Merge branch 'modsplit-Oct31_2011' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / md.c
blob84acfe7d10e48e33ea581924d4648948d005d90c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
62 /* pers_list is a list of registered personalities protected
63 * by pers_lock.
64 * pers_lock does extra service to protect accesses to
65 * mddev->thread when the mutex cannot be held.
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
70 static void md_print_devices(void);
72 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
73 static struct workqueue_struct *md_wq;
74 static struct workqueue_struct *md_misc_wq;
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79 * Default number of read corrections we'll attempt on an rdev
80 * before ejecting it from the array. We divide the read error
81 * count by 2 for every hour elapsed between read errors.
83 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
85 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
86 * is 1000 KB/sec, so the extra system load does not show up that much.
87 * Increase it if you want to have more _guaranteed_ speed. Note that
88 * the RAID driver will use the maximum available bandwidth if the IO
89 * subsystem is idle. There is also an 'absolute maximum' reconstruction
90 * speed limit - in case reconstruction slows down your system despite
91 * idle IO detection.
93 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
94 * or /sys/block/mdX/md/sync_speed_{min,max}
97 static int sysctl_speed_limit_min = 1000;
98 static int sysctl_speed_limit_max = 200000;
99 static inline int speed_min(struct mddev *mddev)
101 return mddev->sync_speed_min ?
102 mddev->sync_speed_min : sysctl_speed_limit_min;
105 static inline int speed_max(struct mddev *mddev)
107 return mddev->sync_speed_max ?
108 mddev->sync_speed_max : sysctl_speed_limit_max;
111 static struct ctl_table_header *raid_table_header;
113 static ctl_table raid_table[] = {
115 .procname = "speed_limit_min",
116 .data = &sysctl_speed_limit_min,
117 .maxlen = sizeof(int),
118 .mode = S_IRUGO|S_IWUSR,
119 .proc_handler = proc_dointvec,
122 .procname = "speed_limit_max",
123 .data = &sysctl_speed_limit_max,
124 .maxlen = sizeof(int),
125 .mode = S_IRUGO|S_IWUSR,
126 .proc_handler = proc_dointvec,
131 static ctl_table raid_dir_table[] = {
133 .procname = "raid",
134 .maxlen = 0,
135 .mode = S_IRUGO|S_IXUGO,
136 .child = raid_table,
141 static ctl_table raid_root_table[] = {
143 .procname = "dev",
144 .maxlen = 0,
145 .mode = 0555,
146 .child = raid_dir_table,
151 static const struct block_device_operations md_fops;
153 static int start_readonly;
155 /* bio_clone_mddev
156 * like bio_clone, but with a local bio set
159 static void mddev_bio_destructor(struct bio *bio)
161 struct mddev *mddev, **mddevp;
163 mddevp = (void*)bio;
164 mddev = mddevp[-1];
166 bio_free(bio, mddev->bio_set);
169 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
170 struct mddev *mddev)
172 struct bio *b;
173 struct mddev **mddevp;
175 if (!mddev || !mddev->bio_set)
176 return bio_alloc(gfp_mask, nr_iovecs);
178 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
179 mddev->bio_set);
180 if (!b)
181 return NULL;
182 mddevp = (void*)b;
183 mddevp[-1] = mddev;
184 b->bi_destructor = mddev_bio_destructor;
185 return b;
187 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
189 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
190 struct mddev *mddev)
192 struct bio *b;
193 struct mddev **mddevp;
195 if (!mddev || !mddev->bio_set)
196 return bio_clone(bio, gfp_mask);
198 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
199 mddev->bio_set);
200 if (!b)
201 return NULL;
202 mddevp = (void*)b;
203 mddevp[-1] = mddev;
204 b->bi_destructor = mddev_bio_destructor;
205 __bio_clone(b, bio);
206 if (bio_integrity(bio)) {
207 int ret;
209 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
211 if (ret < 0) {
212 bio_put(b);
213 return NULL;
217 return b;
219 EXPORT_SYMBOL_GPL(bio_clone_mddev);
221 void md_trim_bio(struct bio *bio, int offset, int size)
223 /* 'bio' is a cloned bio which we need to trim to match
224 * the given offset and size.
225 * This requires adjusting bi_sector, bi_size, and bi_io_vec
227 int i;
228 struct bio_vec *bvec;
229 int sofar = 0;
231 size <<= 9;
232 if (offset == 0 && size == bio->bi_size)
233 return;
235 bio->bi_sector += offset;
236 bio->bi_size = size;
237 offset <<= 9;
238 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
240 while (bio->bi_idx < bio->bi_vcnt &&
241 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
242 /* remove this whole bio_vec */
243 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
244 bio->bi_idx++;
246 if (bio->bi_idx < bio->bi_vcnt) {
247 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
248 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
250 /* avoid any complications with bi_idx being non-zero*/
251 if (bio->bi_idx) {
252 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
253 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
254 bio->bi_vcnt -= bio->bi_idx;
255 bio->bi_idx = 0;
257 /* Make sure vcnt and last bv are not too big */
258 bio_for_each_segment(bvec, bio, i) {
259 if (sofar + bvec->bv_len > size)
260 bvec->bv_len = size - sofar;
261 if (bvec->bv_len == 0) {
262 bio->bi_vcnt = i;
263 break;
265 sofar += bvec->bv_len;
268 EXPORT_SYMBOL_GPL(md_trim_bio);
271 * We have a system wide 'event count' that is incremented
272 * on any 'interesting' event, and readers of /proc/mdstat
273 * can use 'poll' or 'select' to find out when the event
274 * count increases.
276 * Events are:
277 * start array, stop array, error, add device, remove device,
278 * start build, activate spare
280 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
281 static atomic_t md_event_count;
282 void md_new_event(struct mddev *mddev)
284 atomic_inc(&md_event_count);
285 wake_up(&md_event_waiters);
287 EXPORT_SYMBOL_GPL(md_new_event);
289 /* Alternate version that can be called from interrupts
290 * when calling sysfs_notify isn't needed.
292 static void md_new_event_inintr(struct mddev *mddev)
294 atomic_inc(&md_event_count);
295 wake_up(&md_event_waiters);
299 * Enables to iterate over all existing md arrays
300 * all_mddevs_lock protects this list.
302 static LIST_HEAD(all_mddevs);
303 static DEFINE_SPINLOCK(all_mddevs_lock);
307 * iterates through all used mddevs in the system.
308 * We take care to grab the all_mddevs_lock whenever navigating
309 * the list, and to always hold a refcount when unlocked.
310 * Any code which breaks out of this loop while own
311 * a reference to the current mddev and must mddev_put it.
313 #define for_each_mddev(_mddev,_tmp) \
315 for (({ spin_lock(&all_mddevs_lock); \
316 _tmp = all_mddevs.next; \
317 _mddev = NULL;}); \
318 ({ if (_tmp != &all_mddevs) \
319 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
320 spin_unlock(&all_mddevs_lock); \
321 if (_mddev) mddev_put(_mddev); \
322 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
323 _tmp != &all_mddevs;}); \
324 ({ spin_lock(&all_mddevs_lock); \
325 _tmp = _tmp->next;}) \
329 /* Rather than calling directly into the personality make_request function,
330 * IO requests come here first so that we can check if the device is
331 * being suspended pending a reconfiguration.
332 * We hold a refcount over the call to ->make_request. By the time that
333 * call has finished, the bio has been linked into some internal structure
334 * and so is visible to ->quiesce(), so we don't need the refcount any more.
336 static void md_make_request(struct request_queue *q, struct bio *bio)
338 const int rw = bio_data_dir(bio);
339 struct mddev *mddev = q->queuedata;
340 int cpu;
341 unsigned int sectors;
343 if (mddev == NULL || mddev->pers == NULL
344 || !mddev->ready) {
345 bio_io_error(bio);
346 return;
348 smp_rmb(); /* Ensure implications of 'active' are visible */
349 rcu_read_lock();
350 if (mddev->suspended) {
351 DEFINE_WAIT(__wait);
352 for (;;) {
353 prepare_to_wait(&mddev->sb_wait, &__wait,
354 TASK_UNINTERRUPTIBLE);
355 if (!mddev->suspended)
356 break;
357 rcu_read_unlock();
358 schedule();
359 rcu_read_lock();
361 finish_wait(&mddev->sb_wait, &__wait);
363 atomic_inc(&mddev->active_io);
364 rcu_read_unlock();
367 * save the sectors now since our bio can
368 * go away inside make_request
370 sectors = bio_sectors(bio);
371 mddev->pers->make_request(mddev, bio);
373 cpu = part_stat_lock();
374 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
375 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
376 part_stat_unlock();
378 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
379 wake_up(&mddev->sb_wait);
382 /* mddev_suspend makes sure no new requests are submitted
383 * to the device, and that any requests that have been submitted
384 * are completely handled.
385 * Once ->stop is called and completes, the module will be completely
386 * unused.
388 void mddev_suspend(struct mddev *mddev)
390 BUG_ON(mddev->suspended);
391 mddev->suspended = 1;
392 synchronize_rcu();
393 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
394 mddev->pers->quiesce(mddev, 1);
396 EXPORT_SYMBOL_GPL(mddev_suspend);
398 void mddev_resume(struct mddev *mddev)
400 mddev->suspended = 0;
401 wake_up(&mddev->sb_wait);
402 mddev->pers->quiesce(mddev, 0);
404 md_wakeup_thread(mddev->thread);
405 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
407 EXPORT_SYMBOL_GPL(mddev_resume);
409 int mddev_congested(struct mddev *mddev, int bits)
411 return mddev->suspended;
413 EXPORT_SYMBOL(mddev_congested);
416 * Generic flush handling for md
419 static void md_end_flush(struct bio *bio, int err)
421 struct md_rdev *rdev = bio->bi_private;
422 struct mddev *mddev = rdev->mddev;
424 rdev_dec_pending(rdev, mddev);
426 if (atomic_dec_and_test(&mddev->flush_pending)) {
427 /* The pre-request flush has finished */
428 queue_work(md_wq, &mddev->flush_work);
430 bio_put(bio);
433 static void md_submit_flush_data(struct work_struct *ws);
435 static void submit_flushes(struct work_struct *ws)
437 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
438 struct md_rdev *rdev;
440 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
441 atomic_set(&mddev->flush_pending, 1);
442 rcu_read_lock();
443 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
444 if (rdev->raid_disk >= 0 &&
445 !test_bit(Faulty, &rdev->flags)) {
446 /* Take two references, one is dropped
447 * when request finishes, one after
448 * we reclaim rcu_read_lock
450 struct bio *bi;
451 atomic_inc(&rdev->nr_pending);
452 atomic_inc(&rdev->nr_pending);
453 rcu_read_unlock();
454 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
455 bi->bi_end_io = md_end_flush;
456 bi->bi_private = rdev;
457 bi->bi_bdev = rdev->bdev;
458 atomic_inc(&mddev->flush_pending);
459 submit_bio(WRITE_FLUSH, bi);
460 rcu_read_lock();
461 rdev_dec_pending(rdev, mddev);
463 rcu_read_unlock();
464 if (atomic_dec_and_test(&mddev->flush_pending))
465 queue_work(md_wq, &mddev->flush_work);
468 static void md_submit_flush_data(struct work_struct *ws)
470 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
471 struct bio *bio = mddev->flush_bio;
473 if (bio->bi_size == 0)
474 /* an empty barrier - all done */
475 bio_endio(bio, 0);
476 else {
477 bio->bi_rw &= ~REQ_FLUSH;
478 mddev->pers->make_request(mddev, bio);
481 mddev->flush_bio = NULL;
482 wake_up(&mddev->sb_wait);
485 void md_flush_request(struct mddev *mddev, struct bio *bio)
487 spin_lock_irq(&mddev->write_lock);
488 wait_event_lock_irq(mddev->sb_wait,
489 !mddev->flush_bio,
490 mddev->write_lock, /*nothing*/);
491 mddev->flush_bio = bio;
492 spin_unlock_irq(&mddev->write_lock);
494 INIT_WORK(&mddev->flush_work, submit_flushes);
495 queue_work(md_wq, &mddev->flush_work);
497 EXPORT_SYMBOL(md_flush_request);
499 /* Support for plugging.
500 * This mirrors the plugging support in request_queue, but does not
501 * require having a whole queue or request structures.
502 * We allocate an md_plug_cb for each md device and each thread it gets
503 * plugged on. This links tot the private plug_handle structure in the
504 * personality data where we keep a count of the number of outstanding
505 * plugs so other code can see if a plug is active.
507 struct md_plug_cb {
508 struct blk_plug_cb cb;
509 struct mddev *mddev;
512 static void plugger_unplug(struct blk_plug_cb *cb)
514 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
515 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
516 md_wakeup_thread(mdcb->mddev->thread);
517 kfree(mdcb);
520 /* Check that an unplug wakeup will come shortly.
521 * If not, wakeup the md thread immediately
523 int mddev_check_plugged(struct mddev *mddev)
525 struct blk_plug *plug = current->plug;
526 struct md_plug_cb *mdcb;
528 if (!plug)
529 return 0;
531 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
532 if (mdcb->cb.callback == plugger_unplug &&
533 mdcb->mddev == mddev) {
534 /* Already on the list, move to top */
535 if (mdcb != list_first_entry(&plug->cb_list,
536 struct md_plug_cb,
537 cb.list))
538 list_move(&mdcb->cb.list, &plug->cb_list);
539 return 1;
542 /* Not currently on the callback list */
543 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
544 if (!mdcb)
545 return 0;
547 mdcb->mddev = mddev;
548 mdcb->cb.callback = plugger_unplug;
549 atomic_inc(&mddev->plug_cnt);
550 list_add(&mdcb->cb.list, &plug->cb_list);
551 return 1;
553 EXPORT_SYMBOL_GPL(mddev_check_plugged);
555 static inline struct mddev *mddev_get(struct mddev *mddev)
557 atomic_inc(&mddev->active);
558 return mddev;
561 static void mddev_delayed_delete(struct work_struct *ws);
563 static void mddev_put(struct mddev *mddev)
565 struct bio_set *bs = NULL;
567 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
568 return;
569 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
570 mddev->ctime == 0 && !mddev->hold_active) {
571 /* Array is not configured at all, and not held active,
572 * so destroy it */
573 list_del(&mddev->all_mddevs);
574 bs = mddev->bio_set;
575 mddev->bio_set = NULL;
576 if (mddev->gendisk) {
577 /* We did a probe so need to clean up. Call
578 * queue_work inside the spinlock so that
579 * flush_workqueue() after mddev_find will
580 * succeed in waiting for the work to be done.
582 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
583 queue_work(md_misc_wq, &mddev->del_work);
584 } else
585 kfree(mddev);
587 spin_unlock(&all_mddevs_lock);
588 if (bs)
589 bioset_free(bs);
592 void mddev_init(struct mddev *mddev)
594 mutex_init(&mddev->open_mutex);
595 mutex_init(&mddev->reconfig_mutex);
596 mutex_init(&mddev->bitmap_info.mutex);
597 INIT_LIST_HEAD(&mddev->disks);
598 INIT_LIST_HEAD(&mddev->all_mddevs);
599 init_timer(&mddev->safemode_timer);
600 atomic_set(&mddev->active, 1);
601 atomic_set(&mddev->openers, 0);
602 atomic_set(&mddev->active_io, 0);
603 atomic_set(&mddev->plug_cnt, 0);
604 spin_lock_init(&mddev->write_lock);
605 atomic_set(&mddev->flush_pending, 0);
606 init_waitqueue_head(&mddev->sb_wait);
607 init_waitqueue_head(&mddev->recovery_wait);
608 mddev->reshape_position = MaxSector;
609 mddev->resync_min = 0;
610 mddev->resync_max = MaxSector;
611 mddev->level = LEVEL_NONE;
613 EXPORT_SYMBOL_GPL(mddev_init);
615 static struct mddev * mddev_find(dev_t unit)
617 struct mddev *mddev, *new = NULL;
619 if (unit && MAJOR(unit) != MD_MAJOR)
620 unit &= ~((1<<MdpMinorShift)-1);
622 retry:
623 spin_lock(&all_mddevs_lock);
625 if (unit) {
626 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
627 if (mddev->unit == unit) {
628 mddev_get(mddev);
629 spin_unlock(&all_mddevs_lock);
630 kfree(new);
631 return mddev;
634 if (new) {
635 list_add(&new->all_mddevs, &all_mddevs);
636 spin_unlock(&all_mddevs_lock);
637 new->hold_active = UNTIL_IOCTL;
638 return new;
640 } else if (new) {
641 /* find an unused unit number */
642 static int next_minor = 512;
643 int start = next_minor;
644 int is_free = 0;
645 int dev = 0;
646 while (!is_free) {
647 dev = MKDEV(MD_MAJOR, next_minor);
648 next_minor++;
649 if (next_minor > MINORMASK)
650 next_minor = 0;
651 if (next_minor == start) {
652 /* Oh dear, all in use. */
653 spin_unlock(&all_mddevs_lock);
654 kfree(new);
655 return NULL;
658 is_free = 1;
659 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
660 if (mddev->unit == dev) {
661 is_free = 0;
662 break;
665 new->unit = dev;
666 new->md_minor = MINOR(dev);
667 new->hold_active = UNTIL_STOP;
668 list_add(&new->all_mddevs, &all_mddevs);
669 spin_unlock(&all_mddevs_lock);
670 return new;
672 spin_unlock(&all_mddevs_lock);
674 new = kzalloc(sizeof(*new), GFP_KERNEL);
675 if (!new)
676 return NULL;
678 new->unit = unit;
679 if (MAJOR(unit) == MD_MAJOR)
680 new->md_minor = MINOR(unit);
681 else
682 new->md_minor = MINOR(unit) >> MdpMinorShift;
684 mddev_init(new);
686 goto retry;
689 static inline int mddev_lock(struct mddev * mddev)
691 return mutex_lock_interruptible(&mddev->reconfig_mutex);
694 static inline int mddev_is_locked(struct mddev *mddev)
696 return mutex_is_locked(&mddev->reconfig_mutex);
699 static inline int mddev_trylock(struct mddev * mddev)
701 return mutex_trylock(&mddev->reconfig_mutex);
704 static struct attribute_group md_redundancy_group;
706 static void mddev_unlock(struct mddev * mddev)
708 if (mddev->to_remove) {
709 /* These cannot be removed under reconfig_mutex as
710 * an access to the files will try to take reconfig_mutex
711 * while holding the file unremovable, which leads to
712 * a deadlock.
713 * So hold set sysfs_active while the remove in happeing,
714 * and anything else which might set ->to_remove or my
715 * otherwise change the sysfs namespace will fail with
716 * -EBUSY if sysfs_active is still set.
717 * We set sysfs_active under reconfig_mutex and elsewhere
718 * test it under the same mutex to ensure its correct value
719 * is seen.
721 struct attribute_group *to_remove = mddev->to_remove;
722 mddev->to_remove = NULL;
723 mddev->sysfs_active = 1;
724 mutex_unlock(&mddev->reconfig_mutex);
726 if (mddev->kobj.sd) {
727 if (to_remove != &md_redundancy_group)
728 sysfs_remove_group(&mddev->kobj, to_remove);
729 if (mddev->pers == NULL ||
730 mddev->pers->sync_request == NULL) {
731 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
732 if (mddev->sysfs_action)
733 sysfs_put(mddev->sysfs_action);
734 mddev->sysfs_action = NULL;
737 mddev->sysfs_active = 0;
738 } else
739 mutex_unlock(&mddev->reconfig_mutex);
741 /* As we've dropped the mutex we need a spinlock to
742 * make sure the thread doesn't disappear
744 spin_lock(&pers_lock);
745 md_wakeup_thread(mddev->thread);
746 spin_unlock(&pers_lock);
749 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
751 struct md_rdev *rdev;
753 list_for_each_entry(rdev, &mddev->disks, same_set)
754 if (rdev->desc_nr == nr)
755 return rdev;
757 return NULL;
760 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
762 struct md_rdev *rdev;
764 list_for_each_entry(rdev, &mddev->disks, same_set)
765 if (rdev->bdev->bd_dev == dev)
766 return rdev;
768 return NULL;
771 static struct md_personality *find_pers(int level, char *clevel)
773 struct md_personality *pers;
774 list_for_each_entry(pers, &pers_list, list) {
775 if (level != LEVEL_NONE && pers->level == level)
776 return pers;
777 if (strcmp(pers->name, clevel)==0)
778 return pers;
780 return NULL;
783 /* return the offset of the super block in 512byte sectors */
784 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
786 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
787 return MD_NEW_SIZE_SECTORS(num_sectors);
790 static int alloc_disk_sb(struct md_rdev * rdev)
792 if (rdev->sb_page)
793 MD_BUG();
795 rdev->sb_page = alloc_page(GFP_KERNEL);
796 if (!rdev->sb_page) {
797 printk(KERN_ALERT "md: out of memory.\n");
798 return -ENOMEM;
801 return 0;
804 static void free_disk_sb(struct md_rdev * rdev)
806 if (rdev->sb_page) {
807 put_page(rdev->sb_page);
808 rdev->sb_loaded = 0;
809 rdev->sb_page = NULL;
810 rdev->sb_start = 0;
811 rdev->sectors = 0;
813 if (rdev->bb_page) {
814 put_page(rdev->bb_page);
815 rdev->bb_page = NULL;
820 static void super_written(struct bio *bio, int error)
822 struct md_rdev *rdev = bio->bi_private;
823 struct mddev *mddev = rdev->mddev;
825 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
826 printk("md: super_written gets error=%d, uptodate=%d\n",
827 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
828 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
829 md_error(mddev, rdev);
832 if (atomic_dec_and_test(&mddev->pending_writes))
833 wake_up(&mddev->sb_wait);
834 bio_put(bio);
837 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
838 sector_t sector, int size, struct page *page)
840 /* write first size bytes of page to sector of rdev
841 * Increment mddev->pending_writes before returning
842 * and decrement it on completion, waking up sb_wait
843 * if zero is reached.
844 * If an error occurred, call md_error
846 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
848 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
849 bio->bi_sector = sector;
850 bio_add_page(bio, page, size, 0);
851 bio->bi_private = rdev;
852 bio->bi_end_io = super_written;
854 atomic_inc(&mddev->pending_writes);
855 submit_bio(WRITE_FLUSH_FUA, bio);
858 void md_super_wait(struct mddev *mddev)
860 /* wait for all superblock writes that were scheduled to complete */
861 DEFINE_WAIT(wq);
862 for(;;) {
863 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
864 if (atomic_read(&mddev->pending_writes)==0)
865 break;
866 schedule();
868 finish_wait(&mddev->sb_wait, &wq);
871 static void bi_complete(struct bio *bio, int error)
873 complete((struct completion*)bio->bi_private);
876 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
877 struct page *page, int rw, bool metadata_op)
879 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
880 struct completion event;
881 int ret;
883 rw |= REQ_SYNC;
885 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
886 rdev->meta_bdev : rdev->bdev;
887 if (metadata_op)
888 bio->bi_sector = sector + rdev->sb_start;
889 else
890 bio->bi_sector = sector + rdev->data_offset;
891 bio_add_page(bio, page, size, 0);
892 init_completion(&event);
893 bio->bi_private = &event;
894 bio->bi_end_io = bi_complete;
895 submit_bio(rw, bio);
896 wait_for_completion(&event);
898 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
899 bio_put(bio);
900 return ret;
902 EXPORT_SYMBOL_GPL(sync_page_io);
904 static int read_disk_sb(struct md_rdev * rdev, int size)
906 char b[BDEVNAME_SIZE];
907 if (!rdev->sb_page) {
908 MD_BUG();
909 return -EINVAL;
911 if (rdev->sb_loaded)
912 return 0;
915 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
916 goto fail;
917 rdev->sb_loaded = 1;
918 return 0;
920 fail:
921 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
922 bdevname(rdev->bdev,b));
923 return -EINVAL;
926 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
928 return sb1->set_uuid0 == sb2->set_uuid0 &&
929 sb1->set_uuid1 == sb2->set_uuid1 &&
930 sb1->set_uuid2 == sb2->set_uuid2 &&
931 sb1->set_uuid3 == sb2->set_uuid3;
934 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
936 int ret;
937 mdp_super_t *tmp1, *tmp2;
939 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
940 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
942 if (!tmp1 || !tmp2) {
943 ret = 0;
944 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
945 goto abort;
948 *tmp1 = *sb1;
949 *tmp2 = *sb2;
952 * nr_disks is not constant
954 tmp1->nr_disks = 0;
955 tmp2->nr_disks = 0;
957 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
958 abort:
959 kfree(tmp1);
960 kfree(tmp2);
961 return ret;
965 static u32 md_csum_fold(u32 csum)
967 csum = (csum & 0xffff) + (csum >> 16);
968 return (csum & 0xffff) + (csum >> 16);
971 static unsigned int calc_sb_csum(mdp_super_t * sb)
973 u64 newcsum = 0;
974 u32 *sb32 = (u32*)sb;
975 int i;
976 unsigned int disk_csum, csum;
978 disk_csum = sb->sb_csum;
979 sb->sb_csum = 0;
981 for (i = 0; i < MD_SB_BYTES/4 ; i++)
982 newcsum += sb32[i];
983 csum = (newcsum & 0xffffffff) + (newcsum>>32);
986 #ifdef CONFIG_ALPHA
987 /* This used to use csum_partial, which was wrong for several
988 * reasons including that different results are returned on
989 * different architectures. It isn't critical that we get exactly
990 * the same return value as before (we always csum_fold before
991 * testing, and that removes any differences). However as we
992 * know that csum_partial always returned a 16bit value on
993 * alphas, do a fold to maximise conformity to previous behaviour.
995 sb->sb_csum = md_csum_fold(disk_csum);
996 #else
997 sb->sb_csum = disk_csum;
998 #endif
999 return csum;
1004 * Handle superblock details.
1005 * We want to be able to handle multiple superblock formats
1006 * so we have a common interface to them all, and an array of
1007 * different handlers.
1008 * We rely on user-space to write the initial superblock, and support
1009 * reading and updating of superblocks.
1010 * Interface methods are:
1011 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1012 * loads and validates a superblock on dev.
1013 * if refdev != NULL, compare superblocks on both devices
1014 * Return:
1015 * 0 - dev has a superblock that is compatible with refdev
1016 * 1 - dev has a superblock that is compatible and newer than refdev
1017 * so dev should be used as the refdev in future
1018 * -EINVAL superblock incompatible or invalid
1019 * -othererror e.g. -EIO
1021 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1022 * Verify that dev is acceptable into mddev.
1023 * The first time, mddev->raid_disks will be 0, and data from
1024 * dev should be merged in. Subsequent calls check that dev
1025 * is new enough. Return 0 or -EINVAL
1027 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1028 * Update the superblock for rdev with data in mddev
1029 * This does not write to disc.
1033 struct super_type {
1034 char *name;
1035 struct module *owner;
1036 int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1037 int minor_version);
1038 int (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1039 void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1040 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1041 sector_t num_sectors);
1045 * Check that the given mddev has no bitmap.
1047 * This function is called from the run method of all personalities that do not
1048 * support bitmaps. It prints an error message and returns non-zero if mddev
1049 * has a bitmap. Otherwise, it returns 0.
1052 int md_check_no_bitmap(struct mddev *mddev)
1054 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1055 return 0;
1056 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1057 mdname(mddev), mddev->pers->name);
1058 return 1;
1060 EXPORT_SYMBOL(md_check_no_bitmap);
1063 * load_super for 0.90.0
1065 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1067 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1068 mdp_super_t *sb;
1069 int ret;
1072 * Calculate the position of the superblock (512byte sectors),
1073 * it's at the end of the disk.
1075 * It also happens to be a multiple of 4Kb.
1077 rdev->sb_start = calc_dev_sboffset(rdev);
1079 ret = read_disk_sb(rdev, MD_SB_BYTES);
1080 if (ret) return ret;
1082 ret = -EINVAL;
1084 bdevname(rdev->bdev, b);
1085 sb = page_address(rdev->sb_page);
1087 if (sb->md_magic != MD_SB_MAGIC) {
1088 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1090 goto abort;
1093 if (sb->major_version != 0 ||
1094 sb->minor_version < 90 ||
1095 sb->minor_version > 91) {
1096 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1097 sb->major_version, sb->minor_version,
1099 goto abort;
1102 if (sb->raid_disks <= 0)
1103 goto abort;
1105 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1106 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1108 goto abort;
1111 rdev->preferred_minor = sb->md_minor;
1112 rdev->data_offset = 0;
1113 rdev->sb_size = MD_SB_BYTES;
1114 rdev->badblocks.shift = -1;
1116 if (sb->level == LEVEL_MULTIPATH)
1117 rdev->desc_nr = -1;
1118 else
1119 rdev->desc_nr = sb->this_disk.number;
1121 if (!refdev) {
1122 ret = 1;
1123 } else {
1124 __u64 ev1, ev2;
1125 mdp_super_t *refsb = page_address(refdev->sb_page);
1126 if (!uuid_equal(refsb, sb)) {
1127 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1128 b, bdevname(refdev->bdev,b2));
1129 goto abort;
1131 if (!sb_equal(refsb, sb)) {
1132 printk(KERN_WARNING "md: %s has same UUID"
1133 " but different superblock to %s\n",
1134 b, bdevname(refdev->bdev, b2));
1135 goto abort;
1137 ev1 = md_event(sb);
1138 ev2 = md_event(refsb);
1139 if (ev1 > ev2)
1140 ret = 1;
1141 else
1142 ret = 0;
1144 rdev->sectors = rdev->sb_start;
1145 /* Limit to 4TB as metadata cannot record more than that */
1146 if (rdev->sectors >= (2ULL << 32))
1147 rdev->sectors = (2ULL << 32) - 2;
1149 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1150 /* "this cannot possibly happen" ... */
1151 ret = -EINVAL;
1153 abort:
1154 return ret;
1158 * validate_super for 0.90.0
1160 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1162 mdp_disk_t *desc;
1163 mdp_super_t *sb = page_address(rdev->sb_page);
1164 __u64 ev1 = md_event(sb);
1166 rdev->raid_disk = -1;
1167 clear_bit(Faulty, &rdev->flags);
1168 clear_bit(In_sync, &rdev->flags);
1169 clear_bit(WriteMostly, &rdev->flags);
1171 if (mddev->raid_disks == 0) {
1172 mddev->major_version = 0;
1173 mddev->minor_version = sb->minor_version;
1174 mddev->patch_version = sb->patch_version;
1175 mddev->external = 0;
1176 mddev->chunk_sectors = sb->chunk_size >> 9;
1177 mddev->ctime = sb->ctime;
1178 mddev->utime = sb->utime;
1179 mddev->level = sb->level;
1180 mddev->clevel[0] = 0;
1181 mddev->layout = sb->layout;
1182 mddev->raid_disks = sb->raid_disks;
1183 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1184 mddev->events = ev1;
1185 mddev->bitmap_info.offset = 0;
1186 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1188 if (mddev->minor_version >= 91) {
1189 mddev->reshape_position = sb->reshape_position;
1190 mddev->delta_disks = sb->delta_disks;
1191 mddev->new_level = sb->new_level;
1192 mddev->new_layout = sb->new_layout;
1193 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1194 } else {
1195 mddev->reshape_position = MaxSector;
1196 mddev->delta_disks = 0;
1197 mddev->new_level = mddev->level;
1198 mddev->new_layout = mddev->layout;
1199 mddev->new_chunk_sectors = mddev->chunk_sectors;
1202 if (sb->state & (1<<MD_SB_CLEAN))
1203 mddev->recovery_cp = MaxSector;
1204 else {
1205 if (sb->events_hi == sb->cp_events_hi &&
1206 sb->events_lo == sb->cp_events_lo) {
1207 mddev->recovery_cp = sb->recovery_cp;
1208 } else
1209 mddev->recovery_cp = 0;
1212 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1213 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1214 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1215 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1217 mddev->max_disks = MD_SB_DISKS;
1219 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1220 mddev->bitmap_info.file == NULL)
1221 mddev->bitmap_info.offset =
1222 mddev->bitmap_info.default_offset;
1224 } else if (mddev->pers == NULL) {
1225 /* Insist on good event counter while assembling, except
1226 * for spares (which don't need an event count) */
1227 ++ev1;
1228 if (sb->disks[rdev->desc_nr].state & (
1229 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1230 if (ev1 < mddev->events)
1231 return -EINVAL;
1232 } else if (mddev->bitmap) {
1233 /* if adding to array with a bitmap, then we can accept an
1234 * older device ... but not too old.
1236 if (ev1 < mddev->bitmap->events_cleared)
1237 return 0;
1238 } else {
1239 if (ev1 < mddev->events)
1240 /* just a hot-add of a new device, leave raid_disk at -1 */
1241 return 0;
1244 if (mddev->level != LEVEL_MULTIPATH) {
1245 desc = sb->disks + rdev->desc_nr;
1247 if (desc->state & (1<<MD_DISK_FAULTY))
1248 set_bit(Faulty, &rdev->flags);
1249 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1250 desc->raid_disk < mddev->raid_disks */) {
1251 set_bit(In_sync, &rdev->flags);
1252 rdev->raid_disk = desc->raid_disk;
1253 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1254 /* active but not in sync implies recovery up to
1255 * reshape position. We don't know exactly where
1256 * that is, so set to zero for now */
1257 if (mddev->minor_version >= 91) {
1258 rdev->recovery_offset = 0;
1259 rdev->raid_disk = desc->raid_disk;
1262 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1263 set_bit(WriteMostly, &rdev->flags);
1264 } else /* MULTIPATH are always insync */
1265 set_bit(In_sync, &rdev->flags);
1266 return 0;
1270 * sync_super for 0.90.0
1272 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1274 mdp_super_t *sb;
1275 struct md_rdev *rdev2;
1276 int next_spare = mddev->raid_disks;
1279 /* make rdev->sb match mddev data..
1281 * 1/ zero out disks
1282 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1283 * 3/ any empty disks < next_spare become removed
1285 * disks[0] gets initialised to REMOVED because
1286 * we cannot be sure from other fields if it has
1287 * been initialised or not.
1289 int i;
1290 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1292 rdev->sb_size = MD_SB_BYTES;
1294 sb = page_address(rdev->sb_page);
1296 memset(sb, 0, sizeof(*sb));
1298 sb->md_magic = MD_SB_MAGIC;
1299 sb->major_version = mddev->major_version;
1300 sb->patch_version = mddev->patch_version;
1301 sb->gvalid_words = 0; /* ignored */
1302 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1303 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1304 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1305 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1307 sb->ctime = mddev->ctime;
1308 sb->level = mddev->level;
1309 sb->size = mddev->dev_sectors / 2;
1310 sb->raid_disks = mddev->raid_disks;
1311 sb->md_minor = mddev->md_minor;
1312 sb->not_persistent = 0;
1313 sb->utime = mddev->utime;
1314 sb->state = 0;
1315 sb->events_hi = (mddev->events>>32);
1316 sb->events_lo = (u32)mddev->events;
1318 if (mddev->reshape_position == MaxSector)
1319 sb->minor_version = 90;
1320 else {
1321 sb->minor_version = 91;
1322 sb->reshape_position = mddev->reshape_position;
1323 sb->new_level = mddev->new_level;
1324 sb->delta_disks = mddev->delta_disks;
1325 sb->new_layout = mddev->new_layout;
1326 sb->new_chunk = mddev->new_chunk_sectors << 9;
1328 mddev->minor_version = sb->minor_version;
1329 if (mddev->in_sync)
1331 sb->recovery_cp = mddev->recovery_cp;
1332 sb->cp_events_hi = (mddev->events>>32);
1333 sb->cp_events_lo = (u32)mddev->events;
1334 if (mddev->recovery_cp == MaxSector)
1335 sb->state = (1<< MD_SB_CLEAN);
1336 } else
1337 sb->recovery_cp = 0;
1339 sb->layout = mddev->layout;
1340 sb->chunk_size = mddev->chunk_sectors << 9;
1342 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1343 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1345 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1346 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1347 mdp_disk_t *d;
1348 int desc_nr;
1349 int is_active = test_bit(In_sync, &rdev2->flags);
1351 if (rdev2->raid_disk >= 0 &&
1352 sb->minor_version >= 91)
1353 /* we have nowhere to store the recovery_offset,
1354 * but if it is not below the reshape_position,
1355 * we can piggy-back on that.
1357 is_active = 1;
1358 if (rdev2->raid_disk < 0 ||
1359 test_bit(Faulty, &rdev2->flags))
1360 is_active = 0;
1361 if (is_active)
1362 desc_nr = rdev2->raid_disk;
1363 else
1364 desc_nr = next_spare++;
1365 rdev2->desc_nr = desc_nr;
1366 d = &sb->disks[rdev2->desc_nr];
1367 nr_disks++;
1368 d->number = rdev2->desc_nr;
1369 d->major = MAJOR(rdev2->bdev->bd_dev);
1370 d->minor = MINOR(rdev2->bdev->bd_dev);
1371 if (is_active)
1372 d->raid_disk = rdev2->raid_disk;
1373 else
1374 d->raid_disk = rdev2->desc_nr; /* compatibility */
1375 if (test_bit(Faulty, &rdev2->flags))
1376 d->state = (1<<MD_DISK_FAULTY);
1377 else if (is_active) {
1378 d->state = (1<<MD_DISK_ACTIVE);
1379 if (test_bit(In_sync, &rdev2->flags))
1380 d->state |= (1<<MD_DISK_SYNC);
1381 active++;
1382 working++;
1383 } else {
1384 d->state = 0;
1385 spare++;
1386 working++;
1388 if (test_bit(WriteMostly, &rdev2->flags))
1389 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1391 /* now set the "removed" and "faulty" bits on any missing devices */
1392 for (i=0 ; i < mddev->raid_disks ; i++) {
1393 mdp_disk_t *d = &sb->disks[i];
1394 if (d->state == 0 && d->number == 0) {
1395 d->number = i;
1396 d->raid_disk = i;
1397 d->state = (1<<MD_DISK_REMOVED);
1398 d->state |= (1<<MD_DISK_FAULTY);
1399 failed++;
1402 sb->nr_disks = nr_disks;
1403 sb->active_disks = active;
1404 sb->working_disks = working;
1405 sb->failed_disks = failed;
1406 sb->spare_disks = spare;
1408 sb->this_disk = sb->disks[rdev->desc_nr];
1409 sb->sb_csum = calc_sb_csum(sb);
1413 * rdev_size_change for 0.90.0
1415 static unsigned long long
1416 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1418 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1419 return 0; /* component must fit device */
1420 if (rdev->mddev->bitmap_info.offset)
1421 return 0; /* can't move bitmap */
1422 rdev->sb_start = calc_dev_sboffset(rdev);
1423 if (!num_sectors || num_sectors > rdev->sb_start)
1424 num_sectors = rdev->sb_start;
1425 /* Limit to 4TB as metadata cannot record more than that.
1426 * 4TB == 2^32 KB, or 2*2^32 sectors.
1428 if (num_sectors >= (2ULL << 32))
1429 num_sectors = (2ULL << 32) - 2;
1430 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1431 rdev->sb_page);
1432 md_super_wait(rdev->mddev);
1433 return num_sectors;
1438 * version 1 superblock
1441 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1443 __le32 disk_csum;
1444 u32 csum;
1445 unsigned long long newcsum;
1446 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1447 __le32 *isuper = (__le32*)sb;
1448 int i;
1450 disk_csum = sb->sb_csum;
1451 sb->sb_csum = 0;
1452 newcsum = 0;
1453 for (i=0; size>=4; size -= 4 )
1454 newcsum += le32_to_cpu(*isuper++);
1456 if (size == 2)
1457 newcsum += le16_to_cpu(*(__le16*) isuper);
1459 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1460 sb->sb_csum = disk_csum;
1461 return cpu_to_le32(csum);
1464 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1465 int acknowledged);
1466 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1468 struct mdp_superblock_1 *sb;
1469 int ret;
1470 sector_t sb_start;
1471 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1472 int bmask;
1475 * Calculate the position of the superblock in 512byte sectors.
1476 * It is always aligned to a 4K boundary and
1477 * depeding on minor_version, it can be:
1478 * 0: At least 8K, but less than 12K, from end of device
1479 * 1: At start of device
1480 * 2: 4K from start of device.
1482 switch(minor_version) {
1483 case 0:
1484 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1485 sb_start -= 8*2;
1486 sb_start &= ~(sector_t)(4*2-1);
1487 break;
1488 case 1:
1489 sb_start = 0;
1490 break;
1491 case 2:
1492 sb_start = 8;
1493 break;
1494 default:
1495 return -EINVAL;
1497 rdev->sb_start = sb_start;
1499 /* superblock is rarely larger than 1K, but it can be larger,
1500 * and it is safe to read 4k, so we do that
1502 ret = read_disk_sb(rdev, 4096);
1503 if (ret) return ret;
1506 sb = page_address(rdev->sb_page);
1508 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1509 sb->major_version != cpu_to_le32(1) ||
1510 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1511 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1512 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1513 return -EINVAL;
1515 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1516 printk("md: invalid superblock checksum on %s\n",
1517 bdevname(rdev->bdev,b));
1518 return -EINVAL;
1520 if (le64_to_cpu(sb->data_size) < 10) {
1521 printk("md: data_size too small on %s\n",
1522 bdevname(rdev->bdev,b));
1523 return -EINVAL;
1526 rdev->preferred_minor = 0xffff;
1527 rdev->data_offset = le64_to_cpu(sb->data_offset);
1528 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1530 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1531 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1532 if (rdev->sb_size & bmask)
1533 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1535 if (minor_version
1536 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1537 return -EINVAL;
1539 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1540 rdev->desc_nr = -1;
1541 else
1542 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1544 if (!rdev->bb_page) {
1545 rdev->bb_page = alloc_page(GFP_KERNEL);
1546 if (!rdev->bb_page)
1547 return -ENOMEM;
1549 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1550 rdev->badblocks.count == 0) {
1551 /* need to load the bad block list.
1552 * Currently we limit it to one page.
1554 s32 offset;
1555 sector_t bb_sector;
1556 u64 *bbp;
1557 int i;
1558 int sectors = le16_to_cpu(sb->bblog_size);
1559 if (sectors > (PAGE_SIZE / 512))
1560 return -EINVAL;
1561 offset = le32_to_cpu(sb->bblog_offset);
1562 if (offset == 0)
1563 return -EINVAL;
1564 bb_sector = (long long)offset;
1565 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1566 rdev->bb_page, READ, true))
1567 return -EIO;
1568 bbp = (u64 *)page_address(rdev->bb_page);
1569 rdev->badblocks.shift = sb->bblog_shift;
1570 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1571 u64 bb = le64_to_cpu(*bbp);
1572 int count = bb & (0x3ff);
1573 u64 sector = bb >> 10;
1574 sector <<= sb->bblog_shift;
1575 count <<= sb->bblog_shift;
1576 if (bb + 1 == 0)
1577 break;
1578 if (md_set_badblocks(&rdev->badblocks,
1579 sector, count, 1) == 0)
1580 return -EINVAL;
1582 } else if (sb->bblog_offset == 0)
1583 rdev->badblocks.shift = -1;
1585 if (!refdev) {
1586 ret = 1;
1587 } else {
1588 __u64 ev1, ev2;
1589 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1591 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1592 sb->level != refsb->level ||
1593 sb->layout != refsb->layout ||
1594 sb->chunksize != refsb->chunksize) {
1595 printk(KERN_WARNING "md: %s has strangely different"
1596 " superblock to %s\n",
1597 bdevname(rdev->bdev,b),
1598 bdevname(refdev->bdev,b2));
1599 return -EINVAL;
1601 ev1 = le64_to_cpu(sb->events);
1602 ev2 = le64_to_cpu(refsb->events);
1604 if (ev1 > ev2)
1605 ret = 1;
1606 else
1607 ret = 0;
1609 if (minor_version)
1610 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1611 le64_to_cpu(sb->data_offset);
1612 else
1613 rdev->sectors = rdev->sb_start;
1614 if (rdev->sectors < le64_to_cpu(sb->data_size))
1615 return -EINVAL;
1616 rdev->sectors = le64_to_cpu(sb->data_size);
1617 if (le64_to_cpu(sb->size) > rdev->sectors)
1618 return -EINVAL;
1619 return ret;
1622 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1624 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1625 __u64 ev1 = le64_to_cpu(sb->events);
1627 rdev->raid_disk = -1;
1628 clear_bit(Faulty, &rdev->flags);
1629 clear_bit(In_sync, &rdev->flags);
1630 clear_bit(WriteMostly, &rdev->flags);
1632 if (mddev->raid_disks == 0) {
1633 mddev->major_version = 1;
1634 mddev->patch_version = 0;
1635 mddev->external = 0;
1636 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1637 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1638 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1639 mddev->level = le32_to_cpu(sb->level);
1640 mddev->clevel[0] = 0;
1641 mddev->layout = le32_to_cpu(sb->layout);
1642 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1643 mddev->dev_sectors = le64_to_cpu(sb->size);
1644 mddev->events = ev1;
1645 mddev->bitmap_info.offset = 0;
1646 mddev->bitmap_info.default_offset = 1024 >> 9;
1648 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1649 memcpy(mddev->uuid, sb->set_uuid, 16);
1651 mddev->max_disks = (4096-256)/2;
1653 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1654 mddev->bitmap_info.file == NULL )
1655 mddev->bitmap_info.offset =
1656 (__s32)le32_to_cpu(sb->bitmap_offset);
1658 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1659 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1660 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1661 mddev->new_level = le32_to_cpu(sb->new_level);
1662 mddev->new_layout = le32_to_cpu(sb->new_layout);
1663 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1664 } else {
1665 mddev->reshape_position = MaxSector;
1666 mddev->delta_disks = 0;
1667 mddev->new_level = mddev->level;
1668 mddev->new_layout = mddev->layout;
1669 mddev->new_chunk_sectors = mddev->chunk_sectors;
1672 } else if (mddev->pers == NULL) {
1673 /* Insist of good event counter while assembling, except for
1674 * spares (which don't need an event count) */
1675 ++ev1;
1676 if (rdev->desc_nr >= 0 &&
1677 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1678 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1679 if (ev1 < mddev->events)
1680 return -EINVAL;
1681 } else if (mddev->bitmap) {
1682 /* If adding to array with a bitmap, then we can accept an
1683 * older device, but not too old.
1685 if (ev1 < mddev->bitmap->events_cleared)
1686 return 0;
1687 } else {
1688 if (ev1 < mddev->events)
1689 /* just a hot-add of a new device, leave raid_disk at -1 */
1690 return 0;
1692 if (mddev->level != LEVEL_MULTIPATH) {
1693 int role;
1694 if (rdev->desc_nr < 0 ||
1695 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1696 role = 0xffff;
1697 rdev->desc_nr = -1;
1698 } else
1699 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1700 switch(role) {
1701 case 0xffff: /* spare */
1702 break;
1703 case 0xfffe: /* faulty */
1704 set_bit(Faulty, &rdev->flags);
1705 break;
1706 default:
1707 if ((le32_to_cpu(sb->feature_map) &
1708 MD_FEATURE_RECOVERY_OFFSET))
1709 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1710 else
1711 set_bit(In_sync, &rdev->flags);
1712 rdev->raid_disk = role;
1713 break;
1715 if (sb->devflags & WriteMostly1)
1716 set_bit(WriteMostly, &rdev->flags);
1717 } else /* MULTIPATH are always insync */
1718 set_bit(In_sync, &rdev->flags);
1720 return 0;
1723 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1725 struct mdp_superblock_1 *sb;
1726 struct md_rdev *rdev2;
1727 int max_dev, i;
1728 /* make rdev->sb match mddev and rdev data. */
1730 sb = page_address(rdev->sb_page);
1732 sb->feature_map = 0;
1733 sb->pad0 = 0;
1734 sb->recovery_offset = cpu_to_le64(0);
1735 memset(sb->pad1, 0, sizeof(sb->pad1));
1736 memset(sb->pad3, 0, sizeof(sb->pad3));
1738 sb->utime = cpu_to_le64((__u64)mddev->utime);
1739 sb->events = cpu_to_le64(mddev->events);
1740 if (mddev->in_sync)
1741 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1742 else
1743 sb->resync_offset = cpu_to_le64(0);
1745 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1747 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1748 sb->size = cpu_to_le64(mddev->dev_sectors);
1749 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1750 sb->level = cpu_to_le32(mddev->level);
1751 sb->layout = cpu_to_le32(mddev->layout);
1753 if (test_bit(WriteMostly, &rdev->flags))
1754 sb->devflags |= WriteMostly1;
1755 else
1756 sb->devflags &= ~WriteMostly1;
1758 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1759 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1760 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1763 if (rdev->raid_disk >= 0 &&
1764 !test_bit(In_sync, &rdev->flags)) {
1765 sb->feature_map |=
1766 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1767 sb->recovery_offset =
1768 cpu_to_le64(rdev->recovery_offset);
1771 if (mddev->reshape_position != MaxSector) {
1772 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1773 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1774 sb->new_layout = cpu_to_le32(mddev->new_layout);
1775 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1776 sb->new_level = cpu_to_le32(mddev->new_level);
1777 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1780 if (rdev->badblocks.count == 0)
1781 /* Nothing to do for bad blocks*/ ;
1782 else if (sb->bblog_offset == 0)
1783 /* Cannot record bad blocks on this device */
1784 md_error(mddev, rdev);
1785 else {
1786 struct badblocks *bb = &rdev->badblocks;
1787 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1788 u64 *p = bb->page;
1789 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1790 if (bb->changed) {
1791 unsigned seq;
1793 retry:
1794 seq = read_seqbegin(&bb->lock);
1796 memset(bbp, 0xff, PAGE_SIZE);
1798 for (i = 0 ; i < bb->count ; i++) {
1799 u64 internal_bb = *p++;
1800 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1801 | BB_LEN(internal_bb));
1802 *bbp++ = cpu_to_le64(store_bb);
1804 if (read_seqretry(&bb->lock, seq))
1805 goto retry;
1807 bb->sector = (rdev->sb_start +
1808 (int)le32_to_cpu(sb->bblog_offset));
1809 bb->size = le16_to_cpu(sb->bblog_size);
1810 bb->changed = 0;
1814 max_dev = 0;
1815 list_for_each_entry(rdev2, &mddev->disks, same_set)
1816 if (rdev2->desc_nr+1 > max_dev)
1817 max_dev = rdev2->desc_nr+1;
1819 if (max_dev > le32_to_cpu(sb->max_dev)) {
1820 int bmask;
1821 sb->max_dev = cpu_to_le32(max_dev);
1822 rdev->sb_size = max_dev * 2 + 256;
1823 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1824 if (rdev->sb_size & bmask)
1825 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1826 } else
1827 max_dev = le32_to_cpu(sb->max_dev);
1829 for (i=0; i<max_dev;i++)
1830 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1832 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1833 i = rdev2->desc_nr;
1834 if (test_bit(Faulty, &rdev2->flags))
1835 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1836 else if (test_bit(In_sync, &rdev2->flags))
1837 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1838 else if (rdev2->raid_disk >= 0)
1839 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1840 else
1841 sb->dev_roles[i] = cpu_to_le16(0xffff);
1844 sb->sb_csum = calc_sb_1_csum(sb);
1847 static unsigned long long
1848 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1850 struct mdp_superblock_1 *sb;
1851 sector_t max_sectors;
1852 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1853 return 0; /* component must fit device */
1854 if (rdev->sb_start < rdev->data_offset) {
1855 /* minor versions 1 and 2; superblock before data */
1856 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1857 max_sectors -= rdev->data_offset;
1858 if (!num_sectors || num_sectors > max_sectors)
1859 num_sectors = max_sectors;
1860 } else if (rdev->mddev->bitmap_info.offset) {
1861 /* minor version 0 with bitmap we can't move */
1862 return 0;
1863 } else {
1864 /* minor version 0; superblock after data */
1865 sector_t sb_start;
1866 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1867 sb_start &= ~(sector_t)(4*2 - 1);
1868 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1869 if (!num_sectors || num_sectors > max_sectors)
1870 num_sectors = max_sectors;
1871 rdev->sb_start = sb_start;
1873 sb = page_address(rdev->sb_page);
1874 sb->data_size = cpu_to_le64(num_sectors);
1875 sb->super_offset = rdev->sb_start;
1876 sb->sb_csum = calc_sb_1_csum(sb);
1877 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1878 rdev->sb_page);
1879 md_super_wait(rdev->mddev);
1880 return num_sectors;
1883 static struct super_type super_types[] = {
1884 [0] = {
1885 .name = "0.90.0",
1886 .owner = THIS_MODULE,
1887 .load_super = super_90_load,
1888 .validate_super = super_90_validate,
1889 .sync_super = super_90_sync,
1890 .rdev_size_change = super_90_rdev_size_change,
1892 [1] = {
1893 .name = "md-1",
1894 .owner = THIS_MODULE,
1895 .load_super = super_1_load,
1896 .validate_super = super_1_validate,
1897 .sync_super = super_1_sync,
1898 .rdev_size_change = super_1_rdev_size_change,
1902 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1904 if (mddev->sync_super) {
1905 mddev->sync_super(mddev, rdev);
1906 return;
1909 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1911 super_types[mddev->major_version].sync_super(mddev, rdev);
1914 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1916 struct md_rdev *rdev, *rdev2;
1918 rcu_read_lock();
1919 rdev_for_each_rcu(rdev, mddev1)
1920 rdev_for_each_rcu(rdev2, mddev2)
1921 if (rdev->bdev->bd_contains ==
1922 rdev2->bdev->bd_contains) {
1923 rcu_read_unlock();
1924 return 1;
1926 rcu_read_unlock();
1927 return 0;
1930 static LIST_HEAD(pending_raid_disks);
1933 * Try to register data integrity profile for an mddev
1935 * This is called when an array is started and after a disk has been kicked
1936 * from the array. It only succeeds if all working and active component devices
1937 * are integrity capable with matching profiles.
1939 int md_integrity_register(struct mddev *mddev)
1941 struct md_rdev *rdev, *reference = NULL;
1943 if (list_empty(&mddev->disks))
1944 return 0; /* nothing to do */
1945 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1946 return 0; /* shouldn't register, or already is */
1947 list_for_each_entry(rdev, &mddev->disks, same_set) {
1948 /* skip spares and non-functional disks */
1949 if (test_bit(Faulty, &rdev->flags))
1950 continue;
1951 if (rdev->raid_disk < 0)
1952 continue;
1953 if (!reference) {
1954 /* Use the first rdev as the reference */
1955 reference = rdev;
1956 continue;
1958 /* does this rdev's profile match the reference profile? */
1959 if (blk_integrity_compare(reference->bdev->bd_disk,
1960 rdev->bdev->bd_disk) < 0)
1961 return -EINVAL;
1963 if (!reference || !bdev_get_integrity(reference->bdev))
1964 return 0;
1966 * All component devices are integrity capable and have matching
1967 * profiles, register the common profile for the md device.
1969 if (blk_integrity_register(mddev->gendisk,
1970 bdev_get_integrity(reference->bdev)) != 0) {
1971 printk(KERN_ERR "md: failed to register integrity for %s\n",
1972 mdname(mddev));
1973 return -EINVAL;
1975 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1976 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1977 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1978 mdname(mddev));
1979 return -EINVAL;
1981 return 0;
1983 EXPORT_SYMBOL(md_integrity_register);
1985 /* Disable data integrity if non-capable/non-matching disk is being added */
1986 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1988 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1989 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1991 if (!bi_mddev) /* nothing to do */
1992 return;
1993 if (rdev->raid_disk < 0) /* skip spares */
1994 return;
1995 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1996 rdev->bdev->bd_disk) >= 0)
1997 return;
1998 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1999 blk_integrity_unregister(mddev->gendisk);
2001 EXPORT_SYMBOL(md_integrity_add_rdev);
2003 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2005 char b[BDEVNAME_SIZE];
2006 struct kobject *ko;
2007 char *s;
2008 int err;
2010 if (rdev->mddev) {
2011 MD_BUG();
2012 return -EINVAL;
2015 /* prevent duplicates */
2016 if (find_rdev(mddev, rdev->bdev->bd_dev))
2017 return -EEXIST;
2019 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2020 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2021 rdev->sectors < mddev->dev_sectors)) {
2022 if (mddev->pers) {
2023 /* Cannot change size, so fail
2024 * If mddev->level <= 0, then we don't care
2025 * about aligning sizes (e.g. linear)
2027 if (mddev->level > 0)
2028 return -ENOSPC;
2029 } else
2030 mddev->dev_sectors = rdev->sectors;
2033 /* Verify rdev->desc_nr is unique.
2034 * If it is -1, assign a free number, else
2035 * check number is not in use
2037 if (rdev->desc_nr < 0) {
2038 int choice = 0;
2039 if (mddev->pers) choice = mddev->raid_disks;
2040 while (find_rdev_nr(mddev, choice))
2041 choice++;
2042 rdev->desc_nr = choice;
2043 } else {
2044 if (find_rdev_nr(mddev, rdev->desc_nr))
2045 return -EBUSY;
2047 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2048 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2049 mdname(mddev), mddev->max_disks);
2050 return -EBUSY;
2052 bdevname(rdev->bdev,b);
2053 while ( (s=strchr(b, '/')) != NULL)
2054 *s = '!';
2056 rdev->mddev = mddev;
2057 printk(KERN_INFO "md: bind<%s>\n", b);
2059 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2060 goto fail;
2062 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2063 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2064 /* failure here is OK */;
2065 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2067 list_add_rcu(&rdev->same_set, &mddev->disks);
2068 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2070 /* May as well allow recovery to be retried once */
2071 mddev->recovery_disabled++;
2073 return 0;
2075 fail:
2076 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2077 b, mdname(mddev));
2078 return err;
2081 static void md_delayed_delete(struct work_struct *ws)
2083 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2084 kobject_del(&rdev->kobj);
2085 kobject_put(&rdev->kobj);
2088 static void unbind_rdev_from_array(struct md_rdev * rdev)
2090 char b[BDEVNAME_SIZE];
2091 if (!rdev->mddev) {
2092 MD_BUG();
2093 return;
2095 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2096 list_del_rcu(&rdev->same_set);
2097 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2098 rdev->mddev = NULL;
2099 sysfs_remove_link(&rdev->kobj, "block");
2100 sysfs_put(rdev->sysfs_state);
2101 rdev->sysfs_state = NULL;
2102 kfree(rdev->badblocks.page);
2103 rdev->badblocks.count = 0;
2104 rdev->badblocks.page = NULL;
2105 /* We need to delay this, otherwise we can deadlock when
2106 * writing to 'remove' to "dev/state". We also need
2107 * to delay it due to rcu usage.
2109 synchronize_rcu();
2110 INIT_WORK(&rdev->del_work, md_delayed_delete);
2111 kobject_get(&rdev->kobj);
2112 queue_work(md_misc_wq, &rdev->del_work);
2116 * prevent the device from being mounted, repartitioned or
2117 * otherwise reused by a RAID array (or any other kernel
2118 * subsystem), by bd_claiming the device.
2120 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2122 int err = 0;
2123 struct block_device *bdev;
2124 char b[BDEVNAME_SIZE];
2126 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2127 shared ? (struct md_rdev *)lock_rdev : rdev);
2128 if (IS_ERR(bdev)) {
2129 printk(KERN_ERR "md: could not open %s.\n",
2130 __bdevname(dev, b));
2131 return PTR_ERR(bdev);
2133 rdev->bdev = bdev;
2134 return err;
2137 static void unlock_rdev(struct md_rdev *rdev)
2139 struct block_device *bdev = rdev->bdev;
2140 rdev->bdev = NULL;
2141 if (!bdev)
2142 MD_BUG();
2143 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2146 void md_autodetect_dev(dev_t dev);
2148 static void export_rdev(struct md_rdev * rdev)
2150 char b[BDEVNAME_SIZE];
2151 printk(KERN_INFO "md: export_rdev(%s)\n",
2152 bdevname(rdev->bdev,b));
2153 if (rdev->mddev)
2154 MD_BUG();
2155 free_disk_sb(rdev);
2156 #ifndef MODULE
2157 if (test_bit(AutoDetected, &rdev->flags))
2158 md_autodetect_dev(rdev->bdev->bd_dev);
2159 #endif
2160 unlock_rdev(rdev);
2161 kobject_put(&rdev->kobj);
2164 static void kick_rdev_from_array(struct md_rdev * rdev)
2166 unbind_rdev_from_array(rdev);
2167 export_rdev(rdev);
2170 static void export_array(struct mddev *mddev)
2172 struct md_rdev *rdev, *tmp;
2174 rdev_for_each(rdev, tmp, mddev) {
2175 if (!rdev->mddev) {
2176 MD_BUG();
2177 continue;
2179 kick_rdev_from_array(rdev);
2181 if (!list_empty(&mddev->disks))
2182 MD_BUG();
2183 mddev->raid_disks = 0;
2184 mddev->major_version = 0;
2187 static void print_desc(mdp_disk_t *desc)
2189 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2190 desc->major,desc->minor,desc->raid_disk,desc->state);
2193 static void print_sb_90(mdp_super_t *sb)
2195 int i;
2197 printk(KERN_INFO
2198 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2199 sb->major_version, sb->minor_version, sb->patch_version,
2200 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2201 sb->ctime);
2202 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2203 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2204 sb->md_minor, sb->layout, sb->chunk_size);
2205 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2206 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2207 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2208 sb->failed_disks, sb->spare_disks,
2209 sb->sb_csum, (unsigned long)sb->events_lo);
2211 printk(KERN_INFO);
2212 for (i = 0; i < MD_SB_DISKS; i++) {
2213 mdp_disk_t *desc;
2215 desc = sb->disks + i;
2216 if (desc->number || desc->major || desc->minor ||
2217 desc->raid_disk || (desc->state && (desc->state != 4))) {
2218 printk(" D %2d: ", i);
2219 print_desc(desc);
2222 printk(KERN_INFO "md: THIS: ");
2223 print_desc(&sb->this_disk);
2226 static void print_sb_1(struct mdp_superblock_1 *sb)
2228 __u8 *uuid;
2230 uuid = sb->set_uuid;
2231 printk(KERN_INFO
2232 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2233 "md: Name: \"%s\" CT:%llu\n",
2234 le32_to_cpu(sb->major_version),
2235 le32_to_cpu(sb->feature_map),
2236 uuid,
2237 sb->set_name,
2238 (unsigned long long)le64_to_cpu(sb->ctime)
2239 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2241 uuid = sb->device_uuid;
2242 printk(KERN_INFO
2243 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2244 " RO:%llu\n"
2245 "md: Dev:%08x UUID: %pU\n"
2246 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2247 "md: (MaxDev:%u) \n",
2248 le32_to_cpu(sb->level),
2249 (unsigned long long)le64_to_cpu(sb->size),
2250 le32_to_cpu(sb->raid_disks),
2251 le32_to_cpu(sb->layout),
2252 le32_to_cpu(sb->chunksize),
2253 (unsigned long long)le64_to_cpu(sb->data_offset),
2254 (unsigned long long)le64_to_cpu(sb->data_size),
2255 (unsigned long long)le64_to_cpu(sb->super_offset),
2256 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2257 le32_to_cpu(sb->dev_number),
2258 uuid,
2259 sb->devflags,
2260 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2261 (unsigned long long)le64_to_cpu(sb->events),
2262 (unsigned long long)le64_to_cpu(sb->resync_offset),
2263 le32_to_cpu(sb->sb_csum),
2264 le32_to_cpu(sb->max_dev)
2268 static void print_rdev(struct md_rdev *rdev, int major_version)
2270 char b[BDEVNAME_SIZE];
2271 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2272 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2273 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2274 rdev->desc_nr);
2275 if (rdev->sb_loaded) {
2276 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2277 switch (major_version) {
2278 case 0:
2279 print_sb_90(page_address(rdev->sb_page));
2280 break;
2281 case 1:
2282 print_sb_1(page_address(rdev->sb_page));
2283 break;
2285 } else
2286 printk(KERN_INFO "md: no rdev superblock!\n");
2289 static void md_print_devices(void)
2291 struct list_head *tmp;
2292 struct md_rdev *rdev;
2293 struct mddev *mddev;
2294 char b[BDEVNAME_SIZE];
2296 printk("\n");
2297 printk("md: **********************************\n");
2298 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2299 printk("md: **********************************\n");
2300 for_each_mddev(mddev, tmp) {
2302 if (mddev->bitmap)
2303 bitmap_print_sb(mddev->bitmap);
2304 else
2305 printk("%s: ", mdname(mddev));
2306 list_for_each_entry(rdev, &mddev->disks, same_set)
2307 printk("<%s>", bdevname(rdev->bdev,b));
2308 printk("\n");
2310 list_for_each_entry(rdev, &mddev->disks, same_set)
2311 print_rdev(rdev, mddev->major_version);
2313 printk("md: **********************************\n");
2314 printk("\n");
2318 static void sync_sbs(struct mddev * mddev, int nospares)
2320 /* Update each superblock (in-memory image), but
2321 * if we are allowed to, skip spares which already
2322 * have the right event counter, or have one earlier
2323 * (which would mean they aren't being marked as dirty
2324 * with the rest of the array)
2326 struct md_rdev *rdev;
2327 list_for_each_entry(rdev, &mddev->disks, same_set) {
2328 if (rdev->sb_events == mddev->events ||
2329 (nospares &&
2330 rdev->raid_disk < 0 &&
2331 rdev->sb_events+1 == mddev->events)) {
2332 /* Don't update this superblock */
2333 rdev->sb_loaded = 2;
2334 } else {
2335 sync_super(mddev, rdev);
2336 rdev->sb_loaded = 1;
2341 static void md_update_sb(struct mddev * mddev, int force_change)
2343 struct md_rdev *rdev;
2344 int sync_req;
2345 int nospares = 0;
2346 int any_badblocks_changed = 0;
2348 repeat:
2349 /* First make sure individual recovery_offsets are correct */
2350 list_for_each_entry(rdev, &mddev->disks, same_set) {
2351 if (rdev->raid_disk >= 0 &&
2352 mddev->delta_disks >= 0 &&
2353 !test_bit(In_sync, &rdev->flags) &&
2354 mddev->curr_resync_completed > rdev->recovery_offset)
2355 rdev->recovery_offset = mddev->curr_resync_completed;
2358 if (!mddev->persistent) {
2359 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2360 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2361 if (!mddev->external) {
2362 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2363 list_for_each_entry(rdev, &mddev->disks, same_set) {
2364 if (rdev->badblocks.changed) {
2365 md_ack_all_badblocks(&rdev->badblocks);
2366 md_error(mddev, rdev);
2368 clear_bit(Blocked, &rdev->flags);
2369 clear_bit(BlockedBadBlocks, &rdev->flags);
2370 wake_up(&rdev->blocked_wait);
2373 wake_up(&mddev->sb_wait);
2374 return;
2377 spin_lock_irq(&mddev->write_lock);
2379 mddev->utime = get_seconds();
2381 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2382 force_change = 1;
2383 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2384 /* just a clean<-> dirty transition, possibly leave spares alone,
2385 * though if events isn't the right even/odd, we will have to do
2386 * spares after all
2388 nospares = 1;
2389 if (force_change)
2390 nospares = 0;
2391 if (mddev->degraded)
2392 /* If the array is degraded, then skipping spares is both
2393 * dangerous and fairly pointless.
2394 * Dangerous because a device that was removed from the array
2395 * might have a event_count that still looks up-to-date,
2396 * so it can be re-added without a resync.
2397 * Pointless because if there are any spares to skip,
2398 * then a recovery will happen and soon that array won't
2399 * be degraded any more and the spare can go back to sleep then.
2401 nospares = 0;
2403 sync_req = mddev->in_sync;
2405 /* If this is just a dirty<->clean transition, and the array is clean
2406 * and 'events' is odd, we can roll back to the previous clean state */
2407 if (nospares
2408 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2409 && mddev->can_decrease_events
2410 && mddev->events != 1) {
2411 mddev->events--;
2412 mddev->can_decrease_events = 0;
2413 } else {
2414 /* otherwise we have to go forward and ... */
2415 mddev->events ++;
2416 mddev->can_decrease_events = nospares;
2419 if (!mddev->events) {
2421 * oops, this 64-bit counter should never wrap.
2422 * Either we are in around ~1 trillion A.C., assuming
2423 * 1 reboot per second, or we have a bug:
2425 MD_BUG();
2426 mddev->events --;
2429 list_for_each_entry(rdev, &mddev->disks, same_set) {
2430 if (rdev->badblocks.changed)
2431 any_badblocks_changed++;
2432 if (test_bit(Faulty, &rdev->flags))
2433 set_bit(FaultRecorded, &rdev->flags);
2436 sync_sbs(mddev, nospares);
2437 spin_unlock_irq(&mddev->write_lock);
2439 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2440 mdname(mddev), mddev->in_sync);
2442 bitmap_update_sb(mddev->bitmap);
2443 list_for_each_entry(rdev, &mddev->disks, same_set) {
2444 char b[BDEVNAME_SIZE];
2446 if (rdev->sb_loaded != 1)
2447 continue; /* no noise on spare devices */
2449 if (!test_bit(Faulty, &rdev->flags) &&
2450 rdev->saved_raid_disk == -1) {
2451 md_super_write(mddev,rdev,
2452 rdev->sb_start, rdev->sb_size,
2453 rdev->sb_page);
2454 pr_debug("md: (write) %s's sb offset: %llu\n",
2455 bdevname(rdev->bdev, b),
2456 (unsigned long long)rdev->sb_start);
2457 rdev->sb_events = mddev->events;
2458 if (rdev->badblocks.size) {
2459 md_super_write(mddev, rdev,
2460 rdev->badblocks.sector,
2461 rdev->badblocks.size << 9,
2462 rdev->bb_page);
2463 rdev->badblocks.size = 0;
2466 } else if (test_bit(Faulty, &rdev->flags))
2467 pr_debug("md: %s (skipping faulty)\n",
2468 bdevname(rdev->bdev, b));
2469 else
2470 pr_debug("(skipping incremental s/r ");
2472 if (mddev->level == LEVEL_MULTIPATH)
2473 /* only need to write one superblock... */
2474 break;
2476 md_super_wait(mddev);
2477 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2479 spin_lock_irq(&mddev->write_lock);
2480 if (mddev->in_sync != sync_req ||
2481 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2482 /* have to write it out again */
2483 spin_unlock_irq(&mddev->write_lock);
2484 goto repeat;
2486 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2487 spin_unlock_irq(&mddev->write_lock);
2488 wake_up(&mddev->sb_wait);
2489 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2490 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2492 list_for_each_entry(rdev, &mddev->disks, same_set) {
2493 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2494 clear_bit(Blocked, &rdev->flags);
2496 if (any_badblocks_changed)
2497 md_ack_all_badblocks(&rdev->badblocks);
2498 clear_bit(BlockedBadBlocks, &rdev->flags);
2499 wake_up(&rdev->blocked_wait);
2503 /* words written to sysfs files may, or may not, be \n terminated.
2504 * We want to accept with case. For this we use cmd_match.
2506 static int cmd_match(const char *cmd, const char *str)
2508 /* See if cmd, written into a sysfs file, matches
2509 * str. They must either be the same, or cmd can
2510 * have a trailing newline
2512 while (*cmd && *str && *cmd == *str) {
2513 cmd++;
2514 str++;
2516 if (*cmd == '\n')
2517 cmd++;
2518 if (*str || *cmd)
2519 return 0;
2520 return 1;
2523 struct rdev_sysfs_entry {
2524 struct attribute attr;
2525 ssize_t (*show)(struct md_rdev *, char *);
2526 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2529 static ssize_t
2530 state_show(struct md_rdev *rdev, char *page)
2532 char *sep = "";
2533 size_t len = 0;
2535 if (test_bit(Faulty, &rdev->flags) ||
2536 rdev->badblocks.unacked_exist) {
2537 len+= sprintf(page+len, "%sfaulty",sep);
2538 sep = ",";
2540 if (test_bit(In_sync, &rdev->flags)) {
2541 len += sprintf(page+len, "%sin_sync",sep);
2542 sep = ",";
2544 if (test_bit(WriteMostly, &rdev->flags)) {
2545 len += sprintf(page+len, "%swrite_mostly",sep);
2546 sep = ",";
2548 if (test_bit(Blocked, &rdev->flags) ||
2549 rdev->badblocks.unacked_exist) {
2550 len += sprintf(page+len, "%sblocked", sep);
2551 sep = ",";
2553 if (!test_bit(Faulty, &rdev->flags) &&
2554 !test_bit(In_sync, &rdev->flags)) {
2555 len += sprintf(page+len, "%sspare", sep);
2556 sep = ",";
2558 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2559 len += sprintf(page+len, "%swrite_error", sep);
2560 sep = ",";
2562 return len+sprintf(page+len, "\n");
2565 static ssize_t
2566 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2568 /* can write
2569 * faulty - simulates an error
2570 * remove - disconnects the device
2571 * writemostly - sets write_mostly
2572 * -writemostly - clears write_mostly
2573 * blocked - sets the Blocked flags
2574 * -blocked - clears the Blocked and possibly simulates an error
2575 * insync - sets Insync providing device isn't active
2576 * write_error - sets WriteErrorSeen
2577 * -write_error - clears WriteErrorSeen
2579 int err = -EINVAL;
2580 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2581 md_error(rdev->mddev, rdev);
2582 if (test_bit(Faulty, &rdev->flags))
2583 err = 0;
2584 else
2585 err = -EBUSY;
2586 } else if (cmd_match(buf, "remove")) {
2587 if (rdev->raid_disk >= 0)
2588 err = -EBUSY;
2589 else {
2590 struct mddev *mddev = rdev->mddev;
2591 kick_rdev_from_array(rdev);
2592 if (mddev->pers)
2593 md_update_sb(mddev, 1);
2594 md_new_event(mddev);
2595 err = 0;
2597 } else if (cmd_match(buf, "writemostly")) {
2598 set_bit(WriteMostly, &rdev->flags);
2599 err = 0;
2600 } else if (cmd_match(buf, "-writemostly")) {
2601 clear_bit(WriteMostly, &rdev->flags);
2602 err = 0;
2603 } else if (cmd_match(buf, "blocked")) {
2604 set_bit(Blocked, &rdev->flags);
2605 err = 0;
2606 } else if (cmd_match(buf, "-blocked")) {
2607 if (!test_bit(Faulty, &rdev->flags) &&
2608 rdev->badblocks.unacked_exist) {
2609 /* metadata handler doesn't understand badblocks,
2610 * so we need to fail the device
2612 md_error(rdev->mddev, rdev);
2614 clear_bit(Blocked, &rdev->flags);
2615 clear_bit(BlockedBadBlocks, &rdev->flags);
2616 wake_up(&rdev->blocked_wait);
2617 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2618 md_wakeup_thread(rdev->mddev->thread);
2620 err = 0;
2621 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2622 set_bit(In_sync, &rdev->flags);
2623 err = 0;
2624 } else if (cmd_match(buf, "write_error")) {
2625 set_bit(WriteErrorSeen, &rdev->flags);
2626 err = 0;
2627 } else if (cmd_match(buf, "-write_error")) {
2628 clear_bit(WriteErrorSeen, &rdev->flags);
2629 err = 0;
2631 if (!err)
2632 sysfs_notify_dirent_safe(rdev->sysfs_state);
2633 return err ? err : len;
2635 static struct rdev_sysfs_entry rdev_state =
2636 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2638 static ssize_t
2639 errors_show(struct md_rdev *rdev, char *page)
2641 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2644 static ssize_t
2645 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2647 char *e;
2648 unsigned long n = simple_strtoul(buf, &e, 10);
2649 if (*buf && (*e == 0 || *e == '\n')) {
2650 atomic_set(&rdev->corrected_errors, n);
2651 return len;
2653 return -EINVAL;
2655 static struct rdev_sysfs_entry rdev_errors =
2656 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2658 static ssize_t
2659 slot_show(struct md_rdev *rdev, char *page)
2661 if (rdev->raid_disk < 0)
2662 return sprintf(page, "none\n");
2663 else
2664 return sprintf(page, "%d\n", rdev->raid_disk);
2667 static ssize_t
2668 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2670 char *e;
2671 int err;
2672 int slot = simple_strtoul(buf, &e, 10);
2673 if (strncmp(buf, "none", 4)==0)
2674 slot = -1;
2675 else if (e==buf || (*e && *e!= '\n'))
2676 return -EINVAL;
2677 if (rdev->mddev->pers && slot == -1) {
2678 /* Setting 'slot' on an active array requires also
2679 * updating the 'rd%d' link, and communicating
2680 * with the personality with ->hot_*_disk.
2681 * For now we only support removing
2682 * failed/spare devices. This normally happens automatically,
2683 * but not when the metadata is externally managed.
2685 if (rdev->raid_disk == -1)
2686 return -EEXIST;
2687 /* personality does all needed checks */
2688 if (rdev->mddev->pers->hot_remove_disk == NULL)
2689 return -EINVAL;
2690 err = rdev->mddev->pers->
2691 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2692 if (err)
2693 return err;
2694 sysfs_unlink_rdev(rdev->mddev, rdev);
2695 rdev->raid_disk = -1;
2696 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2697 md_wakeup_thread(rdev->mddev->thread);
2698 } else if (rdev->mddev->pers) {
2699 struct md_rdev *rdev2;
2700 /* Activating a spare .. or possibly reactivating
2701 * if we ever get bitmaps working here.
2704 if (rdev->raid_disk != -1)
2705 return -EBUSY;
2707 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2708 return -EBUSY;
2710 if (rdev->mddev->pers->hot_add_disk == NULL)
2711 return -EINVAL;
2713 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2714 if (rdev2->raid_disk == slot)
2715 return -EEXIST;
2717 if (slot >= rdev->mddev->raid_disks &&
2718 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2719 return -ENOSPC;
2721 rdev->raid_disk = slot;
2722 if (test_bit(In_sync, &rdev->flags))
2723 rdev->saved_raid_disk = slot;
2724 else
2725 rdev->saved_raid_disk = -1;
2726 clear_bit(In_sync, &rdev->flags);
2727 err = rdev->mddev->pers->
2728 hot_add_disk(rdev->mddev, rdev);
2729 if (err) {
2730 rdev->raid_disk = -1;
2731 return err;
2732 } else
2733 sysfs_notify_dirent_safe(rdev->sysfs_state);
2734 if (sysfs_link_rdev(rdev->mddev, rdev))
2735 /* failure here is OK */;
2736 /* don't wakeup anyone, leave that to userspace. */
2737 } else {
2738 if (slot >= rdev->mddev->raid_disks &&
2739 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2740 return -ENOSPC;
2741 rdev->raid_disk = slot;
2742 /* assume it is working */
2743 clear_bit(Faulty, &rdev->flags);
2744 clear_bit(WriteMostly, &rdev->flags);
2745 set_bit(In_sync, &rdev->flags);
2746 sysfs_notify_dirent_safe(rdev->sysfs_state);
2748 return len;
2752 static struct rdev_sysfs_entry rdev_slot =
2753 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2755 static ssize_t
2756 offset_show(struct md_rdev *rdev, char *page)
2758 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2761 static ssize_t
2762 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2764 char *e;
2765 unsigned long long offset = simple_strtoull(buf, &e, 10);
2766 if (e==buf || (*e && *e != '\n'))
2767 return -EINVAL;
2768 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2769 return -EBUSY;
2770 if (rdev->sectors && rdev->mddev->external)
2771 /* Must set offset before size, so overlap checks
2772 * can be sane */
2773 return -EBUSY;
2774 rdev->data_offset = offset;
2775 return len;
2778 static struct rdev_sysfs_entry rdev_offset =
2779 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2781 static ssize_t
2782 rdev_size_show(struct md_rdev *rdev, char *page)
2784 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2787 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2789 /* check if two start/length pairs overlap */
2790 if (s1+l1 <= s2)
2791 return 0;
2792 if (s2+l2 <= s1)
2793 return 0;
2794 return 1;
2797 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2799 unsigned long long blocks;
2800 sector_t new;
2802 if (strict_strtoull(buf, 10, &blocks) < 0)
2803 return -EINVAL;
2805 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2806 return -EINVAL; /* sector conversion overflow */
2808 new = blocks * 2;
2809 if (new != blocks * 2)
2810 return -EINVAL; /* unsigned long long to sector_t overflow */
2812 *sectors = new;
2813 return 0;
2816 static ssize_t
2817 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2819 struct mddev *my_mddev = rdev->mddev;
2820 sector_t oldsectors = rdev->sectors;
2821 sector_t sectors;
2823 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2824 return -EINVAL;
2825 if (my_mddev->pers && rdev->raid_disk >= 0) {
2826 if (my_mddev->persistent) {
2827 sectors = super_types[my_mddev->major_version].
2828 rdev_size_change(rdev, sectors);
2829 if (!sectors)
2830 return -EBUSY;
2831 } else if (!sectors)
2832 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2833 rdev->data_offset;
2835 if (sectors < my_mddev->dev_sectors)
2836 return -EINVAL; /* component must fit device */
2838 rdev->sectors = sectors;
2839 if (sectors > oldsectors && my_mddev->external) {
2840 /* need to check that all other rdevs with the same ->bdev
2841 * do not overlap. We need to unlock the mddev to avoid
2842 * a deadlock. We have already changed rdev->sectors, and if
2843 * we have to change it back, we will have the lock again.
2845 struct mddev *mddev;
2846 int overlap = 0;
2847 struct list_head *tmp;
2849 mddev_unlock(my_mddev);
2850 for_each_mddev(mddev, tmp) {
2851 struct md_rdev *rdev2;
2853 mddev_lock(mddev);
2854 list_for_each_entry(rdev2, &mddev->disks, same_set)
2855 if (rdev->bdev == rdev2->bdev &&
2856 rdev != rdev2 &&
2857 overlaps(rdev->data_offset, rdev->sectors,
2858 rdev2->data_offset,
2859 rdev2->sectors)) {
2860 overlap = 1;
2861 break;
2863 mddev_unlock(mddev);
2864 if (overlap) {
2865 mddev_put(mddev);
2866 break;
2869 mddev_lock(my_mddev);
2870 if (overlap) {
2871 /* Someone else could have slipped in a size
2872 * change here, but doing so is just silly.
2873 * We put oldsectors back because we *know* it is
2874 * safe, and trust userspace not to race with
2875 * itself
2877 rdev->sectors = oldsectors;
2878 return -EBUSY;
2881 return len;
2884 static struct rdev_sysfs_entry rdev_size =
2885 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2888 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2890 unsigned long long recovery_start = rdev->recovery_offset;
2892 if (test_bit(In_sync, &rdev->flags) ||
2893 recovery_start == MaxSector)
2894 return sprintf(page, "none\n");
2896 return sprintf(page, "%llu\n", recovery_start);
2899 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2901 unsigned long long recovery_start;
2903 if (cmd_match(buf, "none"))
2904 recovery_start = MaxSector;
2905 else if (strict_strtoull(buf, 10, &recovery_start))
2906 return -EINVAL;
2908 if (rdev->mddev->pers &&
2909 rdev->raid_disk >= 0)
2910 return -EBUSY;
2912 rdev->recovery_offset = recovery_start;
2913 if (recovery_start == MaxSector)
2914 set_bit(In_sync, &rdev->flags);
2915 else
2916 clear_bit(In_sync, &rdev->flags);
2917 return len;
2920 static struct rdev_sysfs_entry rdev_recovery_start =
2921 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2924 static ssize_t
2925 badblocks_show(struct badblocks *bb, char *page, int unack);
2926 static ssize_t
2927 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2929 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2931 return badblocks_show(&rdev->badblocks, page, 0);
2933 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2935 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2936 /* Maybe that ack was all we needed */
2937 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2938 wake_up(&rdev->blocked_wait);
2939 return rv;
2941 static struct rdev_sysfs_entry rdev_bad_blocks =
2942 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2945 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2947 return badblocks_show(&rdev->badblocks, page, 1);
2949 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2951 return badblocks_store(&rdev->badblocks, page, len, 1);
2953 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2954 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2956 static struct attribute *rdev_default_attrs[] = {
2957 &rdev_state.attr,
2958 &rdev_errors.attr,
2959 &rdev_slot.attr,
2960 &rdev_offset.attr,
2961 &rdev_size.attr,
2962 &rdev_recovery_start.attr,
2963 &rdev_bad_blocks.attr,
2964 &rdev_unack_bad_blocks.attr,
2965 NULL,
2967 static ssize_t
2968 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2970 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2971 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2972 struct mddev *mddev = rdev->mddev;
2973 ssize_t rv;
2975 if (!entry->show)
2976 return -EIO;
2978 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2979 if (!rv) {
2980 if (rdev->mddev == NULL)
2981 rv = -EBUSY;
2982 else
2983 rv = entry->show(rdev, page);
2984 mddev_unlock(mddev);
2986 return rv;
2989 static ssize_t
2990 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2991 const char *page, size_t length)
2993 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2994 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2995 ssize_t rv;
2996 struct mddev *mddev = rdev->mddev;
2998 if (!entry->store)
2999 return -EIO;
3000 if (!capable(CAP_SYS_ADMIN))
3001 return -EACCES;
3002 rv = mddev ? mddev_lock(mddev): -EBUSY;
3003 if (!rv) {
3004 if (rdev->mddev == NULL)
3005 rv = -EBUSY;
3006 else
3007 rv = entry->store(rdev, page, length);
3008 mddev_unlock(mddev);
3010 return rv;
3013 static void rdev_free(struct kobject *ko)
3015 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3016 kfree(rdev);
3018 static const struct sysfs_ops rdev_sysfs_ops = {
3019 .show = rdev_attr_show,
3020 .store = rdev_attr_store,
3022 static struct kobj_type rdev_ktype = {
3023 .release = rdev_free,
3024 .sysfs_ops = &rdev_sysfs_ops,
3025 .default_attrs = rdev_default_attrs,
3028 int md_rdev_init(struct md_rdev *rdev)
3030 rdev->desc_nr = -1;
3031 rdev->saved_raid_disk = -1;
3032 rdev->raid_disk = -1;
3033 rdev->flags = 0;
3034 rdev->data_offset = 0;
3035 rdev->sb_events = 0;
3036 rdev->last_read_error.tv_sec = 0;
3037 rdev->last_read_error.tv_nsec = 0;
3038 rdev->sb_loaded = 0;
3039 rdev->bb_page = NULL;
3040 atomic_set(&rdev->nr_pending, 0);
3041 atomic_set(&rdev->read_errors, 0);
3042 atomic_set(&rdev->corrected_errors, 0);
3044 INIT_LIST_HEAD(&rdev->same_set);
3045 init_waitqueue_head(&rdev->blocked_wait);
3047 /* Add space to store bad block list.
3048 * This reserves the space even on arrays where it cannot
3049 * be used - I wonder if that matters
3051 rdev->badblocks.count = 0;
3052 rdev->badblocks.shift = 0;
3053 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3054 seqlock_init(&rdev->badblocks.lock);
3055 if (rdev->badblocks.page == NULL)
3056 return -ENOMEM;
3058 return 0;
3060 EXPORT_SYMBOL_GPL(md_rdev_init);
3062 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3064 * mark the device faulty if:
3066 * - the device is nonexistent (zero size)
3067 * - the device has no valid superblock
3069 * a faulty rdev _never_ has rdev->sb set.
3071 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3073 char b[BDEVNAME_SIZE];
3074 int err;
3075 struct md_rdev *rdev;
3076 sector_t size;
3078 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3079 if (!rdev) {
3080 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3081 return ERR_PTR(-ENOMEM);
3084 err = md_rdev_init(rdev);
3085 if (err)
3086 goto abort_free;
3087 err = alloc_disk_sb(rdev);
3088 if (err)
3089 goto abort_free;
3091 err = lock_rdev(rdev, newdev, super_format == -2);
3092 if (err)
3093 goto abort_free;
3095 kobject_init(&rdev->kobj, &rdev_ktype);
3097 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3098 if (!size) {
3099 printk(KERN_WARNING
3100 "md: %s has zero or unknown size, marking faulty!\n",
3101 bdevname(rdev->bdev,b));
3102 err = -EINVAL;
3103 goto abort_free;
3106 if (super_format >= 0) {
3107 err = super_types[super_format].
3108 load_super(rdev, NULL, super_minor);
3109 if (err == -EINVAL) {
3110 printk(KERN_WARNING
3111 "md: %s does not have a valid v%d.%d "
3112 "superblock, not importing!\n",
3113 bdevname(rdev->bdev,b),
3114 super_format, super_minor);
3115 goto abort_free;
3117 if (err < 0) {
3118 printk(KERN_WARNING
3119 "md: could not read %s's sb, not importing!\n",
3120 bdevname(rdev->bdev,b));
3121 goto abort_free;
3124 if (super_format == -1)
3125 /* hot-add for 0.90, or non-persistent: so no badblocks */
3126 rdev->badblocks.shift = -1;
3128 return rdev;
3130 abort_free:
3131 if (rdev->bdev)
3132 unlock_rdev(rdev);
3133 free_disk_sb(rdev);
3134 kfree(rdev->badblocks.page);
3135 kfree(rdev);
3136 return ERR_PTR(err);
3140 * Check a full RAID array for plausibility
3144 static void analyze_sbs(struct mddev * mddev)
3146 int i;
3147 struct md_rdev *rdev, *freshest, *tmp;
3148 char b[BDEVNAME_SIZE];
3150 freshest = NULL;
3151 rdev_for_each(rdev, tmp, mddev)
3152 switch (super_types[mddev->major_version].
3153 load_super(rdev, freshest, mddev->minor_version)) {
3154 case 1:
3155 freshest = rdev;
3156 break;
3157 case 0:
3158 break;
3159 default:
3160 printk( KERN_ERR \
3161 "md: fatal superblock inconsistency in %s"
3162 " -- removing from array\n",
3163 bdevname(rdev->bdev,b));
3164 kick_rdev_from_array(rdev);
3168 super_types[mddev->major_version].
3169 validate_super(mddev, freshest);
3171 i = 0;
3172 rdev_for_each(rdev, tmp, mddev) {
3173 if (mddev->max_disks &&
3174 (rdev->desc_nr >= mddev->max_disks ||
3175 i > mddev->max_disks)) {
3176 printk(KERN_WARNING
3177 "md: %s: %s: only %d devices permitted\n",
3178 mdname(mddev), bdevname(rdev->bdev, b),
3179 mddev->max_disks);
3180 kick_rdev_from_array(rdev);
3181 continue;
3183 if (rdev != freshest)
3184 if (super_types[mddev->major_version].
3185 validate_super(mddev, rdev)) {
3186 printk(KERN_WARNING "md: kicking non-fresh %s"
3187 " from array!\n",
3188 bdevname(rdev->bdev,b));
3189 kick_rdev_from_array(rdev);
3190 continue;
3192 if (mddev->level == LEVEL_MULTIPATH) {
3193 rdev->desc_nr = i++;
3194 rdev->raid_disk = rdev->desc_nr;
3195 set_bit(In_sync, &rdev->flags);
3196 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3197 rdev->raid_disk = -1;
3198 clear_bit(In_sync, &rdev->flags);
3203 /* Read a fixed-point number.
3204 * Numbers in sysfs attributes should be in "standard" units where
3205 * possible, so time should be in seconds.
3206 * However we internally use a a much smaller unit such as
3207 * milliseconds or jiffies.
3208 * This function takes a decimal number with a possible fractional
3209 * component, and produces an integer which is the result of
3210 * multiplying that number by 10^'scale'.
3211 * all without any floating-point arithmetic.
3213 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3215 unsigned long result = 0;
3216 long decimals = -1;
3217 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3218 if (*cp == '.')
3219 decimals = 0;
3220 else if (decimals < scale) {
3221 unsigned int value;
3222 value = *cp - '0';
3223 result = result * 10 + value;
3224 if (decimals >= 0)
3225 decimals++;
3227 cp++;
3229 if (*cp == '\n')
3230 cp++;
3231 if (*cp)
3232 return -EINVAL;
3233 if (decimals < 0)
3234 decimals = 0;
3235 while (decimals < scale) {
3236 result *= 10;
3237 decimals ++;
3239 *res = result;
3240 return 0;
3244 static void md_safemode_timeout(unsigned long data);
3246 static ssize_t
3247 safe_delay_show(struct mddev *mddev, char *page)
3249 int msec = (mddev->safemode_delay*1000)/HZ;
3250 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3252 static ssize_t
3253 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3255 unsigned long msec;
3257 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3258 return -EINVAL;
3259 if (msec == 0)
3260 mddev->safemode_delay = 0;
3261 else {
3262 unsigned long old_delay = mddev->safemode_delay;
3263 mddev->safemode_delay = (msec*HZ)/1000;
3264 if (mddev->safemode_delay == 0)
3265 mddev->safemode_delay = 1;
3266 if (mddev->safemode_delay < old_delay)
3267 md_safemode_timeout((unsigned long)mddev);
3269 return len;
3271 static struct md_sysfs_entry md_safe_delay =
3272 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3274 static ssize_t
3275 level_show(struct mddev *mddev, char *page)
3277 struct md_personality *p = mddev->pers;
3278 if (p)
3279 return sprintf(page, "%s\n", p->name);
3280 else if (mddev->clevel[0])
3281 return sprintf(page, "%s\n", mddev->clevel);
3282 else if (mddev->level != LEVEL_NONE)
3283 return sprintf(page, "%d\n", mddev->level);
3284 else
3285 return 0;
3288 static ssize_t
3289 level_store(struct mddev *mddev, const char *buf, size_t len)
3291 char clevel[16];
3292 ssize_t rv = len;
3293 struct md_personality *pers;
3294 long level;
3295 void *priv;
3296 struct md_rdev *rdev;
3298 if (mddev->pers == NULL) {
3299 if (len == 0)
3300 return 0;
3301 if (len >= sizeof(mddev->clevel))
3302 return -ENOSPC;
3303 strncpy(mddev->clevel, buf, len);
3304 if (mddev->clevel[len-1] == '\n')
3305 len--;
3306 mddev->clevel[len] = 0;
3307 mddev->level = LEVEL_NONE;
3308 return rv;
3311 /* request to change the personality. Need to ensure:
3312 * - array is not engaged in resync/recovery/reshape
3313 * - old personality can be suspended
3314 * - new personality will access other array.
3317 if (mddev->sync_thread ||
3318 mddev->reshape_position != MaxSector ||
3319 mddev->sysfs_active)
3320 return -EBUSY;
3322 if (!mddev->pers->quiesce) {
3323 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3324 mdname(mddev), mddev->pers->name);
3325 return -EINVAL;
3328 /* Now find the new personality */
3329 if (len == 0 || len >= sizeof(clevel))
3330 return -EINVAL;
3331 strncpy(clevel, buf, len);
3332 if (clevel[len-1] == '\n')
3333 len--;
3334 clevel[len] = 0;
3335 if (strict_strtol(clevel, 10, &level))
3336 level = LEVEL_NONE;
3338 if (request_module("md-%s", clevel) != 0)
3339 request_module("md-level-%s", clevel);
3340 spin_lock(&pers_lock);
3341 pers = find_pers(level, clevel);
3342 if (!pers || !try_module_get(pers->owner)) {
3343 spin_unlock(&pers_lock);
3344 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3345 return -EINVAL;
3347 spin_unlock(&pers_lock);
3349 if (pers == mddev->pers) {
3350 /* Nothing to do! */
3351 module_put(pers->owner);
3352 return rv;
3354 if (!pers->takeover) {
3355 module_put(pers->owner);
3356 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3357 mdname(mddev), clevel);
3358 return -EINVAL;
3361 list_for_each_entry(rdev, &mddev->disks, same_set)
3362 rdev->new_raid_disk = rdev->raid_disk;
3364 /* ->takeover must set new_* and/or delta_disks
3365 * if it succeeds, and may set them when it fails.
3367 priv = pers->takeover(mddev);
3368 if (IS_ERR(priv)) {
3369 mddev->new_level = mddev->level;
3370 mddev->new_layout = mddev->layout;
3371 mddev->new_chunk_sectors = mddev->chunk_sectors;
3372 mddev->raid_disks -= mddev->delta_disks;
3373 mddev->delta_disks = 0;
3374 module_put(pers->owner);
3375 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3376 mdname(mddev), clevel);
3377 return PTR_ERR(priv);
3380 /* Looks like we have a winner */
3381 mddev_suspend(mddev);
3382 mddev->pers->stop(mddev);
3384 if (mddev->pers->sync_request == NULL &&
3385 pers->sync_request != NULL) {
3386 /* need to add the md_redundancy_group */
3387 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3388 printk(KERN_WARNING
3389 "md: cannot register extra attributes for %s\n",
3390 mdname(mddev));
3391 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3393 if (mddev->pers->sync_request != NULL &&
3394 pers->sync_request == NULL) {
3395 /* need to remove the md_redundancy_group */
3396 if (mddev->to_remove == NULL)
3397 mddev->to_remove = &md_redundancy_group;
3400 if (mddev->pers->sync_request == NULL &&
3401 mddev->external) {
3402 /* We are converting from a no-redundancy array
3403 * to a redundancy array and metadata is managed
3404 * externally so we need to be sure that writes
3405 * won't block due to a need to transition
3406 * clean->dirty
3407 * until external management is started.
3409 mddev->in_sync = 0;
3410 mddev->safemode_delay = 0;
3411 mddev->safemode = 0;
3414 list_for_each_entry(rdev, &mddev->disks, same_set) {
3415 if (rdev->raid_disk < 0)
3416 continue;
3417 if (rdev->new_raid_disk >= mddev->raid_disks)
3418 rdev->new_raid_disk = -1;
3419 if (rdev->new_raid_disk == rdev->raid_disk)
3420 continue;
3421 sysfs_unlink_rdev(mddev, rdev);
3423 list_for_each_entry(rdev, &mddev->disks, same_set) {
3424 if (rdev->raid_disk < 0)
3425 continue;
3426 if (rdev->new_raid_disk == rdev->raid_disk)
3427 continue;
3428 rdev->raid_disk = rdev->new_raid_disk;
3429 if (rdev->raid_disk < 0)
3430 clear_bit(In_sync, &rdev->flags);
3431 else {
3432 if (sysfs_link_rdev(mddev, rdev))
3433 printk(KERN_WARNING "md: cannot register rd%d"
3434 " for %s after level change\n",
3435 rdev->raid_disk, mdname(mddev));
3439 module_put(mddev->pers->owner);
3440 mddev->pers = pers;
3441 mddev->private = priv;
3442 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3443 mddev->level = mddev->new_level;
3444 mddev->layout = mddev->new_layout;
3445 mddev->chunk_sectors = mddev->new_chunk_sectors;
3446 mddev->delta_disks = 0;
3447 mddev->degraded = 0;
3448 if (mddev->pers->sync_request == NULL) {
3449 /* this is now an array without redundancy, so
3450 * it must always be in_sync
3452 mddev->in_sync = 1;
3453 del_timer_sync(&mddev->safemode_timer);
3455 pers->run(mddev);
3456 mddev_resume(mddev);
3457 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3458 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3459 md_wakeup_thread(mddev->thread);
3460 sysfs_notify(&mddev->kobj, NULL, "level");
3461 md_new_event(mddev);
3462 return rv;
3465 static struct md_sysfs_entry md_level =
3466 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3469 static ssize_t
3470 layout_show(struct mddev *mddev, char *page)
3472 /* just a number, not meaningful for all levels */
3473 if (mddev->reshape_position != MaxSector &&
3474 mddev->layout != mddev->new_layout)
3475 return sprintf(page, "%d (%d)\n",
3476 mddev->new_layout, mddev->layout);
3477 return sprintf(page, "%d\n", mddev->layout);
3480 static ssize_t
3481 layout_store(struct mddev *mddev, const char *buf, size_t len)
3483 char *e;
3484 unsigned long n = simple_strtoul(buf, &e, 10);
3486 if (!*buf || (*e && *e != '\n'))
3487 return -EINVAL;
3489 if (mddev->pers) {
3490 int err;
3491 if (mddev->pers->check_reshape == NULL)
3492 return -EBUSY;
3493 mddev->new_layout = n;
3494 err = mddev->pers->check_reshape(mddev);
3495 if (err) {
3496 mddev->new_layout = mddev->layout;
3497 return err;
3499 } else {
3500 mddev->new_layout = n;
3501 if (mddev->reshape_position == MaxSector)
3502 mddev->layout = n;
3504 return len;
3506 static struct md_sysfs_entry md_layout =
3507 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3510 static ssize_t
3511 raid_disks_show(struct mddev *mddev, char *page)
3513 if (mddev->raid_disks == 0)
3514 return 0;
3515 if (mddev->reshape_position != MaxSector &&
3516 mddev->delta_disks != 0)
3517 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3518 mddev->raid_disks - mddev->delta_disks);
3519 return sprintf(page, "%d\n", mddev->raid_disks);
3522 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3524 static ssize_t
3525 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3527 char *e;
3528 int rv = 0;
3529 unsigned long n = simple_strtoul(buf, &e, 10);
3531 if (!*buf || (*e && *e != '\n'))
3532 return -EINVAL;
3534 if (mddev->pers)
3535 rv = update_raid_disks(mddev, n);
3536 else if (mddev->reshape_position != MaxSector) {
3537 int olddisks = mddev->raid_disks - mddev->delta_disks;
3538 mddev->delta_disks = n - olddisks;
3539 mddev->raid_disks = n;
3540 } else
3541 mddev->raid_disks = n;
3542 return rv ? rv : len;
3544 static struct md_sysfs_entry md_raid_disks =
3545 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3547 static ssize_t
3548 chunk_size_show(struct mddev *mddev, char *page)
3550 if (mddev->reshape_position != MaxSector &&
3551 mddev->chunk_sectors != mddev->new_chunk_sectors)
3552 return sprintf(page, "%d (%d)\n",
3553 mddev->new_chunk_sectors << 9,
3554 mddev->chunk_sectors << 9);
3555 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3558 static ssize_t
3559 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3561 char *e;
3562 unsigned long n = simple_strtoul(buf, &e, 10);
3564 if (!*buf || (*e && *e != '\n'))
3565 return -EINVAL;
3567 if (mddev->pers) {
3568 int err;
3569 if (mddev->pers->check_reshape == NULL)
3570 return -EBUSY;
3571 mddev->new_chunk_sectors = n >> 9;
3572 err = mddev->pers->check_reshape(mddev);
3573 if (err) {
3574 mddev->new_chunk_sectors = mddev->chunk_sectors;
3575 return err;
3577 } else {
3578 mddev->new_chunk_sectors = n >> 9;
3579 if (mddev->reshape_position == MaxSector)
3580 mddev->chunk_sectors = n >> 9;
3582 return len;
3584 static struct md_sysfs_entry md_chunk_size =
3585 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3587 static ssize_t
3588 resync_start_show(struct mddev *mddev, char *page)
3590 if (mddev->recovery_cp == MaxSector)
3591 return sprintf(page, "none\n");
3592 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3595 static ssize_t
3596 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3598 char *e;
3599 unsigned long long n = simple_strtoull(buf, &e, 10);
3601 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3602 return -EBUSY;
3603 if (cmd_match(buf, "none"))
3604 n = MaxSector;
3605 else if (!*buf || (*e && *e != '\n'))
3606 return -EINVAL;
3608 mddev->recovery_cp = n;
3609 return len;
3611 static struct md_sysfs_entry md_resync_start =
3612 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3615 * The array state can be:
3617 * clear
3618 * No devices, no size, no level
3619 * Equivalent to STOP_ARRAY ioctl
3620 * inactive
3621 * May have some settings, but array is not active
3622 * all IO results in error
3623 * When written, doesn't tear down array, but just stops it
3624 * suspended (not supported yet)
3625 * All IO requests will block. The array can be reconfigured.
3626 * Writing this, if accepted, will block until array is quiescent
3627 * readonly
3628 * no resync can happen. no superblocks get written.
3629 * write requests fail
3630 * read-auto
3631 * like readonly, but behaves like 'clean' on a write request.
3633 * clean - no pending writes, but otherwise active.
3634 * When written to inactive array, starts without resync
3635 * If a write request arrives then
3636 * if metadata is known, mark 'dirty' and switch to 'active'.
3637 * if not known, block and switch to write-pending
3638 * If written to an active array that has pending writes, then fails.
3639 * active
3640 * fully active: IO and resync can be happening.
3641 * When written to inactive array, starts with resync
3643 * write-pending
3644 * clean, but writes are blocked waiting for 'active' to be written.
3646 * active-idle
3647 * like active, but no writes have been seen for a while (100msec).
3650 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3651 write_pending, active_idle, bad_word};
3652 static char *array_states[] = {
3653 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3654 "write-pending", "active-idle", NULL };
3656 static int match_word(const char *word, char **list)
3658 int n;
3659 for (n=0; list[n]; n++)
3660 if (cmd_match(word, list[n]))
3661 break;
3662 return n;
3665 static ssize_t
3666 array_state_show(struct mddev *mddev, char *page)
3668 enum array_state st = inactive;
3670 if (mddev->pers)
3671 switch(mddev->ro) {
3672 case 1:
3673 st = readonly;
3674 break;
3675 case 2:
3676 st = read_auto;
3677 break;
3678 case 0:
3679 if (mddev->in_sync)
3680 st = clean;
3681 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3682 st = write_pending;
3683 else if (mddev->safemode)
3684 st = active_idle;
3685 else
3686 st = active;
3688 else {
3689 if (list_empty(&mddev->disks) &&
3690 mddev->raid_disks == 0 &&
3691 mddev->dev_sectors == 0)
3692 st = clear;
3693 else
3694 st = inactive;
3696 return sprintf(page, "%s\n", array_states[st]);
3699 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3700 static int md_set_readonly(struct mddev * mddev, int is_open);
3701 static int do_md_run(struct mddev * mddev);
3702 static int restart_array(struct mddev *mddev);
3704 static ssize_t
3705 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3707 int err = -EINVAL;
3708 enum array_state st = match_word(buf, array_states);
3709 switch(st) {
3710 case bad_word:
3711 break;
3712 case clear:
3713 /* stopping an active array */
3714 if (atomic_read(&mddev->openers) > 0)
3715 return -EBUSY;
3716 err = do_md_stop(mddev, 0, 0);
3717 break;
3718 case inactive:
3719 /* stopping an active array */
3720 if (mddev->pers) {
3721 if (atomic_read(&mddev->openers) > 0)
3722 return -EBUSY;
3723 err = do_md_stop(mddev, 2, 0);
3724 } else
3725 err = 0; /* already inactive */
3726 break;
3727 case suspended:
3728 break; /* not supported yet */
3729 case readonly:
3730 if (mddev->pers)
3731 err = md_set_readonly(mddev, 0);
3732 else {
3733 mddev->ro = 1;
3734 set_disk_ro(mddev->gendisk, 1);
3735 err = do_md_run(mddev);
3737 break;
3738 case read_auto:
3739 if (mddev->pers) {
3740 if (mddev->ro == 0)
3741 err = md_set_readonly(mddev, 0);
3742 else if (mddev->ro == 1)
3743 err = restart_array(mddev);
3744 if (err == 0) {
3745 mddev->ro = 2;
3746 set_disk_ro(mddev->gendisk, 0);
3748 } else {
3749 mddev->ro = 2;
3750 err = do_md_run(mddev);
3752 break;
3753 case clean:
3754 if (mddev->pers) {
3755 restart_array(mddev);
3756 spin_lock_irq(&mddev->write_lock);
3757 if (atomic_read(&mddev->writes_pending) == 0) {
3758 if (mddev->in_sync == 0) {
3759 mddev->in_sync = 1;
3760 if (mddev->safemode == 1)
3761 mddev->safemode = 0;
3762 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3764 err = 0;
3765 } else
3766 err = -EBUSY;
3767 spin_unlock_irq(&mddev->write_lock);
3768 } else
3769 err = -EINVAL;
3770 break;
3771 case active:
3772 if (mddev->pers) {
3773 restart_array(mddev);
3774 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3775 wake_up(&mddev->sb_wait);
3776 err = 0;
3777 } else {
3778 mddev->ro = 0;
3779 set_disk_ro(mddev->gendisk, 0);
3780 err = do_md_run(mddev);
3782 break;
3783 case write_pending:
3784 case active_idle:
3785 /* these cannot be set */
3786 break;
3788 if (err)
3789 return err;
3790 else {
3791 sysfs_notify_dirent_safe(mddev->sysfs_state);
3792 return len;
3795 static struct md_sysfs_entry md_array_state =
3796 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3798 static ssize_t
3799 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3800 return sprintf(page, "%d\n",
3801 atomic_read(&mddev->max_corr_read_errors));
3804 static ssize_t
3805 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3807 char *e;
3808 unsigned long n = simple_strtoul(buf, &e, 10);
3810 if (*buf && (*e == 0 || *e == '\n')) {
3811 atomic_set(&mddev->max_corr_read_errors, n);
3812 return len;
3814 return -EINVAL;
3817 static struct md_sysfs_entry max_corr_read_errors =
3818 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3819 max_corrected_read_errors_store);
3821 static ssize_t
3822 null_show(struct mddev *mddev, char *page)
3824 return -EINVAL;
3827 static ssize_t
3828 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3830 /* buf must be %d:%d\n? giving major and minor numbers */
3831 /* The new device is added to the array.
3832 * If the array has a persistent superblock, we read the
3833 * superblock to initialise info and check validity.
3834 * Otherwise, only checking done is that in bind_rdev_to_array,
3835 * which mainly checks size.
3837 char *e;
3838 int major = simple_strtoul(buf, &e, 10);
3839 int minor;
3840 dev_t dev;
3841 struct md_rdev *rdev;
3842 int err;
3844 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3845 return -EINVAL;
3846 minor = simple_strtoul(e+1, &e, 10);
3847 if (*e && *e != '\n')
3848 return -EINVAL;
3849 dev = MKDEV(major, minor);
3850 if (major != MAJOR(dev) ||
3851 minor != MINOR(dev))
3852 return -EOVERFLOW;
3855 if (mddev->persistent) {
3856 rdev = md_import_device(dev, mddev->major_version,
3857 mddev->minor_version);
3858 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3859 struct md_rdev *rdev0
3860 = list_entry(mddev->disks.next,
3861 struct md_rdev, same_set);
3862 err = super_types[mddev->major_version]
3863 .load_super(rdev, rdev0, mddev->minor_version);
3864 if (err < 0)
3865 goto out;
3867 } else if (mddev->external)
3868 rdev = md_import_device(dev, -2, -1);
3869 else
3870 rdev = md_import_device(dev, -1, -1);
3872 if (IS_ERR(rdev))
3873 return PTR_ERR(rdev);
3874 err = bind_rdev_to_array(rdev, mddev);
3875 out:
3876 if (err)
3877 export_rdev(rdev);
3878 return err ? err : len;
3881 static struct md_sysfs_entry md_new_device =
3882 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3884 static ssize_t
3885 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3887 char *end;
3888 unsigned long chunk, end_chunk;
3890 if (!mddev->bitmap)
3891 goto out;
3892 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3893 while (*buf) {
3894 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3895 if (buf == end) break;
3896 if (*end == '-') { /* range */
3897 buf = end + 1;
3898 end_chunk = simple_strtoul(buf, &end, 0);
3899 if (buf == end) break;
3901 if (*end && !isspace(*end)) break;
3902 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3903 buf = skip_spaces(end);
3905 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3906 out:
3907 return len;
3910 static struct md_sysfs_entry md_bitmap =
3911 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3913 static ssize_t
3914 size_show(struct mddev *mddev, char *page)
3916 return sprintf(page, "%llu\n",
3917 (unsigned long long)mddev->dev_sectors / 2);
3920 static int update_size(struct mddev *mddev, sector_t num_sectors);
3922 static ssize_t
3923 size_store(struct mddev *mddev, const char *buf, size_t len)
3925 /* If array is inactive, we can reduce the component size, but
3926 * not increase it (except from 0).
3927 * If array is active, we can try an on-line resize
3929 sector_t sectors;
3930 int err = strict_blocks_to_sectors(buf, &sectors);
3932 if (err < 0)
3933 return err;
3934 if (mddev->pers) {
3935 err = update_size(mddev, sectors);
3936 md_update_sb(mddev, 1);
3937 } else {
3938 if (mddev->dev_sectors == 0 ||
3939 mddev->dev_sectors > sectors)
3940 mddev->dev_sectors = sectors;
3941 else
3942 err = -ENOSPC;
3944 return err ? err : len;
3947 static struct md_sysfs_entry md_size =
3948 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3951 /* Metdata version.
3952 * This is one of
3953 * 'none' for arrays with no metadata (good luck...)
3954 * 'external' for arrays with externally managed metadata,
3955 * or N.M for internally known formats
3957 static ssize_t
3958 metadata_show(struct mddev *mddev, char *page)
3960 if (mddev->persistent)
3961 return sprintf(page, "%d.%d\n",
3962 mddev->major_version, mddev->minor_version);
3963 else if (mddev->external)
3964 return sprintf(page, "external:%s\n", mddev->metadata_type);
3965 else
3966 return sprintf(page, "none\n");
3969 static ssize_t
3970 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3972 int major, minor;
3973 char *e;
3974 /* Changing the details of 'external' metadata is
3975 * always permitted. Otherwise there must be
3976 * no devices attached to the array.
3978 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3980 else if (!list_empty(&mddev->disks))
3981 return -EBUSY;
3983 if (cmd_match(buf, "none")) {
3984 mddev->persistent = 0;
3985 mddev->external = 0;
3986 mddev->major_version = 0;
3987 mddev->minor_version = 90;
3988 return len;
3990 if (strncmp(buf, "external:", 9) == 0) {
3991 size_t namelen = len-9;
3992 if (namelen >= sizeof(mddev->metadata_type))
3993 namelen = sizeof(mddev->metadata_type)-1;
3994 strncpy(mddev->metadata_type, buf+9, namelen);
3995 mddev->metadata_type[namelen] = 0;
3996 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3997 mddev->metadata_type[--namelen] = 0;
3998 mddev->persistent = 0;
3999 mddev->external = 1;
4000 mddev->major_version = 0;
4001 mddev->minor_version = 90;
4002 return len;
4004 major = simple_strtoul(buf, &e, 10);
4005 if (e==buf || *e != '.')
4006 return -EINVAL;
4007 buf = e+1;
4008 minor = simple_strtoul(buf, &e, 10);
4009 if (e==buf || (*e && *e != '\n') )
4010 return -EINVAL;
4011 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4012 return -ENOENT;
4013 mddev->major_version = major;
4014 mddev->minor_version = minor;
4015 mddev->persistent = 1;
4016 mddev->external = 0;
4017 return len;
4020 static struct md_sysfs_entry md_metadata =
4021 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4023 static ssize_t
4024 action_show(struct mddev *mddev, char *page)
4026 char *type = "idle";
4027 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4028 type = "frozen";
4029 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4030 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4031 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4032 type = "reshape";
4033 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4034 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4035 type = "resync";
4036 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4037 type = "check";
4038 else
4039 type = "repair";
4040 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4041 type = "recover";
4043 return sprintf(page, "%s\n", type);
4046 static void reap_sync_thread(struct mddev *mddev);
4048 static ssize_t
4049 action_store(struct mddev *mddev, const char *page, size_t len)
4051 if (!mddev->pers || !mddev->pers->sync_request)
4052 return -EINVAL;
4054 if (cmd_match(page, "frozen"))
4055 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4056 else
4057 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4059 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4060 if (mddev->sync_thread) {
4061 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4062 reap_sync_thread(mddev);
4064 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4065 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4066 return -EBUSY;
4067 else if (cmd_match(page, "resync"))
4068 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4069 else if (cmd_match(page, "recover")) {
4070 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4071 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4072 } else if (cmd_match(page, "reshape")) {
4073 int err;
4074 if (mddev->pers->start_reshape == NULL)
4075 return -EINVAL;
4076 err = mddev->pers->start_reshape(mddev);
4077 if (err)
4078 return err;
4079 sysfs_notify(&mddev->kobj, NULL, "degraded");
4080 } else {
4081 if (cmd_match(page, "check"))
4082 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4083 else if (!cmd_match(page, "repair"))
4084 return -EINVAL;
4085 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4086 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4088 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4089 md_wakeup_thread(mddev->thread);
4090 sysfs_notify_dirent_safe(mddev->sysfs_action);
4091 return len;
4094 static ssize_t
4095 mismatch_cnt_show(struct mddev *mddev, char *page)
4097 return sprintf(page, "%llu\n",
4098 (unsigned long long) mddev->resync_mismatches);
4101 static struct md_sysfs_entry md_scan_mode =
4102 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4105 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4107 static ssize_t
4108 sync_min_show(struct mddev *mddev, char *page)
4110 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4111 mddev->sync_speed_min ? "local": "system");
4114 static ssize_t
4115 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4117 int min;
4118 char *e;
4119 if (strncmp(buf, "system", 6)==0) {
4120 mddev->sync_speed_min = 0;
4121 return len;
4123 min = simple_strtoul(buf, &e, 10);
4124 if (buf == e || (*e && *e != '\n') || min <= 0)
4125 return -EINVAL;
4126 mddev->sync_speed_min = min;
4127 return len;
4130 static struct md_sysfs_entry md_sync_min =
4131 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4133 static ssize_t
4134 sync_max_show(struct mddev *mddev, char *page)
4136 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4137 mddev->sync_speed_max ? "local": "system");
4140 static ssize_t
4141 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4143 int max;
4144 char *e;
4145 if (strncmp(buf, "system", 6)==0) {
4146 mddev->sync_speed_max = 0;
4147 return len;
4149 max = simple_strtoul(buf, &e, 10);
4150 if (buf == e || (*e && *e != '\n') || max <= 0)
4151 return -EINVAL;
4152 mddev->sync_speed_max = max;
4153 return len;
4156 static struct md_sysfs_entry md_sync_max =
4157 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4159 static ssize_t
4160 degraded_show(struct mddev *mddev, char *page)
4162 return sprintf(page, "%d\n", mddev->degraded);
4164 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4166 static ssize_t
4167 sync_force_parallel_show(struct mddev *mddev, char *page)
4169 return sprintf(page, "%d\n", mddev->parallel_resync);
4172 static ssize_t
4173 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4175 long n;
4177 if (strict_strtol(buf, 10, &n))
4178 return -EINVAL;
4180 if (n != 0 && n != 1)
4181 return -EINVAL;
4183 mddev->parallel_resync = n;
4185 if (mddev->sync_thread)
4186 wake_up(&resync_wait);
4188 return len;
4191 /* force parallel resync, even with shared block devices */
4192 static struct md_sysfs_entry md_sync_force_parallel =
4193 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4194 sync_force_parallel_show, sync_force_parallel_store);
4196 static ssize_t
4197 sync_speed_show(struct mddev *mddev, char *page)
4199 unsigned long resync, dt, db;
4200 if (mddev->curr_resync == 0)
4201 return sprintf(page, "none\n");
4202 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4203 dt = (jiffies - mddev->resync_mark) / HZ;
4204 if (!dt) dt++;
4205 db = resync - mddev->resync_mark_cnt;
4206 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4209 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4211 static ssize_t
4212 sync_completed_show(struct mddev *mddev, char *page)
4214 unsigned long long max_sectors, resync;
4216 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4217 return sprintf(page, "none\n");
4219 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4220 max_sectors = mddev->resync_max_sectors;
4221 else
4222 max_sectors = mddev->dev_sectors;
4224 resync = mddev->curr_resync_completed;
4225 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4228 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4230 static ssize_t
4231 min_sync_show(struct mddev *mddev, char *page)
4233 return sprintf(page, "%llu\n",
4234 (unsigned long long)mddev->resync_min);
4236 static ssize_t
4237 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4239 unsigned long long min;
4240 if (strict_strtoull(buf, 10, &min))
4241 return -EINVAL;
4242 if (min > mddev->resync_max)
4243 return -EINVAL;
4244 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4245 return -EBUSY;
4247 /* Must be a multiple of chunk_size */
4248 if (mddev->chunk_sectors) {
4249 sector_t temp = min;
4250 if (sector_div(temp, mddev->chunk_sectors))
4251 return -EINVAL;
4253 mddev->resync_min = min;
4255 return len;
4258 static struct md_sysfs_entry md_min_sync =
4259 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4261 static ssize_t
4262 max_sync_show(struct mddev *mddev, char *page)
4264 if (mddev->resync_max == MaxSector)
4265 return sprintf(page, "max\n");
4266 else
4267 return sprintf(page, "%llu\n",
4268 (unsigned long long)mddev->resync_max);
4270 static ssize_t
4271 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4273 if (strncmp(buf, "max", 3) == 0)
4274 mddev->resync_max = MaxSector;
4275 else {
4276 unsigned long long max;
4277 if (strict_strtoull(buf, 10, &max))
4278 return -EINVAL;
4279 if (max < mddev->resync_min)
4280 return -EINVAL;
4281 if (max < mddev->resync_max &&
4282 mddev->ro == 0 &&
4283 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4284 return -EBUSY;
4286 /* Must be a multiple of chunk_size */
4287 if (mddev->chunk_sectors) {
4288 sector_t temp = max;
4289 if (sector_div(temp, mddev->chunk_sectors))
4290 return -EINVAL;
4292 mddev->resync_max = max;
4294 wake_up(&mddev->recovery_wait);
4295 return len;
4298 static struct md_sysfs_entry md_max_sync =
4299 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4301 static ssize_t
4302 suspend_lo_show(struct mddev *mddev, char *page)
4304 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4307 static ssize_t
4308 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4310 char *e;
4311 unsigned long long new = simple_strtoull(buf, &e, 10);
4312 unsigned long long old = mddev->suspend_lo;
4314 if (mddev->pers == NULL ||
4315 mddev->pers->quiesce == NULL)
4316 return -EINVAL;
4317 if (buf == e || (*e && *e != '\n'))
4318 return -EINVAL;
4320 mddev->suspend_lo = new;
4321 if (new >= old)
4322 /* Shrinking suspended region */
4323 mddev->pers->quiesce(mddev, 2);
4324 else {
4325 /* Expanding suspended region - need to wait */
4326 mddev->pers->quiesce(mddev, 1);
4327 mddev->pers->quiesce(mddev, 0);
4329 return len;
4331 static struct md_sysfs_entry md_suspend_lo =
4332 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4335 static ssize_t
4336 suspend_hi_show(struct mddev *mddev, char *page)
4338 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4341 static ssize_t
4342 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4344 char *e;
4345 unsigned long long new = simple_strtoull(buf, &e, 10);
4346 unsigned long long old = mddev->suspend_hi;
4348 if (mddev->pers == NULL ||
4349 mddev->pers->quiesce == NULL)
4350 return -EINVAL;
4351 if (buf == e || (*e && *e != '\n'))
4352 return -EINVAL;
4354 mddev->suspend_hi = new;
4355 if (new <= old)
4356 /* Shrinking suspended region */
4357 mddev->pers->quiesce(mddev, 2);
4358 else {
4359 /* Expanding suspended region - need to wait */
4360 mddev->pers->quiesce(mddev, 1);
4361 mddev->pers->quiesce(mddev, 0);
4363 return len;
4365 static struct md_sysfs_entry md_suspend_hi =
4366 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4368 static ssize_t
4369 reshape_position_show(struct mddev *mddev, char *page)
4371 if (mddev->reshape_position != MaxSector)
4372 return sprintf(page, "%llu\n",
4373 (unsigned long long)mddev->reshape_position);
4374 strcpy(page, "none\n");
4375 return 5;
4378 static ssize_t
4379 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4381 char *e;
4382 unsigned long long new = simple_strtoull(buf, &e, 10);
4383 if (mddev->pers)
4384 return -EBUSY;
4385 if (buf == e || (*e && *e != '\n'))
4386 return -EINVAL;
4387 mddev->reshape_position = new;
4388 mddev->delta_disks = 0;
4389 mddev->new_level = mddev->level;
4390 mddev->new_layout = mddev->layout;
4391 mddev->new_chunk_sectors = mddev->chunk_sectors;
4392 return len;
4395 static struct md_sysfs_entry md_reshape_position =
4396 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4397 reshape_position_store);
4399 static ssize_t
4400 array_size_show(struct mddev *mddev, char *page)
4402 if (mddev->external_size)
4403 return sprintf(page, "%llu\n",
4404 (unsigned long long)mddev->array_sectors/2);
4405 else
4406 return sprintf(page, "default\n");
4409 static ssize_t
4410 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4412 sector_t sectors;
4414 if (strncmp(buf, "default", 7) == 0) {
4415 if (mddev->pers)
4416 sectors = mddev->pers->size(mddev, 0, 0);
4417 else
4418 sectors = mddev->array_sectors;
4420 mddev->external_size = 0;
4421 } else {
4422 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4423 return -EINVAL;
4424 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4425 return -E2BIG;
4427 mddev->external_size = 1;
4430 mddev->array_sectors = sectors;
4431 if (mddev->pers) {
4432 set_capacity(mddev->gendisk, mddev->array_sectors);
4433 revalidate_disk(mddev->gendisk);
4435 return len;
4438 static struct md_sysfs_entry md_array_size =
4439 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4440 array_size_store);
4442 static struct attribute *md_default_attrs[] = {
4443 &md_level.attr,
4444 &md_layout.attr,
4445 &md_raid_disks.attr,
4446 &md_chunk_size.attr,
4447 &md_size.attr,
4448 &md_resync_start.attr,
4449 &md_metadata.attr,
4450 &md_new_device.attr,
4451 &md_safe_delay.attr,
4452 &md_array_state.attr,
4453 &md_reshape_position.attr,
4454 &md_array_size.attr,
4455 &max_corr_read_errors.attr,
4456 NULL,
4459 static struct attribute *md_redundancy_attrs[] = {
4460 &md_scan_mode.attr,
4461 &md_mismatches.attr,
4462 &md_sync_min.attr,
4463 &md_sync_max.attr,
4464 &md_sync_speed.attr,
4465 &md_sync_force_parallel.attr,
4466 &md_sync_completed.attr,
4467 &md_min_sync.attr,
4468 &md_max_sync.attr,
4469 &md_suspend_lo.attr,
4470 &md_suspend_hi.attr,
4471 &md_bitmap.attr,
4472 &md_degraded.attr,
4473 NULL,
4475 static struct attribute_group md_redundancy_group = {
4476 .name = NULL,
4477 .attrs = md_redundancy_attrs,
4481 static ssize_t
4482 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4484 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4485 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4486 ssize_t rv;
4488 if (!entry->show)
4489 return -EIO;
4490 rv = mddev_lock(mddev);
4491 if (!rv) {
4492 rv = entry->show(mddev, page);
4493 mddev_unlock(mddev);
4495 return rv;
4498 static ssize_t
4499 md_attr_store(struct kobject *kobj, struct attribute *attr,
4500 const char *page, size_t length)
4502 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4503 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4504 ssize_t rv;
4506 if (!entry->store)
4507 return -EIO;
4508 if (!capable(CAP_SYS_ADMIN))
4509 return -EACCES;
4510 rv = mddev_lock(mddev);
4511 if (mddev->hold_active == UNTIL_IOCTL)
4512 mddev->hold_active = 0;
4513 if (!rv) {
4514 rv = entry->store(mddev, page, length);
4515 mddev_unlock(mddev);
4517 return rv;
4520 static void md_free(struct kobject *ko)
4522 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4524 if (mddev->sysfs_state)
4525 sysfs_put(mddev->sysfs_state);
4527 if (mddev->gendisk) {
4528 del_gendisk(mddev->gendisk);
4529 put_disk(mddev->gendisk);
4531 if (mddev->queue)
4532 blk_cleanup_queue(mddev->queue);
4534 kfree(mddev);
4537 static const struct sysfs_ops md_sysfs_ops = {
4538 .show = md_attr_show,
4539 .store = md_attr_store,
4541 static struct kobj_type md_ktype = {
4542 .release = md_free,
4543 .sysfs_ops = &md_sysfs_ops,
4544 .default_attrs = md_default_attrs,
4547 int mdp_major = 0;
4549 static void mddev_delayed_delete(struct work_struct *ws)
4551 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4553 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4554 kobject_del(&mddev->kobj);
4555 kobject_put(&mddev->kobj);
4558 static int md_alloc(dev_t dev, char *name)
4560 static DEFINE_MUTEX(disks_mutex);
4561 struct mddev *mddev = mddev_find(dev);
4562 struct gendisk *disk;
4563 int partitioned;
4564 int shift;
4565 int unit;
4566 int error;
4568 if (!mddev)
4569 return -ENODEV;
4571 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4572 shift = partitioned ? MdpMinorShift : 0;
4573 unit = MINOR(mddev->unit) >> shift;
4575 /* wait for any previous instance of this device to be
4576 * completely removed (mddev_delayed_delete).
4578 flush_workqueue(md_misc_wq);
4580 mutex_lock(&disks_mutex);
4581 error = -EEXIST;
4582 if (mddev->gendisk)
4583 goto abort;
4585 if (name) {
4586 /* Need to ensure that 'name' is not a duplicate.
4588 struct mddev *mddev2;
4589 spin_lock(&all_mddevs_lock);
4591 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4592 if (mddev2->gendisk &&
4593 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4594 spin_unlock(&all_mddevs_lock);
4595 goto abort;
4597 spin_unlock(&all_mddevs_lock);
4600 error = -ENOMEM;
4601 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4602 if (!mddev->queue)
4603 goto abort;
4604 mddev->queue->queuedata = mddev;
4606 blk_queue_make_request(mddev->queue, md_make_request);
4608 disk = alloc_disk(1 << shift);
4609 if (!disk) {
4610 blk_cleanup_queue(mddev->queue);
4611 mddev->queue = NULL;
4612 goto abort;
4614 disk->major = MAJOR(mddev->unit);
4615 disk->first_minor = unit << shift;
4616 if (name)
4617 strcpy(disk->disk_name, name);
4618 else if (partitioned)
4619 sprintf(disk->disk_name, "md_d%d", unit);
4620 else
4621 sprintf(disk->disk_name, "md%d", unit);
4622 disk->fops = &md_fops;
4623 disk->private_data = mddev;
4624 disk->queue = mddev->queue;
4625 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4626 /* Allow extended partitions. This makes the
4627 * 'mdp' device redundant, but we can't really
4628 * remove it now.
4630 disk->flags |= GENHD_FL_EXT_DEVT;
4631 mddev->gendisk = disk;
4632 /* As soon as we call add_disk(), another thread could get
4633 * through to md_open, so make sure it doesn't get too far
4635 mutex_lock(&mddev->open_mutex);
4636 add_disk(disk);
4638 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4639 &disk_to_dev(disk)->kobj, "%s", "md");
4640 if (error) {
4641 /* This isn't possible, but as kobject_init_and_add is marked
4642 * __must_check, we must do something with the result
4644 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4645 disk->disk_name);
4646 error = 0;
4648 if (mddev->kobj.sd &&
4649 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4650 printk(KERN_DEBUG "pointless warning\n");
4651 mutex_unlock(&mddev->open_mutex);
4652 abort:
4653 mutex_unlock(&disks_mutex);
4654 if (!error && mddev->kobj.sd) {
4655 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4656 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4658 mddev_put(mddev);
4659 return error;
4662 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4664 md_alloc(dev, NULL);
4665 return NULL;
4668 static int add_named_array(const char *val, struct kernel_param *kp)
4670 /* val must be "md_*" where * is not all digits.
4671 * We allocate an array with a large free minor number, and
4672 * set the name to val. val must not already be an active name.
4674 int len = strlen(val);
4675 char buf[DISK_NAME_LEN];
4677 while (len && val[len-1] == '\n')
4678 len--;
4679 if (len >= DISK_NAME_LEN)
4680 return -E2BIG;
4681 strlcpy(buf, val, len+1);
4682 if (strncmp(buf, "md_", 3) != 0)
4683 return -EINVAL;
4684 return md_alloc(0, buf);
4687 static void md_safemode_timeout(unsigned long data)
4689 struct mddev *mddev = (struct mddev *) data;
4691 if (!atomic_read(&mddev->writes_pending)) {
4692 mddev->safemode = 1;
4693 if (mddev->external)
4694 sysfs_notify_dirent_safe(mddev->sysfs_state);
4696 md_wakeup_thread(mddev->thread);
4699 static int start_dirty_degraded;
4701 int md_run(struct mddev *mddev)
4703 int err;
4704 struct md_rdev *rdev;
4705 struct md_personality *pers;
4707 if (list_empty(&mddev->disks))
4708 /* cannot run an array with no devices.. */
4709 return -EINVAL;
4711 if (mddev->pers)
4712 return -EBUSY;
4713 /* Cannot run until previous stop completes properly */
4714 if (mddev->sysfs_active)
4715 return -EBUSY;
4718 * Analyze all RAID superblock(s)
4720 if (!mddev->raid_disks) {
4721 if (!mddev->persistent)
4722 return -EINVAL;
4723 analyze_sbs(mddev);
4726 if (mddev->level != LEVEL_NONE)
4727 request_module("md-level-%d", mddev->level);
4728 else if (mddev->clevel[0])
4729 request_module("md-%s", mddev->clevel);
4732 * Drop all container device buffers, from now on
4733 * the only valid external interface is through the md
4734 * device.
4736 list_for_each_entry(rdev, &mddev->disks, same_set) {
4737 if (test_bit(Faulty, &rdev->flags))
4738 continue;
4739 sync_blockdev(rdev->bdev);
4740 invalidate_bdev(rdev->bdev);
4742 /* perform some consistency tests on the device.
4743 * We don't want the data to overlap the metadata,
4744 * Internal Bitmap issues have been handled elsewhere.
4746 if (rdev->meta_bdev) {
4747 /* Nothing to check */;
4748 } else if (rdev->data_offset < rdev->sb_start) {
4749 if (mddev->dev_sectors &&
4750 rdev->data_offset + mddev->dev_sectors
4751 > rdev->sb_start) {
4752 printk("md: %s: data overlaps metadata\n",
4753 mdname(mddev));
4754 return -EINVAL;
4756 } else {
4757 if (rdev->sb_start + rdev->sb_size/512
4758 > rdev->data_offset) {
4759 printk("md: %s: metadata overlaps data\n",
4760 mdname(mddev));
4761 return -EINVAL;
4764 sysfs_notify_dirent_safe(rdev->sysfs_state);
4767 if (mddev->bio_set == NULL)
4768 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4769 sizeof(struct mddev *));
4771 spin_lock(&pers_lock);
4772 pers = find_pers(mddev->level, mddev->clevel);
4773 if (!pers || !try_module_get(pers->owner)) {
4774 spin_unlock(&pers_lock);
4775 if (mddev->level != LEVEL_NONE)
4776 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4777 mddev->level);
4778 else
4779 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4780 mddev->clevel);
4781 return -EINVAL;
4783 mddev->pers = pers;
4784 spin_unlock(&pers_lock);
4785 if (mddev->level != pers->level) {
4786 mddev->level = pers->level;
4787 mddev->new_level = pers->level;
4789 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4791 if (mddev->reshape_position != MaxSector &&
4792 pers->start_reshape == NULL) {
4793 /* This personality cannot handle reshaping... */
4794 mddev->pers = NULL;
4795 module_put(pers->owner);
4796 return -EINVAL;
4799 if (pers->sync_request) {
4800 /* Warn if this is a potentially silly
4801 * configuration.
4803 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4804 struct md_rdev *rdev2;
4805 int warned = 0;
4807 list_for_each_entry(rdev, &mddev->disks, same_set)
4808 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4809 if (rdev < rdev2 &&
4810 rdev->bdev->bd_contains ==
4811 rdev2->bdev->bd_contains) {
4812 printk(KERN_WARNING
4813 "%s: WARNING: %s appears to be"
4814 " on the same physical disk as"
4815 " %s.\n",
4816 mdname(mddev),
4817 bdevname(rdev->bdev,b),
4818 bdevname(rdev2->bdev,b2));
4819 warned = 1;
4823 if (warned)
4824 printk(KERN_WARNING
4825 "True protection against single-disk"
4826 " failure might be compromised.\n");
4829 mddev->recovery = 0;
4830 /* may be over-ridden by personality */
4831 mddev->resync_max_sectors = mddev->dev_sectors;
4833 mddev->ok_start_degraded = start_dirty_degraded;
4835 if (start_readonly && mddev->ro == 0)
4836 mddev->ro = 2; /* read-only, but switch on first write */
4838 err = mddev->pers->run(mddev);
4839 if (err)
4840 printk(KERN_ERR "md: pers->run() failed ...\n");
4841 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4842 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4843 " but 'external_size' not in effect?\n", __func__);
4844 printk(KERN_ERR
4845 "md: invalid array_size %llu > default size %llu\n",
4846 (unsigned long long)mddev->array_sectors / 2,
4847 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4848 err = -EINVAL;
4849 mddev->pers->stop(mddev);
4851 if (err == 0 && mddev->pers->sync_request) {
4852 err = bitmap_create(mddev);
4853 if (err) {
4854 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4855 mdname(mddev), err);
4856 mddev->pers->stop(mddev);
4859 if (err) {
4860 module_put(mddev->pers->owner);
4861 mddev->pers = NULL;
4862 bitmap_destroy(mddev);
4863 return err;
4865 if (mddev->pers->sync_request) {
4866 if (mddev->kobj.sd &&
4867 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4868 printk(KERN_WARNING
4869 "md: cannot register extra attributes for %s\n",
4870 mdname(mddev));
4871 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4872 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4873 mddev->ro = 0;
4875 atomic_set(&mddev->writes_pending,0);
4876 atomic_set(&mddev->max_corr_read_errors,
4877 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4878 mddev->safemode = 0;
4879 mddev->safemode_timer.function = md_safemode_timeout;
4880 mddev->safemode_timer.data = (unsigned long) mddev;
4881 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4882 mddev->in_sync = 1;
4883 smp_wmb();
4884 mddev->ready = 1;
4885 list_for_each_entry(rdev, &mddev->disks, same_set)
4886 if (rdev->raid_disk >= 0)
4887 if (sysfs_link_rdev(mddev, rdev))
4888 /* failure here is OK */;
4890 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4892 if (mddev->flags)
4893 md_update_sb(mddev, 0);
4895 md_new_event(mddev);
4896 sysfs_notify_dirent_safe(mddev->sysfs_state);
4897 sysfs_notify_dirent_safe(mddev->sysfs_action);
4898 sysfs_notify(&mddev->kobj, NULL, "degraded");
4899 return 0;
4901 EXPORT_SYMBOL_GPL(md_run);
4903 static int do_md_run(struct mddev *mddev)
4905 int err;
4907 err = md_run(mddev);
4908 if (err)
4909 goto out;
4910 err = bitmap_load(mddev);
4911 if (err) {
4912 bitmap_destroy(mddev);
4913 goto out;
4916 md_wakeup_thread(mddev->thread);
4917 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4919 set_capacity(mddev->gendisk, mddev->array_sectors);
4920 revalidate_disk(mddev->gendisk);
4921 mddev->changed = 1;
4922 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4923 out:
4924 return err;
4927 static int restart_array(struct mddev *mddev)
4929 struct gendisk *disk = mddev->gendisk;
4931 /* Complain if it has no devices */
4932 if (list_empty(&mddev->disks))
4933 return -ENXIO;
4934 if (!mddev->pers)
4935 return -EINVAL;
4936 if (!mddev->ro)
4937 return -EBUSY;
4938 mddev->safemode = 0;
4939 mddev->ro = 0;
4940 set_disk_ro(disk, 0);
4941 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4942 mdname(mddev));
4943 /* Kick recovery or resync if necessary */
4944 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4945 md_wakeup_thread(mddev->thread);
4946 md_wakeup_thread(mddev->sync_thread);
4947 sysfs_notify_dirent_safe(mddev->sysfs_state);
4948 return 0;
4951 /* similar to deny_write_access, but accounts for our holding a reference
4952 * to the file ourselves */
4953 static int deny_bitmap_write_access(struct file * file)
4955 struct inode *inode = file->f_mapping->host;
4957 spin_lock(&inode->i_lock);
4958 if (atomic_read(&inode->i_writecount) > 1) {
4959 spin_unlock(&inode->i_lock);
4960 return -ETXTBSY;
4962 atomic_set(&inode->i_writecount, -1);
4963 spin_unlock(&inode->i_lock);
4965 return 0;
4968 void restore_bitmap_write_access(struct file *file)
4970 struct inode *inode = file->f_mapping->host;
4972 spin_lock(&inode->i_lock);
4973 atomic_set(&inode->i_writecount, 1);
4974 spin_unlock(&inode->i_lock);
4977 static void md_clean(struct mddev *mddev)
4979 mddev->array_sectors = 0;
4980 mddev->external_size = 0;
4981 mddev->dev_sectors = 0;
4982 mddev->raid_disks = 0;
4983 mddev->recovery_cp = 0;
4984 mddev->resync_min = 0;
4985 mddev->resync_max = MaxSector;
4986 mddev->reshape_position = MaxSector;
4987 mddev->external = 0;
4988 mddev->persistent = 0;
4989 mddev->level = LEVEL_NONE;
4990 mddev->clevel[0] = 0;
4991 mddev->flags = 0;
4992 mddev->ro = 0;
4993 mddev->metadata_type[0] = 0;
4994 mddev->chunk_sectors = 0;
4995 mddev->ctime = mddev->utime = 0;
4996 mddev->layout = 0;
4997 mddev->max_disks = 0;
4998 mddev->events = 0;
4999 mddev->can_decrease_events = 0;
5000 mddev->delta_disks = 0;
5001 mddev->new_level = LEVEL_NONE;
5002 mddev->new_layout = 0;
5003 mddev->new_chunk_sectors = 0;
5004 mddev->curr_resync = 0;
5005 mddev->resync_mismatches = 0;
5006 mddev->suspend_lo = mddev->suspend_hi = 0;
5007 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5008 mddev->recovery = 0;
5009 mddev->in_sync = 0;
5010 mddev->changed = 0;
5011 mddev->degraded = 0;
5012 mddev->safemode = 0;
5013 mddev->bitmap_info.offset = 0;
5014 mddev->bitmap_info.default_offset = 0;
5015 mddev->bitmap_info.chunksize = 0;
5016 mddev->bitmap_info.daemon_sleep = 0;
5017 mddev->bitmap_info.max_write_behind = 0;
5020 static void __md_stop_writes(struct mddev *mddev)
5022 if (mddev->sync_thread) {
5023 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5024 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5025 reap_sync_thread(mddev);
5028 del_timer_sync(&mddev->safemode_timer);
5030 bitmap_flush(mddev);
5031 md_super_wait(mddev);
5033 if (!mddev->in_sync || mddev->flags) {
5034 /* mark array as shutdown cleanly */
5035 mddev->in_sync = 1;
5036 md_update_sb(mddev, 1);
5040 void md_stop_writes(struct mddev *mddev)
5042 mddev_lock(mddev);
5043 __md_stop_writes(mddev);
5044 mddev_unlock(mddev);
5046 EXPORT_SYMBOL_GPL(md_stop_writes);
5048 void md_stop(struct mddev *mddev)
5050 mddev->ready = 0;
5051 mddev->pers->stop(mddev);
5052 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5053 mddev->to_remove = &md_redundancy_group;
5054 module_put(mddev->pers->owner);
5055 mddev->pers = NULL;
5056 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5058 EXPORT_SYMBOL_GPL(md_stop);
5060 static int md_set_readonly(struct mddev *mddev, int is_open)
5062 int err = 0;
5063 mutex_lock(&mddev->open_mutex);
5064 if (atomic_read(&mddev->openers) > is_open) {
5065 printk("md: %s still in use.\n",mdname(mddev));
5066 err = -EBUSY;
5067 goto out;
5069 if (mddev->pers) {
5070 __md_stop_writes(mddev);
5072 err = -ENXIO;
5073 if (mddev->ro==1)
5074 goto out;
5075 mddev->ro = 1;
5076 set_disk_ro(mddev->gendisk, 1);
5077 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5078 sysfs_notify_dirent_safe(mddev->sysfs_state);
5079 err = 0;
5081 out:
5082 mutex_unlock(&mddev->open_mutex);
5083 return err;
5086 /* mode:
5087 * 0 - completely stop and dis-assemble array
5088 * 2 - stop but do not disassemble array
5090 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5092 struct gendisk *disk = mddev->gendisk;
5093 struct md_rdev *rdev;
5095 mutex_lock(&mddev->open_mutex);
5096 if (atomic_read(&mddev->openers) > is_open ||
5097 mddev->sysfs_active) {
5098 printk("md: %s still in use.\n",mdname(mddev));
5099 mutex_unlock(&mddev->open_mutex);
5100 return -EBUSY;
5103 if (mddev->pers) {
5104 if (mddev->ro)
5105 set_disk_ro(disk, 0);
5107 __md_stop_writes(mddev);
5108 md_stop(mddev);
5109 mddev->queue->merge_bvec_fn = NULL;
5110 mddev->queue->backing_dev_info.congested_fn = NULL;
5112 /* tell userspace to handle 'inactive' */
5113 sysfs_notify_dirent_safe(mddev->sysfs_state);
5115 list_for_each_entry(rdev, &mddev->disks, same_set)
5116 if (rdev->raid_disk >= 0)
5117 sysfs_unlink_rdev(mddev, rdev);
5119 set_capacity(disk, 0);
5120 mutex_unlock(&mddev->open_mutex);
5121 mddev->changed = 1;
5122 revalidate_disk(disk);
5124 if (mddev->ro)
5125 mddev->ro = 0;
5126 } else
5127 mutex_unlock(&mddev->open_mutex);
5129 * Free resources if final stop
5131 if (mode == 0) {
5132 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5134 bitmap_destroy(mddev);
5135 if (mddev->bitmap_info.file) {
5136 restore_bitmap_write_access(mddev->bitmap_info.file);
5137 fput(mddev->bitmap_info.file);
5138 mddev->bitmap_info.file = NULL;
5140 mddev->bitmap_info.offset = 0;
5142 export_array(mddev);
5144 md_clean(mddev);
5145 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5146 if (mddev->hold_active == UNTIL_STOP)
5147 mddev->hold_active = 0;
5149 blk_integrity_unregister(disk);
5150 md_new_event(mddev);
5151 sysfs_notify_dirent_safe(mddev->sysfs_state);
5152 return 0;
5155 #ifndef MODULE
5156 static void autorun_array(struct mddev *mddev)
5158 struct md_rdev *rdev;
5159 int err;
5161 if (list_empty(&mddev->disks))
5162 return;
5164 printk(KERN_INFO "md: running: ");
5166 list_for_each_entry(rdev, &mddev->disks, same_set) {
5167 char b[BDEVNAME_SIZE];
5168 printk("<%s>", bdevname(rdev->bdev,b));
5170 printk("\n");
5172 err = do_md_run(mddev);
5173 if (err) {
5174 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5175 do_md_stop(mddev, 0, 0);
5180 * lets try to run arrays based on all disks that have arrived
5181 * until now. (those are in pending_raid_disks)
5183 * the method: pick the first pending disk, collect all disks with
5184 * the same UUID, remove all from the pending list and put them into
5185 * the 'same_array' list. Then order this list based on superblock
5186 * update time (freshest comes first), kick out 'old' disks and
5187 * compare superblocks. If everything's fine then run it.
5189 * If "unit" is allocated, then bump its reference count
5191 static void autorun_devices(int part)
5193 struct md_rdev *rdev0, *rdev, *tmp;
5194 struct mddev *mddev;
5195 char b[BDEVNAME_SIZE];
5197 printk(KERN_INFO "md: autorun ...\n");
5198 while (!list_empty(&pending_raid_disks)) {
5199 int unit;
5200 dev_t dev;
5201 LIST_HEAD(candidates);
5202 rdev0 = list_entry(pending_raid_disks.next,
5203 struct md_rdev, same_set);
5205 printk(KERN_INFO "md: considering %s ...\n",
5206 bdevname(rdev0->bdev,b));
5207 INIT_LIST_HEAD(&candidates);
5208 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5209 if (super_90_load(rdev, rdev0, 0) >= 0) {
5210 printk(KERN_INFO "md: adding %s ...\n",
5211 bdevname(rdev->bdev,b));
5212 list_move(&rdev->same_set, &candidates);
5215 * now we have a set of devices, with all of them having
5216 * mostly sane superblocks. It's time to allocate the
5217 * mddev.
5219 if (part) {
5220 dev = MKDEV(mdp_major,
5221 rdev0->preferred_minor << MdpMinorShift);
5222 unit = MINOR(dev) >> MdpMinorShift;
5223 } else {
5224 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5225 unit = MINOR(dev);
5227 if (rdev0->preferred_minor != unit) {
5228 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5229 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5230 break;
5233 md_probe(dev, NULL, NULL);
5234 mddev = mddev_find(dev);
5235 if (!mddev || !mddev->gendisk) {
5236 if (mddev)
5237 mddev_put(mddev);
5238 printk(KERN_ERR
5239 "md: cannot allocate memory for md drive.\n");
5240 break;
5242 if (mddev_lock(mddev))
5243 printk(KERN_WARNING "md: %s locked, cannot run\n",
5244 mdname(mddev));
5245 else if (mddev->raid_disks || mddev->major_version
5246 || !list_empty(&mddev->disks)) {
5247 printk(KERN_WARNING
5248 "md: %s already running, cannot run %s\n",
5249 mdname(mddev), bdevname(rdev0->bdev,b));
5250 mddev_unlock(mddev);
5251 } else {
5252 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5253 mddev->persistent = 1;
5254 rdev_for_each_list(rdev, tmp, &candidates) {
5255 list_del_init(&rdev->same_set);
5256 if (bind_rdev_to_array(rdev, mddev))
5257 export_rdev(rdev);
5259 autorun_array(mddev);
5260 mddev_unlock(mddev);
5262 /* on success, candidates will be empty, on error
5263 * it won't...
5265 rdev_for_each_list(rdev, tmp, &candidates) {
5266 list_del_init(&rdev->same_set);
5267 export_rdev(rdev);
5269 mddev_put(mddev);
5271 printk(KERN_INFO "md: ... autorun DONE.\n");
5273 #endif /* !MODULE */
5275 static int get_version(void __user * arg)
5277 mdu_version_t ver;
5279 ver.major = MD_MAJOR_VERSION;
5280 ver.minor = MD_MINOR_VERSION;
5281 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5283 if (copy_to_user(arg, &ver, sizeof(ver)))
5284 return -EFAULT;
5286 return 0;
5289 static int get_array_info(struct mddev * mddev, void __user * arg)
5291 mdu_array_info_t info;
5292 int nr,working,insync,failed,spare;
5293 struct md_rdev *rdev;
5295 nr=working=insync=failed=spare=0;
5296 list_for_each_entry(rdev, &mddev->disks, same_set) {
5297 nr++;
5298 if (test_bit(Faulty, &rdev->flags))
5299 failed++;
5300 else {
5301 working++;
5302 if (test_bit(In_sync, &rdev->flags))
5303 insync++;
5304 else
5305 spare++;
5309 info.major_version = mddev->major_version;
5310 info.minor_version = mddev->minor_version;
5311 info.patch_version = MD_PATCHLEVEL_VERSION;
5312 info.ctime = mddev->ctime;
5313 info.level = mddev->level;
5314 info.size = mddev->dev_sectors / 2;
5315 if (info.size != mddev->dev_sectors / 2) /* overflow */
5316 info.size = -1;
5317 info.nr_disks = nr;
5318 info.raid_disks = mddev->raid_disks;
5319 info.md_minor = mddev->md_minor;
5320 info.not_persistent= !mddev->persistent;
5322 info.utime = mddev->utime;
5323 info.state = 0;
5324 if (mddev->in_sync)
5325 info.state = (1<<MD_SB_CLEAN);
5326 if (mddev->bitmap && mddev->bitmap_info.offset)
5327 info.state = (1<<MD_SB_BITMAP_PRESENT);
5328 info.active_disks = insync;
5329 info.working_disks = working;
5330 info.failed_disks = failed;
5331 info.spare_disks = spare;
5333 info.layout = mddev->layout;
5334 info.chunk_size = mddev->chunk_sectors << 9;
5336 if (copy_to_user(arg, &info, sizeof(info)))
5337 return -EFAULT;
5339 return 0;
5342 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5344 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5345 char *ptr, *buf = NULL;
5346 int err = -ENOMEM;
5348 if (md_allow_write(mddev))
5349 file = kmalloc(sizeof(*file), GFP_NOIO);
5350 else
5351 file = kmalloc(sizeof(*file), GFP_KERNEL);
5353 if (!file)
5354 goto out;
5356 /* bitmap disabled, zero the first byte and copy out */
5357 if (!mddev->bitmap || !mddev->bitmap->file) {
5358 file->pathname[0] = '\0';
5359 goto copy_out;
5362 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5363 if (!buf)
5364 goto out;
5366 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5367 if (IS_ERR(ptr))
5368 goto out;
5370 strcpy(file->pathname, ptr);
5372 copy_out:
5373 err = 0;
5374 if (copy_to_user(arg, file, sizeof(*file)))
5375 err = -EFAULT;
5376 out:
5377 kfree(buf);
5378 kfree(file);
5379 return err;
5382 static int get_disk_info(struct mddev * mddev, void __user * arg)
5384 mdu_disk_info_t info;
5385 struct md_rdev *rdev;
5387 if (copy_from_user(&info, arg, sizeof(info)))
5388 return -EFAULT;
5390 rdev = find_rdev_nr(mddev, info.number);
5391 if (rdev) {
5392 info.major = MAJOR(rdev->bdev->bd_dev);
5393 info.minor = MINOR(rdev->bdev->bd_dev);
5394 info.raid_disk = rdev->raid_disk;
5395 info.state = 0;
5396 if (test_bit(Faulty, &rdev->flags))
5397 info.state |= (1<<MD_DISK_FAULTY);
5398 else if (test_bit(In_sync, &rdev->flags)) {
5399 info.state |= (1<<MD_DISK_ACTIVE);
5400 info.state |= (1<<MD_DISK_SYNC);
5402 if (test_bit(WriteMostly, &rdev->flags))
5403 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5404 } else {
5405 info.major = info.minor = 0;
5406 info.raid_disk = -1;
5407 info.state = (1<<MD_DISK_REMOVED);
5410 if (copy_to_user(arg, &info, sizeof(info)))
5411 return -EFAULT;
5413 return 0;
5416 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5418 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5419 struct md_rdev *rdev;
5420 dev_t dev = MKDEV(info->major,info->minor);
5422 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5423 return -EOVERFLOW;
5425 if (!mddev->raid_disks) {
5426 int err;
5427 /* expecting a device which has a superblock */
5428 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5429 if (IS_ERR(rdev)) {
5430 printk(KERN_WARNING
5431 "md: md_import_device returned %ld\n",
5432 PTR_ERR(rdev));
5433 return PTR_ERR(rdev);
5435 if (!list_empty(&mddev->disks)) {
5436 struct md_rdev *rdev0
5437 = list_entry(mddev->disks.next,
5438 struct md_rdev, same_set);
5439 err = super_types[mddev->major_version]
5440 .load_super(rdev, rdev0, mddev->minor_version);
5441 if (err < 0) {
5442 printk(KERN_WARNING
5443 "md: %s has different UUID to %s\n",
5444 bdevname(rdev->bdev,b),
5445 bdevname(rdev0->bdev,b2));
5446 export_rdev(rdev);
5447 return -EINVAL;
5450 err = bind_rdev_to_array(rdev, mddev);
5451 if (err)
5452 export_rdev(rdev);
5453 return err;
5457 * add_new_disk can be used once the array is assembled
5458 * to add "hot spares". They must already have a superblock
5459 * written
5461 if (mddev->pers) {
5462 int err;
5463 if (!mddev->pers->hot_add_disk) {
5464 printk(KERN_WARNING
5465 "%s: personality does not support diskops!\n",
5466 mdname(mddev));
5467 return -EINVAL;
5469 if (mddev->persistent)
5470 rdev = md_import_device(dev, mddev->major_version,
5471 mddev->minor_version);
5472 else
5473 rdev = md_import_device(dev, -1, -1);
5474 if (IS_ERR(rdev)) {
5475 printk(KERN_WARNING
5476 "md: md_import_device returned %ld\n",
5477 PTR_ERR(rdev));
5478 return PTR_ERR(rdev);
5480 /* set saved_raid_disk if appropriate */
5481 if (!mddev->persistent) {
5482 if (info->state & (1<<MD_DISK_SYNC) &&
5483 info->raid_disk < mddev->raid_disks) {
5484 rdev->raid_disk = info->raid_disk;
5485 set_bit(In_sync, &rdev->flags);
5486 } else
5487 rdev->raid_disk = -1;
5488 } else
5489 super_types[mddev->major_version].
5490 validate_super(mddev, rdev);
5491 if ((info->state & (1<<MD_DISK_SYNC)) &&
5492 (!test_bit(In_sync, &rdev->flags) ||
5493 rdev->raid_disk != info->raid_disk)) {
5494 /* This was a hot-add request, but events doesn't
5495 * match, so reject it.
5497 export_rdev(rdev);
5498 return -EINVAL;
5501 if (test_bit(In_sync, &rdev->flags))
5502 rdev->saved_raid_disk = rdev->raid_disk;
5503 else
5504 rdev->saved_raid_disk = -1;
5506 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5507 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5508 set_bit(WriteMostly, &rdev->flags);
5509 else
5510 clear_bit(WriteMostly, &rdev->flags);
5512 rdev->raid_disk = -1;
5513 err = bind_rdev_to_array(rdev, mddev);
5514 if (!err && !mddev->pers->hot_remove_disk) {
5515 /* If there is hot_add_disk but no hot_remove_disk
5516 * then added disks for geometry changes,
5517 * and should be added immediately.
5519 super_types[mddev->major_version].
5520 validate_super(mddev, rdev);
5521 err = mddev->pers->hot_add_disk(mddev, rdev);
5522 if (err)
5523 unbind_rdev_from_array(rdev);
5525 if (err)
5526 export_rdev(rdev);
5527 else
5528 sysfs_notify_dirent_safe(rdev->sysfs_state);
5530 md_update_sb(mddev, 1);
5531 if (mddev->degraded)
5532 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5533 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5534 if (!err)
5535 md_new_event(mddev);
5536 md_wakeup_thread(mddev->thread);
5537 return err;
5540 /* otherwise, add_new_disk is only allowed
5541 * for major_version==0 superblocks
5543 if (mddev->major_version != 0) {
5544 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5545 mdname(mddev));
5546 return -EINVAL;
5549 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5550 int err;
5551 rdev = md_import_device(dev, -1, 0);
5552 if (IS_ERR(rdev)) {
5553 printk(KERN_WARNING
5554 "md: error, md_import_device() returned %ld\n",
5555 PTR_ERR(rdev));
5556 return PTR_ERR(rdev);
5558 rdev->desc_nr = info->number;
5559 if (info->raid_disk < mddev->raid_disks)
5560 rdev->raid_disk = info->raid_disk;
5561 else
5562 rdev->raid_disk = -1;
5564 if (rdev->raid_disk < mddev->raid_disks)
5565 if (info->state & (1<<MD_DISK_SYNC))
5566 set_bit(In_sync, &rdev->flags);
5568 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5569 set_bit(WriteMostly, &rdev->flags);
5571 if (!mddev->persistent) {
5572 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5573 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5574 } else
5575 rdev->sb_start = calc_dev_sboffset(rdev);
5576 rdev->sectors = rdev->sb_start;
5578 err = bind_rdev_to_array(rdev, mddev);
5579 if (err) {
5580 export_rdev(rdev);
5581 return err;
5585 return 0;
5588 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5590 char b[BDEVNAME_SIZE];
5591 struct md_rdev *rdev;
5593 rdev = find_rdev(mddev, dev);
5594 if (!rdev)
5595 return -ENXIO;
5597 if (rdev->raid_disk >= 0)
5598 goto busy;
5600 kick_rdev_from_array(rdev);
5601 md_update_sb(mddev, 1);
5602 md_new_event(mddev);
5604 return 0;
5605 busy:
5606 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5607 bdevname(rdev->bdev,b), mdname(mddev));
5608 return -EBUSY;
5611 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5613 char b[BDEVNAME_SIZE];
5614 int err;
5615 struct md_rdev *rdev;
5617 if (!mddev->pers)
5618 return -ENODEV;
5620 if (mddev->major_version != 0) {
5621 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5622 " version-0 superblocks.\n",
5623 mdname(mddev));
5624 return -EINVAL;
5626 if (!mddev->pers->hot_add_disk) {
5627 printk(KERN_WARNING
5628 "%s: personality does not support diskops!\n",
5629 mdname(mddev));
5630 return -EINVAL;
5633 rdev = md_import_device(dev, -1, 0);
5634 if (IS_ERR(rdev)) {
5635 printk(KERN_WARNING
5636 "md: error, md_import_device() returned %ld\n",
5637 PTR_ERR(rdev));
5638 return -EINVAL;
5641 if (mddev->persistent)
5642 rdev->sb_start = calc_dev_sboffset(rdev);
5643 else
5644 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5646 rdev->sectors = rdev->sb_start;
5648 if (test_bit(Faulty, &rdev->flags)) {
5649 printk(KERN_WARNING
5650 "md: can not hot-add faulty %s disk to %s!\n",
5651 bdevname(rdev->bdev,b), mdname(mddev));
5652 err = -EINVAL;
5653 goto abort_export;
5655 clear_bit(In_sync, &rdev->flags);
5656 rdev->desc_nr = -1;
5657 rdev->saved_raid_disk = -1;
5658 err = bind_rdev_to_array(rdev, mddev);
5659 if (err)
5660 goto abort_export;
5663 * The rest should better be atomic, we can have disk failures
5664 * noticed in interrupt contexts ...
5667 rdev->raid_disk = -1;
5669 md_update_sb(mddev, 1);
5672 * Kick recovery, maybe this spare has to be added to the
5673 * array immediately.
5675 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5676 md_wakeup_thread(mddev->thread);
5677 md_new_event(mddev);
5678 return 0;
5680 abort_export:
5681 export_rdev(rdev);
5682 return err;
5685 static int set_bitmap_file(struct mddev *mddev, int fd)
5687 int err;
5689 if (mddev->pers) {
5690 if (!mddev->pers->quiesce)
5691 return -EBUSY;
5692 if (mddev->recovery || mddev->sync_thread)
5693 return -EBUSY;
5694 /* we should be able to change the bitmap.. */
5698 if (fd >= 0) {
5699 if (mddev->bitmap)
5700 return -EEXIST; /* cannot add when bitmap is present */
5701 mddev->bitmap_info.file = fget(fd);
5703 if (mddev->bitmap_info.file == NULL) {
5704 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5705 mdname(mddev));
5706 return -EBADF;
5709 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5710 if (err) {
5711 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5712 mdname(mddev));
5713 fput(mddev->bitmap_info.file);
5714 mddev->bitmap_info.file = NULL;
5715 return err;
5717 mddev->bitmap_info.offset = 0; /* file overrides offset */
5718 } else if (mddev->bitmap == NULL)
5719 return -ENOENT; /* cannot remove what isn't there */
5720 err = 0;
5721 if (mddev->pers) {
5722 mddev->pers->quiesce(mddev, 1);
5723 if (fd >= 0) {
5724 err = bitmap_create(mddev);
5725 if (!err)
5726 err = bitmap_load(mddev);
5728 if (fd < 0 || err) {
5729 bitmap_destroy(mddev);
5730 fd = -1; /* make sure to put the file */
5732 mddev->pers->quiesce(mddev, 0);
5734 if (fd < 0) {
5735 if (mddev->bitmap_info.file) {
5736 restore_bitmap_write_access(mddev->bitmap_info.file);
5737 fput(mddev->bitmap_info.file);
5739 mddev->bitmap_info.file = NULL;
5742 return err;
5746 * set_array_info is used two different ways
5747 * The original usage is when creating a new array.
5748 * In this usage, raid_disks is > 0 and it together with
5749 * level, size, not_persistent,layout,chunksize determine the
5750 * shape of the array.
5751 * This will always create an array with a type-0.90.0 superblock.
5752 * The newer usage is when assembling an array.
5753 * In this case raid_disks will be 0, and the major_version field is
5754 * use to determine which style super-blocks are to be found on the devices.
5755 * The minor and patch _version numbers are also kept incase the
5756 * super_block handler wishes to interpret them.
5758 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5761 if (info->raid_disks == 0) {
5762 /* just setting version number for superblock loading */
5763 if (info->major_version < 0 ||
5764 info->major_version >= ARRAY_SIZE(super_types) ||
5765 super_types[info->major_version].name == NULL) {
5766 /* maybe try to auto-load a module? */
5767 printk(KERN_INFO
5768 "md: superblock version %d not known\n",
5769 info->major_version);
5770 return -EINVAL;
5772 mddev->major_version = info->major_version;
5773 mddev->minor_version = info->minor_version;
5774 mddev->patch_version = info->patch_version;
5775 mddev->persistent = !info->not_persistent;
5776 /* ensure mddev_put doesn't delete this now that there
5777 * is some minimal configuration.
5779 mddev->ctime = get_seconds();
5780 return 0;
5782 mddev->major_version = MD_MAJOR_VERSION;
5783 mddev->minor_version = MD_MINOR_VERSION;
5784 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5785 mddev->ctime = get_seconds();
5787 mddev->level = info->level;
5788 mddev->clevel[0] = 0;
5789 mddev->dev_sectors = 2 * (sector_t)info->size;
5790 mddev->raid_disks = info->raid_disks;
5791 /* don't set md_minor, it is determined by which /dev/md* was
5792 * openned
5794 if (info->state & (1<<MD_SB_CLEAN))
5795 mddev->recovery_cp = MaxSector;
5796 else
5797 mddev->recovery_cp = 0;
5798 mddev->persistent = ! info->not_persistent;
5799 mddev->external = 0;
5801 mddev->layout = info->layout;
5802 mddev->chunk_sectors = info->chunk_size >> 9;
5804 mddev->max_disks = MD_SB_DISKS;
5806 if (mddev->persistent)
5807 mddev->flags = 0;
5808 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5810 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5811 mddev->bitmap_info.offset = 0;
5813 mddev->reshape_position = MaxSector;
5816 * Generate a 128 bit UUID
5818 get_random_bytes(mddev->uuid, 16);
5820 mddev->new_level = mddev->level;
5821 mddev->new_chunk_sectors = mddev->chunk_sectors;
5822 mddev->new_layout = mddev->layout;
5823 mddev->delta_disks = 0;
5825 return 0;
5828 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5830 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5832 if (mddev->external_size)
5833 return;
5835 mddev->array_sectors = array_sectors;
5837 EXPORT_SYMBOL(md_set_array_sectors);
5839 static int update_size(struct mddev *mddev, sector_t num_sectors)
5841 struct md_rdev *rdev;
5842 int rv;
5843 int fit = (num_sectors == 0);
5845 if (mddev->pers->resize == NULL)
5846 return -EINVAL;
5847 /* The "num_sectors" is the number of sectors of each device that
5848 * is used. This can only make sense for arrays with redundancy.
5849 * linear and raid0 always use whatever space is available. We can only
5850 * consider changing this number if no resync or reconstruction is
5851 * happening, and if the new size is acceptable. It must fit before the
5852 * sb_start or, if that is <data_offset, it must fit before the size
5853 * of each device. If num_sectors is zero, we find the largest size
5854 * that fits.
5856 if (mddev->sync_thread)
5857 return -EBUSY;
5858 if (mddev->bitmap)
5859 /* Sorry, cannot grow a bitmap yet, just remove it,
5860 * grow, and re-add.
5862 return -EBUSY;
5863 list_for_each_entry(rdev, &mddev->disks, same_set) {
5864 sector_t avail = rdev->sectors;
5866 if (fit && (num_sectors == 0 || num_sectors > avail))
5867 num_sectors = avail;
5868 if (avail < num_sectors)
5869 return -ENOSPC;
5871 rv = mddev->pers->resize(mddev, num_sectors);
5872 if (!rv)
5873 revalidate_disk(mddev->gendisk);
5874 return rv;
5877 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5879 int rv;
5880 /* change the number of raid disks */
5881 if (mddev->pers->check_reshape == NULL)
5882 return -EINVAL;
5883 if (raid_disks <= 0 ||
5884 (mddev->max_disks && raid_disks >= mddev->max_disks))
5885 return -EINVAL;
5886 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5887 return -EBUSY;
5888 mddev->delta_disks = raid_disks - mddev->raid_disks;
5890 rv = mddev->pers->check_reshape(mddev);
5891 if (rv < 0)
5892 mddev->delta_disks = 0;
5893 return rv;
5898 * update_array_info is used to change the configuration of an
5899 * on-line array.
5900 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5901 * fields in the info are checked against the array.
5902 * Any differences that cannot be handled will cause an error.
5903 * Normally, only one change can be managed at a time.
5905 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5907 int rv = 0;
5908 int cnt = 0;
5909 int state = 0;
5911 /* calculate expected state,ignoring low bits */
5912 if (mddev->bitmap && mddev->bitmap_info.offset)
5913 state |= (1 << MD_SB_BITMAP_PRESENT);
5915 if (mddev->major_version != info->major_version ||
5916 mddev->minor_version != info->minor_version ||
5917 /* mddev->patch_version != info->patch_version || */
5918 mddev->ctime != info->ctime ||
5919 mddev->level != info->level ||
5920 /* mddev->layout != info->layout || */
5921 !mddev->persistent != info->not_persistent||
5922 mddev->chunk_sectors != info->chunk_size >> 9 ||
5923 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5924 ((state^info->state) & 0xfffffe00)
5926 return -EINVAL;
5927 /* Check there is only one change */
5928 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5929 cnt++;
5930 if (mddev->raid_disks != info->raid_disks)
5931 cnt++;
5932 if (mddev->layout != info->layout)
5933 cnt++;
5934 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5935 cnt++;
5936 if (cnt == 0)
5937 return 0;
5938 if (cnt > 1)
5939 return -EINVAL;
5941 if (mddev->layout != info->layout) {
5942 /* Change layout
5943 * we don't need to do anything at the md level, the
5944 * personality will take care of it all.
5946 if (mddev->pers->check_reshape == NULL)
5947 return -EINVAL;
5948 else {
5949 mddev->new_layout = info->layout;
5950 rv = mddev->pers->check_reshape(mddev);
5951 if (rv)
5952 mddev->new_layout = mddev->layout;
5953 return rv;
5956 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5957 rv = update_size(mddev, (sector_t)info->size * 2);
5959 if (mddev->raid_disks != info->raid_disks)
5960 rv = update_raid_disks(mddev, info->raid_disks);
5962 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5963 if (mddev->pers->quiesce == NULL)
5964 return -EINVAL;
5965 if (mddev->recovery || mddev->sync_thread)
5966 return -EBUSY;
5967 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5968 /* add the bitmap */
5969 if (mddev->bitmap)
5970 return -EEXIST;
5971 if (mddev->bitmap_info.default_offset == 0)
5972 return -EINVAL;
5973 mddev->bitmap_info.offset =
5974 mddev->bitmap_info.default_offset;
5975 mddev->pers->quiesce(mddev, 1);
5976 rv = bitmap_create(mddev);
5977 if (!rv)
5978 rv = bitmap_load(mddev);
5979 if (rv)
5980 bitmap_destroy(mddev);
5981 mddev->pers->quiesce(mddev, 0);
5982 } else {
5983 /* remove the bitmap */
5984 if (!mddev->bitmap)
5985 return -ENOENT;
5986 if (mddev->bitmap->file)
5987 return -EINVAL;
5988 mddev->pers->quiesce(mddev, 1);
5989 bitmap_destroy(mddev);
5990 mddev->pers->quiesce(mddev, 0);
5991 mddev->bitmap_info.offset = 0;
5994 md_update_sb(mddev, 1);
5995 return rv;
5998 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6000 struct md_rdev *rdev;
6002 if (mddev->pers == NULL)
6003 return -ENODEV;
6005 rdev = find_rdev(mddev, dev);
6006 if (!rdev)
6007 return -ENODEV;
6009 md_error(mddev, rdev);
6010 if (!test_bit(Faulty, &rdev->flags))
6011 return -EBUSY;
6012 return 0;
6016 * We have a problem here : there is no easy way to give a CHS
6017 * virtual geometry. We currently pretend that we have a 2 heads
6018 * 4 sectors (with a BIG number of cylinders...). This drives
6019 * dosfs just mad... ;-)
6021 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6023 struct mddev *mddev = bdev->bd_disk->private_data;
6025 geo->heads = 2;
6026 geo->sectors = 4;
6027 geo->cylinders = mddev->array_sectors / 8;
6028 return 0;
6031 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6032 unsigned int cmd, unsigned long arg)
6034 int err = 0;
6035 void __user *argp = (void __user *)arg;
6036 struct mddev *mddev = NULL;
6037 int ro;
6039 if (!capable(CAP_SYS_ADMIN))
6040 return -EACCES;
6043 * Commands dealing with the RAID driver but not any
6044 * particular array:
6046 switch (cmd)
6048 case RAID_VERSION:
6049 err = get_version(argp);
6050 goto done;
6052 case PRINT_RAID_DEBUG:
6053 err = 0;
6054 md_print_devices();
6055 goto done;
6057 #ifndef MODULE
6058 case RAID_AUTORUN:
6059 err = 0;
6060 autostart_arrays(arg);
6061 goto done;
6062 #endif
6063 default:;
6067 * Commands creating/starting a new array:
6070 mddev = bdev->bd_disk->private_data;
6072 if (!mddev) {
6073 BUG();
6074 goto abort;
6077 err = mddev_lock(mddev);
6078 if (err) {
6079 printk(KERN_INFO
6080 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6081 err, cmd);
6082 goto abort;
6085 switch (cmd)
6087 case SET_ARRAY_INFO:
6089 mdu_array_info_t info;
6090 if (!arg)
6091 memset(&info, 0, sizeof(info));
6092 else if (copy_from_user(&info, argp, sizeof(info))) {
6093 err = -EFAULT;
6094 goto abort_unlock;
6096 if (mddev->pers) {
6097 err = update_array_info(mddev, &info);
6098 if (err) {
6099 printk(KERN_WARNING "md: couldn't update"
6100 " array info. %d\n", err);
6101 goto abort_unlock;
6103 goto done_unlock;
6105 if (!list_empty(&mddev->disks)) {
6106 printk(KERN_WARNING
6107 "md: array %s already has disks!\n",
6108 mdname(mddev));
6109 err = -EBUSY;
6110 goto abort_unlock;
6112 if (mddev->raid_disks) {
6113 printk(KERN_WARNING
6114 "md: array %s already initialised!\n",
6115 mdname(mddev));
6116 err = -EBUSY;
6117 goto abort_unlock;
6119 err = set_array_info(mddev, &info);
6120 if (err) {
6121 printk(KERN_WARNING "md: couldn't set"
6122 " array info. %d\n", err);
6123 goto abort_unlock;
6126 goto done_unlock;
6128 default:;
6132 * Commands querying/configuring an existing array:
6134 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6135 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6136 if ((!mddev->raid_disks && !mddev->external)
6137 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6138 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6139 && cmd != GET_BITMAP_FILE) {
6140 err = -ENODEV;
6141 goto abort_unlock;
6145 * Commands even a read-only array can execute:
6147 switch (cmd)
6149 case GET_ARRAY_INFO:
6150 err = get_array_info(mddev, argp);
6151 goto done_unlock;
6153 case GET_BITMAP_FILE:
6154 err = get_bitmap_file(mddev, argp);
6155 goto done_unlock;
6157 case GET_DISK_INFO:
6158 err = get_disk_info(mddev, argp);
6159 goto done_unlock;
6161 case RESTART_ARRAY_RW:
6162 err = restart_array(mddev);
6163 goto done_unlock;
6165 case STOP_ARRAY:
6166 err = do_md_stop(mddev, 0, 1);
6167 goto done_unlock;
6169 case STOP_ARRAY_RO:
6170 err = md_set_readonly(mddev, 1);
6171 goto done_unlock;
6173 case BLKROSET:
6174 if (get_user(ro, (int __user *)(arg))) {
6175 err = -EFAULT;
6176 goto done_unlock;
6178 err = -EINVAL;
6180 /* if the bdev is going readonly the value of mddev->ro
6181 * does not matter, no writes are coming
6183 if (ro)
6184 goto done_unlock;
6186 /* are we are already prepared for writes? */
6187 if (mddev->ro != 1)
6188 goto done_unlock;
6190 /* transitioning to readauto need only happen for
6191 * arrays that call md_write_start
6193 if (mddev->pers) {
6194 err = restart_array(mddev);
6195 if (err == 0) {
6196 mddev->ro = 2;
6197 set_disk_ro(mddev->gendisk, 0);
6200 goto done_unlock;
6204 * The remaining ioctls are changing the state of the
6205 * superblock, so we do not allow them on read-only arrays.
6206 * However non-MD ioctls (e.g. get-size) will still come through
6207 * here and hit the 'default' below, so only disallow
6208 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6210 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6211 if (mddev->ro == 2) {
6212 mddev->ro = 0;
6213 sysfs_notify_dirent_safe(mddev->sysfs_state);
6214 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6215 md_wakeup_thread(mddev->thread);
6216 } else {
6217 err = -EROFS;
6218 goto abort_unlock;
6222 switch (cmd)
6224 case ADD_NEW_DISK:
6226 mdu_disk_info_t info;
6227 if (copy_from_user(&info, argp, sizeof(info)))
6228 err = -EFAULT;
6229 else
6230 err = add_new_disk(mddev, &info);
6231 goto done_unlock;
6234 case HOT_REMOVE_DISK:
6235 err = hot_remove_disk(mddev, new_decode_dev(arg));
6236 goto done_unlock;
6238 case HOT_ADD_DISK:
6239 err = hot_add_disk(mddev, new_decode_dev(arg));
6240 goto done_unlock;
6242 case SET_DISK_FAULTY:
6243 err = set_disk_faulty(mddev, new_decode_dev(arg));
6244 goto done_unlock;
6246 case RUN_ARRAY:
6247 err = do_md_run(mddev);
6248 goto done_unlock;
6250 case SET_BITMAP_FILE:
6251 err = set_bitmap_file(mddev, (int)arg);
6252 goto done_unlock;
6254 default:
6255 err = -EINVAL;
6256 goto abort_unlock;
6259 done_unlock:
6260 abort_unlock:
6261 if (mddev->hold_active == UNTIL_IOCTL &&
6262 err != -EINVAL)
6263 mddev->hold_active = 0;
6264 mddev_unlock(mddev);
6266 return err;
6267 done:
6268 if (err)
6269 MD_BUG();
6270 abort:
6271 return err;
6273 #ifdef CONFIG_COMPAT
6274 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6275 unsigned int cmd, unsigned long arg)
6277 switch (cmd) {
6278 case HOT_REMOVE_DISK:
6279 case HOT_ADD_DISK:
6280 case SET_DISK_FAULTY:
6281 case SET_BITMAP_FILE:
6282 /* These take in integer arg, do not convert */
6283 break;
6284 default:
6285 arg = (unsigned long)compat_ptr(arg);
6286 break;
6289 return md_ioctl(bdev, mode, cmd, arg);
6291 #endif /* CONFIG_COMPAT */
6293 static int md_open(struct block_device *bdev, fmode_t mode)
6296 * Succeed if we can lock the mddev, which confirms that
6297 * it isn't being stopped right now.
6299 struct mddev *mddev = mddev_find(bdev->bd_dev);
6300 int err;
6302 if (mddev->gendisk != bdev->bd_disk) {
6303 /* we are racing with mddev_put which is discarding this
6304 * bd_disk.
6306 mddev_put(mddev);
6307 /* Wait until bdev->bd_disk is definitely gone */
6308 flush_workqueue(md_misc_wq);
6309 /* Then retry the open from the top */
6310 return -ERESTARTSYS;
6312 BUG_ON(mddev != bdev->bd_disk->private_data);
6314 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6315 goto out;
6317 err = 0;
6318 atomic_inc(&mddev->openers);
6319 mutex_unlock(&mddev->open_mutex);
6321 check_disk_change(bdev);
6322 out:
6323 return err;
6326 static int md_release(struct gendisk *disk, fmode_t mode)
6328 struct mddev *mddev = disk->private_data;
6330 BUG_ON(!mddev);
6331 atomic_dec(&mddev->openers);
6332 mddev_put(mddev);
6334 return 0;
6337 static int md_media_changed(struct gendisk *disk)
6339 struct mddev *mddev = disk->private_data;
6341 return mddev->changed;
6344 static int md_revalidate(struct gendisk *disk)
6346 struct mddev *mddev = disk->private_data;
6348 mddev->changed = 0;
6349 return 0;
6351 static const struct block_device_operations md_fops =
6353 .owner = THIS_MODULE,
6354 .open = md_open,
6355 .release = md_release,
6356 .ioctl = md_ioctl,
6357 #ifdef CONFIG_COMPAT
6358 .compat_ioctl = md_compat_ioctl,
6359 #endif
6360 .getgeo = md_getgeo,
6361 .media_changed = md_media_changed,
6362 .revalidate_disk= md_revalidate,
6365 static int md_thread(void * arg)
6367 struct md_thread *thread = arg;
6370 * md_thread is a 'system-thread', it's priority should be very
6371 * high. We avoid resource deadlocks individually in each
6372 * raid personality. (RAID5 does preallocation) We also use RR and
6373 * the very same RT priority as kswapd, thus we will never get
6374 * into a priority inversion deadlock.
6376 * we definitely have to have equal or higher priority than
6377 * bdflush, otherwise bdflush will deadlock if there are too
6378 * many dirty RAID5 blocks.
6381 allow_signal(SIGKILL);
6382 while (!kthread_should_stop()) {
6384 /* We need to wait INTERRUPTIBLE so that
6385 * we don't add to the load-average.
6386 * That means we need to be sure no signals are
6387 * pending
6389 if (signal_pending(current))
6390 flush_signals(current);
6392 wait_event_interruptible_timeout
6393 (thread->wqueue,
6394 test_bit(THREAD_WAKEUP, &thread->flags)
6395 || kthread_should_stop(),
6396 thread->timeout);
6398 clear_bit(THREAD_WAKEUP, &thread->flags);
6399 if (!kthread_should_stop())
6400 thread->run(thread->mddev);
6403 return 0;
6406 void md_wakeup_thread(struct md_thread *thread)
6408 if (thread) {
6409 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6410 set_bit(THREAD_WAKEUP, &thread->flags);
6411 wake_up(&thread->wqueue);
6415 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6416 const char *name)
6418 struct md_thread *thread;
6420 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6421 if (!thread)
6422 return NULL;
6424 init_waitqueue_head(&thread->wqueue);
6426 thread->run = run;
6427 thread->mddev = mddev;
6428 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6429 thread->tsk = kthread_run(md_thread, thread,
6430 "%s_%s",
6431 mdname(thread->mddev),
6432 name ?: mddev->pers->name);
6433 if (IS_ERR(thread->tsk)) {
6434 kfree(thread);
6435 return NULL;
6437 return thread;
6440 void md_unregister_thread(struct md_thread **threadp)
6442 struct md_thread *thread = *threadp;
6443 if (!thread)
6444 return;
6445 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6446 /* Locking ensures that mddev_unlock does not wake_up a
6447 * non-existent thread
6449 spin_lock(&pers_lock);
6450 *threadp = NULL;
6451 spin_unlock(&pers_lock);
6453 kthread_stop(thread->tsk);
6454 kfree(thread);
6457 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6459 if (!mddev) {
6460 MD_BUG();
6461 return;
6464 if (!rdev || test_bit(Faulty, &rdev->flags))
6465 return;
6467 if (!mddev->pers || !mddev->pers->error_handler)
6468 return;
6469 mddev->pers->error_handler(mddev,rdev);
6470 if (mddev->degraded)
6471 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6472 sysfs_notify_dirent_safe(rdev->sysfs_state);
6473 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6474 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6475 md_wakeup_thread(mddev->thread);
6476 if (mddev->event_work.func)
6477 queue_work(md_misc_wq, &mddev->event_work);
6478 md_new_event_inintr(mddev);
6481 /* seq_file implementation /proc/mdstat */
6483 static void status_unused(struct seq_file *seq)
6485 int i = 0;
6486 struct md_rdev *rdev;
6488 seq_printf(seq, "unused devices: ");
6490 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6491 char b[BDEVNAME_SIZE];
6492 i++;
6493 seq_printf(seq, "%s ",
6494 bdevname(rdev->bdev,b));
6496 if (!i)
6497 seq_printf(seq, "<none>");
6499 seq_printf(seq, "\n");
6503 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6505 sector_t max_sectors, resync, res;
6506 unsigned long dt, db;
6507 sector_t rt;
6508 int scale;
6509 unsigned int per_milli;
6511 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6513 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6514 max_sectors = mddev->resync_max_sectors;
6515 else
6516 max_sectors = mddev->dev_sectors;
6519 * Should not happen.
6521 if (!max_sectors) {
6522 MD_BUG();
6523 return;
6525 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6526 * in a sector_t, and (max_sectors>>scale) will fit in a
6527 * u32, as those are the requirements for sector_div.
6528 * Thus 'scale' must be at least 10
6530 scale = 10;
6531 if (sizeof(sector_t) > sizeof(unsigned long)) {
6532 while ( max_sectors/2 > (1ULL<<(scale+32)))
6533 scale++;
6535 res = (resync>>scale)*1000;
6536 sector_div(res, (u32)((max_sectors>>scale)+1));
6538 per_milli = res;
6540 int i, x = per_milli/50, y = 20-x;
6541 seq_printf(seq, "[");
6542 for (i = 0; i < x; i++)
6543 seq_printf(seq, "=");
6544 seq_printf(seq, ">");
6545 for (i = 0; i < y; i++)
6546 seq_printf(seq, ".");
6547 seq_printf(seq, "] ");
6549 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6550 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6551 "reshape" :
6552 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6553 "check" :
6554 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6555 "resync" : "recovery"))),
6556 per_milli/10, per_milli % 10,
6557 (unsigned long long) resync/2,
6558 (unsigned long long) max_sectors/2);
6561 * dt: time from mark until now
6562 * db: blocks written from mark until now
6563 * rt: remaining time
6565 * rt is a sector_t, so could be 32bit or 64bit.
6566 * So we divide before multiply in case it is 32bit and close
6567 * to the limit.
6568 * We scale the divisor (db) by 32 to avoid losing precision
6569 * near the end of resync when the number of remaining sectors
6570 * is close to 'db'.
6571 * We then divide rt by 32 after multiplying by db to compensate.
6572 * The '+1' avoids division by zero if db is very small.
6574 dt = ((jiffies - mddev->resync_mark) / HZ);
6575 if (!dt) dt++;
6576 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6577 - mddev->resync_mark_cnt;
6579 rt = max_sectors - resync; /* number of remaining sectors */
6580 sector_div(rt, db/32+1);
6581 rt *= dt;
6582 rt >>= 5;
6584 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6585 ((unsigned long)rt % 60)/6);
6587 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6590 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6592 struct list_head *tmp;
6593 loff_t l = *pos;
6594 struct mddev *mddev;
6596 if (l >= 0x10000)
6597 return NULL;
6598 if (!l--)
6599 /* header */
6600 return (void*)1;
6602 spin_lock(&all_mddevs_lock);
6603 list_for_each(tmp,&all_mddevs)
6604 if (!l--) {
6605 mddev = list_entry(tmp, struct mddev, all_mddevs);
6606 mddev_get(mddev);
6607 spin_unlock(&all_mddevs_lock);
6608 return mddev;
6610 spin_unlock(&all_mddevs_lock);
6611 if (!l--)
6612 return (void*)2;/* tail */
6613 return NULL;
6616 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6618 struct list_head *tmp;
6619 struct mddev *next_mddev, *mddev = v;
6621 ++*pos;
6622 if (v == (void*)2)
6623 return NULL;
6625 spin_lock(&all_mddevs_lock);
6626 if (v == (void*)1)
6627 tmp = all_mddevs.next;
6628 else
6629 tmp = mddev->all_mddevs.next;
6630 if (tmp != &all_mddevs)
6631 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6632 else {
6633 next_mddev = (void*)2;
6634 *pos = 0x10000;
6636 spin_unlock(&all_mddevs_lock);
6638 if (v != (void*)1)
6639 mddev_put(mddev);
6640 return next_mddev;
6644 static void md_seq_stop(struct seq_file *seq, void *v)
6646 struct mddev *mddev = v;
6648 if (mddev && v != (void*)1 && v != (void*)2)
6649 mddev_put(mddev);
6652 static int md_seq_show(struct seq_file *seq, void *v)
6654 struct mddev *mddev = v;
6655 sector_t sectors;
6656 struct md_rdev *rdev;
6657 struct bitmap *bitmap;
6659 if (v == (void*)1) {
6660 struct md_personality *pers;
6661 seq_printf(seq, "Personalities : ");
6662 spin_lock(&pers_lock);
6663 list_for_each_entry(pers, &pers_list, list)
6664 seq_printf(seq, "[%s] ", pers->name);
6666 spin_unlock(&pers_lock);
6667 seq_printf(seq, "\n");
6668 seq->poll_event = atomic_read(&md_event_count);
6669 return 0;
6671 if (v == (void*)2) {
6672 status_unused(seq);
6673 return 0;
6676 if (mddev_lock(mddev) < 0)
6677 return -EINTR;
6679 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6680 seq_printf(seq, "%s : %sactive", mdname(mddev),
6681 mddev->pers ? "" : "in");
6682 if (mddev->pers) {
6683 if (mddev->ro==1)
6684 seq_printf(seq, " (read-only)");
6685 if (mddev->ro==2)
6686 seq_printf(seq, " (auto-read-only)");
6687 seq_printf(seq, " %s", mddev->pers->name);
6690 sectors = 0;
6691 list_for_each_entry(rdev, &mddev->disks, same_set) {
6692 char b[BDEVNAME_SIZE];
6693 seq_printf(seq, " %s[%d]",
6694 bdevname(rdev->bdev,b), rdev->desc_nr);
6695 if (test_bit(WriteMostly, &rdev->flags))
6696 seq_printf(seq, "(W)");
6697 if (test_bit(Faulty, &rdev->flags)) {
6698 seq_printf(seq, "(F)");
6699 continue;
6700 } else if (rdev->raid_disk < 0)
6701 seq_printf(seq, "(S)"); /* spare */
6702 sectors += rdev->sectors;
6705 if (!list_empty(&mddev->disks)) {
6706 if (mddev->pers)
6707 seq_printf(seq, "\n %llu blocks",
6708 (unsigned long long)
6709 mddev->array_sectors / 2);
6710 else
6711 seq_printf(seq, "\n %llu blocks",
6712 (unsigned long long)sectors / 2);
6714 if (mddev->persistent) {
6715 if (mddev->major_version != 0 ||
6716 mddev->minor_version != 90) {
6717 seq_printf(seq," super %d.%d",
6718 mddev->major_version,
6719 mddev->minor_version);
6721 } else if (mddev->external)
6722 seq_printf(seq, " super external:%s",
6723 mddev->metadata_type);
6724 else
6725 seq_printf(seq, " super non-persistent");
6727 if (mddev->pers) {
6728 mddev->pers->status(seq, mddev);
6729 seq_printf(seq, "\n ");
6730 if (mddev->pers->sync_request) {
6731 if (mddev->curr_resync > 2) {
6732 status_resync(seq, mddev);
6733 seq_printf(seq, "\n ");
6734 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6735 seq_printf(seq, "\tresync=DELAYED\n ");
6736 else if (mddev->recovery_cp < MaxSector)
6737 seq_printf(seq, "\tresync=PENDING\n ");
6739 } else
6740 seq_printf(seq, "\n ");
6742 if ((bitmap = mddev->bitmap)) {
6743 unsigned long chunk_kb;
6744 unsigned long flags;
6745 spin_lock_irqsave(&bitmap->lock, flags);
6746 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6747 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6748 "%lu%s chunk",
6749 bitmap->pages - bitmap->missing_pages,
6750 bitmap->pages,
6751 (bitmap->pages - bitmap->missing_pages)
6752 << (PAGE_SHIFT - 10),
6753 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6754 chunk_kb ? "KB" : "B");
6755 if (bitmap->file) {
6756 seq_printf(seq, ", file: ");
6757 seq_path(seq, &bitmap->file->f_path, " \t\n");
6760 seq_printf(seq, "\n");
6761 spin_unlock_irqrestore(&bitmap->lock, flags);
6764 seq_printf(seq, "\n");
6766 mddev_unlock(mddev);
6768 return 0;
6771 static const struct seq_operations md_seq_ops = {
6772 .start = md_seq_start,
6773 .next = md_seq_next,
6774 .stop = md_seq_stop,
6775 .show = md_seq_show,
6778 static int md_seq_open(struct inode *inode, struct file *file)
6780 struct seq_file *seq;
6781 int error;
6783 error = seq_open(file, &md_seq_ops);
6784 if (error)
6785 return error;
6787 seq = file->private_data;
6788 seq->poll_event = atomic_read(&md_event_count);
6789 return error;
6792 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6794 struct seq_file *seq = filp->private_data;
6795 int mask;
6797 poll_wait(filp, &md_event_waiters, wait);
6799 /* always allow read */
6800 mask = POLLIN | POLLRDNORM;
6802 if (seq->poll_event != atomic_read(&md_event_count))
6803 mask |= POLLERR | POLLPRI;
6804 return mask;
6807 static const struct file_operations md_seq_fops = {
6808 .owner = THIS_MODULE,
6809 .open = md_seq_open,
6810 .read = seq_read,
6811 .llseek = seq_lseek,
6812 .release = seq_release_private,
6813 .poll = mdstat_poll,
6816 int register_md_personality(struct md_personality *p)
6818 spin_lock(&pers_lock);
6819 list_add_tail(&p->list, &pers_list);
6820 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6821 spin_unlock(&pers_lock);
6822 return 0;
6825 int unregister_md_personality(struct md_personality *p)
6827 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6828 spin_lock(&pers_lock);
6829 list_del_init(&p->list);
6830 spin_unlock(&pers_lock);
6831 return 0;
6834 static int is_mddev_idle(struct mddev *mddev, int init)
6836 struct md_rdev * rdev;
6837 int idle;
6838 int curr_events;
6840 idle = 1;
6841 rcu_read_lock();
6842 rdev_for_each_rcu(rdev, mddev) {
6843 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6844 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6845 (int)part_stat_read(&disk->part0, sectors[1]) -
6846 atomic_read(&disk->sync_io);
6847 /* sync IO will cause sync_io to increase before the disk_stats
6848 * as sync_io is counted when a request starts, and
6849 * disk_stats is counted when it completes.
6850 * So resync activity will cause curr_events to be smaller than
6851 * when there was no such activity.
6852 * non-sync IO will cause disk_stat to increase without
6853 * increasing sync_io so curr_events will (eventually)
6854 * be larger than it was before. Once it becomes
6855 * substantially larger, the test below will cause
6856 * the array to appear non-idle, and resync will slow
6857 * down.
6858 * If there is a lot of outstanding resync activity when
6859 * we set last_event to curr_events, then all that activity
6860 * completing might cause the array to appear non-idle
6861 * and resync will be slowed down even though there might
6862 * not have been non-resync activity. This will only
6863 * happen once though. 'last_events' will soon reflect
6864 * the state where there is little or no outstanding
6865 * resync requests, and further resync activity will
6866 * always make curr_events less than last_events.
6869 if (init || curr_events - rdev->last_events > 64) {
6870 rdev->last_events = curr_events;
6871 idle = 0;
6874 rcu_read_unlock();
6875 return idle;
6878 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6880 /* another "blocks" (512byte) blocks have been synced */
6881 atomic_sub(blocks, &mddev->recovery_active);
6882 wake_up(&mddev->recovery_wait);
6883 if (!ok) {
6884 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6885 md_wakeup_thread(mddev->thread);
6886 // stop recovery, signal do_sync ....
6891 /* md_write_start(mddev, bi)
6892 * If we need to update some array metadata (e.g. 'active' flag
6893 * in superblock) before writing, schedule a superblock update
6894 * and wait for it to complete.
6896 void md_write_start(struct mddev *mddev, struct bio *bi)
6898 int did_change = 0;
6899 if (bio_data_dir(bi) != WRITE)
6900 return;
6902 BUG_ON(mddev->ro == 1);
6903 if (mddev->ro == 2) {
6904 /* need to switch to read/write */
6905 mddev->ro = 0;
6906 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6907 md_wakeup_thread(mddev->thread);
6908 md_wakeup_thread(mddev->sync_thread);
6909 did_change = 1;
6911 atomic_inc(&mddev->writes_pending);
6912 if (mddev->safemode == 1)
6913 mddev->safemode = 0;
6914 if (mddev->in_sync) {
6915 spin_lock_irq(&mddev->write_lock);
6916 if (mddev->in_sync) {
6917 mddev->in_sync = 0;
6918 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6919 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6920 md_wakeup_thread(mddev->thread);
6921 did_change = 1;
6923 spin_unlock_irq(&mddev->write_lock);
6925 if (did_change)
6926 sysfs_notify_dirent_safe(mddev->sysfs_state);
6927 wait_event(mddev->sb_wait,
6928 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6931 void md_write_end(struct mddev *mddev)
6933 if (atomic_dec_and_test(&mddev->writes_pending)) {
6934 if (mddev->safemode == 2)
6935 md_wakeup_thread(mddev->thread);
6936 else if (mddev->safemode_delay)
6937 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6941 /* md_allow_write(mddev)
6942 * Calling this ensures that the array is marked 'active' so that writes
6943 * may proceed without blocking. It is important to call this before
6944 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6945 * Must be called with mddev_lock held.
6947 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6948 * is dropped, so return -EAGAIN after notifying userspace.
6950 int md_allow_write(struct mddev *mddev)
6952 if (!mddev->pers)
6953 return 0;
6954 if (mddev->ro)
6955 return 0;
6956 if (!mddev->pers->sync_request)
6957 return 0;
6959 spin_lock_irq(&mddev->write_lock);
6960 if (mddev->in_sync) {
6961 mddev->in_sync = 0;
6962 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6963 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6964 if (mddev->safemode_delay &&
6965 mddev->safemode == 0)
6966 mddev->safemode = 1;
6967 spin_unlock_irq(&mddev->write_lock);
6968 md_update_sb(mddev, 0);
6969 sysfs_notify_dirent_safe(mddev->sysfs_state);
6970 } else
6971 spin_unlock_irq(&mddev->write_lock);
6973 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6974 return -EAGAIN;
6975 else
6976 return 0;
6978 EXPORT_SYMBOL_GPL(md_allow_write);
6980 #define SYNC_MARKS 10
6981 #define SYNC_MARK_STEP (3*HZ)
6982 void md_do_sync(struct mddev *mddev)
6984 struct mddev *mddev2;
6985 unsigned int currspeed = 0,
6986 window;
6987 sector_t max_sectors,j, io_sectors;
6988 unsigned long mark[SYNC_MARKS];
6989 sector_t mark_cnt[SYNC_MARKS];
6990 int last_mark,m;
6991 struct list_head *tmp;
6992 sector_t last_check;
6993 int skipped = 0;
6994 struct md_rdev *rdev;
6995 char *desc;
6997 /* just incase thread restarts... */
6998 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6999 return;
7000 if (mddev->ro) /* never try to sync a read-only array */
7001 return;
7003 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7004 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7005 desc = "data-check";
7006 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7007 desc = "requested-resync";
7008 else
7009 desc = "resync";
7010 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7011 desc = "reshape";
7012 else
7013 desc = "recovery";
7015 /* we overload curr_resync somewhat here.
7016 * 0 == not engaged in resync at all
7017 * 2 == checking that there is no conflict with another sync
7018 * 1 == like 2, but have yielded to allow conflicting resync to
7019 * commense
7020 * other == active in resync - this many blocks
7022 * Before starting a resync we must have set curr_resync to
7023 * 2, and then checked that every "conflicting" array has curr_resync
7024 * less than ours. When we find one that is the same or higher
7025 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7026 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7027 * This will mean we have to start checking from the beginning again.
7031 do {
7032 mddev->curr_resync = 2;
7034 try_again:
7035 if (kthread_should_stop())
7036 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7038 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7039 goto skip;
7040 for_each_mddev(mddev2, tmp) {
7041 if (mddev2 == mddev)
7042 continue;
7043 if (!mddev->parallel_resync
7044 && mddev2->curr_resync
7045 && match_mddev_units(mddev, mddev2)) {
7046 DEFINE_WAIT(wq);
7047 if (mddev < mddev2 && mddev->curr_resync == 2) {
7048 /* arbitrarily yield */
7049 mddev->curr_resync = 1;
7050 wake_up(&resync_wait);
7052 if (mddev > mddev2 && mddev->curr_resync == 1)
7053 /* no need to wait here, we can wait the next
7054 * time 'round when curr_resync == 2
7056 continue;
7057 /* We need to wait 'interruptible' so as not to
7058 * contribute to the load average, and not to
7059 * be caught by 'softlockup'
7061 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7062 if (!kthread_should_stop() &&
7063 mddev2->curr_resync >= mddev->curr_resync) {
7064 printk(KERN_INFO "md: delaying %s of %s"
7065 " until %s has finished (they"
7066 " share one or more physical units)\n",
7067 desc, mdname(mddev), mdname(mddev2));
7068 mddev_put(mddev2);
7069 if (signal_pending(current))
7070 flush_signals(current);
7071 schedule();
7072 finish_wait(&resync_wait, &wq);
7073 goto try_again;
7075 finish_wait(&resync_wait, &wq);
7078 } while (mddev->curr_resync < 2);
7080 j = 0;
7081 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7082 /* resync follows the size requested by the personality,
7083 * which defaults to physical size, but can be virtual size
7085 max_sectors = mddev->resync_max_sectors;
7086 mddev->resync_mismatches = 0;
7087 /* we don't use the checkpoint if there's a bitmap */
7088 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7089 j = mddev->resync_min;
7090 else if (!mddev->bitmap)
7091 j = mddev->recovery_cp;
7093 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7094 max_sectors = mddev->dev_sectors;
7095 else {
7096 /* recovery follows the physical size of devices */
7097 max_sectors = mddev->dev_sectors;
7098 j = MaxSector;
7099 rcu_read_lock();
7100 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7101 if (rdev->raid_disk >= 0 &&
7102 !test_bit(Faulty, &rdev->flags) &&
7103 !test_bit(In_sync, &rdev->flags) &&
7104 rdev->recovery_offset < j)
7105 j = rdev->recovery_offset;
7106 rcu_read_unlock();
7109 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7110 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7111 " %d KB/sec/disk.\n", speed_min(mddev));
7112 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7113 "(but not more than %d KB/sec) for %s.\n",
7114 speed_max(mddev), desc);
7116 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7118 io_sectors = 0;
7119 for (m = 0; m < SYNC_MARKS; m++) {
7120 mark[m] = jiffies;
7121 mark_cnt[m] = io_sectors;
7123 last_mark = 0;
7124 mddev->resync_mark = mark[last_mark];
7125 mddev->resync_mark_cnt = mark_cnt[last_mark];
7128 * Tune reconstruction:
7130 window = 32*(PAGE_SIZE/512);
7131 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7132 window/2, (unsigned long long)max_sectors/2);
7134 atomic_set(&mddev->recovery_active, 0);
7135 last_check = 0;
7137 if (j>2) {
7138 printk(KERN_INFO
7139 "md: resuming %s of %s from checkpoint.\n",
7140 desc, mdname(mddev));
7141 mddev->curr_resync = j;
7143 mddev->curr_resync_completed = j;
7145 while (j < max_sectors) {
7146 sector_t sectors;
7148 skipped = 0;
7150 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7151 ((mddev->curr_resync > mddev->curr_resync_completed &&
7152 (mddev->curr_resync - mddev->curr_resync_completed)
7153 > (max_sectors >> 4)) ||
7154 (j - mddev->curr_resync_completed)*2
7155 >= mddev->resync_max - mddev->curr_resync_completed
7156 )) {
7157 /* time to update curr_resync_completed */
7158 wait_event(mddev->recovery_wait,
7159 atomic_read(&mddev->recovery_active) == 0);
7160 mddev->curr_resync_completed = j;
7161 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7162 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7165 while (j >= mddev->resync_max && !kthread_should_stop()) {
7166 /* As this condition is controlled by user-space,
7167 * we can block indefinitely, so use '_interruptible'
7168 * to avoid triggering warnings.
7170 flush_signals(current); /* just in case */
7171 wait_event_interruptible(mddev->recovery_wait,
7172 mddev->resync_max > j
7173 || kthread_should_stop());
7176 if (kthread_should_stop())
7177 goto interrupted;
7179 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7180 currspeed < speed_min(mddev));
7181 if (sectors == 0) {
7182 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7183 goto out;
7186 if (!skipped) { /* actual IO requested */
7187 io_sectors += sectors;
7188 atomic_add(sectors, &mddev->recovery_active);
7191 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7192 break;
7194 j += sectors;
7195 if (j>1) mddev->curr_resync = j;
7196 mddev->curr_mark_cnt = io_sectors;
7197 if (last_check == 0)
7198 /* this is the earliest that rebuild will be
7199 * visible in /proc/mdstat
7201 md_new_event(mddev);
7203 if (last_check + window > io_sectors || j == max_sectors)
7204 continue;
7206 last_check = io_sectors;
7207 repeat:
7208 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7209 /* step marks */
7210 int next = (last_mark+1) % SYNC_MARKS;
7212 mddev->resync_mark = mark[next];
7213 mddev->resync_mark_cnt = mark_cnt[next];
7214 mark[next] = jiffies;
7215 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7216 last_mark = next;
7220 if (kthread_should_stop())
7221 goto interrupted;
7225 * this loop exits only if either when we are slower than
7226 * the 'hard' speed limit, or the system was IO-idle for
7227 * a jiffy.
7228 * the system might be non-idle CPU-wise, but we only care
7229 * about not overloading the IO subsystem. (things like an
7230 * e2fsck being done on the RAID array should execute fast)
7232 cond_resched();
7234 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7235 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7237 if (currspeed > speed_min(mddev)) {
7238 if ((currspeed > speed_max(mddev)) ||
7239 !is_mddev_idle(mddev, 0)) {
7240 msleep(500);
7241 goto repeat;
7245 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7247 * this also signals 'finished resyncing' to md_stop
7249 out:
7250 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7252 /* tell personality that we are finished */
7253 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7255 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7256 mddev->curr_resync > 2) {
7257 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7258 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7259 if (mddev->curr_resync >= mddev->recovery_cp) {
7260 printk(KERN_INFO
7261 "md: checkpointing %s of %s.\n",
7262 desc, mdname(mddev));
7263 mddev->recovery_cp = mddev->curr_resync;
7265 } else
7266 mddev->recovery_cp = MaxSector;
7267 } else {
7268 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7269 mddev->curr_resync = MaxSector;
7270 rcu_read_lock();
7271 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7272 if (rdev->raid_disk >= 0 &&
7273 mddev->delta_disks >= 0 &&
7274 !test_bit(Faulty, &rdev->flags) &&
7275 !test_bit(In_sync, &rdev->flags) &&
7276 rdev->recovery_offset < mddev->curr_resync)
7277 rdev->recovery_offset = mddev->curr_resync;
7278 rcu_read_unlock();
7281 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7283 skip:
7284 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7285 /* We completed so min/max setting can be forgotten if used. */
7286 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7287 mddev->resync_min = 0;
7288 mddev->resync_max = MaxSector;
7289 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7290 mddev->resync_min = mddev->curr_resync_completed;
7291 mddev->curr_resync = 0;
7292 wake_up(&resync_wait);
7293 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7294 md_wakeup_thread(mddev->thread);
7295 return;
7297 interrupted:
7299 * got a signal, exit.
7301 printk(KERN_INFO
7302 "md: md_do_sync() got signal ... exiting\n");
7303 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7304 goto out;
7307 EXPORT_SYMBOL_GPL(md_do_sync);
7309 static int remove_and_add_spares(struct mddev *mddev)
7311 struct md_rdev *rdev;
7312 int spares = 0;
7314 mddev->curr_resync_completed = 0;
7316 list_for_each_entry(rdev, &mddev->disks, same_set)
7317 if (rdev->raid_disk >= 0 &&
7318 !test_bit(Blocked, &rdev->flags) &&
7319 (test_bit(Faulty, &rdev->flags) ||
7320 ! test_bit(In_sync, &rdev->flags)) &&
7321 atomic_read(&rdev->nr_pending)==0) {
7322 if (mddev->pers->hot_remove_disk(
7323 mddev, rdev->raid_disk)==0) {
7324 sysfs_unlink_rdev(mddev, rdev);
7325 rdev->raid_disk = -1;
7329 if (mddev->degraded) {
7330 list_for_each_entry(rdev, &mddev->disks, same_set) {
7331 if (rdev->raid_disk >= 0 &&
7332 !test_bit(In_sync, &rdev->flags) &&
7333 !test_bit(Faulty, &rdev->flags))
7334 spares++;
7335 if (rdev->raid_disk < 0
7336 && !test_bit(Faulty, &rdev->flags)) {
7337 rdev->recovery_offset = 0;
7338 if (mddev->pers->
7339 hot_add_disk(mddev, rdev) == 0) {
7340 if (sysfs_link_rdev(mddev, rdev))
7341 /* failure here is OK */;
7342 spares++;
7343 md_new_event(mddev);
7344 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7345 } else
7346 break;
7350 return spares;
7353 static void reap_sync_thread(struct mddev *mddev)
7355 struct md_rdev *rdev;
7357 /* resync has finished, collect result */
7358 md_unregister_thread(&mddev->sync_thread);
7359 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7360 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7361 /* success...*/
7362 /* activate any spares */
7363 if (mddev->pers->spare_active(mddev))
7364 sysfs_notify(&mddev->kobj, NULL,
7365 "degraded");
7367 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7368 mddev->pers->finish_reshape)
7369 mddev->pers->finish_reshape(mddev);
7371 /* If array is no-longer degraded, then any saved_raid_disk
7372 * information must be scrapped. Also if any device is now
7373 * In_sync we must scrape the saved_raid_disk for that device
7374 * do the superblock for an incrementally recovered device
7375 * written out.
7377 list_for_each_entry(rdev, &mddev->disks, same_set)
7378 if (!mddev->degraded ||
7379 test_bit(In_sync, &rdev->flags))
7380 rdev->saved_raid_disk = -1;
7382 md_update_sb(mddev, 1);
7383 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7384 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7385 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7386 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7387 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7388 /* flag recovery needed just to double check */
7389 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7390 sysfs_notify_dirent_safe(mddev->sysfs_action);
7391 md_new_event(mddev);
7392 if (mddev->event_work.func)
7393 queue_work(md_misc_wq, &mddev->event_work);
7397 * This routine is regularly called by all per-raid-array threads to
7398 * deal with generic issues like resync and super-block update.
7399 * Raid personalities that don't have a thread (linear/raid0) do not
7400 * need this as they never do any recovery or update the superblock.
7402 * It does not do any resync itself, but rather "forks" off other threads
7403 * to do that as needed.
7404 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7405 * "->recovery" and create a thread at ->sync_thread.
7406 * When the thread finishes it sets MD_RECOVERY_DONE
7407 * and wakeups up this thread which will reap the thread and finish up.
7408 * This thread also removes any faulty devices (with nr_pending == 0).
7410 * The overall approach is:
7411 * 1/ if the superblock needs updating, update it.
7412 * 2/ If a recovery thread is running, don't do anything else.
7413 * 3/ If recovery has finished, clean up, possibly marking spares active.
7414 * 4/ If there are any faulty devices, remove them.
7415 * 5/ If array is degraded, try to add spares devices
7416 * 6/ If array has spares or is not in-sync, start a resync thread.
7418 void md_check_recovery(struct mddev *mddev)
7420 if (mddev->suspended)
7421 return;
7423 if (mddev->bitmap)
7424 bitmap_daemon_work(mddev);
7426 if (signal_pending(current)) {
7427 if (mddev->pers->sync_request && !mddev->external) {
7428 printk(KERN_INFO "md: %s in immediate safe mode\n",
7429 mdname(mddev));
7430 mddev->safemode = 2;
7432 flush_signals(current);
7435 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7436 return;
7437 if ( ! (
7438 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7439 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7440 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7441 (mddev->external == 0 && mddev->safemode == 1) ||
7442 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7443 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7445 return;
7447 if (mddev_trylock(mddev)) {
7448 int spares = 0;
7450 if (mddev->ro) {
7451 /* Only thing we do on a ro array is remove
7452 * failed devices.
7454 struct md_rdev *rdev;
7455 list_for_each_entry(rdev, &mddev->disks, same_set)
7456 if (rdev->raid_disk >= 0 &&
7457 !test_bit(Blocked, &rdev->flags) &&
7458 test_bit(Faulty, &rdev->flags) &&
7459 atomic_read(&rdev->nr_pending)==0) {
7460 if (mddev->pers->hot_remove_disk(
7461 mddev, rdev->raid_disk)==0) {
7462 sysfs_unlink_rdev(mddev, rdev);
7463 rdev->raid_disk = -1;
7466 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7467 goto unlock;
7470 if (!mddev->external) {
7471 int did_change = 0;
7472 spin_lock_irq(&mddev->write_lock);
7473 if (mddev->safemode &&
7474 !atomic_read(&mddev->writes_pending) &&
7475 !mddev->in_sync &&
7476 mddev->recovery_cp == MaxSector) {
7477 mddev->in_sync = 1;
7478 did_change = 1;
7479 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7481 if (mddev->safemode == 1)
7482 mddev->safemode = 0;
7483 spin_unlock_irq(&mddev->write_lock);
7484 if (did_change)
7485 sysfs_notify_dirent_safe(mddev->sysfs_state);
7488 if (mddev->flags)
7489 md_update_sb(mddev, 0);
7491 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7492 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7493 /* resync/recovery still happening */
7494 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7495 goto unlock;
7497 if (mddev->sync_thread) {
7498 reap_sync_thread(mddev);
7499 goto unlock;
7501 /* Set RUNNING before clearing NEEDED to avoid
7502 * any transients in the value of "sync_action".
7504 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7505 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7506 /* Clear some bits that don't mean anything, but
7507 * might be left set
7509 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7510 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7512 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7513 goto unlock;
7514 /* no recovery is running.
7515 * remove any failed drives, then
7516 * add spares if possible.
7517 * Spare are also removed and re-added, to allow
7518 * the personality to fail the re-add.
7521 if (mddev->reshape_position != MaxSector) {
7522 if (mddev->pers->check_reshape == NULL ||
7523 mddev->pers->check_reshape(mddev) != 0)
7524 /* Cannot proceed */
7525 goto unlock;
7526 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7527 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7528 } else if ((spares = remove_and_add_spares(mddev))) {
7529 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7530 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7531 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7532 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7533 } else if (mddev->recovery_cp < MaxSector) {
7534 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7535 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7536 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7537 /* nothing to be done ... */
7538 goto unlock;
7540 if (mddev->pers->sync_request) {
7541 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7542 /* We are adding a device or devices to an array
7543 * which has the bitmap stored on all devices.
7544 * So make sure all bitmap pages get written
7546 bitmap_write_all(mddev->bitmap);
7548 mddev->sync_thread = md_register_thread(md_do_sync,
7549 mddev,
7550 "resync");
7551 if (!mddev->sync_thread) {
7552 printk(KERN_ERR "%s: could not start resync"
7553 " thread...\n",
7554 mdname(mddev));
7555 /* leave the spares where they are, it shouldn't hurt */
7556 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7557 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7558 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7559 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7560 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7561 } else
7562 md_wakeup_thread(mddev->sync_thread);
7563 sysfs_notify_dirent_safe(mddev->sysfs_action);
7564 md_new_event(mddev);
7566 unlock:
7567 if (!mddev->sync_thread) {
7568 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7569 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7570 &mddev->recovery))
7571 if (mddev->sysfs_action)
7572 sysfs_notify_dirent_safe(mddev->sysfs_action);
7574 mddev_unlock(mddev);
7578 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7580 sysfs_notify_dirent_safe(rdev->sysfs_state);
7581 wait_event_timeout(rdev->blocked_wait,
7582 !test_bit(Blocked, &rdev->flags) &&
7583 !test_bit(BlockedBadBlocks, &rdev->flags),
7584 msecs_to_jiffies(5000));
7585 rdev_dec_pending(rdev, mddev);
7587 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7590 /* Bad block management.
7591 * We can record which blocks on each device are 'bad' and so just
7592 * fail those blocks, or that stripe, rather than the whole device.
7593 * Entries in the bad-block table are 64bits wide. This comprises:
7594 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7595 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7596 * A 'shift' can be set so that larger blocks are tracked and
7597 * consequently larger devices can be covered.
7598 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7600 * Locking of the bad-block table uses a seqlock so md_is_badblock
7601 * might need to retry if it is very unlucky.
7602 * We will sometimes want to check for bad blocks in a bi_end_io function,
7603 * so we use the write_seqlock_irq variant.
7605 * When looking for a bad block we specify a range and want to
7606 * know if any block in the range is bad. So we binary-search
7607 * to the last range that starts at-or-before the given endpoint,
7608 * (or "before the sector after the target range")
7609 * then see if it ends after the given start.
7610 * We return
7611 * 0 if there are no known bad blocks in the range
7612 * 1 if there are known bad block which are all acknowledged
7613 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7614 * plus the start/length of the first bad section we overlap.
7616 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7617 sector_t *first_bad, int *bad_sectors)
7619 int hi;
7620 int lo = 0;
7621 u64 *p = bb->page;
7622 int rv = 0;
7623 sector_t target = s + sectors;
7624 unsigned seq;
7626 if (bb->shift > 0) {
7627 /* round the start down, and the end up */
7628 s >>= bb->shift;
7629 target += (1<<bb->shift) - 1;
7630 target >>= bb->shift;
7631 sectors = target - s;
7633 /* 'target' is now the first block after the bad range */
7635 retry:
7636 seq = read_seqbegin(&bb->lock);
7638 hi = bb->count;
7640 /* Binary search between lo and hi for 'target'
7641 * i.e. for the last range that starts before 'target'
7643 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7644 * are known not to be the last range before target.
7645 * VARIANT: hi-lo is the number of possible
7646 * ranges, and decreases until it reaches 1
7648 while (hi - lo > 1) {
7649 int mid = (lo + hi) / 2;
7650 sector_t a = BB_OFFSET(p[mid]);
7651 if (a < target)
7652 /* This could still be the one, earlier ranges
7653 * could not. */
7654 lo = mid;
7655 else
7656 /* This and later ranges are definitely out. */
7657 hi = mid;
7659 /* 'lo' might be the last that started before target, but 'hi' isn't */
7660 if (hi > lo) {
7661 /* need to check all range that end after 's' to see if
7662 * any are unacknowledged.
7664 while (lo >= 0 &&
7665 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7666 if (BB_OFFSET(p[lo]) < target) {
7667 /* starts before the end, and finishes after
7668 * the start, so they must overlap
7670 if (rv != -1 && BB_ACK(p[lo]))
7671 rv = 1;
7672 else
7673 rv = -1;
7674 *first_bad = BB_OFFSET(p[lo]);
7675 *bad_sectors = BB_LEN(p[lo]);
7677 lo--;
7681 if (read_seqretry(&bb->lock, seq))
7682 goto retry;
7684 return rv;
7686 EXPORT_SYMBOL_GPL(md_is_badblock);
7689 * Add a range of bad blocks to the table.
7690 * This might extend the table, or might contract it
7691 * if two adjacent ranges can be merged.
7692 * We binary-search to find the 'insertion' point, then
7693 * decide how best to handle it.
7695 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7696 int acknowledged)
7698 u64 *p;
7699 int lo, hi;
7700 int rv = 1;
7702 if (bb->shift < 0)
7703 /* badblocks are disabled */
7704 return 0;
7706 if (bb->shift) {
7707 /* round the start down, and the end up */
7708 sector_t next = s + sectors;
7709 s >>= bb->shift;
7710 next += (1<<bb->shift) - 1;
7711 next >>= bb->shift;
7712 sectors = next - s;
7715 write_seqlock_irq(&bb->lock);
7717 p = bb->page;
7718 lo = 0;
7719 hi = bb->count;
7720 /* Find the last range that starts at-or-before 's' */
7721 while (hi - lo > 1) {
7722 int mid = (lo + hi) / 2;
7723 sector_t a = BB_OFFSET(p[mid]);
7724 if (a <= s)
7725 lo = mid;
7726 else
7727 hi = mid;
7729 if (hi > lo && BB_OFFSET(p[lo]) > s)
7730 hi = lo;
7732 if (hi > lo) {
7733 /* we found a range that might merge with the start
7734 * of our new range
7736 sector_t a = BB_OFFSET(p[lo]);
7737 sector_t e = a + BB_LEN(p[lo]);
7738 int ack = BB_ACK(p[lo]);
7739 if (e >= s) {
7740 /* Yes, we can merge with a previous range */
7741 if (s == a && s + sectors >= e)
7742 /* new range covers old */
7743 ack = acknowledged;
7744 else
7745 ack = ack && acknowledged;
7747 if (e < s + sectors)
7748 e = s + sectors;
7749 if (e - a <= BB_MAX_LEN) {
7750 p[lo] = BB_MAKE(a, e-a, ack);
7751 s = e;
7752 } else {
7753 /* does not all fit in one range,
7754 * make p[lo] maximal
7756 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7757 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7758 s = a + BB_MAX_LEN;
7760 sectors = e - s;
7763 if (sectors && hi < bb->count) {
7764 /* 'hi' points to the first range that starts after 's'.
7765 * Maybe we can merge with the start of that range */
7766 sector_t a = BB_OFFSET(p[hi]);
7767 sector_t e = a + BB_LEN(p[hi]);
7768 int ack = BB_ACK(p[hi]);
7769 if (a <= s + sectors) {
7770 /* merging is possible */
7771 if (e <= s + sectors) {
7772 /* full overlap */
7773 e = s + sectors;
7774 ack = acknowledged;
7775 } else
7776 ack = ack && acknowledged;
7778 a = s;
7779 if (e - a <= BB_MAX_LEN) {
7780 p[hi] = BB_MAKE(a, e-a, ack);
7781 s = e;
7782 } else {
7783 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7784 s = a + BB_MAX_LEN;
7786 sectors = e - s;
7787 lo = hi;
7788 hi++;
7791 if (sectors == 0 && hi < bb->count) {
7792 /* we might be able to combine lo and hi */
7793 /* Note: 's' is at the end of 'lo' */
7794 sector_t a = BB_OFFSET(p[hi]);
7795 int lolen = BB_LEN(p[lo]);
7796 int hilen = BB_LEN(p[hi]);
7797 int newlen = lolen + hilen - (s - a);
7798 if (s >= a && newlen < BB_MAX_LEN) {
7799 /* yes, we can combine them */
7800 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7801 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7802 memmove(p + hi, p + hi + 1,
7803 (bb->count - hi - 1) * 8);
7804 bb->count--;
7807 while (sectors) {
7808 /* didn't merge (it all).
7809 * Need to add a range just before 'hi' */
7810 if (bb->count >= MD_MAX_BADBLOCKS) {
7811 /* No room for more */
7812 rv = 0;
7813 break;
7814 } else {
7815 int this_sectors = sectors;
7816 memmove(p + hi + 1, p + hi,
7817 (bb->count - hi) * 8);
7818 bb->count++;
7820 if (this_sectors > BB_MAX_LEN)
7821 this_sectors = BB_MAX_LEN;
7822 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7823 sectors -= this_sectors;
7824 s += this_sectors;
7828 bb->changed = 1;
7829 if (!acknowledged)
7830 bb->unacked_exist = 1;
7831 write_sequnlock_irq(&bb->lock);
7833 return rv;
7836 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7837 int acknowledged)
7839 int rv = md_set_badblocks(&rdev->badblocks,
7840 s + rdev->data_offset, sectors, acknowledged);
7841 if (rv) {
7842 /* Make sure they get written out promptly */
7843 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7844 md_wakeup_thread(rdev->mddev->thread);
7846 return rv;
7848 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7851 * Remove a range of bad blocks from the table.
7852 * This may involve extending the table if we spilt a region,
7853 * but it must not fail. So if the table becomes full, we just
7854 * drop the remove request.
7856 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7858 u64 *p;
7859 int lo, hi;
7860 sector_t target = s + sectors;
7861 int rv = 0;
7863 if (bb->shift > 0) {
7864 /* When clearing we round the start up and the end down.
7865 * This should not matter as the shift should align with
7866 * the block size and no rounding should ever be needed.
7867 * However it is better the think a block is bad when it
7868 * isn't than to think a block is not bad when it is.
7870 s += (1<<bb->shift) - 1;
7871 s >>= bb->shift;
7872 target >>= bb->shift;
7873 sectors = target - s;
7876 write_seqlock_irq(&bb->lock);
7878 p = bb->page;
7879 lo = 0;
7880 hi = bb->count;
7881 /* Find the last range that starts before 'target' */
7882 while (hi - lo > 1) {
7883 int mid = (lo + hi) / 2;
7884 sector_t a = BB_OFFSET(p[mid]);
7885 if (a < target)
7886 lo = mid;
7887 else
7888 hi = mid;
7890 if (hi > lo) {
7891 /* p[lo] is the last range that could overlap the
7892 * current range. Earlier ranges could also overlap,
7893 * but only this one can overlap the end of the range.
7895 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7896 /* Partial overlap, leave the tail of this range */
7897 int ack = BB_ACK(p[lo]);
7898 sector_t a = BB_OFFSET(p[lo]);
7899 sector_t end = a + BB_LEN(p[lo]);
7901 if (a < s) {
7902 /* we need to split this range */
7903 if (bb->count >= MD_MAX_BADBLOCKS) {
7904 rv = 0;
7905 goto out;
7907 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7908 bb->count++;
7909 p[lo] = BB_MAKE(a, s-a, ack);
7910 lo++;
7912 p[lo] = BB_MAKE(target, end - target, ack);
7913 /* there is no longer an overlap */
7914 hi = lo;
7915 lo--;
7917 while (lo >= 0 &&
7918 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7919 /* This range does overlap */
7920 if (BB_OFFSET(p[lo]) < s) {
7921 /* Keep the early parts of this range. */
7922 int ack = BB_ACK(p[lo]);
7923 sector_t start = BB_OFFSET(p[lo]);
7924 p[lo] = BB_MAKE(start, s - start, ack);
7925 /* now low doesn't overlap, so.. */
7926 break;
7928 lo--;
7930 /* 'lo' is strictly before, 'hi' is strictly after,
7931 * anything between needs to be discarded
7933 if (hi - lo > 1) {
7934 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7935 bb->count -= (hi - lo - 1);
7939 bb->changed = 1;
7940 out:
7941 write_sequnlock_irq(&bb->lock);
7942 return rv;
7945 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
7947 return md_clear_badblocks(&rdev->badblocks,
7948 s + rdev->data_offset,
7949 sectors);
7951 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7954 * Acknowledge all bad blocks in a list.
7955 * This only succeeds if ->changed is clear. It is used by
7956 * in-kernel metadata updates
7958 void md_ack_all_badblocks(struct badblocks *bb)
7960 if (bb->page == NULL || bb->changed)
7961 /* no point even trying */
7962 return;
7963 write_seqlock_irq(&bb->lock);
7965 if (bb->changed == 0) {
7966 u64 *p = bb->page;
7967 int i;
7968 for (i = 0; i < bb->count ; i++) {
7969 if (!BB_ACK(p[i])) {
7970 sector_t start = BB_OFFSET(p[i]);
7971 int len = BB_LEN(p[i]);
7972 p[i] = BB_MAKE(start, len, 1);
7975 bb->unacked_exist = 0;
7977 write_sequnlock_irq(&bb->lock);
7979 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7981 /* sysfs access to bad-blocks list.
7982 * We present two files.
7983 * 'bad-blocks' lists sector numbers and lengths of ranges that
7984 * are recorded as bad. The list is truncated to fit within
7985 * the one-page limit of sysfs.
7986 * Writing "sector length" to this file adds an acknowledged
7987 * bad block list.
7988 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
7989 * been acknowledged. Writing to this file adds bad blocks
7990 * without acknowledging them. This is largely for testing.
7993 static ssize_t
7994 badblocks_show(struct badblocks *bb, char *page, int unack)
7996 size_t len;
7997 int i;
7998 u64 *p = bb->page;
7999 unsigned seq;
8001 if (bb->shift < 0)
8002 return 0;
8004 retry:
8005 seq = read_seqbegin(&bb->lock);
8007 len = 0;
8008 i = 0;
8010 while (len < PAGE_SIZE && i < bb->count) {
8011 sector_t s = BB_OFFSET(p[i]);
8012 unsigned int length = BB_LEN(p[i]);
8013 int ack = BB_ACK(p[i]);
8014 i++;
8016 if (unack && ack)
8017 continue;
8019 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8020 (unsigned long long)s << bb->shift,
8021 length << bb->shift);
8023 if (unack && len == 0)
8024 bb->unacked_exist = 0;
8026 if (read_seqretry(&bb->lock, seq))
8027 goto retry;
8029 return len;
8032 #define DO_DEBUG 1
8034 static ssize_t
8035 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8037 unsigned long long sector;
8038 int length;
8039 char newline;
8040 #ifdef DO_DEBUG
8041 /* Allow clearing via sysfs *only* for testing/debugging.
8042 * Normally only a successful write may clear a badblock
8044 int clear = 0;
8045 if (page[0] == '-') {
8046 clear = 1;
8047 page++;
8049 #endif /* DO_DEBUG */
8051 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8052 case 3:
8053 if (newline != '\n')
8054 return -EINVAL;
8055 case 2:
8056 if (length <= 0)
8057 return -EINVAL;
8058 break;
8059 default:
8060 return -EINVAL;
8063 #ifdef DO_DEBUG
8064 if (clear) {
8065 md_clear_badblocks(bb, sector, length);
8066 return len;
8068 #endif /* DO_DEBUG */
8069 if (md_set_badblocks(bb, sector, length, !unack))
8070 return len;
8071 else
8072 return -ENOSPC;
8075 static int md_notify_reboot(struct notifier_block *this,
8076 unsigned long code, void *x)
8078 struct list_head *tmp;
8079 struct mddev *mddev;
8080 int need_delay = 0;
8082 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8084 printk(KERN_INFO "md: stopping all md devices.\n");
8086 for_each_mddev(mddev, tmp) {
8087 if (mddev_trylock(mddev)) {
8088 /* Force a switch to readonly even array
8089 * appears to still be in use. Hence
8090 * the '100'.
8092 md_set_readonly(mddev, 100);
8093 mddev_unlock(mddev);
8095 need_delay = 1;
8098 * certain more exotic SCSI devices are known to be
8099 * volatile wrt too early system reboots. While the
8100 * right place to handle this issue is the given
8101 * driver, we do want to have a safe RAID driver ...
8103 if (need_delay)
8104 mdelay(1000*1);
8106 return NOTIFY_DONE;
8109 static struct notifier_block md_notifier = {
8110 .notifier_call = md_notify_reboot,
8111 .next = NULL,
8112 .priority = INT_MAX, /* before any real devices */
8115 static void md_geninit(void)
8117 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8119 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8122 static int __init md_init(void)
8124 int ret = -ENOMEM;
8126 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8127 if (!md_wq)
8128 goto err_wq;
8130 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8131 if (!md_misc_wq)
8132 goto err_misc_wq;
8134 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8135 goto err_md;
8137 if ((ret = register_blkdev(0, "mdp")) < 0)
8138 goto err_mdp;
8139 mdp_major = ret;
8141 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8142 md_probe, NULL, NULL);
8143 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8144 md_probe, NULL, NULL);
8146 register_reboot_notifier(&md_notifier);
8147 raid_table_header = register_sysctl_table(raid_root_table);
8149 md_geninit();
8150 return 0;
8152 err_mdp:
8153 unregister_blkdev(MD_MAJOR, "md");
8154 err_md:
8155 destroy_workqueue(md_misc_wq);
8156 err_misc_wq:
8157 destroy_workqueue(md_wq);
8158 err_wq:
8159 return ret;
8162 #ifndef MODULE
8165 * Searches all registered partitions for autorun RAID arrays
8166 * at boot time.
8169 static LIST_HEAD(all_detected_devices);
8170 struct detected_devices_node {
8171 struct list_head list;
8172 dev_t dev;
8175 void md_autodetect_dev(dev_t dev)
8177 struct detected_devices_node *node_detected_dev;
8179 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8180 if (node_detected_dev) {
8181 node_detected_dev->dev = dev;
8182 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8183 } else {
8184 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8185 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8190 static void autostart_arrays(int part)
8192 struct md_rdev *rdev;
8193 struct detected_devices_node *node_detected_dev;
8194 dev_t dev;
8195 int i_scanned, i_passed;
8197 i_scanned = 0;
8198 i_passed = 0;
8200 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8202 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8203 i_scanned++;
8204 node_detected_dev = list_entry(all_detected_devices.next,
8205 struct detected_devices_node, list);
8206 list_del(&node_detected_dev->list);
8207 dev = node_detected_dev->dev;
8208 kfree(node_detected_dev);
8209 rdev = md_import_device(dev,0, 90);
8210 if (IS_ERR(rdev))
8211 continue;
8213 if (test_bit(Faulty, &rdev->flags)) {
8214 MD_BUG();
8215 continue;
8217 set_bit(AutoDetected, &rdev->flags);
8218 list_add(&rdev->same_set, &pending_raid_disks);
8219 i_passed++;
8222 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8223 i_scanned, i_passed);
8225 autorun_devices(part);
8228 #endif /* !MODULE */
8230 static __exit void md_exit(void)
8232 struct mddev *mddev;
8233 struct list_head *tmp;
8235 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8236 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8238 unregister_blkdev(MD_MAJOR,"md");
8239 unregister_blkdev(mdp_major, "mdp");
8240 unregister_reboot_notifier(&md_notifier);
8241 unregister_sysctl_table(raid_table_header);
8242 remove_proc_entry("mdstat", NULL);
8243 for_each_mddev(mddev, tmp) {
8244 export_array(mddev);
8245 mddev->hold_active = 0;
8247 destroy_workqueue(md_misc_wq);
8248 destroy_workqueue(md_wq);
8251 subsys_initcall(md_init);
8252 module_exit(md_exit)
8254 static int get_ro(char *buffer, struct kernel_param *kp)
8256 return sprintf(buffer, "%d", start_readonly);
8258 static int set_ro(const char *val, struct kernel_param *kp)
8260 char *e;
8261 int num = simple_strtoul(val, &e, 10);
8262 if (*val && (*e == '\0' || *e == '\n')) {
8263 start_readonly = num;
8264 return 0;
8266 return -EINVAL;
8269 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8270 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8272 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8274 EXPORT_SYMBOL(register_md_personality);
8275 EXPORT_SYMBOL(unregister_md_personality);
8276 EXPORT_SYMBOL(md_error);
8277 EXPORT_SYMBOL(md_done_sync);
8278 EXPORT_SYMBOL(md_write_start);
8279 EXPORT_SYMBOL(md_write_end);
8280 EXPORT_SYMBOL(md_register_thread);
8281 EXPORT_SYMBOL(md_unregister_thread);
8282 EXPORT_SYMBOL(md_wakeup_thread);
8283 EXPORT_SYMBOL(md_check_recovery);
8284 MODULE_LICENSE("GPL");
8285 MODULE_DESCRIPTION("MD RAID framework");
8286 MODULE_ALIAS("md");
8287 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);