[PATCH] powerpc: Fix mem= cmdline handling on arch/powerpc for !MULTIPLATFORM
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / kernel / prom.c
blob6dbd21726770c2b02524126593cb8111f945c00c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
16 #undef DEBUG
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32 #include <linux/kexec.h>
34 #include <asm/prom.h>
35 #include <asm/rtas.h>
36 #include <asm/lmb.h>
37 #include <asm/page.h>
38 #include <asm/processor.h>
39 #include <asm/irq.h>
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/smp.h>
43 #include <asm/system.h>
44 #include <asm/mmu.h>
45 #include <asm/pgtable.h>
46 #include <asm/pci.h>
47 #include <asm/iommu.h>
48 #include <asm/btext.h>
49 #include <asm/sections.h>
50 #include <asm/machdep.h>
51 #include <asm/pSeries_reconfig.h>
52 #include <asm/pci-bridge.h>
54 #ifdef DEBUG
55 #define DBG(fmt...) printk(KERN_ERR fmt)
56 #else
57 #define DBG(fmt...)
58 #endif
61 static int __initdata dt_root_addr_cells;
62 static int __initdata dt_root_size_cells;
64 #ifdef CONFIG_PPC64
65 static int __initdata iommu_is_off;
66 int __initdata iommu_force_on;
67 unsigned long tce_alloc_start, tce_alloc_end;
68 #endif
70 typedef u32 cell_t;
72 #if 0
73 static struct boot_param_header *initial_boot_params __initdata;
74 #else
75 struct boot_param_header *initial_boot_params;
76 #endif
78 static struct device_node *allnodes = NULL;
80 /* use when traversing tree through the allnext, child, sibling,
81 * or parent members of struct device_node.
83 static DEFINE_RWLOCK(devtree_lock);
85 /* export that to outside world */
86 struct device_node *of_chosen;
88 struct device_node *dflt_interrupt_controller;
89 int num_interrupt_controllers;
92 * Wrapper for allocating memory for various data that needs to be
93 * attached to device nodes as they are processed at boot or when
94 * added to the device tree later (e.g. DLPAR). At boot there is
95 * already a region reserved so we just increment *mem_start by size;
96 * otherwise we call kmalloc.
98 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
100 unsigned long tmp;
102 if (!mem_start)
103 return kmalloc(size, GFP_KERNEL);
105 tmp = *mem_start;
106 *mem_start += size;
107 return (void *)tmp;
111 * Find the device_node with a given phandle.
113 static struct device_node * find_phandle(phandle ph)
115 struct device_node *np;
117 for (np = allnodes; np != 0; np = np->allnext)
118 if (np->linux_phandle == ph)
119 return np;
120 return NULL;
124 * Find the interrupt parent of a node.
126 static struct device_node * __devinit intr_parent(struct device_node *p)
128 phandle *parp;
130 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
131 if (parp == NULL)
132 return p->parent;
133 p = find_phandle(*parp);
134 if (p != NULL)
135 return p;
137 * On a powermac booted with BootX, we don't get to know the
138 * phandles for any nodes, so find_phandle will return NULL.
139 * Fortunately these machines only have one interrupt controller
140 * so there isn't in fact any ambiguity. -- paulus
142 if (num_interrupt_controllers == 1)
143 p = dflt_interrupt_controller;
144 return p;
148 * Find out the size of each entry of the interrupts property
149 * for a node.
151 int __devinit prom_n_intr_cells(struct device_node *np)
153 struct device_node *p;
154 unsigned int *icp;
156 for (p = np; (p = intr_parent(p)) != NULL; ) {
157 icp = (unsigned int *)
158 get_property(p, "#interrupt-cells", NULL);
159 if (icp != NULL)
160 return *icp;
161 if (get_property(p, "interrupt-controller", NULL) != NULL
162 || get_property(p, "interrupt-map", NULL) != NULL) {
163 printk("oops, node %s doesn't have #interrupt-cells\n",
164 p->full_name);
165 return 1;
168 #ifdef DEBUG_IRQ
169 printk("prom_n_intr_cells failed for %s\n", np->full_name);
170 #endif
171 return 1;
175 * Map an interrupt from a device up to the platform interrupt
176 * descriptor.
178 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
179 struct device_node *np, unsigned int *ints,
180 int nintrc)
182 struct device_node *p, *ipar;
183 unsigned int *imap, *imask, *ip;
184 int i, imaplen, match;
185 int newintrc = 0, newaddrc = 0;
186 unsigned int *reg;
187 int naddrc;
189 reg = (unsigned int *) get_property(np, "reg", NULL);
190 naddrc = prom_n_addr_cells(np);
191 p = intr_parent(np);
192 while (p != NULL) {
193 if (get_property(p, "interrupt-controller", NULL) != NULL)
194 /* this node is an interrupt controller, stop here */
195 break;
196 imap = (unsigned int *)
197 get_property(p, "interrupt-map", &imaplen);
198 if (imap == NULL) {
199 p = intr_parent(p);
200 continue;
202 imask = (unsigned int *)
203 get_property(p, "interrupt-map-mask", NULL);
204 if (imask == NULL) {
205 printk("oops, %s has interrupt-map but no mask\n",
206 p->full_name);
207 return 0;
209 imaplen /= sizeof(unsigned int);
210 match = 0;
211 ipar = NULL;
212 while (imaplen > 0 && !match) {
213 /* check the child-interrupt field */
214 match = 1;
215 for (i = 0; i < naddrc && match; ++i)
216 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
217 for (; i < naddrc + nintrc && match; ++i)
218 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
219 imap += naddrc + nintrc;
220 imaplen -= naddrc + nintrc;
221 /* grab the interrupt parent */
222 ipar = find_phandle((phandle) *imap++);
223 --imaplen;
224 if (ipar == NULL && num_interrupt_controllers == 1)
225 /* cope with BootX not giving us phandles */
226 ipar = dflt_interrupt_controller;
227 if (ipar == NULL) {
228 printk("oops, no int parent %x in map of %s\n",
229 imap[-1], p->full_name);
230 return 0;
232 /* find the parent's # addr and intr cells */
233 ip = (unsigned int *)
234 get_property(ipar, "#interrupt-cells", NULL);
235 if (ip == NULL) {
236 printk("oops, no #interrupt-cells on %s\n",
237 ipar->full_name);
238 return 0;
240 newintrc = *ip;
241 ip = (unsigned int *)
242 get_property(ipar, "#address-cells", NULL);
243 newaddrc = (ip == NULL)? 0: *ip;
244 imap += newaddrc + newintrc;
245 imaplen -= newaddrc + newintrc;
247 if (imaplen < 0) {
248 printk("oops, error decoding int-map on %s, len=%d\n",
249 p->full_name, imaplen);
250 return 0;
252 if (!match) {
253 #ifdef DEBUG_IRQ
254 printk("oops, no match in %s int-map for %s\n",
255 p->full_name, np->full_name);
256 #endif
257 return 0;
259 p = ipar;
260 naddrc = newaddrc;
261 nintrc = newintrc;
262 ints = imap - nintrc;
263 reg = ints - naddrc;
265 if (p == NULL) {
266 #ifdef DEBUG_IRQ
267 printk("hmmm, int tree for %s doesn't have ctrler\n",
268 np->full_name);
269 #endif
270 return 0;
272 *irq = ints;
273 *ictrler = p;
274 return nintrc;
277 static unsigned char map_isa_senses[4] = {
278 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
279 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
280 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
281 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE
284 static unsigned char map_mpic_senses[4] = {
285 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE,
286 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
287 /* 2 seems to be used for the 8259 cascade... */
288 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
289 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
292 static int __devinit finish_node_interrupts(struct device_node *np,
293 unsigned long *mem_start,
294 int measure_only)
296 unsigned int *ints;
297 int intlen, intrcells, intrcount;
298 int i, j, n, sense;
299 unsigned int *irq, virq;
300 struct device_node *ic;
301 int trace = 0;
303 //#define TRACE(fmt...) do { if (trace) { printk(fmt); mdelay(1000); } } while(0)
304 #define TRACE(fmt...)
306 if (!strcmp(np->name, "smu-doorbell"))
307 trace = 1;
309 TRACE("Finishing SMU doorbell ! num_interrupt_controllers = %d\n",
310 num_interrupt_controllers);
312 if (num_interrupt_controllers == 0) {
314 * Old machines just have a list of interrupt numbers
315 * and no interrupt-controller nodes.
317 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
318 &intlen);
319 /* XXX old interpret_pci_props looked in parent too */
320 /* XXX old interpret_macio_props looked for interrupts
321 before AAPL,interrupts */
322 if (ints == NULL)
323 ints = (unsigned int *) get_property(np, "interrupts",
324 &intlen);
325 if (ints == NULL)
326 return 0;
328 np->n_intrs = intlen / sizeof(unsigned int);
329 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
330 mem_start);
331 if (!np->intrs)
332 return -ENOMEM;
333 if (measure_only)
334 return 0;
336 for (i = 0; i < np->n_intrs; ++i) {
337 np->intrs[i].line = *ints++;
338 np->intrs[i].sense = IRQ_SENSE_LEVEL
339 | IRQ_POLARITY_NEGATIVE;
341 return 0;
344 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
345 TRACE("ints=%p, intlen=%d\n", ints, intlen);
346 if (ints == NULL)
347 return 0;
348 intrcells = prom_n_intr_cells(np);
349 intlen /= intrcells * sizeof(unsigned int);
350 TRACE("intrcells=%d, new intlen=%d\n", intrcells, intlen);
351 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
352 if (!np->intrs)
353 return -ENOMEM;
355 if (measure_only)
356 return 0;
358 intrcount = 0;
359 for (i = 0; i < intlen; ++i, ints += intrcells) {
360 n = map_interrupt(&irq, &ic, np, ints, intrcells);
361 TRACE("map, irq=%d, ic=%p, n=%d\n", irq, ic, n);
362 if (n <= 0)
363 continue;
365 /* don't map IRQ numbers under a cascaded 8259 controller */
366 if (ic && device_is_compatible(ic, "chrp,iic")) {
367 np->intrs[intrcount].line = irq[0];
368 sense = (n > 1)? (irq[1] & 3): 3;
369 np->intrs[intrcount].sense = map_isa_senses[sense];
370 } else {
371 virq = virt_irq_create_mapping(irq[0]);
372 TRACE("virq=%d\n", virq);
373 #ifdef CONFIG_PPC64
374 if (virq == NO_IRQ) {
375 printk(KERN_CRIT "Could not allocate interrupt"
376 " number for %s\n", np->full_name);
377 continue;
379 #endif
380 np->intrs[intrcount].line = irq_offset_up(virq);
381 sense = (n > 1)? (irq[1] & 3): 1;
383 /* Apple uses bits in there in a different way, let's
384 * only keep the real sense bit on macs
386 if (_machine == PLATFORM_POWERMAC)
387 sense &= 0x1;
388 np->intrs[intrcount].sense = map_mpic_senses[sense];
391 #ifdef CONFIG_PPC64
392 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
393 if (_machine == PLATFORM_POWERMAC && ic && ic->parent) {
394 char *name = get_property(ic->parent, "name", NULL);
395 if (name && !strcmp(name, "u3"))
396 np->intrs[intrcount].line += 128;
397 else if (!(name && (!strcmp(name, "mac-io") ||
398 !strcmp(name, "u4"))))
399 /* ignore other cascaded controllers, such as
400 the k2-sata-root */
401 break;
403 #endif /* CONFIG_PPC64 */
404 if (n > 2) {
405 printk("hmmm, got %d intr cells for %s:", n,
406 np->full_name);
407 for (j = 0; j < n; ++j)
408 printk(" %d", irq[j]);
409 printk("\n");
411 ++intrcount;
413 np->n_intrs = intrcount;
415 return 0;
418 static int __devinit finish_node(struct device_node *np,
419 unsigned long *mem_start,
420 int measure_only)
422 struct device_node *child;
423 int rc = 0;
425 rc = finish_node_interrupts(np, mem_start, measure_only);
426 if (rc)
427 goto out;
429 for (child = np->child; child != NULL; child = child->sibling) {
430 rc = finish_node(child, mem_start, measure_only);
431 if (rc)
432 goto out;
434 out:
435 return rc;
438 static void __init scan_interrupt_controllers(void)
440 struct device_node *np;
441 int n = 0;
442 char *name, *ic;
443 int iclen;
445 for (np = allnodes; np != NULL; np = np->allnext) {
446 ic = get_property(np, "interrupt-controller", &iclen);
447 name = get_property(np, "name", NULL);
448 /* checking iclen makes sure we don't get a false
449 match on /chosen.interrupt_controller */
450 if ((name != NULL
451 && strcmp(name, "interrupt-controller") == 0)
452 || (ic != NULL && iclen == 0
453 && strcmp(name, "AppleKiwi"))) {
454 if (n == 0)
455 dflt_interrupt_controller = np;
456 ++n;
459 num_interrupt_controllers = n;
463 * finish_device_tree is called once things are running normally
464 * (i.e. with text and data mapped to the address they were linked at).
465 * It traverses the device tree and fills in some of the additional,
466 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
467 * mapping is also initialized at this point.
469 void __init finish_device_tree(void)
471 unsigned long start, end, size = 0;
473 DBG(" -> finish_device_tree\n");
475 #ifdef CONFIG_PPC64
476 /* Initialize virtual IRQ map */
477 virt_irq_init();
478 #endif
479 scan_interrupt_controllers();
482 * Finish device-tree (pre-parsing some properties etc...)
483 * We do this in 2 passes. One with "measure_only" set, which
484 * will only measure the amount of memory needed, then we can
485 * allocate that memory, and call finish_node again. However,
486 * we must be careful as most routines will fail nowadays when
487 * prom_alloc() returns 0, so we must make sure our first pass
488 * doesn't start at 0. We pre-initialize size to 16 for that
489 * reason and then remove those additional 16 bytes
491 size = 16;
492 finish_node(allnodes, &size, 1);
493 size -= 16;
495 if (0 == size)
496 end = start = 0;
497 else
498 end = start = (unsigned long)__va(lmb_alloc(size, 128));
500 finish_node(allnodes, &end, 0);
501 BUG_ON(end != start + size);
503 DBG(" <- finish_device_tree\n");
506 static inline char *find_flat_dt_string(u32 offset)
508 return ((char *)initial_boot_params) +
509 initial_boot_params->off_dt_strings + offset;
513 * This function is used to scan the flattened device-tree, it is
514 * used to extract the memory informations at boot before we can
515 * unflatten the tree
517 int __init of_scan_flat_dt(int (*it)(unsigned long node,
518 const char *uname, int depth,
519 void *data),
520 void *data)
522 unsigned long p = ((unsigned long)initial_boot_params) +
523 initial_boot_params->off_dt_struct;
524 int rc = 0;
525 int depth = -1;
527 do {
528 u32 tag = *((u32 *)p);
529 char *pathp;
531 p += 4;
532 if (tag == OF_DT_END_NODE) {
533 depth --;
534 continue;
536 if (tag == OF_DT_NOP)
537 continue;
538 if (tag == OF_DT_END)
539 break;
540 if (tag == OF_DT_PROP) {
541 u32 sz = *((u32 *)p);
542 p += 8;
543 if (initial_boot_params->version < 0x10)
544 p = _ALIGN(p, sz >= 8 ? 8 : 4);
545 p += sz;
546 p = _ALIGN(p, 4);
547 continue;
549 if (tag != OF_DT_BEGIN_NODE) {
550 printk(KERN_WARNING "Invalid tag %x scanning flattened"
551 " device tree !\n", tag);
552 return -EINVAL;
554 depth++;
555 pathp = (char *)p;
556 p = _ALIGN(p + strlen(pathp) + 1, 4);
557 if ((*pathp) == '/') {
558 char *lp, *np;
559 for (lp = NULL, np = pathp; *np; np++)
560 if ((*np) == '/')
561 lp = np+1;
562 if (lp != NULL)
563 pathp = lp;
565 rc = it(p, pathp, depth, data);
566 if (rc != 0)
567 break;
568 } while(1);
570 return rc;
574 * This function can be used within scan_flattened_dt callback to get
575 * access to properties
577 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
578 unsigned long *size)
580 unsigned long p = node;
582 do {
583 u32 tag = *((u32 *)p);
584 u32 sz, noff;
585 const char *nstr;
587 p += 4;
588 if (tag == OF_DT_NOP)
589 continue;
590 if (tag != OF_DT_PROP)
591 return NULL;
593 sz = *((u32 *)p);
594 noff = *((u32 *)(p + 4));
595 p += 8;
596 if (initial_boot_params->version < 0x10)
597 p = _ALIGN(p, sz >= 8 ? 8 : 4);
599 nstr = find_flat_dt_string(noff);
600 if (nstr == NULL) {
601 printk(KERN_WARNING "Can't find property index"
602 " name !\n");
603 return NULL;
605 if (strcmp(name, nstr) == 0) {
606 if (size)
607 *size = sz;
608 return (void *)p;
610 p += sz;
611 p = _ALIGN(p, 4);
612 } while(1);
615 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
616 unsigned long align)
618 void *res;
620 *mem = _ALIGN(*mem, align);
621 res = (void *)*mem;
622 *mem += size;
624 return res;
627 static unsigned long __init unflatten_dt_node(unsigned long mem,
628 unsigned long *p,
629 struct device_node *dad,
630 struct device_node ***allnextpp,
631 unsigned long fpsize)
633 struct device_node *np;
634 struct property *pp, **prev_pp = NULL;
635 char *pathp;
636 u32 tag;
637 unsigned int l, allocl;
638 int has_name = 0;
639 int new_format = 0;
641 tag = *((u32 *)(*p));
642 if (tag != OF_DT_BEGIN_NODE) {
643 printk("Weird tag at start of node: %x\n", tag);
644 return mem;
646 *p += 4;
647 pathp = (char *)*p;
648 l = allocl = strlen(pathp) + 1;
649 *p = _ALIGN(*p + l, 4);
651 /* version 0x10 has a more compact unit name here instead of the full
652 * path. we accumulate the full path size using "fpsize", we'll rebuild
653 * it later. We detect this because the first character of the name is
654 * not '/'.
656 if ((*pathp) != '/') {
657 new_format = 1;
658 if (fpsize == 0) {
659 /* root node: special case. fpsize accounts for path
660 * plus terminating zero. root node only has '/', so
661 * fpsize should be 2, but we want to avoid the first
662 * level nodes to have two '/' so we use fpsize 1 here
664 fpsize = 1;
665 allocl = 2;
666 } else {
667 /* account for '/' and path size minus terminal 0
668 * already in 'l'
670 fpsize += l;
671 allocl = fpsize;
676 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
677 __alignof__(struct device_node));
678 if (allnextpp) {
679 memset(np, 0, sizeof(*np));
680 np->full_name = ((char*)np) + sizeof(struct device_node);
681 if (new_format) {
682 char *p = np->full_name;
683 /* rebuild full path for new format */
684 if (dad && dad->parent) {
685 strcpy(p, dad->full_name);
686 #ifdef DEBUG
687 if ((strlen(p) + l + 1) != allocl) {
688 DBG("%s: p: %d, l: %d, a: %d\n",
689 pathp, strlen(p), l, allocl);
691 #endif
692 p += strlen(p);
694 *(p++) = '/';
695 memcpy(p, pathp, l);
696 } else
697 memcpy(np->full_name, pathp, l);
698 prev_pp = &np->properties;
699 **allnextpp = np;
700 *allnextpp = &np->allnext;
701 if (dad != NULL) {
702 np->parent = dad;
703 /* we temporarily use the next field as `last_child'*/
704 if (dad->next == 0)
705 dad->child = np;
706 else
707 dad->next->sibling = np;
708 dad->next = np;
710 kref_init(&np->kref);
712 while(1) {
713 u32 sz, noff;
714 char *pname;
716 tag = *((u32 *)(*p));
717 if (tag == OF_DT_NOP) {
718 *p += 4;
719 continue;
721 if (tag != OF_DT_PROP)
722 break;
723 *p += 4;
724 sz = *((u32 *)(*p));
725 noff = *((u32 *)((*p) + 4));
726 *p += 8;
727 if (initial_boot_params->version < 0x10)
728 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
730 pname = find_flat_dt_string(noff);
731 if (pname == NULL) {
732 printk("Can't find property name in list !\n");
733 break;
735 if (strcmp(pname, "name") == 0)
736 has_name = 1;
737 l = strlen(pname) + 1;
738 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
739 __alignof__(struct property));
740 if (allnextpp) {
741 if (strcmp(pname, "linux,phandle") == 0) {
742 np->node = *((u32 *)*p);
743 if (np->linux_phandle == 0)
744 np->linux_phandle = np->node;
746 if (strcmp(pname, "ibm,phandle") == 0)
747 np->linux_phandle = *((u32 *)*p);
748 pp->name = pname;
749 pp->length = sz;
750 pp->value = (void *)*p;
751 *prev_pp = pp;
752 prev_pp = &pp->next;
754 *p = _ALIGN((*p) + sz, 4);
756 /* with version 0x10 we may not have the name property, recreate
757 * it here from the unit name if absent
759 if (!has_name) {
760 char *p = pathp, *ps = pathp, *pa = NULL;
761 int sz;
763 while (*p) {
764 if ((*p) == '@')
765 pa = p;
766 if ((*p) == '/')
767 ps = p + 1;
768 p++;
770 if (pa < ps)
771 pa = p;
772 sz = (pa - ps) + 1;
773 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
774 __alignof__(struct property));
775 if (allnextpp) {
776 pp->name = "name";
777 pp->length = sz;
778 pp->value = (unsigned char *)(pp + 1);
779 *prev_pp = pp;
780 prev_pp = &pp->next;
781 memcpy(pp->value, ps, sz - 1);
782 ((char *)pp->value)[sz - 1] = 0;
783 DBG("fixed up name for %s -> %s\n", pathp, pp->value);
786 if (allnextpp) {
787 *prev_pp = NULL;
788 np->name = get_property(np, "name", NULL);
789 np->type = get_property(np, "device_type", NULL);
791 if (!np->name)
792 np->name = "<NULL>";
793 if (!np->type)
794 np->type = "<NULL>";
796 while (tag == OF_DT_BEGIN_NODE) {
797 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
798 tag = *((u32 *)(*p));
800 if (tag != OF_DT_END_NODE) {
801 printk("Weird tag at end of node: %x\n", tag);
802 return mem;
804 *p += 4;
805 return mem;
810 * unflattens the device-tree passed by the firmware, creating the
811 * tree of struct device_node. It also fills the "name" and "type"
812 * pointers of the nodes so the normal device-tree walking functions
813 * can be used (this used to be done by finish_device_tree)
815 void __init unflatten_device_tree(void)
817 unsigned long start, mem, size;
818 struct device_node **allnextp = &allnodes;
820 DBG(" -> unflatten_device_tree()\n");
822 /* First pass, scan for size */
823 start = ((unsigned long)initial_boot_params) +
824 initial_boot_params->off_dt_struct;
825 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
826 size = (size | 3) + 1;
828 DBG(" size is %lx, allocating...\n", size);
830 /* Allocate memory for the expanded device tree */
831 mem = lmb_alloc(size + 4, __alignof__(struct device_node));
832 if (!mem) {
833 DBG("Couldn't allocate memory with lmb_alloc()!\n");
834 panic("Couldn't allocate memory with lmb_alloc()!\n");
836 mem = (unsigned long) __va(mem);
838 ((u32 *)mem)[size / 4] = 0xdeadbeef;
840 DBG(" unflattening %lx...\n", mem);
842 /* Second pass, do actual unflattening */
843 start = ((unsigned long)initial_boot_params) +
844 initial_boot_params->off_dt_struct;
845 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
846 if (*((u32 *)start) != OF_DT_END)
847 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
848 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
849 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
850 ((u32 *)mem)[size / 4] );
851 *allnextp = NULL;
853 /* Get pointer to OF "/chosen" node for use everywhere */
854 of_chosen = of_find_node_by_path("/chosen");
855 if (of_chosen == NULL)
856 of_chosen = of_find_node_by_path("/chosen@0");
858 DBG(" <- unflatten_device_tree()\n");
862 static int __init early_init_dt_scan_cpus(unsigned long node,
863 const char *uname, int depth, void *data)
865 u32 *prop;
866 unsigned long size;
867 char *type = of_get_flat_dt_prop(node, "device_type", &size);
869 /* We are scanning "cpu" nodes only */
870 if (type == NULL || strcmp(type, "cpu") != 0)
871 return 0;
873 boot_cpuid = 0;
874 boot_cpuid_phys = 0;
875 if (initial_boot_params && initial_boot_params->version >= 2) {
876 /* version 2 of the kexec param format adds the phys cpuid
877 * of booted proc.
879 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
880 } else {
881 /* Check if it's the boot-cpu, set it's hw index now */
882 if (of_get_flat_dt_prop(node,
883 "linux,boot-cpu", NULL) != NULL) {
884 prop = of_get_flat_dt_prop(node, "reg", NULL);
885 if (prop != NULL)
886 boot_cpuid_phys = *prop;
889 set_hard_smp_processor_id(0, boot_cpuid_phys);
891 #ifdef CONFIG_ALTIVEC
892 /* Check if we have a VMX and eventually update CPU features */
893 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
894 if (prop && (*prop) > 0) {
895 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
896 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
899 /* Same goes for Apple's "altivec" property */
900 prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
901 if (prop) {
902 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
903 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
905 #endif /* CONFIG_ALTIVEC */
907 #ifdef CONFIG_PPC_PSERIES
909 * Check for an SMT capable CPU and set the CPU feature. We do
910 * this by looking at the size of the ibm,ppc-interrupt-server#s
911 * property
913 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
914 &size);
915 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
916 if (prop && ((size / sizeof(u32)) > 1))
917 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
918 #endif
920 return 0;
923 static int __init early_init_dt_scan_chosen(unsigned long node,
924 const char *uname, int depth, void *data)
926 u32 *prop;
927 unsigned long *lprop;
928 unsigned long l;
929 char *p;
931 DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
933 if (depth != 1 ||
934 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
935 return 0;
937 /* get platform type */
938 prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
939 if (prop == NULL)
940 return 0;
941 #ifdef CONFIG_PPC_MULTIPLATFORM
942 _machine = *prop;
943 #endif
945 #ifdef CONFIG_PPC64
946 /* check if iommu is forced on or off */
947 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
948 iommu_is_off = 1;
949 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
950 iommu_force_on = 1;
951 #endif
953 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
954 if (lprop)
955 memory_limit = *lprop;
957 #ifdef CONFIG_PPC64
958 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
959 if (lprop)
960 tce_alloc_start = *lprop;
961 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
962 if (lprop)
963 tce_alloc_end = *lprop;
964 #endif
966 #ifdef CONFIG_PPC_RTAS
967 /* To help early debugging via the front panel, we retrieve a minimal
968 * set of RTAS infos now if available
971 u64 *basep, *entryp;
973 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
974 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
975 prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
976 if (basep && entryp && prop) {
977 rtas.base = *basep;
978 rtas.entry = *entryp;
979 rtas.size = *prop;
982 #endif /* CONFIG_PPC_RTAS */
984 #ifdef CONFIG_KEXEC
985 lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
986 if (lprop)
987 crashk_res.start = *lprop;
989 lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
990 if (lprop)
991 crashk_res.end = crashk_res.start + *lprop - 1;
992 #endif
994 /* Retreive command line */
995 p = of_get_flat_dt_prop(node, "bootargs", &l);
996 if (p != NULL && l > 0)
997 strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE));
999 #ifdef CONFIG_CMDLINE
1000 if (l == 0 || (l == 1 && (*p) == 0))
1001 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1002 #endif /* CONFIG_CMDLINE */
1004 DBG("Command line is: %s\n", cmd_line);
1006 if (strstr(cmd_line, "mem=")) {
1007 char *p, *q;
1008 unsigned long maxmem = 0;
1010 for (q = cmd_line; (p = strstr(q, "mem=")) != 0; ) {
1011 q = p + 4;
1012 if (p > cmd_line && p[-1] != ' ')
1013 continue;
1014 maxmem = simple_strtoul(q, &q, 0);
1015 if (*q == 'k' || *q == 'K') {
1016 maxmem <<= 10;
1017 ++q;
1018 } else if (*q == 'm' || *q == 'M') {
1019 maxmem <<= 20;
1020 ++q;
1021 } else if (*q == 'g' || *q == 'G') {
1022 maxmem <<= 30;
1023 ++q;
1026 memory_limit = maxmem;
1029 /* break now */
1030 return 1;
1033 static int __init early_init_dt_scan_root(unsigned long node,
1034 const char *uname, int depth, void *data)
1036 u32 *prop;
1038 if (depth != 0)
1039 return 0;
1041 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1042 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1043 DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1045 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1046 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1047 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1049 /* break now */
1050 return 1;
1053 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1055 cell_t *p = *cellp;
1056 unsigned long r;
1058 /* Ignore more than 2 cells */
1059 while (s > sizeof(unsigned long) / 4) {
1060 p++;
1061 s--;
1063 r = *p++;
1064 #ifdef CONFIG_PPC64
1065 if (s > 1) {
1066 r <<= 32;
1067 r |= *(p++);
1068 s--;
1070 #endif
1072 *cellp = p;
1073 return r;
1077 static int __init early_init_dt_scan_memory(unsigned long node,
1078 const char *uname, int depth, void *data)
1080 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1081 cell_t *reg, *endp;
1082 unsigned long l;
1084 /* We are scanning "memory" nodes only */
1085 if (type == NULL) {
1087 * The longtrail doesn't have a device_type on the
1088 * /memory node, so look for the node called /memory@0.
1090 if (depth != 1 || strcmp(uname, "memory@0") != 0)
1091 return 0;
1092 } else if (strcmp(type, "memory") != 0)
1093 return 0;
1095 reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1096 if (reg == NULL)
1097 reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
1098 if (reg == NULL)
1099 return 0;
1101 endp = reg + (l / sizeof(cell_t));
1103 DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
1104 uname, l, reg[0], reg[1], reg[2], reg[3]);
1106 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1107 unsigned long base, size;
1109 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1110 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1112 if (size == 0)
1113 continue;
1114 DBG(" - %lx , %lx\n", base, size);
1115 #ifdef CONFIG_PPC64
1116 if (iommu_is_off) {
1117 if (base >= 0x80000000ul)
1118 continue;
1119 if ((base + size) > 0x80000000ul)
1120 size = 0x80000000ul - base;
1122 #endif
1123 lmb_add(base, size);
1125 return 0;
1128 static void __init early_reserve_mem(void)
1130 u64 base, size;
1131 u64 *reserve_map;
1133 reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
1134 initial_boot_params->off_mem_rsvmap);
1135 #ifdef CONFIG_PPC32
1137 * Handle the case where we might be booting from an old kexec
1138 * image that setup the mem_rsvmap as pairs of 32-bit values
1140 if (*reserve_map > 0xffffffffull) {
1141 u32 base_32, size_32;
1142 u32 *reserve_map_32 = (u32 *)reserve_map;
1144 while (1) {
1145 base_32 = *(reserve_map_32++);
1146 size_32 = *(reserve_map_32++);
1147 if (size_32 == 0)
1148 break;
1149 DBG("reserving: %x -> %x\n", base_32, size_32);
1150 lmb_reserve(base_32, size_32);
1152 return;
1154 #endif
1155 while (1) {
1156 base = *(reserve_map++);
1157 size = *(reserve_map++);
1158 if (size == 0)
1159 break;
1160 DBG("reserving: %llx -> %llx\n", base, size);
1161 lmb_reserve(base, size);
1164 #if 0
1165 DBG("memory reserved, lmbs :\n");
1166 lmb_dump_all();
1167 #endif
1170 void __init early_init_devtree(void *params)
1172 DBG(" -> early_init_devtree()\n");
1174 /* Setup flat device-tree pointer */
1175 initial_boot_params = params;
1177 /* Retrieve various informations from the /chosen node of the
1178 * device-tree, including the platform type, initrd location and
1179 * size, TCE reserve, and more ...
1181 of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1183 /* Scan memory nodes and rebuild LMBs */
1184 lmb_init();
1185 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1186 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1187 lmb_enforce_memory_limit(memory_limit);
1188 lmb_analyze();
1190 DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1192 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1193 lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1194 #ifdef CONFIG_CRASH_DUMP
1195 lmb_reserve(0, KDUMP_RESERVE_LIMIT);
1196 #endif
1197 early_reserve_mem();
1199 DBG("Scanning CPUs ...\n");
1201 /* Retreive CPU related informations from the flat tree
1202 * (altivec support, boot CPU ID, ...)
1204 of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1206 DBG(" <- early_init_devtree()\n");
1209 #undef printk
1212 prom_n_addr_cells(struct device_node* np)
1214 int* ip;
1215 do {
1216 if (np->parent)
1217 np = np->parent;
1218 ip = (int *) get_property(np, "#address-cells", NULL);
1219 if (ip != NULL)
1220 return *ip;
1221 } while (np->parent);
1222 /* No #address-cells property for the root node, default to 1 */
1223 return 1;
1225 EXPORT_SYMBOL(prom_n_addr_cells);
1228 prom_n_size_cells(struct device_node* np)
1230 int* ip;
1231 do {
1232 if (np->parent)
1233 np = np->parent;
1234 ip = (int *) get_property(np, "#size-cells", NULL);
1235 if (ip != NULL)
1236 return *ip;
1237 } while (np->parent);
1238 /* No #size-cells property for the root node, default to 1 */
1239 return 1;
1241 EXPORT_SYMBOL(prom_n_size_cells);
1244 * Work out the sense (active-low level / active-high edge)
1245 * of each interrupt from the device tree.
1247 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1249 struct device_node *np;
1250 int i, j;
1252 /* default to level-triggered */
1253 memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1255 for (np = allnodes; np != 0; np = np->allnext) {
1256 for (j = 0; j < np->n_intrs; j++) {
1257 i = np->intrs[j].line;
1258 if (i >= off && i < max)
1259 senses[i-off] = np->intrs[j].sense;
1265 * Construct and return a list of the device_nodes with a given name.
1267 struct device_node *find_devices(const char *name)
1269 struct device_node *head, **prevp, *np;
1271 prevp = &head;
1272 for (np = allnodes; np != 0; np = np->allnext) {
1273 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1274 *prevp = np;
1275 prevp = &np->next;
1278 *prevp = NULL;
1279 return head;
1281 EXPORT_SYMBOL(find_devices);
1284 * Construct and return a list of the device_nodes with a given type.
1286 struct device_node *find_type_devices(const char *type)
1288 struct device_node *head, **prevp, *np;
1290 prevp = &head;
1291 for (np = allnodes; np != 0; np = np->allnext) {
1292 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1293 *prevp = np;
1294 prevp = &np->next;
1297 *prevp = NULL;
1298 return head;
1300 EXPORT_SYMBOL(find_type_devices);
1303 * Returns all nodes linked together
1305 struct device_node *find_all_nodes(void)
1307 struct device_node *head, **prevp, *np;
1309 prevp = &head;
1310 for (np = allnodes; np != 0; np = np->allnext) {
1311 *prevp = np;
1312 prevp = &np->next;
1314 *prevp = NULL;
1315 return head;
1317 EXPORT_SYMBOL(find_all_nodes);
1319 /** Checks if the given "compat" string matches one of the strings in
1320 * the device's "compatible" property
1322 int device_is_compatible(struct device_node *device, const char *compat)
1324 const char* cp;
1325 int cplen, l;
1327 cp = (char *) get_property(device, "compatible", &cplen);
1328 if (cp == NULL)
1329 return 0;
1330 while (cplen > 0) {
1331 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1332 return 1;
1333 l = strlen(cp) + 1;
1334 cp += l;
1335 cplen -= l;
1338 return 0;
1340 EXPORT_SYMBOL(device_is_compatible);
1344 * Indicates whether the root node has a given value in its
1345 * compatible property.
1347 int machine_is_compatible(const char *compat)
1349 struct device_node *root;
1350 int rc = 0;
1352 root = of_find_node_by_path("/");
1353 if (root) {
1354 rc = device_is_compatible(root, compat);
1355 of_node_put(root);
1357 return rc;
1359 EXPORT_SYMBOL(machine_is_compatible);
1362 * Construct and return a list of the device_nodes with a given type
1363 * and compatible property.
1365 struct device_node *find_compatible_devices(const char *type,
1366 const char *compat)
1368 struct device_node *head, **prevp, *np;
1370 prevp = &head;
1371 for (np = allnodes; np != 0; np = np->allnext) {
1372 if (type != NULL
1373 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1374 continue;
1375 if (device_is_compatible(np, compat)) {
1376 *prevp = np;
1377 prevp = &np->next;
1380 *prevp = NULL;
1381 return head;
1383 EXPORT_SYMBOL(find_compatible_devices);
1386 * Find the device_node with a given full_name.
1388 struct device_node *find_path_device(const char *path)
1390 struct device_node *np;
1392 for (np = allnodes; np != 0; np = np->allnext)
1393 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1394 return np;
1395 return NULL;
1397 EXPORT_SYMBOL(find_path_device);
1399 /*******
1401 * New implementation of the OF "find" APIs, return a refcounted
1402 * object, call of_node_put() when done. The device tree and list
1403 * are protected by a rw_lock.
1405 * Note that property management will need some locking as well,
1406 * this isn't dealt with yet.
1408 *******/
1411 * of_find_node_by_name - Find a node by its "name" property
1412 * @from: The node to start searching from or NULL, the node
1413 * you pass will not be searched, only the next one
1414 * will; typically, you pass what the previous call
1415 * returned. of_node_put() will be called on it
1416 * @name: The name string to match against
1418 * Returns a node pointer with refcount incremented, use
1419 * of_node_put() on it when done.
1421 struct device_node *of_find_node_by_name(struct device_node *from,
1422 const char *name)
1424 struct device_node *np;
1426 read_lock(&devtree_lock);
1427 np = from ? from->allnext : allnodes;
1428 for (; np != NULL; np = np->allnext)
1429 if (np->name != NULL && strcasecmp(np->name, name) == 0
1430 && of_node_get(np))
1431 break;
1432 if (from)
1433 of_node_put(from);
1434 read_unlock(&devtree_lock);
1435 return np;
1437 EXPORT_SYMBOL(of_find_node_by_name);
1440 * of_find_node_by_type - Find a node by its "device_type" property
1441 * @from: The node to start searching from or NULL, the node
1442 * you pass will not be searched, only the next one
1443 * will; typically, you pass what the previous call
1444 * returned. of_node_put() will be called on it
1445 * @name: The type string to match against
1447 * Returns a node pointer with refcount incremented, use
1448 * of_node_put() on it when done.
1450 struct device_node *of_find_node_by_type(struct device_node *from,
1451 const char *type)
1453 struct device_node *np;
1455 read_lock(&devtree_lock);
1456 np = from ? from->allnext : allnodes;
1457 for (; np != 0; np = np->allnext)
1458 if (np->type != 0 && strcasecmp(np->type, type) == 0
1459 && of_node_get(np))
1460 break;
1461 if (from)
1462 of_node_put(from);
1463 read_unlock(&devtree_lock);
1464 return np;
1466 EXPORT_SYMBOL(of_find_node_by_type);
1469 * of_find_compatible_node - Find a node based on type and one of the
1470 * tokens in its "compatible" property
1471 * @from: The node to start searching from or NULL, the node
1472 * you pass will not be searched, only the next one
1473 * will; typically, you pass what the previous call
1474 * returned. of_node_put() will be called on it
1475 * @type: The type string to match "device_type" or NULL to ignore
1476 * @compatible: The string to match to one of the tokens in the device
1477 * "compatible" list.
1479 * Returns a node pointer with refcount incremented, use
1480 * of_node_put() on it when done.
1482 struct device_node *of_find_compatible_node(struct device_node *from,
1483 const char *type, const char *compatible)
1485 struct device_node *np;
1487 read_lock(&devtree_lock);
1488 np = from ? from->allnext : allnodes;
1489 for (; np != 0; np = np->allnext) {
1490 if (type != NULL
1491 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1492 continue;
1493 if (device_is_compatible(np, compatible) && of_node_get(np))
1494 break;
1496 if (from)
1497 of_node_put(from);
1498 read_unlock(&devtree_lock);
1499 return np;
1501 EXPORT_SYMBOL(of_find_compatible_node);
1504 * of_find_node_by_path - Find a node matching a full OF path
1505 * @path: The full path to match
1507 * Returns a node pointer with refcount incremented, use
1508 * of_node_put() on it when done.
1510 struct device_node *of_find_node_by_path(const char *path)
1512 struct device_node *np = allnodes;
1514 read_lock(&devtree_lock);
1515 for (; np != 0; np = np->allnext) {
1516 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1517 && of_node_get(np))
1518 break;
1520 read_unlock(&devtree_lock);
1521 return np;
1523 EXPORT_SYMBOL(of_find_node_by_path);
1526 * of_find_node_by_phandle - Find a node given a phandle
1527 * @handle: phandle of the node to find
1529 * Returns a node pointer with refcount incremented, use
1530 * of_node_put() on it when done.
1532 struct device_node *of_find_node_by_phandle(phandle handle)
1534 struct device_node *np;
1536 read_lock(&devtree_lock);
1537 for (np = allnodes; np != 0; np = np->allnext)
1538 if (np->linux_phandle == handle)
1539 break;
1540 if (np)
1541 of_node_get(np);
1542 read_unlock(&devtree_lock);
1543 return np;
1545 EXPORT_SYMBOL(of_find_node_by_phandle);
1548 * of_find_all_nodes - Get next node in global list
1549 * @prev: Previous node or NULL to start iteration
1550 * of_node_put() will be called on it
1552 * Returns a node pointer with refcount incremented, use
1553 * of_node_put() on it when done.
1555 struct device_node *of_find_all_nodes(struct device_node *prev)
1557 struct device_node *np;
1559 read_lock(&devtree_lock);
1560 np = prev ? prev->allnext : allnodes;
1561 for (; np != 0; np = np->allnext)
1562 if (of_node_get(np))
1563 break;
1564 if (prev)
1565 of_node_put(prev);
1566 read_unlock(&devtree_lock);
1567 return np;
1569 EXPORT_SYMBOL(of_find_all_nodes);
1572 * of_get_parent - Get a node's parent if any
1573 * @node: Node to get parent
1575 * Returns a node pointer with refcount incremented, use
1576 * of_node_put() on it when done.
1578 struct device_node *of_get_parent(const struct device_node *node)
1580 struct device_node *np;
1582 if (!node)
1583 return NULL;
1585 read_lock(&devtree_lock);
1586 np = of_node_get(node->parent);
1587 read_unlock(&devtree_lock);
1588 return np;
1590 EXPORT_SYMBOL(of_get_parent);
1593 * of_get_next_child - Iterate a node childs
1594 * @node: parent node
1595 * @prev: previous child of the parent node, or NULL to get first
1597 * Returns a node pointer with refcount incremented, use
1598 * of_node_put() on it when done.
1600 struct device_node *of_get_next_child(const struct device_node *node,
1601 struct device_node *prev)
1603 struct device_node *next;
1605 read_lock(&devtree_lock);
1606 next = prev ? prev->sibling : node->child;
1607 for (; next != 0; next = next->sibling)
1608 if (of_node_get(next))
1609 break;
1610 if (prev)
1611 of_node_put(prev);
1612 read_unlock(&devtree_lock);
1613 return next;
1615 EXPORT_SYMBOL(of_get_next_child);
1618 * of_node_get - Increment refcount of a node
1619 * @node: Node to inc refcount, NULL is supported to
1620 * simplify writing of callers
1622 * Returns node.
1624 struct device_node *of_node_get(struct device_node *node)
1626 if (node)
1627 kref_get(&node->kref);
1628 return node;
1630 EXPORT_SYMBOL(of_node_get);
1632 static inline struct device_node * kref_to_device_node(struct kref *kref)
1634 return container_of(kref, struct device_node, kref);
1638 * of_node_release - release a dynamically allocated node
1639 * @kref: kref element of the node to be released
1641 * In of_node_put() this function is passed to kref_put()
1642 * as the destructor.
1644 static void of_node_release(struct kref *kref)
1646 struct device_node *node = kref_to_device_node(kref);
1647 struct property *prop = node->properties;
1649 if (!OF_IS_DYNAMIC(node))
1650 return;
1651 while (prop) {
1652 struct property *next = prop->next;
1653 kfree(prop->name);
1654 kfree(prop->value);
1655 kfree(prop);
1656 prop = next;
1658 if (!prop) {
1659 prop = node->deadprops;
1660 node->deadprops = NULL;
1663 kfree(node->intrs);
1664 kfree(node->full_name);
1665 kfree(node->data);
1666 kfree(node);
1670 * of_node_put - Decrement refcount of a node
1671 * @node: Node to dec refcount, NULL is supported to
1672 * simplify writing of callers
1675 void of_node_put(struct device_node *node)
1677 if (node)
1678 kref_put(&node->kref, of_node_release);
1680 EXPORT_SYMBOL(of_node_put);
1683 * Plug a device node into the tree and global list.
1685 void of_attach_node(struct device_node *np)
1687 write_lock(&devtree_lock);
1688 np->sibling = np->parent->child;
1689 np->allnext = allnodes;
1690 np->parent->child = np;
1691 allnodes = np;
1692 write_unlock(&devtree_lock);
1696 * "Unplug" a node from the device tree. The caller must hold
1697 * a reference to the node. The memory associated with the node
1698 * is not freed until its refcount goes to zero.
1700 void of_detach_node(const struct device_node *np)
1702 struct device_node *parent;
1704 write_lock(&devtree_lock);
1706 parent = np->parent;
1708 if (allnodes == np)
1709 allnodes = np->allnext;
1710 else {
1711 struct device_node *prev;
1712 for (prev = allnodes;
1713 prev->allnext != np;
1714 prev = prev->allnext)
1716 prev->allnext = np->allnext;
1719 if (parent->child == np)
1720 parent->child = np->sibling;
1721 else {
1722 struct device_node *prevsib;
1723 for (prevsib = np->parent->child;
1724 prevsib->sibling != np;
1725 prevsib = prevsib->sibling)
1727 prevsib->sibling = np->sibling;
1730 write_unlock(&devtree_lock);
1733 #ifdef CONFIG_PPC_PSERIES
1735 * Fix up the uninitialized fields in a new device node:
1736 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1738 * A lot of boot-time code is duplicated here, because functions such
1739 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1740 * slab allocator.
1742 * This should probably be split up into smaller chunks.
1745 static int of_finish_dynamic_node(struct device_node *node)
1747 struct device_node *parent = of_get_parent(node);
1748 int err = 0;
1749 phandle *ibm_phandle;
1751 node->name = get_property(node, "name", NULL);
1752 node->type = get_property(node, "device_type", NULL);
1754 if (!parent) {
1755 err = -ENODEV;
1756 goto out;
1759 /* We don't support that function on PowerMac, at least
1760 * not yet
1762 if (_machine == PLATFORM_POWERMAC)
1763 return -ENODEV;
1765 /* fix up new node's linux_phandle field */
1766 if ((ibm_phandle = (unsigned int *)get_property(node,
1767 "ibm,phandle", NULL)))
1768 node->linux_phandle = *ibm_phandle;
1770 out:
1771 of_node_put(parent);
1772 return err;
1775 static int prom_reconfig_notifier(struct notifier_block *nb,
1776 unsigned long action, void *node)
1778 int err;
1780 switch (action) {
1781 case PSERIES_RECONFIG_ADD:
1782 err = of_finish_dynamic_node(node);
1783 if (!err)
1784 finish_node(node, NULL, 0);
1785 if (err < 0) {
1786 printk(KERN_ERR "finish_node returned %d\n", err);
1787 err = NOTIFY_BAD;
1789 break;
1790 default:
1791 err = NOTIFY_DONE;
1792 break;
1794 return err;
1797 static struct notifier_block prom_reconfig_nb = {
1798 .notifier_call = prom_reconfig_notifier,
1799 .priority = 10, /* This one needs to run first */
1802 static int __init prom_reconfig_setup(void)
1804 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1806 __initcall(prom_reconfig_setup);
1807 #endif
1809 struct property *of_find_property(struct device_node *np, const char *name,
1810 int *lenp)
1812 struct property *pp;
1814 read_lock(&devtree_lock);
1815 for (pp = np->properties; pp != 0; pp = pp->next)
1816 if (strcmp(pp->name, name) == 0) {
1817 if (lenp != 0)
1818 *lenp = pp->length;
1819 break;
1821 read_unlock(&devtree_lock);
1823 return pp;
1827 * Find a property with a given name for a given node
1828 * and return the value.
1830 unsigned char *get_property(struct device_node *np, const char *name,
1831 int *lenp)
1833 struct property *pp = of_find_property(np,name,lenp);
1834 return pp ? pp->value : NULL;
1836 EXPORT_SYMBOL(get_property);
1839 * Add a property to a node
1841 int prom_add_property(struct device_node* np, struct property* prop)
1843 struct property **next;
1845 prop->next = NULL;
1846 write_lock(&devtree_lock);
1847 next = &np->properties;
1848 while (*next) {
1849 if (strcmp(prop->name, (*next)->name) == 0) {
1850 /* duplicate ! don't insert it */
1851 write_unlock(&devtree_lock);
1852 return -1;
1854 next = &(*next)->next;
1856 *next = prop;
1857 write_unlock(&devtree_lock);
1859 #ifdef CONFIG_PROC_DEVICETREE
1860 /* try to add to proc as well if it was initialized */
1861 if (np->pde)
1862 proc_device_tree_add_prop(np->pde, prop);
1863 #endif /* CONFIG_PROC_DEVICETREE */
1865 return 0;
1869 * Remove a property from a node. Note that we don't actually
1870 * remove it, since we have given out who-knows-how-many pointers
1871 * to the data using get-property. Instead we just move the property
1872 * to the "dead properties" list, so it won't be found any more.
1874 int prom_remove_property(struct device_node *np, struct property *prop)
1876 struct property **next;
1877 int found = 0;
1879 write_lock(&devtree_lock);
1880 next = &np->properties;
1881 while (*next) {
1882 if (*next == prop) {
1883 /* found the node */
1884 *next = prop->next;
1885 prop->next = np->deadprops;
1886 np->deadprops = prop;
1887 found = 1;
1888 break;
1890 next = &(*next)->next;
1892 write_unlock(&devtree_lock);
1894 if (!found)
1895 return -ENODEV;
1897 #ifdef CONFIG_PROC_DEVICETREE
1898 /* try to remove the proc node as well */
1899 if (np->pde)
1900 proc_device_tree_remove_prop(np->pde, prop);
1901 #endif /* CONFIG_PROC_DEVICETREE */
1903 return 0;
1907 * Update a property in a node. Note that we don't actually
1908 * remove it, since we have given out who-knows-how-many pointers
1909 * to the data using get-property. Instead we just move the property
1910 * to the "dead properties" list, and add the new property to the
1911 * property list
1913 int prom_update_property(struct device_node *np,
1914 struct property *newprop,
1915 struct property *oldprop)
1917 struct property **next;
1918 int found = 0;
1920 write_lock(&devtree_lock);
1921 next = &np->properties;
1922 while (*next) {
1923 if (*next == oldprop) {
1924 /* found the node */
1925 newprop->next = oldprop->next;
1926 *next = newprop;
1927 oldprop->next = np->deadprops;
1928 np->deadprops = oldprop;
1929 found = 1;
1930 break;
1932 next = &(*next)->next;
1934 write_unlock(&devtree_lock);
1936 if (!found)
1937 return -ENODEV;
1939 #ifdef CONFIG_PROC_DEVICETREE
1940 /* try to add to proc as well if it was initialized */
1941 if (np->pde)
1942 proc_device_tree_update_prop(np->pde, newprop, oldprop);
1943 #endif /* CONFIG_PROC_DEVICETREE */
1945 return 0;
1948 #ifdef CONFIG_KEXEC
1949 /* We may have allocated the flat device tree inside the crash kernel region
1950 * in prom_init. If so we need to move it out into regular memory. */
1951 void kdump_move_device_tree(void)
1953 unsigned long start, end;
1954 struct boot_param_header *new;
1956 start = __pa((unsigned long)initial_boot_params);
1957 end = start + initial_boot_params->totalsize;
1959 if (end < crashk_res.start || start > crashk_res.end)
1960 return;
1962 new = (struct boot_param_header*)
1963 __va(lmb_alloc(initial_boot_params->totalsize, PAGE_SIZE));
1965 memcpy(new, initial_boot_params, initial_boot_params->totalsize);
1967 initial_boot_params = new;
1969 DBG("Flat device tree blob moved to %p\n", initial_boot_params);
1971 /* XXX should we unreserve the old DT? */
1973 #endif /* CONFIG_KEXEC */