cgroup: make the mount options parsing more accurate
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / time / ntp.c
blobd2321891538f53425430565fe68197b5cde93d12
1 /*
2 * NTP state machine interfaces and logic.
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
19 * NTP timekeeping variables:
22 /* USER_HZ period (usecs): */
23 unsigned long tick_usec = TICK_USEC;
25 /* ACTHZ period (nsecs): */
26 unsigned long tick_nsec;
28 u64 tick_length;
29 static u64 tick_length_base;
31 static struct hrtimer leap_timer;
33 #define MAX_TICKADJ 500LL /* usecs */
34 #define MAX_TICKADJ_SCALED \
35 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
38 * phase-lock loop variables
42 * clock synchronization status
44 * (TIME_ERROR prevents overwriting the CMOS clock)
46 static int time_state = TIME_OK;
48 /* clock status bits: */
49 int time_status = STA_UNSYNC;
51 /* TAI offset (secs): */
52 static long time_tai;
54 /* time adjustment (nsecs): */
55 static s64 time_offset;
57 /* pll time constant: */
58 static long time_constant = 2;
60 /* maximum error (usecs): */
61 static long time_maxerror = NTP_PHASE_LIMIT;
63 /* estimated error (usecs): */
64 static long time_esterror = NTP_PHASE_LIMIT;
66 /* frequency offset (scaled nsecs/secs): */
67 static s64 time_freq;
69 /* time at last adjustment (secs): */
70 static long time_reftime;
72 static long time_adjust;
74 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
75 static s64 ntp_tick_adj;
78 * NTP methods:
82 * Update (tick_length, tick_length_base, tick_nsec), based
83 * on (tick_usec, ntp_tick_adj, time_freq):
85 static void ntp_update_frequency(void)
87 u64 second_length;
88 u64 new_base;
90 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
91 << NTP_SCALE_SHIFT;
93 second_length += ntp_tick_adj;
94 second_length += time_freq;
96 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
97 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
100 * Don't wait for the next second_overflow, apply
101 * the change to the tick length immediately:
103 tick_length += new_base - tick_length_base;
104 tick_length_base = new_base;
107 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
109 time_status &= ~STA_MODE;
111 if (secs < MINSEC)
112 return 0;
114 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
115 return 0;
117 time_status |= STA_MODE;
119 return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
122 static void ntp_update_offset(long offset)
124 s64 freq_adj;
125 s64 offset64;
126 long secs;
128 if (!(time_status & STA_PLL))
129 return;
131 if (!(time_status & STA_NANO))
132 offset *= NSEC_PER_USEC;
135 * Scale the phase adjustment and
136 * clamp to the operating range.
138 offset = min(offset, MAXPHASE);
139 offset = max(offset, -MAXPHASE);
142 * Select how the frequency is to be controlled
143 * and in which mode (PLL or FLL).
145 secs = get_seconds() - time_reftime;
146 if (unlikely(time_status & STA_FREQHOLD))
147 secs = 0;
149 time_reftime = get_seconds();
151 offset64 = offset;
152 freq_adj = ntp_update_offset_fll(offset64, secs);
155 * Clamp update interval to reduce PLL gain with low
156 * sampling rate (e.g. intermittent network connection)
157 * to avoid instability.
159 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
160 secs = 1 << (SHIFT_PLL + 1 + time_constant);
162 freq_adj += (offset64 * secs) <<
163 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
165 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
167 time_freq = max(freq_adj, -MAXFREQ_SCALED);
169 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
173 * ntp_clear - Clears the NTP state variables
175 * Must be called while holding a write on the xtime_lock
177 void ntp_clear(void)
179 time_adjust = 0; /* stop active adjtime() */
180 time_status |= STA_UNSYNC;
181 time_maxerror = NTP_PHASE_LIMIT;
182 time_esterror = NTP_PHASE_LIMIT;
184 ntp_update_frequency();
186 tick_length = tick_length_base;
187 time_offset = 0;
191 * Leap second processing. If in leap-insert state at the end of the
192 * day, the system clock is set back one second; if in leap-delete
193 * state, the system clock is set ahead one second.
195 static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
197 enum hrtimer_restart res = HRTIMER_NORESTART;
199 write_seqlock(&xtime_lock);
201 switch (time_state) {
202 case TIME_OK:
203 break;
204 case TIME_INS:
205 timekeeping_leap_insert(-1);
206 time_state = TIME_OOP;
207 printk(KERN_NOTICE
208 "Clock: inserting leap second 23:59:60 UTC\n");
209 hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
210 res = HRTIMER_RESTART;
211 break;
212 case TIME_DEL:
213 timekeeping_leap_insert(1);
214 time_tai--;
215 time_state = TIME_WAIT;
216 printk(KERN_NOTICE
217 "Clock: deleting leap second 23:59:59 UTC\n");
218 break;
219 case TIME_OOP:
220 time_tai++;
221 time_state = TIME_WAIT;
222 /* fall through */
223 case TIME_WAIT:
224 if (!(time_status & (STA_INS | STA_DEL)))
225 time_state = TIME_OK;
226 break;
229 write_sequnlock(&xtime_lock);
231 return res;
235 * this routine handles the overflow of the microsecond field
237 * The tricky bits of code to handle the accurate clock support
238 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
239 * They were originally developed for SUN and DEC kernels.
240 * All the kudos should go to Dave for this stuff.
242 void second_overflow(void)
244 s64 delta;
246 /* Bump the maxerror field */
247 time_maxerror += MAXFREQ / NSEC_PER_USEC;
248 if (time_maxerror > NTP_PHASE_LIMIT) {
249 time_maxerror = NTP_PHASE_LIMIT;
250 time_status |= STA_UNSYNC;
254 * Compute the phase adjustment for the next second. The offset is
255 * reduced by a fixed factor times the time constant.
257 tick_length = tick_length_base;
259 delta = shift_right(time_offset, SHIFT_PLL + time_constant);
260 time_offset -= delta;
261 tick_length += delta;
263 if (!time_adjust)
264 return;
266 if (time_adjust > MAX_TICKADJ) {
267 time_adjust -= MAX_TICKADJ;
268 tick_length += MAX_TICKADJ_SCALED;
269 return;
272 if (time_adjust < -MAX_TICKADJ) {
273 time_adjust += MAX_TICKADJ;
274 tick_length -= MAX_TICKADJ_SCALED;
275 return;
278 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
279 << NTP_SCALE_SHIFT;
280 time_adjust = 0;
283 #ifdef CONFIG_GENERIC_CMOS_UPDATE
285 /* Disable the cmos update - used by virtualization and embedded */
286 int no_sync_cmos_clock __read_mostly;
288 static void sync_cmos_clock(struct work_struct *work);
290 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
292 static void sync_cmos_clock(struct work_struct *work)
294 struct timespec now, next;
295 int fail = 1;
298 * If we have an externally synchronized Linux clock, then update
299 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
300 * called as close as possible to 500 ms before the new second starts.
301 * This code is run on a timer. If the clock is set, that timer
302 * may not expire at the correct time. Thus, we adjust...
304 if (!ntp_synced()) {
306 * Not synced, exit, do not restart a timer (if one is
307 * running, let it run out).
309 return;
312 getnstimeofday(&now);
313 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
314 fail = update_persistent_clock(now);
316 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
317 if (next.tv_nsec <= 0)
318 next.tv_nsec += NSEC_PER_SEC;
320 if (!fail)
321 next.tv_sec = 659;
322 else
323 next.tv_sec = 0;
325 if (next.tv_nsec >= NSEC_PER_SEC) {
326 next.tv_sec++;
327 next.tv_nsec -= NSEC_PER_SEC;
329 schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
332 static void notify_cmos_timer(void)
334 if (!no_sync_cmos_clock)
335 schedule_delayed_work(&sync_cmos_work, 0);
338 #else
339 static inline void notify_cmos_timer(void) { }
340 #endif
343 * Start the leap seconds timer:
345 static inline void ntp_start_leap_timer(struct timespec *ts)
347 long now = ts->tv_sec;
349 if (time_status & STA_INS) {
350 time_state = TIME_INS;
351 now += 86400 - now % 86400;
352 hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
354 return;
357 if (time_status & STA_DEL) {
358 time_state = TIME_DEL;
359 now += 86400 - (now + 1) % 86400;
360 hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
365 * Propagate a new txc->status value into the NTP state:
367 static inline void process_adj_status(struct timex *txc, struct timespec *ts)
369 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
370 time_state = TIME_OK;
371 time_status = STA_UNSYNC;
375 * If we turn on PLL adjustments then reset the
376 * reference time to current time.
378 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
379 time_reftime = get_seconds();
381 /* only set allowed bits */
382 time_status &= STA_RONLY;
383 time_status |= txc->status & ~STA_RONLY;
385 switch (time_state) {
386 case TIME_OK:
387 ntp_start_leap_timer(ts);
388 break;
389 case TIME_INS:
390 case TIME_DEL:
391 time_state = TIME_OK;
392 ntp_start_leap_timer(ts);
393 case TIME_WAIT:
394 if (!(time_status & (STA_INS | STA_DEL)))
395 time_state = TIME_OK;
396 break;
397 case TIME_OOP:
398 hrtimer_restart(&leap_timer);
399 break;
403 * Called with the xtime lock held, so we can access and modify
404 * all the global NTP state:
406 static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
408 if (txc->modes & ADJ_STATUS)
409 process_adj_status(txc, ts);
411 if (txc->modes & ADJ_NANO)
412 time_status |= STA_NANO;
414 if (txc->modes & ADJ_MICRO)
415 time_status &= ~STA_NANO;
417 if (txc->modes & ADJ_FREQUENCY) {
418 time_freq = txc->freq * PPM_SCALE;
419 time_freq = min(time_freq, MAXFREQ_SCALED);
420 time_freq = max(time_freq, -MAXFREQ_SCALED);
423 if (txc->modes & ADJ_MAXERROR)
424 time_maxerror = txc->maxerror;
426 if (txc->modes & ADJ_ESTERROR)
427 time_esterror = txc->esterror;
429 if (txc->modes & ADJ_TIMECONST) {
430 time_constant = txc->constant;
431 if (!(time_status & STA_NANO))
432 time_constant += 4;
433 time_constant = min(time_constant, (long)MAXTC);
434 time_constant = max(time_constant, 0l);
437 if (txc->modes & ADJ_TAI && txc->constant > 0)
438 time_tai = txc->constant;
440 if (txc->modes & ADJ_OFFSET)
441 ntp_update_offset(txc->offset);
443 if (txc->modes & ADJ_TICK)
444 tick_usec = txc->tick;
446 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
447 ntp_update_frequency();
451 * adjtimex mainly allows reading (and writing, if superuser) of
452 * kernel time-keeping variables. used by xntpd.
454 int do_adjtimex(struct timex *txc)
456 struct timespec ts;
457 int result;
459 /* Validate the data before disabling interrupts */
460 if (txc->modes & ADJ_ADJTIME) {
461 /* singleshot must not be used with any other mode bits */
462 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
463 return -EINVAL;
464 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
465 !capable(CAP_SYS_TIME))
466 return -EPERM;
467 } else {
468 /* In order to modify anything, you gotta be super-user! */
469 if (txc->modes && !capable(CAP_SYS_TIME))
470 return -EPERM;
473 * if the quartz is off by more than 10% then
474 * something is VERY wrong!
476 if (txc->modes & ADJ_TICK &&
477 (txc->tick < 900000/USER_HZ ||
478 txc->tick > 1100000/USER_HZ))
479 return -EINVAL;
481 if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
482 hrtimer_cancel(&leap_timer);
485 getnstimeofday(&ts);
487 write_seqlock_irq(&xtime_lock);
489 if (txc->modes & ADJ_ADJTIME) {
490 long save_adjust = time_adjust;
492 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
493 /* adjtime() is independent from ntp_adjtime() */
494 time_adjust = txc->offset;
495 ntp_update_frequency();
497 txc->offset = save_adjust;
498 } else {
500 /* If there are input parameters, then process them: */
501 if (txc->modes)
502 process_adjtimex_modes(txc, &ts);
504 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
505 NTP_SCALE_SHIFT);
506 if (!(time_status & STA_NANO))
507 txc->offset /= NSEC_PER_USEC;
510 result = time_state; /* mostly `TIME_OK' */
511 if (time_status & (STA_UNSYNC|STA_CLOCKERR))
512 result = TIME_ERROR;
514 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
515 PPM_SCALE_INV, NTP_SCALE_SHIFT);
516 txc->maxerror = time_maxerror;
517 txc->esterror = time_esterror;
518 txc->status = time_status;
519 txc->constant = time_constant;
520 txc->precision = 1;
521 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
522 txc->tick = tick_usec;
523 txc->tai = time_tai;
525 /* PPS is not implemented, so these are zero */
526 txc->ppsfreq = 0;
527 txc->jitter = 0;
528 txc->shift = 0;
529 txc->stabil = 0;
530 txc->jitcnt = 0;
531 txc->calcnt = 0;
532 txc->errcnt = 0;
533 txc->stbcnt = 0;
535 write_sequnlock_irq(&xtime_lock);
537 txc->time.tv_sec = ts.tv_sec;
538 txc->time.tv_usec = ts.tv_nsec;
539 if (!(time_status & STA_NANO))
540 txc->time.tv_usec /= NSEC_PER_USEC;
542 notify_cmos_timer();
544 return result;
547 static int __init ntp_tick_adj_setup(char *str)
549 ntp_tick_adj = simple_strtol(str, NULL, 0);
550 ntp_tick_adj <<= NTP_SCALE_SHIFT;
552 return 1;
555 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
557 void __init ntp_init(void)
559 ntp_clear();
560 hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
561 leap_timer.function = ntp_leap_second;