cachep
->flags
& SLAB_STORE_USER
)
548 return (unsigned long long *)(objp
+ cachep
->buffer_size
-
549 sizeof(unsigned long long) -
551 return (unsigned long long *) (objp
+ cachep
->buffer_size
-
552 sizeof(unsigned long long));
555 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
557 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
558 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
563 #define obj_offset(x) 0
564 #define obj_size(cachep) (cachep->buffer_size)
565 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
566 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
567 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
572 * Do not go above this order unless 0 objects fit into the slab.
574 #define BREAK_GFP_ORDER_HI 1
575 #define BREAK_GFP_ORDER_LO 0
576 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
579 * Functions for storing/retrieving the cachep and or slab from the page
580 * allocator. These are used to find the slab an obj belongs to. With kfree(),
581 * these are used to find the cache which an obj belongs to.
583 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
585 page
->lru
.next
= (struct list_head
*)cache
;
588 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
590 page
= compound_head(page
);
591 BUG_ON(!PageSlab(page
));
592 return (struct kmem_cache
*)page
->lru
.next
;
595 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
597 page
->lru
.prev
= (struct list_head
*)slab
;
600 static inline struct slab
*page_get_slab(struct page
*page
)
602 BUG_ON(!PageSlab(page
));
603 return (struct slab
*)page
->lru
.prev
;
606 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
608 struct page
*page
= virt_to_head_page(obj
);
609 return page_get_cache(page
);
612 static inline struct slab
*virt_to_slab(const void *obj
)
614 struct page
*page
= virt_to_head_page(obj
);
615 return page_get_slab(page
);
618 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
621 return slab
->s_mem
+ cache
->buffer_size
* idx
;
625 * We want to avoid an expensive divide : (offset / cache->buffer_size)
626 * Using the fact that buffer_size is a constant for a particular cache,
627 * we can replace (offset / cache->buffer_size) by
628 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
630 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
631 const struct slab
*slab
, void *obj
)
633 u32 offset
= (obj
- slab
->s_mem
);
634 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
638 * These are the default caches for kmalloc. Custom caches can have other sizes.
640 struct cache_sizes malloc_sizes
[] = {
641 #define CACHE(x) { .cs_size = (x) },
642 #include <linux/kmalloc_sizes.h>
646 EXPORT_SYMBOL(malloc_sizes
);
648 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
654 static struct cache_names __initdata cache_names
[] = {
655 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
656 #include <linux/kmalloc_sizes.h>
661 static struct arraycache_init initarray_cache __initdata
=
662 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
663 static struct arraycache_init initarray_generic
=
664 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
666 /* internal cache of cache description objs */
667 static struct kmem_cache cache_cache
= {
669 .limit
= BOOT_CPUCACHE_ENTRIES
,
671 .buffer_size
= sizeof(struct kmem_cache
),
672 .name
= "kmem_cache",
675 #define BAD_ALIEN_MAGIC 0x01020304ul
677 #ifdef CONFIG_LOCKDEP
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
686 * We set lock class for alien array caches which are up during init.
687 * The lock annotation will be lost if all cpus of a node goes down and
688 * then comes back up during hotplug
690 static struct lock_class_key on_slab_l3_key
;
691 static struct lock_class_key on_slab_alc_key
;
693 static inline void init_lock_keys(void)
697 struct cache_sizes
*s
= malloc_sizes
;
699 while (s
->cs_size
!= ULONG_MAX
) {
701 struct array_cache
**alc
;
703 struct kmem_list3
*l3
= s
->cs_cachep
->nodelists
[q
];
704 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
706 lockdep_set_class(&l3
->list_lock
, &on_slab_l3_key
);
709 * FIXME: This check for BAD_ALIEN_MAGIC
710 * should go away when common slab code is taught to
711 * work even without alien caches.
712 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
713 * for alloc_alien_cache,
715 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
719 lockdep_set_class(&alc
[r
]->lock
,
727 static inline void init_lock_keys(void)
733 * 1. Guard access to the cache-chain.
734 * 2. Protect sanity of cpu_online_map against cpu hotplug events
736 static DEFINE_MUTEX(cache_chain_mutex
);
737 static struct list_head cache_chain
;
740 * chicken and egg problem: delay the per-cpu array allocation
741 * until the general caches are up.
751 * used by boot code to determine if it can use slab based allocator
753 int slab_is_available(void)
755 return g_cpucache_up
== FULL
;
758 static DEFINE_PER_CPU(struct delayed_work
, reap_work
);
760 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
762 return cachep
->array
[smp_processor_id()];
765 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
768 struct cache_sizes
*csizep
= malloc_sizes
;
771 /* This happens if someone tries to call
772 * kmem_cache_create(), or __kmalloc(), before
773 * the generic caches are initialized.
775 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
778 return ZERO_SIZE_PTR
;
780 while (size
> csizep
->cs_size
)
784 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
785 * has cs_{dma,}cachep==NULL. Thus no special case
786 * for large kmalloc calls required.
788 #ifdef CONFIG_ZONE_DMA
789 if (unlikely(gfpflags
& GFP_DMA
))
790 return csizep
->cs_dmacachep
;
792 return csizep
->cs_cachep
;
795 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
797 return __find_general_cachep(size
, gfpflags
);
800 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
802 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
806 * Calculate the number of objects and left-over bytes for a given buffer size.
808 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
809 size_t align
, int flags
, size_t *left_over
,
814 size_t slab_size
= PAGE_SIZE
<< gfporder
;
817 * The slab management structure can be either off the slab or
818 * on it. For the latter case, the memory allocated for a
822 * - One kmem_bufctl_t for each object
823 * - Padding to respect alignment of @align
824 * - @buffer_size bytes for each object
826 * If the slab management structure is off the slab, then the
827 * alignment will already be calculated into the size. Because
828 * the slabs are all pages aligned, the objects will be at the
829 * correct alignment when allocated.
831 if (flags
& CFLGS_OFF_SLAB
) {
833 nr_objs
= slab_size
/ buffer_size
;
835 if (nr_objs
> SLAB_LIMIT
)
836 nr_objs
= SLAB_LIMIT
;
839 * Ignore padding for the initial guess. The padding
840 * is at most @align-1 bytes, and @buffer_size is at
841 * least @align. In the worst case, this result will
842 * be one greater than the number of objects that fit
843 * into the memory allocation when taking the padding
846 nr_objs
= (slab_size
- sizeof(struct slab
)) /
847 (buffer_size
+ sizeof(kmem_bufctl_t
));
850 * This calculated number will be either the right
851 * amount, or one greater than what we want.
853 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
857 if (nr_objs
> SLAB_LIMIT
)
858 nr_objs
= SLAB_LIMIT
;
860 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
863 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
866 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
868 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
871 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
872 function
, cachep
->name
, msg
);
877 * By default on NUMA we use alien caches to stage the freeing of
878 * objects allocated from other nodes. This causes massive memory
879 * inefficiencies when using fake NUMA setup to split memory into a
880 * large number of small nodes, so it can be disabled on the command
884 static int use_alien_caches __read_mostly
= 1;
885 static int numa_platform __read_mostly
= 1;
886 static int __init
noaliencache_setup(char *s
)
888 use_alien_caches
= 0;
891 __setup("noaliencache", noaliencache_setup
);
895 * Special reaping functions for NUMA systems called from cache_reap().
896 * These take care of doing round robin flushing of alien caches (containing
897 * objects freed on different nodes from which they were allocated) and the
898 * flushing of remote pcps by calling drain_node_pages.
900 static DEFINE_PER_CPU(unsigned long, reap_node
);
902 static void init_reap_node(int cpu
)
906 node
= next_node(cpu_to_node(cpu
), node_online_map
);
907 if (node
== MAX_NUMNODES
)
908 node
= first_node(node_online_map
);
910 per_cpu(reap_node
, cpu
) = node
;
913 static void next_reap_node(void)
915 int node
= __get_cpu_var(reap_node
);
917 node
= next_node(node
, node_online_map
);
918 if (unlikely(node
>= MAX_NUMNODES
))
919 node
= first_node(node_online_map
);
920 __get_cpu_var(reap_node
) = node
;
924 #define init_reap_node(cpu) do { } while (0)
925 #define next_reap_node(void) do { } while (0)
929 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
930 * via the workqueue/eventd.
931 * Add the CPU number into the expiration time to minimize the possibility of
932 * the CPUs getting into lockstep and contending for the global cache chain
935 static void __cpuinit
start_cpu_timer(int cpu
)
937 struct delayed_work
*reap_work
= &per_cpu(reap_work
, cpu
);
940 * When this gets called from do_initcalls via cpucache_init(),
941 * init_workqueues() has already run, so keventd will be setup
944 if (keventd_up() && reap_work
->work
.func
== NULL
) {
946 INIT_DELAYED_WORK(reap_work
, cache_reap
);
947 schedule_delayed_work_on(cpu
, reap_work
,
948 __round_jiffies_relative(HZ
, cpu
));
952 static struct array_cache
*alloc_arraycache(int node
, int entries
,
955 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
956 struct array_cache
*nc
= NULL
;
958 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
962 nc
->batchcount
= batchcount
;
964 spin_lock_init(&nc
->lock
);
970 * Transfer objects in one arraycache to another.
971 * Locking must be handled by the caller.
973 * Return the number of entries transferred.
975 static int transfer_objects(struct array_cache
*to
,
976 struct array_cache
*from
, unsigned int max
)
978 /* Figure out how many entries to transfer */
979 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
984 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
995 #define drain_alien_cache(cachep, alien) do { } while (0)
996 #define reap_alien(cachep, l3) do { } while (0)
998 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
1000 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
1003 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1007 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1012 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
1018 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
1019 gfp_t flags
, int nodeid
)
1024 #else /* CONFIG_NUMA */
1026 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1027 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1029 static struct array_cache
**alloc_alien_cache(int node
, int limit
)
1031 struct array_cache
**ac_ptr
;
1032 int memsize
= sizeof(void *) * nr_node_ids
;
1037 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1040 if (i
== node
|| !node_online(i
)) {
1044 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
1046 for (i
--; i
<= 0; i
--)
1056 static void free_alien_cache(struct array_cache
**ac_ptr
)
1067 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1068 struct array_cache
*ac
, int node
)
1070 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1073 spin_lock(&rl3
->list_lock
);
1075 * Stuff objects into the remote nodes shared array first.
1076 * That way we could avoid the overhead of putting the objects
1077 * into the free lists and getting them back later.
1080 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1082 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1084 spin_unlock(&rl3
->list_lock
);
1089 * Called from cache_reap() to regularly drain alien caches round robin.
1091 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1093 int node
= __get_cpu_var(reap_node
);
1096 struct array_cache
*ac
= l3
->alien
[node
];
1098 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1099 __drain_alien_cache(cachep
, ac
, node
);
1100 spin_unlock_irq(&ac
->lock
);
1105 static void drain_alien_cache(struct kmem_cache
*cachep
,
1106 struct array_cache
**alien
)
1109 struct array_cache
*ac
;
1110 unsigned long flags
;
1112 for_each_online_node(i
) {
1115 spin_lock_irqsave(&ac
->lock
, flags
);
1116 __drain_alien_cache(cachep
, ac
, i
);
1117 spin_unlock_irqrestore(&ac
->lock
, flags
);
1122 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1124 struct slab
*slabp
= virt_to_slab(objp
);
1125 int nodeid
= slabp
->nodeid
;
1126 struct kmem_list3
*l3
;
1127 struct array_cache
*alien
= NULL
;
1130 node
= numa_node_id();
1133 * Make sure we are not freeing a object from another node to the array
1134 * cache on this cpu.
1136 if (likely(slabp
->nodeid
== node
))
1139 l3
= cachep
->nodelists
[node
];
1140 STATS_INC_NODEFREES(cachep
);
1141 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1142 alien
= l3
->alien
[nodeid
];
1143 spin_lock(&alien
->lock
);
1144 if (unlikely(alien
->avail
== alien
->limit
)) {
1145 STATS_INC_ACOVERFLOW(cachep
);
1146 __drain_alien_cache(cachep
, alien
, nodeid
);
1148 alien
->entry
[alien
->avail
++] = objp
;
1149 spin_unlock(&alien
->lock
);
1151 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1152 free_block(cachep
, &objp
, 1, nodeid
);
1153 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1159 static void __cpuinit
cpuup_canceled(long cpu
)
1161 struct kmem_cache
*cachep
;
1162 struct kmem_list3
*l3
= NULL
;
1163 int node
= cpu_to_node(cpu
);
1165 list_for_each_entry(cachep
, &cache_chain
, next
) {
1166 struct array_cache
*nc
;
1167 struct array_cache
*shared
;
1168 struct array_cache
**alien
;
1171 mask
= node_to_cpumask(node
);
1172 /* cpu is dead; no one can alloc from it. */
1173 nc
= cachep
->array
[cpu
];
1174 cachep
->array
[cpu
] = NULL
;
1175 l3
= cachep
->nodelists
[node
];
1178 goto free_array_cache
;
1180 spin_lock_irq(&l3
->list_lock
);
1182 /* Free limit for this kmem_list3 */
1183 l3
->free_limit
-= cachep
->batchcount
;
1185 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1187 if (!cpus_empty(mask
)) {
1188 spin_unlock_irq(&l3
->list_lock
);
1189 goto free_array_cache
;
1192 shared
= l3
->shared
;
1194 free_block(cachep
, shared
->entry
,
1195 shared
->avail
, node
);
1202 spin_unlock_irq(&l3
->list_lock
);
1206 drain_alien_cache(cachep
, alien
);
1207 free_alien_cache(alien
);
1213 * In the previous loop, all the objects were freed to
1214 * the respective cache's slabs, now we can go ahead and
1215 * shrink each nodelist to its limit.
1217 list_for_each_entry(cachep
, &cache_chain
, next
) {
1218 l3
= cachep
->nodelists
[node
];
1221 drain_freelist(cachep
, l3
, l3
->free_objects
);
1225 static int __cpuinit
cpuup_prepare(long cpu
)
1227 struct kmem_cache
*cachep
;
1228 struct kmem_list3
*l3
= NULL
;
1229 int node
= cpu_to_node(cpu
);
1230 const int memsize
= sizeof(struct kmem_list3
);
1233 * We need to do this right in the beginning since
1234 * alloc_arraycache's are going to use this list.
1235 * kmalloc_node allows us to add the slab to the right
1236 * kmem_list3 and not this cpu's kmem_list3
1239 list_for_each_entry(cachep
, &cache_chain
, next
) {
1241 * Set up the size64 kmemlist for cpu before we can
1242 * begin anything. Make sure some other cpu on this
1243 * node has not already allocated this
1245 if (!cachep
->nodelists
[node
]) {
1246 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1249 kmem_list3_init(l3
);
1250 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1251 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1254 * The l3s don't come and go as CPUs come and
1255 * go. cache_chain_mutex is sufficient
1258 cachep
->nodelists
[node
] = l3
;
1261 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1262 cachep
->nodelists
[node
]->free_limit
=
1263 (1 + nr_cpus_node(node
)) *
1264 cachep
->batchcount
+ cachep
->num
;
1265 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1269 * Now we can go ahead with allocating the shared arrays and
1272 list_for_each_entry(cachep
, &cache_chain
, next
) {
1273 struct array_cache
*nc
;
1274 struct array_cache
*shared
= NULL
;
1275 struct array_cache
**alien
= NULL
;
1277 nc
= alloc_arraycache(node
, cachep
->limit
,
1278 cachep
->batchcount
);
1281 if (cachep
->shared
) {
1282 shared
= alloc_arraycache(node
,
1283 cachep
->shared
* cachep
->batchcount
,
1290 if (use_alien_caches
) {
1291 alien
= alloc_alien_cache(node
, cachep
->limit
);
1298 cachep
->array
[cpu
] = nc
;
1299 l3
= cachep
->nodelists
[node
];
1302 spin_lock_irq(&l3
->list_lock
);
1305 * We are serialised from CPU_DEAD or
1306 * CPU_UP_CANCELLED by the cpucontrol lock
1308 l3
->shared
= shared
;
1317 spin_unlock_irq(&l3
->list_lock
);
1319 free_alien_cache(alien
);
1323 cpuup_canceled(cpu
);
1327 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1328 unsigned long action
, void *hcpu
)
1330 long cpu
= (long)hcpu
;
1334 case CPU_LOCK_ACQUIRE
:
1335 mutex_lock(&cache_chain_mutex
);
1337 case CPU_UP_PREPARE
:
1338 case CPU_UP_PREPARE_FROZEN
:
1339 err
= cpuup_prepare(cpu
);
1342 case CPU_ONLINE_FROZEN
:
1343 start_cpu_timer(cpu
);
1345 #ifdef CONFIG_HOTPLUG_CPU
1346 case CPU_DOWN_PREPARE
:
1347 case CPU_DOWN_PREPARE_FROZEN
:
1349 * Shutdown cache reaper. Note that the cache_chain_mutex is
1350 * held so that if cache_reap() is invoked it cannot do
1351 * anything expensive but will only modify reap_work
1352 * and reschedule the timer.
1354 cancel_rearming_delayed_work(&per_cpu(reap_work
, cpu
));
1355 /* Now the cache_reaper is guaranteed to be not running. */
1356 per_cpu(reap_work
, cpu
).work
.func
= NULL
;
1358 case CPU_DOWN_FAILED
:
1359 case CPU_DOWN_FAILED_FROZEN
:
1360 start_cpu_timer(cpu
);
1363 case CPU_DEAD_FROZEN
:
1365 * Even if all the cpus of a node are down, we don't free the
1366 * kmem_list3 of any cache. This to avoid a race between
1367 * cpu_down, and a kmalloc allocation from another cpu for
1368 * memory from the node of the cpu going down. The list3
1369 * structure is usually allocated from kmem_cache_create() and
1370 * gets destroyed at kmem_cache_destroy().
1374 case CPU_UP_CANCELED
:
1375 case CPU_UP_CANCELED_FROZEN
:
1376 cpuup_canceled(cpu
);
1378 case CPU_LOCK_RELEASE
:
1379 mutex_unlock(&cache_chain_mutex
);
1382 return err
? NOTIFY_BAD
: NOTIFY_OK
;
1385 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1386 &cpuup_callback
, NULL
, 0
1390 * swap the static kmem_list3 with kmalloced memory
1392 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1395 struct kmem_list3
*ptr
;
1397 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
1400 local_irq_disable();
1401 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1403 * Do not assume that spinlocks can be initialized via memcpy:
1405 spin_lock_init(&ptr
->list_lock
);
1407 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1408 cachep
->nodelists
[nodeid
] = ptr
;
1413 * Initialisation. Called after the page allocator have been initialised and
1414 * before smp_init().
1416 void __init
kmem_cache_init(void)
1419 struct cache_sizes
*sizes
;
1420 struct cache_names
*names
;
1425 if (num_possible_nodes() == 1) {
1426 use_alien_caches
= 0;
1430 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1431 kmem_list3_init(&initkmem_list3
[i
]);
1432 if (i
< MAX_NUMNODES
)
1433 cache_cache
.nodelists
[i
] = NULL
;
1437 * Fragmentation resistance on low memory - only use bigger
1438 * page orders on machines with more than 32MB of memory.
1440 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1441 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1443 /* Bootstrap is tricky, because several objects are allocated
1444 * from caches that do not exist yet:
1445 * 1) initialize the cache_cache cache: it contains the struct
1446 * kmem_cache structures of all caches, except cache_cache itself:
1447 * cache_cache is statically allocated.
1448 * Initially an __init data area is used for the head array and the
1449 * kmem_list3 structures, it's replaced with a kmalloc allocated
1450 * array at the end of the bootstrap.
1451 * 2) Create the first kmalloc cache.
1452 * The struct kmem_cache for the new cache is allocated normally.
1453 * An __init data area is used for the head array.
1454 * 3) Create the remaining kmalloc caches, with minimally sized
1456 * 4) Replace the __init data head arrays for cache_cache and the first
1457 * kmalloc cache with kmalloc allocated arrays.
1458 * 5) Replace the __init data for kmem_list3 for cache_cache and
1459 * the other cache's with kmalloc allocated memory.
1460 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1463 node
= numa_node_id();
1465 /* 1) create the cache_cache */
1466 INIT_LIST_HEAD(&cache_chain
);
1467 list_add(&cache_cache
.next
, &cache_chain
);
1468 cache_cache
.colour_off
= cache_line_size();
1469 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1470 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
];
1473 * struct kmem_cache size depends on nr_node_ids, which
1474 * can be less than MAX_NUMNODES.
1476 cache_cache
.buffer_size
= offsetof(struct kmem_cache
, nodelists
) +
1477 nr_node_ids
* sizeof(struct kmem_list3
*);
1479 cache_cache
.obj_size
= cache_cache
.buffer_size
;
1481 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1483 cache_cache
.reciprocal_buffer_size
=
1484 reciprocal_value(cache_cache
.buffer_size
);
1486 for (order
= 0; order
< MAX_ORDER
; order
++) {
1487 cache_estimate(order
, cache_cache
.buffer_size
,
1488 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1489 if (cache_cache
.num
)
1492 BUG_ON(!cache_cache
.num
);
1493 cache_cache
.gfporder
= order
;
1494 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1495 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1496 sizeof(struct slab
), cache_line_size());
1498 /* 2+3) create the kmalloc caches */
1499 sizes
= malloc_sizes
;
1500 names
= cache_names
;
1503 * Initialize the caches that provide memory for the array cache and the
1504 * kmem_list3 structures first. Without this, further allocations will
1508 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1509 sizes
[INDEX_AC
].cs_size
,
1510 ARCH_KMALLOC_MINALIGN
,
1511 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1514 if (INDEX_AC
!= INDEX_L3
) {
1515 sizes
[INDEX_L3
].cs_cachep
=
1516 kmem_cache_create(names
[INDEX_L3
].name
,
1517 sizes
[INDEX_L3
].cs_size
,
1518 ARCH_KMALLOC_MINALIGN
,
1519 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1523 slab_early_init
= 0;
1525 while (sizes
->cs_size
!= ULONG_MAX
) {
1527 * For performance, all the general caches are L1 aligned.
1528 * This should be particularly beneficial on SMP boxes, as it
1529 * eliminates "false sharing".
1530 * Note for systems short on memory removing the alignment will
1531 * allow tighter packing of the smaller caches.
1533 if (!sizes
->cs_cachep
) {
1534 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1536 ARCH_KMALLOC_MINALIGN
,
1537 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1540 #ifdef CONFIG_ZONE_DMA
1541 sizes
->cs_dmacachep
= kmem_cache_create(
1544 ARCH_KMALLOC_MINALIGN
,
1545 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1552 /* 4) Replace the bootstrap head arrays */
1554 struct array_cache
*ptr
;
1556 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1558 local_irq_disable();
1559 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1560 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1561 sizeof(struct arraycache_init
));
1563 * Do not assume that spinlocks can be initialized via memcpy:
1565 spin_lock_init(&ptr
->lock
);
1567 cache_cache
.array
[smp_processor_id()] = ptr
;
1570 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1572 local_irq_disable();
1573 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1574 != &initarray_generic
.cache
);
1575 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1576 sizeof(struct arraycache_init
));
1578 * Do not assume that spinlocks can be initialized via memcpy:
1580 spin_lock_init(&ptr
->lock
);
1582 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1586 /* 5) Replace the bootstrap kmem_list3's */
1590 /* Replace the static kmem_list3 structures for the boot cpu */
1591 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
], node
);
1593 for_each_node_state(nid
, N_NORMAL_MEMORY
) {
1594 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1595 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1597 if (INDEX_AC
!= INDEX_L3
) {
1598 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1599 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1604 /* 6) resize the head arrays to their final sizes */
1606 struct kmem_cache
*cachep
;
1607 mutex_lock(&cache_chain_mutex
);
1608 list_for_each_entry(cachep
, &cache_chain
, next
)
1609 if (enable_cpucache(cachep
))
1611 mutex_unlock(&cache_chain_mutex
);
1614 /* Annotate slab for lockdep -- annotate the malloc caches */
1619 g_cpucache_up
= FULL
;
1622 * Register a cpu startup notifier callback that initializes
1623 * cpu_cache_get for all new cpus
1625 register_cpu_notifier(&cpucache_notifier
);
1628 * The reap timers are started later, with a module init call: That part
1629 * of the kernel is not yet operational.
1633 static int __init
cpucache_init(void)
1638 * Register the timers that return unneeded pages to the page allocator
1640 for_each_online_cpu(cpu
)
1641 start_cpu_timer(cpu
);
1644 __initcall(cpucache_init
);
1647 * Interface to system's page allocator. No need to hold the cache-lock.
1649 * If we requested dmaable memory, we will get it. Even if we
1650 * did not request dmaable memory, we might get it, but that
1651 * would be relatively rare and ignorable.
1653 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1661 * Nommu uses slab's for process anonymous memory allocations, and thus
1662 * requires __GFP_COMP to properly refcount higher order allocations
1664 flags
|= __GFP_COMP
;
1667 flags
|= cachep
->gfpflags
;
1668 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1669 flags
|= __GFP_RECLAIMABLE
;
1671 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1675 nr_pages
= (1 << cachep
->gfporder
);
1676 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1677 add_zone_page_state(page_zone(page
),
1678 NR_SLAB_RECLAIMABLE
, nr_pages
);
1680 add_zone_page_state(page_zone(page
),
1681 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1682 for (i
= 0; i
< nr_pages
; i
++)
1683 __SetPageSlab(page
+ i
);
1684 return page_address(page
);
1688 * Interface to system's page release.
1690 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1692 unsigned long i
= (1 << cachep
->gfporder
);
1693 struct page
*page
= virt_to_page(addr
);
1694 const unsigned long nr_freed
= i
;
1696 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1697 sub_zone_page_state(page_zone(page
),
1698 NR_SLAB_RECLAIMABLE
, nr_freed
);
1700 sub_zone_page_state(page_zone(page
),
1701 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1703 BUG_ON(!PageSlab(page
));
1704 __ClearPageSlab(page
);
1707 if (current
->reclaim_state
)
1708 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1709 free_pages((unsigned long)addr
, cachep
->gfporder
);
1712 static void kmem_rcu_free(struct rcu_head
*head
)
1714 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1715 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1717 kmem_freepages(cachep
, slab_rcu
->addr
);
1718 if (OFF_SLAB(cachep
))
1719 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1724 #ifdef CONFIG_DEBUG_PAGEALLOC
1725 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1726 unsigned long caller
)
1728 int size
= obj_size(cachep
);
1730 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1732 if (size
< 5 * sizeof(unsigned long))
1735 *addr
++ = 0x12345678;
1737 *addr
++ = smp_processor_id();
1738 size
-= 3 * sizeof(unsigned long);
1740 unsigned long *sptr
= &caller
;
1741 unsigned long svalue
;
1743 while (!kstack_end(sptr
)) {
1745 if (kernel_text_address(svalue
)) {
1747 size
-= sizeof(unsigned long);
1748 if (size
<= sizeof(unsigned long))
1754 *addr
++ = 0x87654321;
1758 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1760 int size
= obj_size(cachep
);
1761 addr
= &((char *)addr
)[obj_offset(cachep
)];
1763 memset(addr
, val
, size
);
1764 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1767 static void dump_line(char *data
, int offset
, int limit
)
1770 unsigned char error
= 0;
1773 printk(KERN_ERR
"%03x:", offset
);
1774 for (i
= 0; i
< limit
; i
++) {
1775 if (data
[offset
+ i
] != POISON_FREE
) {
1776 error
= data
[offset
+ i
];
1779 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1783 if (bad_count
== 1) {
1784 error
^= POISON_FREE
;
1785 if (!(error
& (error
- 1))) {
1786 printk(KERN_ERR
"Single bit error detected. Probably "
1789 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1792 printk(KERN_ERR
"Run a memory test tool.\n");
1801 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1806 if (cachep
->flags
& SLAB_RED_ZONE
) {
1807 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1808 *dbg_redzone1(cachep
, objp
),
1809 *dbg_redzone2(cachep
, objp
));
1812 if (cachep
->flags
& SLAB_STORE_USER
) {
1813 printk(KERN_ERR
"Last user: [<%p>]",
1814 *dbg_userword(cachep
, objp
));
1815 print_symbol("(%s)",
1816 (unsigned long)*dbg_userword(cachep
, objp
));
1819 realobj
= (char *)objp
+ obj_offset(cachep
);
1820 size
= obj_size(cachep
);
1821 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1824 if (i
+ limit
> size
)
1826 dump_line(realobj
, i
, limit
);
1830 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1836 realobj
= (char *)objp
+ obj_offset(cachep
);
1837 size
= obj_size(cachep
);
1839 for (i
= 0; i
< size
; i
++) {
1840 char exp
= POISON_FREE
;
1843 if (realobj
[i
] != exp
) {
1849 "Slab corruption: %s start=%p, len=%d\n",
1850 cachep
->name
, realobj
, size
);
1851 print_objinfo(cachep
, objp
, 0);
1853 /* Hexdump the affected line */
1856 if (i
+ limit
> size
)
1858 dump_line(realobj
, i
, limit
);
1861 /* Limit to 5 lines */
1867 /* Print some data about the neighboring objects, if they
1870 struct slab
*slabp
= virt_to_slab(objp
);
1873 objnr
= obj_to_index(cachep
, slabp
, objp
);
1875 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1876 realobj
= (char *)objp
+ obj_offset(cachep
);
1877 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1879 print_objinfo(cachep
, objp
, 2);
1881 if (objnr
+ 1 < cachep
->num
) {
1882 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1883 realobj
= (char *)objp
+ obj_offset(cachep
);
1884 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1886 print_objinfo(cachep
, objp
, 2);
1894 * slab_destroy_objs - destroy a slab and its objects
1895 * @cachep: cache pointer being destroyed
1896 * @slabp: slab pointer being destroyed
1898 * Call the registered destructor for each object in a slab that is being
1901 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1904 for (i
= 0; i
< cachep
->num
; i
++) {
1905 void *objp
= index_to_obj(cachep
, slabp
, i
);
1907 if (cachep
->flags
& SLAB_POISON
) {
1908 #ifdef CONFIG_DEBUG_PAGEALLOC
1909 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1911 kernel_map_pages(virt_to_page(objp
),
1912 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1914 check_poison_obj(cachep
, objp
);
1916 check_poison_obj(cachep
, objp
);
1919 if (cachep
->flags
& SLAB_RED_ZONE
) {
1920 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1921 slab_error(cachep
, "start of a freed object "
1923 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1924 slab_error(cachep
, "end of a freed object "
1930 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1936 * slab_destroy - destroy and release all objects in a slab
1937 * @cachep: cache pointer being destroyed
1938 * @slabp: slab pointer being destroyed
1940 * Destroy all the objs in a slab, and release the mem back to the system.
1941 * Before calling the slab must have been unlinked from the cache. The
1942 * cache-lock is not held/needed.
1944 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1946 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1948 slab_destroy_objs(cachep
, slabp
);
1949 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1950 struct slab_rcu
*slab_rcu
;
1952 slab_rcu
= (struct slab_rcu
*)slabp
;
1953 slab_rcu
->cachep
= cachep
;
1954 slab_rcu
->addr
= addr
;
1955 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1957 kmem_freepages(cachep
, addr
);
1958 if (OFF_SLAB(cachep
))
1959 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1964 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1965 * size of kmem_list3.
1967 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1971 for_each_node_state(node
, N_NORMAL_MEMORY
) {
1972 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1973 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1975 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1979 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
1982 struct kmem_list3
*l3
;
1984 for_each_online_cpu(i
)
1985 kfree(cachep
->array
[i
]);
1987 /* NUMA: free the list3 structures */
1988 for_each_online_node(i
) {
1989 l3
= cachep
->nodelists
[i
];
1992 free_alien_cache(l3
->alien
);
1996 kmem_cache_free(&cache_cache
, cachep
);
2001 * calculate_slab_order - calculate size (page order) of slabs
2002 * @cachep: pointer to the cache that is being created
2003 * @size: size of objects to be created in this cache.
2004 * @align: required alignment for the objects.
2005 * @flags: slab allocation flags
2007 * Also calculates the number of objects per slab.
2009 * This could be made much more intelligent. For now, try to avoid using
2010 * high order pages for slabs. When the gfp() functions are more friendly
2011 * towards high-order requests, this should be changed.
2013 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2014 size_t size
, size_t align
, unsigned long flags
)
2016 unsigned long offslab_limit
;
2017 size_t left_over
= 0;
2020 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2024 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2028 if (flags
& CFLGS_OFF_SLAB
) {
2030 * Max number of objs-per-slab for caches which
2031 * use off-slab slabs. Needed to avoid a possible
2032 * looping condition in cache_grow().
2034 offslab_limit
= size
- sizeof(struct slab
);
2035 offslab_limit
/= sizeof(kmem_bufctl_t
);
2037 if (num
> offslab_limit
)
2041 /* Found something acceptable - save it away */
2043 cachep
->gfporder
= gfporder
;
2044 left_over
= remainder
;
2047 * A VFS-reclaimable slab tends to have most allocations
2048 * as GFP_NOFS and we really don't want to have to be allocating
2049 * higher-order pages when we are unable to shrink dcache.
2051 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2055 * Large number of objects is good, but very large slabs are
2056 * currently bad for the gfp()s.
2058 if (gfporder
>= slab_break_gfp_order
)
2062 * Acceptable internal fragmentation?
2064 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2070 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
)
2072 if (g_cpucache_up
== FULL
)
2073 return enable_cpucache(cachep
);
2075 if (g_cpucache_up
== NONE
) {
2077 * Note: the first kmem_cache_create must create the cache
2078 * that's used by kmalloc(24), otherwise the creation of
2079 * further caches will BUG().
2081 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2084 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2085 * the first cache, then we need to set up all its list3s,
2086 * otherwise the creation of further caches will BUG().
2088 set_up_list3s(cachep
, SIZE_AC
);
2089 if (INDEX_AC
== INDEX_L3
)
2090 g_cpucache_up
= PARTIAL_L3
;
2092 g_cpucache_up
= PARTIAL_AC
;
2094 cachep
->array
[smp_processor_id()] =
2095 kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
2097 if (g_cpucache_up
== PARTIAL_AC
) {
2098 set_up_list3s(cachep
, SIZE_L3
);
2099 g_cpucache_up
= PARTIAL_L3
;
2102 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2103 cachep
->nodelists
[node
] =
2104 kmalloc_node(sizeof(struct kmem_list3
),
2106 BUG_ON(!cachep
->nodelists
[node
]);
2107 kmem_list3_init(cachep
->nodelists
[node
]);
2111 cachep
->nodelists
[numa_node_id()]->next_reap
=
2112 jiffies
+ REAPTIMEOUT_LIST3
+
2113 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2115 cpu_cache_get(cachep
)->avail
= 0;
2116 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2117 cpu_cache_get(cachep
)->batchcount
= 1;
2118 cpu_cache_get(cachep
)->touched
= 0;
2119 cachep
->batchcount
= 1;
2120 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2125 * kmem_cache_create - Create a cache.
2126 * @name: A string which is used in /proc/slabinfo to identify this cache.
2127 * @size: The size of objects to be created in this cache.
2128 * @align: The required alignment for the objects.
2129 * @flags: SLAB flags
2130 * @ctor: A constructor for the objects.
2132 * Returns a ptr to the cache on success, NULL on failure.
2133 * Cannot be called within a int, but can be interrupted.
2134 * The @ctor is run when new pages are allocated by the cache.
2136 * @name must be valid until the cache is destroyed. This implies that
2137 * the module calling this has to destroy the cache before getting unloaded.
2141 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2142 * to catch references to uninitialised memory.
2144 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2145 * for buffer overruns.
2147 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2148 * cacheline. This can be beneficial if you're counting cycles as closely
2152 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2153 unsigned long flags
,
2154 void (*ctor
)(struct kmem_cache
*, void *))
2156 size_t left_over
, slab_size
, ralign
;
2157 struct kmem_cache
*cachep
= NULL
, *pc
;
2160 * Sanity checks... these are all serious usage bugs.
2162 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2163 size
> KMALLOC_MAX_SIZE
) {
2164 printk(KERN_ERR
"%s: Early error in slab %s\n", __FUNCTION__
,
2170 * We use cache_chain_mutex to ensure a consistent view of
2171 * cpu_online_map as well. Please see cpuup_callback
2173 mutex_lock(&cache_chain_mutex
);
2175 list_for_each_entry(pc
, &cache_chain
, next
) {
2180 * This happens when the module gets unloaded and doesn't
2181 * destroy its slab cache and no-one else reuses the vmalloc
2182 * area of the module. Print a warning.
2184 res
= probe_kernel_address(pc
->name
, tmp
);
2187 "SLAB: cache with size %d has lost its name\n",
2192 if (!strcmp(pc
->name
, name
)) {
2194 "kmem_cache_create: duplicate cache %s\n", name
);
2201 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2204 * Enable redzoning and last user accounting, except for caches with
2205 * large objects, if the increased size would increase the object size
2206 * above the next power of two: caches with object sizes just above a
2207 * power of two have a significant amount of internal fragmentation.
2209 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2210 2 * sizeof(unsigned long long)))
2211 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2212 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2213 flags
|= SLAB_POISON
;
2215 if (flags
& SLAB_DESTROY_BY_RCU
)
2216 BUG_ON(flags
& SLAB_POISON
);
2219 * Always checks flags, a caller might be expecting debug support which
2222 BUG_ON(flags
& ~CREATE_MASK
);
2225 * Check that size is in terms of words. This is needed to avoid
2226 * unaligned accesses for some archs when redzoning is used, and makes
2227 * sure any on-slab bufctl's are also correctly aligned.
2229 if (size
& (BYTES_PER_WORD
- 1)) {
2230 size
+= (BYTES_PER_WORD
- 1);
2231 size
&= ~(BYTES_PER_WORD
- 1);
2234 /* calculate the final buffer alignment: */
2236 /* 1) arch recommendation: can be overridden for debug */
2237 if (flags
& SLAB_HWCACHE_ALIGN
) {
2239 * Default alignment: as specified by the arch code. Except if
2240 * an object is really small, then squeeze multiple objects into
2243 ralign
= cache_line_size();
2244 while (size
<= ralign
/ 2)
2247 ralign
= BYTES_PER_WORD
;
2251 * Redzoning and user store require word alignment or possibly larger.
2252 * Note this will be overridden by architecture or caller mandated
2253 * alignment if either is greater than BYTES_PER_WORD.
2255 if (flags
& SLAB_STORE_USER
)
2256 ralign
= BYTES_PER_WORD
;
2258 if (flags
& SLAB_RED_ZONE
) {
2259 ralign
= REDZONE_ALIGN
;
2260 /* If redzoning, ensure that the second redzone is suitably
2261 * aligned, by adjusting the object size accordingly. */
2262 size
+= REDZONE_ALIGN
- 1;
2263 size
&= ~(REDZONE_ALIGN
- 1);
2266 /* 2) arch mandated alignment */
2267 if (ralign
< ARCH_SLAB_MINALIGN
) {
2268 ralign
= ARCH_SLAB_MINALIGN
;
2270 /* 3) caller mandated alignment */
2271 if (ralign
< align
) {
2274 /* disable debug if necessary */
2275 if (ralign
> __alignof__(unsigned long long))
2276 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2282 /* Get cache's description obj. */
2283 cachep
= kmem_cache_zalloc(&cache_cache
, GFP_KERNEL
);
2288 cachep
->obj_size
= size
;
2291 * Both debugging options require word-alignment which is calculated
2294 if (flags
& SLAB_RED_ZONE
) {
2295 /* add space for red zone words */
2296 cachep
->obj_offset
+= sizeof(unsigned long long);
2297 size
+= 2 * sizeof(unsigned long long);
2299 if (flags
& SLAB_STORE_USER
) {
2300 /* user store requires one word storage behind the end of
2301 * the real object. But if the second red zone needs to be
2302 * aligned to 64 bits, we must allow that much space.
2304 if (flags
& SLAB_RED_ZONE
)
2305 size
+= REDZONE_ALIGN
;
2307 size
+= BYTES_PER_WORD
;
2309 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2310 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2311 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2312 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2319 * Determine if the slab management is 'on' or 'off' slab.
2320 * (bootstrapping cannot cope with offslab caches so don't do
2323 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
)
2325 * Size is large, assume best to place the slab management obj
2326 * off-slab (should allow better packing of objs).
2328 flags
|= CFLGS_OFF_SLAB
;
2330 size
= ALIGN(size
, align
);
2332 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2336 "kmem_cache_create: couldn't create cache %s.\n", name
);
2337 kmem_cache_free(&cache_cache
, cachep
);
2341 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2342 + sizeof(struct slab
), align
);
2345 * If the slab has been placed off-slab, and we have enough space then
2346 * move it on-slab. This is at the expense of any extra colouring.
2348 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2349 flags
&= ~CFLGS_OFF_SLAB
;
2350 left_over
-= slab_size
;
2353 if (flags
& CFLGS_OFF_SLAB
) {
2354 /* really off slab. No need for manual alignment */
2356 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2359 cachep
->colour_off
= cache_line_size();
2360 /* Offset must be a multiple of the alignment. */
2361 if (cachep
->colour_off
< align
)
2362 cachep
->colour_off
= align
;
2363 cachep
->colour
= left_over
/ cachep
->colour_off
;
2364 cachep
->slab_size
= slab_size
;
2365 cachep
->flags
= flags
;
2366 cachep
->gfpflags
= 0;
2367 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2368 cachep
->gfpflags
|= GFP_DMA
;
2369 cachep
->buffer_size
= size
;
2370 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2372 if (flags
& CFLGS_OFF_SLAB
) {
2373 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2375 * This is a possibility for one of the malloc_sizes caches.
2376 * But since we go off slab only for object size greater than
2377 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2378 * this should not happen at all.
2379 * But leave a BUG_ON for some lucky dude.
2381 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2383 cachep
->ctor
= ctor
;
2384 cachep
->name
= name
;
2386 if (setup_cpu_cache(cachep
)) {
2387 __kmem_cache_destroy(cachep
);
2392 /* cache setup completed, link it into the list */
2393 list_add(&cachep
->next
, &cache_chain
);
2395 if (!cachep
&& (flags
& SLAB_PANIC
))
2396 panic("kmem_cache_create(): failed to create slab `%s'\n",
2398 mutex_unlock(&cache_chain_mutex
);
2401 EXPORT_SYMBOL(kmem_cache_create
);
2404 static void check_irq_off(void)
2406 BUG_ON(!irqs_disabled());
2409 static void check_irq_on(void)
2411 BUG_ON(irqs_disabled());
2414 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2418 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2422 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2426 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2431 #define check_irq_off() do { } while(0)
2432 #define check_irq_on() do { } while(0)
2433 #define check_spinlock_acquired(x) do { } while(0)
2434 #define check_spinlock_acquired_node(x, y) do { } while(0)
2437 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2438 struct array_cache
*ac
,
2439 int force
, int node
);
2441 static void do_drain(void *arg
)
2443 struct kmem_cache
*cachep
= arg
;
2444 struct array_cache
*ac
;
2445 int node
= numa_node_id();
2448 ac
= cpu_cache_get(cachep
);
2449 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2450 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2451 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2455 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2457 struct kmem_list3
*l3
;
2460 on_each_cpu(do_drain
, cachep
, 1, 1);
2462 for_each_online_node(node
) {
2463 l3
= cachep
->nodelists
[node
];
2464 if (l3
&& l3
->alien
)
2465 drain_alien_cache(cachep
, l3
->alien
);
2468 for_each_online_node(node
) {
2469 l3
= cachep
->nodelists
[node
];
2471 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2476 * Remove slabs from the list of free slabs.
2477 * Specify the number of slabs to drain in tofree.
2479 * Returns the actual number of slabs released.
2481 static int drain_freelist(struct kmem_cache
*cache
,
2482 struct kmem_list3
*l3
, int tofree
)
2484 struct list_head
*p
;
2489 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2491 spin_lock_irq(&l3
->list_lock
);
2492 p
= l3
->slabs_free
.prev
;
2493 if (p
== &l3
->slabs_free
) {
2494 spin_unlock_irq(&l3
->list_lock
);
2498 slabp
= list_entry(p
, struct slab
, list
);
2500 BUG_ON(slabp
->inuse
);
2502 list_del(&slabp
->list
);
2504 * Safe to drop the lock. The slab is no longer linked
2507 l3
->free_objects
-= cache
->num
;
2508 spin_unlock_irq(&l3
->list_lock
);
2509 slab_destroy(cache
, slabp
);
2516 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2517 static int __cache_shrink(struct kmem_cache
*cachep
)
2520 struct kmem_list3
*l3
;
2522 drain_cpu_caches(cachep
);
2525 for_each_online_node(i
) {
2526 l3
= cachep
->nodelists
[i
];
2530 drain_freelist(cachep
, l3
, l3
->free_objects
);
2532 ret
+= !list_empty(&l3
->slabs_full
) ||
2533 !list_empty(&l3
->slabs_partial
);
2535 return (ret
? 1 : 0);
2539 * kmem_cache_shrink - Shrink a cache.
2540 * @cachep: The cache to shrink.
2542 * Releases as many slabs as possible for a cache.
2543 * To help debugging, a zero exit status indicates all slabs were released.
2545 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2548 BUG_ON(!cachep
|| in_interrupt());
2550 mutex_lock(&cache_chain_mutex
);
2551 ret
= __cache_shrink(cachep
);
2552 mutex_unlock(&cache_chain_mutex
);
2555 EXPORT_SYMBOL(kmem_cache_shrink
);
2558 * kmem_cache_destroy - delete a cache
2559 * @cachep: the cache to destroy
2561 * Remove a &struct kmem_cache object from the slab cache.
2563 * It is expected this function will be called by a module when it is
2564 * unloaded. This will remove the cache completely, and avoid a duplicate
2565 * cache being allocated each time a module is loaded and unloaded, if the
2566 * module doesn't have persistent in-kernel storage across loads and unloads.
2568 * The cache must be empty before calling this function.
2570 * The caller must guarantee that noone will allocate memory from the cache
2571 * during the kmem_cache_destroy().
2573 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2575 BUG_ON(!cachep
|| in_interrupt());
2577 /* Find the cache in the chain of caches. */
2578 mutex_lock(&cache_chain_mutex
);
2580 * the chain is never empty, cache_cache is never destroyed
2582 list_del(&cachep
->next
);
2583 if (__cache_shrink(cachep
)) {
2584 slab_error(cachep
, "Can't free all objects");
2585 list_add(&cachep
->next
, &cache_chain
);
2586 mutex_unlock(&cache_chain_mutex
);
2590 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2593 __kmem_cache_destroy(cachep
);
2594 mutex_unlock(&cache_chain_mutex
);
2596 EXPORT_SYMBOL(kmem_cache_destroy
);
2599 * Get the memory for a slab management obj.
2600 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2601 * always come from malloc_sizes caches. The slab descriptor cannot
2602 * come from the same cache which is getting created because,
2603 * when we are searching for an appropriate cache for these
2604 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2605 * If we are creating a malloc_sizes cache here it would not be visible to
2606 * kmem_find_general_cachep till the initialization is complete.
2607 * Hence we cannot have slabp_cache same as the original cache.
2609 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2610 int colour_off
, gfp_t local_flags
,
2615 if (OFF_SLAB(cachep
)) {
2616 /* Slab management obj is off-slab. */
2617 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2618 local_flags
& ~GFP_THISNODE
, nodeid
);
2622 slabp
= objp
+ colour_off
;
2623 colour_off
+= cachep
->slab_size
;
2626 slabp
->colouroff
= colour_off
;
2627 slabp
->s_mem
= objp
+ colour_off
;
2628 slabp
->nodeid
= nodeid
;
2632 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2634 return (kmem_bufctl_t
*) (slabp
+ 1);
2637 static void cache_init_objs(struct kmem_cache
*cachep
,
2642 for (i
= 0; i
< cachep
->num
; i
++) {
2643 void *objp
= index_to_obj(cachep
, slabp
, i
);
2645 /* need to poison the objs? */
2646 if (cachep
->flags
& SLAB_POISON
)
2647 poison_obj(cachep
, objp
, POISON_FREE
);
2648 if (cachep
->flags
& SLAB_STORE_USER
)
2649 *dbg_userword(cachep
, objp
) = NULL
;
2651 if (cachep
->flags
& SLAB_RED_ZONE
) {
2652 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2653 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2656 * Constructors are not allowed to allocate memory from the same
2657 * cache which they are a constructor for. Otherwise, deadlock.
2658 * They must also be threaded.
2660 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2661 cachep
->ctor(cachep
, objp
+ obj_offset(cachep
));
2663 if (cachep
->flags
& SLAB_RED_ZONE
) {
2664 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2665 slab_error(cachep
, "constructor overwrote the"
2666 " end of an object");
2667 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2668 slab_error(cachep
, "constructor overwrote the"
2669 " start of an object");
2671 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2672 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2673 kernel_map_pages(virt_to_page(objp
),
2674 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2677 cachep
->ctor(cachep
, objp
);
2679 slab_bufctl(slabp
)[i
] = i
+ 1;
2681 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2685 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2687 if (CONFIG_ZONE_DMA_FLAG
) {
2688 if (flags
& GFP_DMA
)
2689 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2691 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2695 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2698 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2702 next
= slab_bufctl(slabp
)[slabp
->free
];
2704 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2705 WARN_ON(slabp
->nodeid
!= nodeid
);
2712 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2713 void *objp
, int nodeid
)
2715 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2718 /* Verify that the slab belongs to the intended node */
2719 WARN_ON(slabp
->nodeid
!= nodeid
);
2721 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2722 printk(KERN_ERR
"slab: double free detected in cache "
2723 "'%s', objp %p\n", cachep
->name
, objp
);
2727 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2728 slabp
->free
= objnr
;
2733 * Map pages beginning at addr to the given cache and slab. This is required
2734 * for the slab allocator to be able to lookup the cache and slab of a
2735 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2737 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2743 page
= virt_to_page(addr
);
2746 if (likely(!PageCompound(page
)))
2747 nr_pages
<<= cache
->gfporder
;
2750 page_set_cache(page
, cache
);
2751 page_set_slab(page
, slab
);
2753 } while (--nr_pages
);
2757 * Grow (by 1) the number of slabs within a cache. This is called by
2758 * kmem_cache_alloc() when there are no active objs left in a cache.
2760 static int cache_grow(struct kmem_cache
*cachep
,
2761 gfp_t flags
, int nodeid
, void *objp
)
2766 struct kmem_list3
*l3
;
2769 * Be lazy and only check for valid flags here, keeping it out of the
2770 * critical path in kmem_cache_alloc().
2772 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2773 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2775 /* Take the l3 list lock to change the colour_next on this node */
2777 l3
= cachep
->nodelists
[nodeid
];
2778 spin_lock(&l3
->list_lock
);
2780 /* Get colour for the slab, and cal the next value. */
2781 offset
= l3
->colour_next
;
2783 if (l3
->colour_next
>= cachep
->colour
)
2784 l3
->colour_next
= 0;
2785 spin_unlock(&l3
->list_lock
);
2787 offset
*= cachep
->colour_off
;
2789 if (local_flags
& __GFP_WAIT
)
2793 * The test for missing atomic flag is performed here, rather than
2794 * the more obvious place, simply to reduce the critical path length
2795 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2796 * will eventually be caught here (where it matters).
2798 kmem_flagcheck(cachep
, flags
);
2801 * Get mem for the objs. Attempt to allocate a physical page from
2805 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2809 /* Get slab management. */
2810 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2811 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2815 slabp
->nodeid
= nodeid
;
2816 slab_map_pages(cachep
, slabp
, objp
);
2818 cache_init_objs(cachep
, slabp
);
2820 if (local_flags
& __GFP_WAIT
)
2821 local_irq_disable();
2823 spin_lock(&l3
->list_lock
);
2825 /* Make slab active. */
2826 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2827 STATS_INC_GROWN(cachep
);
2828 l3
->free_objects
+= cachep
->num
;
2829 spin_unlock(&l3
->list_lock
);
2832 kmem_freepages(cachep
, objp
);
2834 if (local_flags
& __GFP_WAIT
)
2835 local_irq_disable();
2842 * Perform extra freeing checks:
2843 * - detect bad pointers.
2844 * - POISON/RED_ZONE checking
2846 static void kfree_debugcheck(const void *objp
)
2848 if (!virt_addr_valid(objp
)) {
2849 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2850 (unsigned long)objp
);
2855 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2857 unsigned long long redzone1
, redzone2
;
2859 redzone1
= *dbg_redzone1(cache
, obj
);
2860 redzone2
= *dbg_redzone2(cache
, obj
);
2865 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2868 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2869 slab_error(cache
, "double free detected");
2871 slab_error(cache
, "memory outside object was overwritten");
2873 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2874 obj
, redzone1
, redzone2
);
2877 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2884 objp
-= obj_offset(cachep
);
2885 kfree_debugcheck(objp
);
2886 page
= virt_to_head_page(objp
);
2888 slabp
= page_get_slab(page
);
2890 if (cachep
->flags
& SLAB_RED_ZONE
) {
2891 verify_redzone_free(cachep
, objp
);
2892 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2893 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2895 if (cachep
->flags
& SLAB_STORE_USER
)
2896 *dbg_userword(cachep
, objp
) = caller
;
2898 objnr
= obj_to_index(cachep
, slabp
, objp
);
2900 BUG_ON(objnr
>= cachep
->num
);
2901 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2903 #ifdef CONFIG_DEBUG_SLAB_LEAK
2904 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2906 if (cachep
->flags
& SLAB_POISON
) {
2907 #ifdef CONFIG_DEBUG_PAGEALLOC
2908 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2909 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2910 kernel_map_pages(virt_to_page(objp
),
2911 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2913 poison_obj(cachep
, objp
, POISON_FREE
);
2916 poison_obj(cachep
, objp
, POISON_FREE
);
2922 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2927 /* Check slab's freelist to see if this obj is there. */
2928 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2930 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2933 if (entries
!= cachep
->num
- slabp
->inuse
) {
2935 printk(KERN_ERR
"slab: Internal list corruption detected in "
2936 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2937 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2939 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2942 printk("\n%03x:", i
);
2943 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2950 #define kfree_debugcheck(x) do { } while(0)
2951 #define cache_free_debugcheck(x,objp,z) (objp)
2952 #define check_slabp(x,y) do { } while(0)
2955 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2958 struct kmem_list3
*l3
;
2959 struct array_cache
*ac
;
2962 node
= numa_node_id();
2965 ac
= cpu_cache_get(cachep
);
2967 batchcount
= ac
->batchcount
;
2968 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2970 * If there was little recent activity on this cache, then
2971 * perform only a partial refill. Otherwise we could generate
2974 batchcount
= BATCHREFILL_LIMIT
;
2976 l3
= cachep
->nodelists
[node
];
2978 BUG_ON(ac
->avail
> 0 || !l3
);
2979 spin_lock(&l3
->list_lock
);
2981 /* See if we can refill from the shared array */
2982 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
))
2985 while (batchcount
> 0) {
2986 struct list_head
*entry
;
2988 /* Get slab alloc is to come from. */
2989 entry
= l3
->slabs_partial
.next
;
2990 if (entry
== &l3
->slabs_partial
) {
2991 l3
->free_touched
= 1;
2992 entry
= l3
->slabs_free
.next
;
2993 if (entry
== &l3
->slabs_free
)
2997 slabp
= list_entry(entry
, struct slab
, list
);
2998 check_slabp(cachep
, slabp
);
2999 check_spinlock_acquired(cachep
);
3002 * The slab was either on partial or free list so
3003 * there must be at least one object available for
3006 BUG_ON(slabp
->inuse
< 0 || slabp
->inuse
>= cachep
->num
);
3008 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
3009 STATS_INC_ALLOCED(cachep
);
3010 STATS_INC_ACTIVE(cachep
);
3011 STATS_SET_HIGH(cachep
);
3013 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
3016 check_slabp(cachep
, slabp
);
3018 /* move slabp to correct slabp list: */
3019 list_del(&slabp
->list
);
3020 if (slabp
->free
== BUFCTL_END
)
3021 list_add(&slabp
->list
, &l3
->slabs_full
);
3023 list_add(&slabp
->list
, &l3
->slabs_partial
);
3027 l3
->free_objects
-= ac
->avail
;
3029 spin_unlock(&l3
->list_lock
);
3031 if (unlikely(!ac
->avail
)) {
3033 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3035 /* cache_grow can reenable interrupts, then ac could change. */
3036 ac
= cpu_cache_get(cachep
);
3037 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3040 if (!ac
->avail
) /* objects refilled by interrupt? */
3044 return ac
->entry
[--ac
->avail
];
3047 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3050 might_sleep_if(flags
& __GFP_WAIT
);
3052 kmem_flagcheck(cachep
, flags
);
3057 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3058 gfp_t flags
, void *objp
, void *caller
)
3062 if (cachep
->flags
& SLAB_POISON
) {
3063 #ifdef CONFIG_DEBUG_PAGEALLOC
3064 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3065 kernel_map_pages(virt_to_page(objp
),
3066 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3068 check_poison_obj(cachep
, objp
);
3070 check_poison_obj(cachep
, objp
);
3072 poison_obj(cachep
, objp
, POISON_INUSE
);
3074 if (cachep
->flags
& SLAB_STORE_USER
)
3075 *dbg_userword(cachep
, objp
) = caller
;
3077 if (cachep
->flags
& SLAB_RED_ZONE
) {
3078 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3079 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3080 slab_error(cachep
, "double free, or memory outside"
3081 " object was overwritten");
3083 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3084 objp
, *dbg_redzone1(cachep
, objp
),
3085 *dbg_redzone2(cachep
, objp
));
3087 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3088 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3090 #ifdef CONFIG_DEBUG_SLAB_LEAK
3095 slabp
= page_get_slab(virt_to_head_page(objp
));
3096 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3097 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3100 objp
+= obj_offset(cachep
);
3101 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3102 cachep
->ctor(cachep
, objp
);
3103 #if ARCH_SLAB_MINALIGN
3104 if ((u32
)objp
& (ARCH_SLAB_MINALIGN
-1)) {
3105 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3106 objp
, ARCH_SLAB_MINALIGN
);
3112 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3115 #ifdef CONFIG_FAILSLAB
3117 static struct failslab_attr
{
3119 struct fault_attr attr
;
3121 u32 ignore_gfp_wait
;
3122 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3123 struct dentry
*ignore_gfp_wait_file
;
3127 .attr
= FAULT_ATTR_INITIALIZER
,
3128 .ignore_gfp_wait
= 1,
3131 static int __init
setup_failslab(char *str
)
3133 return setup_fault_attr(&failslab
.attr
, str
);
3135 __setup("failslab=", setup_failslab
);
3137 static int should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3139 if (cachep
== &cache_cache
)
3141 if (flags
& __GFP_NOFAIL
)
3143 if (failslab
.ignore_gfp_wait
&& (flags
& __GFP_WAIT
))
3146 return should_fail(&failslab
.attr
, obj_size(cachep
));
3149 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3151 static int __init
failslab_debugfs(void)
3153 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
3157 err
= init_fault_attr_dentries(&failslab
.attr
, "failslab");
3160 dir
= failslab
.attr
.dentries
.dir
;
3162 failslab
.ignore_gfp_wait_file
=
3163 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3164 &failslab
.ignore_gfp_wait
);
3166 if (!failslab
.ignore_gfp_wait_file
) {
3168 debugfs_remove(failslab
.ignore_gfp_wait_file
);
3169 cleanup_fault_attr_dentries(&failslab
.attr
);
3175 late_initcall(failslab_debugfs
);
3177 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3179 #else /* CONFIG_FAILSLAB */
3181 static inline int should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3186 #endif /* CONFIG_FAILSLAB */
3188 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3191 struct array_cache
*ac
;
3195 ac
= cpu_cache_get(cachep
);
3196 if (likely(ac
->avail
)) {
3197 STATS_INC_ALLOCHIT(cachep
);
3199 objp
= ac
->entry
[--ac
->avail
];
3201 STATS_INC_ALLOCMISS(cachep
);
3202 objp
= cache_alloc_refill(cachep
, flags
);
3209 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3211 * If we are in_interrupt, then process context, including cpusets and
3212 * mempolicy, may not apply and should not be used for allocation policy.
3214 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3216 int nid_alloc
, nid_here
;
3218 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3220 nid_alloc
= nid_here
= numa_node_id();
3221 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3222 nid_alloc
= cpuset_mem_spread_node();
3223 else if (current
->mempolicy
)
3224 nid_alloc
= slab_node(current
->mempolicy
);
3225 if (nid_alloc
!= nid_here
)
3226 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3231 * Fallback function if there was no memory available and no objects on a
3232 * certain node and fall back is permitted. First we scan all the
3233 * available nodelists for available objects. If that fails then we
3234 * perform an allocation without specifying a node. This allows the page
3235 * allocator to do its reclaim / fallback magic. We then insert the
3236 * slab into the proper nodelist and then allocate from it.
3238 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3240 struct zonelist
*zonelist
;
3246 if (flags
& __GFP_THISNODE
)
3249 zonelist
= &NODE_DATA(slab_node(current
->mempolicy
))
3250 ->node_zonelists
[gfp_zone(flags
)];
3251 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3255 * Look through allowed nodes for objects available
3256 * from existing per node queues.
3258 for (z
= zonelist
->zones
; *z
&& !obj
; z
++) {
3259 nid
= zone_to_nid(*z
);
3261 if (cpuset_zone_allowed_hardwall(*z
, flags
) &&
3262 cache
->nodelists
[nid
] &&
3263 cache
->nodelists
[nid
]->free_objects
)
3264 obj
= ____cache_alloc_node(cache
,
3265 flags
| GFP_THISNODE
, nid
);
3270 * This allocation will be performed within the constraints
3271 * of the current cpuset / memory policy requirements.
3272 * We may trigger various forms of reclaim on the allowed
3273 * set and go into memory reserves if necessary.
3275 if (local_flags
& __GFP_WAIT
)
3277 kmem_flagcheck(cache
, flags
);
3278 obj
= kmem_getpages(cache
, flags
, -1);
3279 if (local_flags
& __GFP_WAIT
)
3280 local_irq_disable();
3283 * Insert into the appropriate per node queues
3285 nid
= page_to_nid(virt_to_page(obj
));
3286 if (cache_grow(cache
, flags
, nid
, obj
)) {
3287 obj
= ____cache_alloc_node(cache
,
3288 flags
| GFP_THISNODE
, nid
);
3291 * Another processor may allocate the
3292 * objects in the slab since we are
3293 * not holding any locks.
3297 /* cache_grow already freed obj */
3306 * A interface to enable slab creation on nodeid
3308 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3311 struct list_head
*entry
;
3313 struct kmem_list3
*l3
;
3317 l3
= cachep
->nodelists
[nodeid
];
3322 spin_lock(&l3
->list_lock
);
3323 entry
= l3
->slabs_partial
.next
;
3324 if (entry
== &l3
->slabs_partial
) {
3325 l3
->free_touched
= 1;
3326 entry
= l3
->slabs_free
.next
;
3327 if (entry
== &l3
->slabs_free
)
3331 slabp
= list_entry(entry
, struct slab
, list
);
3332 check_spinlock_acquired_node(cachep
, nodeid
);
3333 check_slabp(cachep
, slabp
);
3335 STATS_INC_NODEALLOCS(cachep
);
3336 STATS_INC_ACTIVE(cachep
);
3337 STATS_SET_HIGH(cachep
);
3339 BUG_ON(slabp
->inuse
== cachep
->num
);
3341 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3342 check_slabp(cachep
, slabp
);
3344 /* move slabp to correct slabp list: */
3345 list_del(&slabp
->list
);
3347 if (slabp
->free
== BUFCTL_END
)
3348 list_add(&slabp
->list
, &l3
->slabs_full
);
3350 list_add(&slabp
->list
, &l3
->slabs_partial
);
3352 spin_unlock(&l3
->list_lock
);
3356 spin_unlock(&l3
->list_lock
);
3357 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3361 return fallback_alloc(cachep
, flags
);
3368 * kmem_cache_alloc_node - Allocate an object on the specified node
3369 * @cachep: The cache to allocate from.
3370 * @flags: See kmalloc().
3371 * @nodeid: node number of the target node.
3372 * @caller: return address of caller, used for debug information
3374 * Identical to kmem_cache_alloc but it will allocate memory on the given
3375 * node, which can improve the performance for cpu bound structures.
3377 * Fallback to other node is possible if __GFP_THISNODE is not set.
3379 static __always_inline
void *
3380 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3383 unsigned long save_flags
;
3386 if (should_failslab(cachep
, flags
))
3389 cache_alloc_debugcheck_before(cachep
, flags
);
3390 local_irq_save(save_flags
);
3392 if (unlikely(nodeid
== -1))
3393 nodeid
= numa_node_id();
3395 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3396 /* Node not bootstrapped yet */
3397 ptr
= fallback_alloc(cachep
, flags
);
3401 if (nodeid
== numa_node_id()) {
3403 * Use the locally cached objects if possible.
3404 * However ____cache_alloc does not allow fallback
3405 * to other nodes. It may fail while we still have
3406 * objects on other nodes available.
3408 ptr
= ____cache_alloc(cachep
, flags
);
3412 /* ___cache_alloc_node can fall back to other nodes */
3413 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3415 local_irq_restore(save_flags
);
3416 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3418 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3419 memset(ptr
, 0, obj_size(cachep
));
3424 static __always_inline
void *
3425 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3429 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3430 objp
= alternate_node_alloc(cache
, flags
);
3434 objp
= ____cache_alloc(cache
, flags
);
3437 * We may just have run out of memory on the local node.
3438 * ____cache_alloc_node() knows how to locate memory on other nodes
3441 objp
= ____cache_alloc_node(cache
, flags
, numa_node_id());
3448 static __always_inline
void *
3449 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3451 return ____cache_alloc(cachep
, flags
);
3454 #endif /* CONFIG_NUMA */
3456 static __always_inline
void *
3457 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3459 unsigned long save_flags
;
3462 if (should_failslab(cachep
, flags
))
3465 cache_alloc_debugcheck_before(cachep
, flags
);
3466 local_irq_save(save_flags
);
3467 objp
= __do_cache_alloc(cachep
, flags
);
3468 local_irq_restore(save_flags
);
3469 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3472 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3473 memset(objp
, 0, obj_size(cachep
));
3479 * Caller needs to acquire correct kmem_list's list_lock
3481 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3485 struct kmem_list3
*l3
;
3487 for (i
= 0; i
< nr_objects
; i
++) {
3488 void *objp
= objpp
[i
];
3491 slabp
= virt_to_slab(objp
);
3492 l3
= cachep
->nodelists
[node
];
3493 list_del(&slabp
->list
);
3494 check_spinlock_acquired_node(cachep
, node
);
3495 check_slabp(cachep
, slabp
);
3496 slab_put_obj(cachep
, slabp
, objp
, node
);
3497 STATS_DEC_ACTIVE(cachep
);
3499 check_slabp(cachep
, slabp
);
3501 /* fixup slab chains */
3502 if (slabp
->inuse
== 0) {
3503 if (l3
->free_objects
> l3
->free_limit
) {
3504 l3
->free_objects
-= cachep
->num
;
3505 /* No need to drop any previously held
3506 * lock here, even if we have a off-slab slab
3507 * descriptor it is guaranteed to come from
3508 * a different cache, refer to comments before
3511 slab_destroy(cachep
, slabp
);
3513 list_add(&slabp
->list
, &l3
->slabs_free
);
3516 /* Unconditionally move a slab to the end of the
3517 * partial list on free - maximum time for the
3518 * other objects to be freed, too.
3520 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3525 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3528 struct kmem_list3
*l3
;
3529 int node
= numa_node_id();
3531 batchcount
= ac
->batchcount
;
3533 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3536 l3
= cachep
->nodelists
[node
];
3537 spin_lock(&l3
->list_lock
);
3539 struct array_cache
*shared_array
= l3
->shared
;
3540 int max
= shared_array
->limit
- shared_array
->avail
;
3542 if (batchcount
> max
)
3544 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3545 ac
->entry
, sizeof(void *) * batchcount
);
3546 shared_array
->avail
+= batchcount
;
3551 free_block(cachep
, ac
->entry
, batchcount
, node
);
3556 struct list_head
*p
;
3558 p
= l3
->slabs_free
.next
;
3559 while (p
!= &(l3
->slabs_free
)) {
3562 slabp
= list_entry(p
, struct slab
, list
);
3563 BUG_ON(slabp
->inuse
);
3568 STATS_SET_FREEABLE(cachep
, i
);
3571 spin_unlock(&l3
->list_lock
);
3572 ac
->avail
-= batchcount
;
3573 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3577 * Release an obj back to its cache. If the obj has a constructed state, it must
3578 * be in this state _before_ it is released. Called with disabled ints.
3580 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3582 struct array_cache
*ac
= cpu_cache_get(cachep
);
3585 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3588 * Skip calling cache_free_alien() when the platform is not numa.
3589 * This will avoid cache misses that happen while accessing slabp (which
3590 * is per page memory reference) to get nodeid. Instead use a global
3591 * variable to skip the call, which is mostly likely to be present in
3594 if (numa_platform
&& cache_free_alien(cachep
, objp
))
3597 if (likely(ac
->avail
< ac
->limit
)) {
3598 STATS_INC_FREEHIT(cachep
);
3599 ac
->entry
[ac
->avail
++] = objp
;
3602 STATS_INC_FREEMISS(cachep
);
3603 cache_flusharray(cachep
, ac
);
3604 ac
->entry
[ac
->avail
++] = objp
;
3609 * kmem_cache_alloc - Allocate an object
3610 * @cachep: The cache to allocate from.
3611 * @flags: See kmalloc().
3613 * Allocate an object from this cache. The flags are only relevant
3614 * if the cache has no available objects.
3616 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3618 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3620 EXPORT_SYMBOL(kmem_cache_alloc
);
3623 * kmem_ptr_validate - check if an untrusted pointer might
3625 * @cachep: the cache we're checking against
3626 * @ptr: pointer to validate
3628 * This verifies that the untrusted pointer looks sane:
3629 * it is _not_ a guarantee that the pointer is actually
3630 * part of the slab cache in question, but it at least
3631 * validates that the pointer can be dereferenced and
3632 * looks half-way sane.
3634 * Currently only used for dentry validation.
3636 int kmem_ptr_validate(struct kmem_cache
*cachep
, const void *ptr
)
3638 unsigned long addr
= (unsigned long)ptr
;
3639 unsigned long min_addr
= PAGE_OFFSET
;
3640 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3641 unsigned long size
= cachep
->buffer_size
;
3644 if (unlikely(addr
< min_addr
))
3646 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3648 if (unlikely(addr
& align_mask
))
3650 if (unlikely(!kern_addr_valid(addr
)))
3652 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3654 page
= virt_to_page(ptr
);
3655 if (unlikely(!PageSlab(page
)))
3657 if (unlikely(page_get_cache(page
) != cachep
))
3665 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3667 return __cache_alloc_node(cachep
, flags
, nodeid
,
3668 __builtin_return_address(0));
3670 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3672 static __always_inline
void *
3673 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3675 struct kmem_cache
*cachep
;
3677 cachep
= kmem_find_general_cachep(size
, flags
);
3678 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3680 return kmem_cache_alloc_node(cachep
, flags
, node
);
3683 #ifdef CONFIG_DEBUG_SLAB
3684 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3686 return __do_kmalloc_node(size
, flags
, node
,
3687 __builtin_return_address(0));
3689 EXPORT_SYMBOL(__kmalloc_node
);
3691 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3692 int node
, void *caller
)
3694 return __do_kmalloc_node(size
, flags
, node
, caller
);
3696 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3698 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3700 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3702 EXPORT_SYMBOL(__kmalloc_node
);
3703 #endif /* CONFIG_DEBUG_SLAB */
3704 #endif /* CONFIG_NUMA */
3707 * __do_kmalloc - allocate memory
3708 * @size: how many bytes of memory are required.
3709 * @flags: the type of memory to allocate (see kmalloc).
3710 * @caller: function caller for debug tracking of the caller
3712 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3715 struct kmem_cache
*cachep
;
3717 /* If you want to save a few bytes .text space: replace
3719 * Then kmalloc uses the uninlined functions instead of the inline
3722 cachep
= __find_general_cachep(size
, flags
);
3723 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3725 return __cache_alloc(cachep
, flags
, caller
);
3729 #ifdef CONFIG_DEBUG_SLAB
3730 void *__kmalloc(size_t size
, gfp_t flags
)
3732 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3734 EXPORT_SYMBOL(__kmalloc
);
3736 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, void *caller
)
3738 return __do_kmalloc(size
, flags
, caller
);
3740 EXPORT_SYMBOL(__kmalloc_track_caller
);
3743 void *__kmalloc(size_t size
, gfp_t flags
)
3745 return __do_kmalloc(size
, flags
, NULL
);
3747 EXPORT_SYMBOL(__kmalloc
);
3751 * kmem_cache_free - Deallocate an object
3752 * @cachep: The cache the allocation was from.
3753 * @objp: The previously allocated object.
3755 * Free an object which was previously allocated from this
3758 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3760 unsigned long flags
;
3762 BUG_ON(virt_to_cache(objp
) != cachep
);
3764 local_irq_save(flags
);
3765 debug_check_no_locks_freed(objp
, obj_size(cachep
));
3766 __cache_free(cachep
, objp
);
3767 local_irq_restore(flags
);
3769 EXPORT_SYMBOL(kmem_cache_free
);
3772 * kfree - free previously allocated memory
3773 * @objp: pointer returned by kmalloc.
3775 * If @objp is NULL, no operation is performed.
3777 * Don't free memory not originally allocated by kmalloc()
3778 * or you will run into trouble.
3780 void kfree(const void *objp
)
3782 struct kmem_cache
*c
;
3783 unsigned long flags
;
3785 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3787 local_irq_save(flags
);
3788 kfree_debugcheck(objp
);
3789 c
= virt_to_cache(objp
);
3790 debug_check_no_locks_freed(objp
, obj_size(c
));
3791 __cache_free(c
, (void *)objp
);
3792 local_irq_restore(flags
);
3794 EXPORT_SYMBOL(kfree
);
3796 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3798 return obj_size(cachep
);
3800 EXPORT_SYMBOL(kmem_cache_size
);
3802 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3804 return cachep
->name
;
3806 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3809 * This initializes kmem_list3 or resizes various caches for all nodes.
3811 static int alloc_kmemlist(struct kmem_cache
*cachep
)
3814 struct kmem_list3
*l3
;
3815 struct array_cache
*new_shared
;
3816 struct array_cache
**new_alien
= NULL
;
3818 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3820 if (use_alien_caches
) {
3821 new_alien
= alloc_alien_cache(node
, cachep
->limit
);
3827 if (cachep
->shared
) {
3828 new_shared
= alloc_arraycache(node
,
3829 cachep
->shared
*cachep
->batchcount
,
3832 free_alien_cache(new_alien
);
3837 l3
= cachep
->nodelists
[node
];
3839 struct array_cache
*shared
= l3
->shared
;
3841 spin_lock_irq(&l3
->list_lock
);
3844 free_block(cachep
, shared
->entry
,
3845 shared
->avail
, node
);
3847 l3
->shared
= new_shared
;
3849 l3
->alien
= new_alien
;
3852 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3853 cachep
->batchcount
+ cachep
->num
;
3854 spin_unlock_irq(&l3
->list_lock
);
3856 free_alien_cache(new_alien
);
3859 l3
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, node
);
3861 free_alien_cache(new_alien
);
3866 kmem_list3_init(l3
);
3867 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3868 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3869 l3
->shared
= new_shared
;
3870 l3
->alien
= new_alien
;
3871 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3872 cachep
->batchcount
+ cachep
->num
;
3873 cachep
->nodelists
[node
] = l3
;
3878 if (!cachep
->next
.next
) {
3879 /* Cache is not active yet. Roll back what we did */
3882 if (cachep
->nodelists
[node
]) {
3883 l3
= cachep
->nodelists
[node
];
3886 free_alien_cache(l3
->alien
);
3888 cachep
->nodelists
[node
] = NULL
;
3896 struct ccupdate_struct
{
3897 struct kmem_cache
*cachep
;
3898 struct array_cache
*new[NR_CPUS
];
3901 static void do_ccupdate_local(void *info
)
3903 struct ccupdate_struct
*new = info
;
3904 struct array_cache
*old
;
3907 old
= cpu_cache_get(new->cachep
);
3909 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3910 new->new[smp_processor_id()] = old
;
3913 /* Always called with the cache_chain_mutex held */
3914 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3915 int batchcount
, int shared
)
3917 struct ccupdate_struct
*new;
3920 new = kzalloc(sizeof(*new), GFP_KERNEL
);
3924 for_each_online_cpu(i
) {
3925 new->new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3928 for (i
--; i
>= 0; i
--)
3934 new->cachep
= cachep
;
3936 on_each_cpu(do_ccupdate_local
, (void *)new, 1, 1);
3939 cachep
->batchcount
= batchcount
;
3940 cachep
->limit
= limit
;
3941 cachep
->shared
= shared
;
3943 for_each_online_cpu(i
) {
3944 struct array_cache
*ccold
= new->new[i
];
3947 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3948 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3949 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3953 return alloc_kmemlist(cachep
);
3956 /* Called with cache_chain_mutex held always */
3957 static int enable_cpucache(struct kmem_cache
*cachep
)
3963 * The head array serves three purposes:
3964 * - create a LIFO ordering, i.e. return objects that are cache-warm
3965 * - reduce the number of spinlock operations.
3966 * - reduce the number of linked list operations on the slab and
3967 * bufctl chains: array operations are cheaper.
3968 * The numbers are guessed, we should auto-tune as described by
3971 if (cachep
->buffer_size
> 131072)
3973 else if (cachep
->buffer_size
> PAGE_SIZE
)
3975 else if (cachep
->buffer_size
> 1024)
3977 else if (cachep
->buffer_size
> 256)
3983 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3984 * allocation behaviour: Most allocs on one cpu, most free operations
3985 * on another cpu. For these cases, an efficient object passing between
3986 * cpus is necessary. This is provided by a shared array. The array
3987 * replaces Bonwick's magazine layer.
3988 * On uniprocessor, it's functionally equivalent (but less efficient)
3989 * to a larger limit. Thus disabled by default.
3992 if (cachep
->buffer_size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
3997 * With debugging enabled, large batchcount lead to excessively long
3998 * periods with disabled local interrupts. Limit the batchcount
4003 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
);
4005 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4006 cachep
->name
, -err
);
4011 * Drain an array if it contains any elements taking the l3 lock only if
4012 * necessary. Note that the l3 listlock also protects the array_cache
4013 * if drain_array() is used on the shared array.
4015 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4016 struct array_cache
*ac
, int force
, int node
)
4020 if (!ac
|| !ac
->avail
)
4022 if (ac
->touched
&& !force
) {
4025 spin_lock_irq(&l3
->list_lock
);
4027 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4028 if (tofree
> ac
->avail
)
4029 tofree
= (ac
->avail
+ 1) / 2;
4030 free_block(cachep
, ac
->entry
, tofree
, node
);
4031 ac
->avail
-= tofree
;
4032 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4033 sizeof(void *) * ac
->avail
);
4035 spin_unlock_irq(&l3
->list_lock
);
4040 * cache_reap - Reclaim memory from caches.
4041 * @w: work descriptor
4043 * Called from workqueue/eventd every few seconds.
4045 * - clear the per-cpu caches for this CPU.
4046 * - return freeable pages to the main free memory pool.
4048 * If we cannot acquire the cache chain mutex then just give up - we'll try
4049 * again on the next iteration.
4051 static void cache_reap(struct work_struct
*w
)
4053 struct kmem_cache
*searchp
;
4054 struct kmem_list3
*l3
;
4055 int node
= numa_node_id();
4056 struct delayed_work
*work
=
4057 container_of(w
, struct delayed_work
, work
);
4059 if (!mutex_trylock(&cache_chain_mutex
))
4060 /* Give up. Setup the next iteration. */
4063 list_for_each_entry(searchp
, &cache_chain
, next
) {
4067 * We only take the l3 lock if absolutely necessary and we
4068 * have established with reasonable certainty that
4069 * we can do some work if the lock was obtained.
4071 l3
= searchp
->nodelists
[node
];
4073 reap_alien(searchp
, l3
);
4075 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4078 * These are racy checks but it does not matter
4079 * if we skip one check or scan twice.
4081 if (time_after(l3
->next_reap
, jiffies
))
4084 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4086 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4088 if (l3
->free_touched
)
4089 l3
->free_touched
= 0;
4093 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4094 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4095 STATS_ADD_REAPED(searchp
, freed
);
4101 mutex_unlock(&cache_chain_mutex
);
4104 /* Set up the next iteration */
4105 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4108 #ifdef CONFIG_PROC_FS
4110 static void print_slabinfo_header(struct seq_file
*m
)
4113 * Output format version, so at least we can change it
4114 * without _too_ many complaints.
4117 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4119 seq_puts(m
, "slabinfo - version: 2.1\n");
4121 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4122 "<objperslab> <pagesperslab>");
4123 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4124 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4126 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4127 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4128 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4133 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4137 mutex_lock(&cache_chain_mutex
);
4139 print_slabinfo_header(m
);
4141 return seq_list_start(&cache_chain
, *pos
);
4144 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4146 return seq_list_next(p
, &cache_chain
, pos
);
4149 static void s_stop(struct seq_file
*m
, void *p
)
4151 mutex_unlock(&cache_chain_mutex
);
4154 static int s_show(struct seq_file
*m
, void *p
)
4156 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4158 unsigned long active_objs
;
4159 unsigned long num_objs
;
4160 unsigned long active_slabs
= 0;
4161 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4165 struct kmem_list3
*l3
;
4169 for_each_online_node(node
) {
4170 l3
= cachep
->nodelists
[node
];
4175 spin_lock_irq(&l3
->list_lock
);
4177 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4178 if (slabp
->inuse
!= cachep
->num
&& !error
)
4179 error
= "slabs_full accounting error";
4180 active_objs
+= cachep
->num
;
4183 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4184 if (slabp
->inuse
== cachep
->num
&& !error
)
4185 error
= "slabs_partial inuse accounting error";
4186 if (!slabp
->inuse
&& !error
)
4187 error
= "slabs_partial/inuse accounting error";
4188 active_objs
+= slabp
->inuse
;
4191 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4192 if (slabp
->inuse
&& !error
)
4193 error
= "slabs_free/inuse accounting error";
4196 free_objects
+= l3
->free_objects
;
4198 shared_avail
+= l3
->shared
->avail
;
4200 spin_unlock_irq(&l3
->list_lock
);
4202 num_slabs
+= active_slabs
;
4203 num_objs
= num_slabs
* cachep
->num
;
4204 if (num_objs
- active_objs
!= free_objects
&& !error
)
4205 error
= "free_objects accounting error";
4207 name
= cachep
->name
;
4209 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4211 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4212 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4213 cachep
->num
, (1 << cachep
->gfporder
));
4214 seq_printf(m
, " : tunables %4u %4u %4u",
4215 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4216 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4217 active_slabs
, num_slabs
, shared_avail
);
4220 unsigned long high
= cachep
->high_mark
;
4221 unsigned long allocs
= cachep
->num_allocations
;
4222 unsigned long grown
= cachep
->grown
;
4223 unsigned long reaped
= cachep
->reaped
;
4224 unsigned long errors
= cachep
->errors
;
4225 unsigned long max_freeable
= cachep
->max_freeable
;
4226 unsigned long node_allocs
= cachep
->node_allocs
;
4227 unsigned long node_frees
= cachep
->node_frees
;
4228 unsigned long overflows
= cachep
->node_overflow
;
4230 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
4231 %4lu %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
4232 reaped
, errors
, max_freeable
, node_allocs
,
4233 node_frees
, overflows
);
4237 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4238 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4239 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4240 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4242 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4243 allochit
, allocmiss
, freehit
, freemiss
);
4251 * slabinfo_op - iterator that generates /proc/slabinfo
4260 * num-pages-per-slab
4261 * + further values on SMP and with statistics enabled
4264 const struct seq_operations slabinfo_op
= {
4271 #define MAX_SLABINFO_WRITE 128
4273 * slabinfo_write - Tuning for the slab allocator
4275 * @buffer: user buffer
4276 * @count: data length
4279 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4280 size_t count
, loff_t
*ppos
)
4282 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4283 int limit
, batchcount
, shared
, res
;
4284 struct kmem_cache
*cachep
;
4286 if (count
> MAX_SLABINFO_WRITE
)
4288 if (copy_from_user(&kbuf
, buffer
, count
))
4290 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4292 tmp
= strchr(kbuf
, ' ');
4297 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4300 /* Find the cache in the chain of caches. */
4301 mutex_lock(&cache_chain_mutex
);
4303 list_for_each_entry(cachep
, &cache_chain
, next
) {
4304 if (!strcmp(cachep
->name
, kbuf
)) {
4305 if (limit
< 1 || batchcount
< 1 ||
4306 batchcount
> limit
|| shared
< 0) {
4309 res
= do_tune_cpucache(cachep
, limit
,
4310 batchcount
, shared
);
4315 mutex_unlock(&cache_chain_mutex
);
4321 #ifdef CONFIG_DEBUG_SLAB_LEAK
4323 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4325 mutex_lock(&cache_chain_mutex
);
4326 return seq_list_start(&cache_chain
, *pos
);
4329 static inline int add_caller(unsigned long *n
, unsigned long v
)
4339 unsigned long *q
= p
+ 2 * i
;
4353 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4359 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4365 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4366 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4368 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4373 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4375 #ifdef CONFIG_KALLSYMS
4376 unsigned long offset
, size
;
4377 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4379 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4380 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4382 seq_printf(m
, " [%s]", modname
);
4386 seq_printf(m
, "%p", (void *)address
);
4389 static int leaks_show(struct seq_file
*m
, void *p
)
4391 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4393 struct kmem_list3
*l3
;
4395 unsigned long *n
= m
->private;
4399 if (!(cachep
->flags
& SLAB_STORE_USER
))
4401 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4404 /* OK, we can do it */
4408 for_each_online_node(node
) {
4409 l3
= cachep
->nodelists
[node
];
4414 spin_lock_irq(&l3
->list_lock
);
4416 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4417 handle_slab(n
, cachep
, slabp
);
4418 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4419 handle_slab(n
, cachep
, slabp
);
4420 spin_unlock_irq(&l3
->list_lock
);
4422 name
= cachep
->name
;
4424 /* Increase the buffer size */
4425 mutex_unlock(&cache_chain_mutex
);
4426 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4428 /* Too bad, we are really out */
4430 mutex_lock(&cache_chain_mutex
);
4433 *(unsigned long *)m
->private = n
[0] * 2;
4435 mutex_lock(&cache_chain_mutex
);
4436 /* Now make sure this entry will be retried */
4440 for (i
= 0; i
< n
[1]; i
++) {
4441 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4442 show_symbol(m
, n
[2*i
+2]);
4449 const struct seq_operations slabstats_op
= {
4450 .start
= leaks_start
,
4459 * ksize - get the actual amount of memory allocated for a given object
4460 * @objp: Pointer to the object
4462 * kmalloc may internally round up allocations and return more memory
4463 * than requested. ksize() can be used to determine the actual amount of
4464 * memory allocated. The caller may use this additional memory, even though
4465 * a smaller amount of memory was initially specified with the kmalloc call.
4466 * The caller must guarantee that objp points to a valid object previously
4467 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4468 * must not be freed during the duration of the call.
4470 size_t ksize(const void *objp
)
4473 if (unlikely(objp
== ZERO_SIZE_PTR
))
4476 return obj_size(virt_to_cache(objp
));