2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
10 #include <linux/init.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/smp_lock.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/sysctl.h>
20 #include <asm/pgalloc.h>
22 #include <asm/tlbflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/machdep.h>
25 #include <asm/cputable.h>
28 #include <linux/sysctl.h>
30 #define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT)
31 #define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT)
33 /* Modelled after find_linux_pte() */
34 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
41 BUG_ON(! in_hugepage_area(mm
->context
, addr
));
45 pg
= pgd_offset(mm
, addr
);
47 pu
= pud_offset(pg
, addr
);
49 pm
= pmd_offset(pu
, addr
);
50 #ifdef CONFIG_PPC_64K_PAGES
51 /* Currently, we use the normal PTE offset within full
52 * size PTE pages, thus our huge PTEs are scattered in
53 * the PTE page and we do waste some. We may change
54 * that in the future, but the current mecanism keeps
58 /* Note: pte_offset_* are all equivalent on
59 * ppc64 as we don't have HIGHMEM
61 pt
= pte_offset_kernel(pm
, addr
);
64 #else /* CONFIG_PPC_64K_PAGES */
65 /* On 4k pages, we put huge PTEs in the PMD page */
68 #endif /* CONFIG_PPC_64K_PAGES */
75 pte_t
*huge_pte_alloc(struct mm_struct
*mm
, unsigned long addr
)
82 BUG_ON(! in_hugepage_area(mm
->context
, addr
));
86 pg
= pgd_offset(mm
, addr
);
87 pu
= pud_alloc(mm
, pg
, addr
);
90 pm
= pmd_alloc(mm
, pu
, addr
);
92 #ifdef CONFIG_PPC_64K_PAGES
93 /* See comment in huge_pte_offset. Note that if we ever
94 * want to put the page size in the PMD, we would have
95 * to open code our own pte_alloc* function in order
96 * to populate and set the size atomically
98 pt
= pte_alloc_map(mm
, pm
, addr
);
99 #else /* CONFIG_PPC_64K_PAGES */
101 #endif /* CONFIG_PPC_64K_PAGES */
109 void set_huge_pte_at(struct mm_struct
*mm
, unsigned long addr
,
110 pte_t
*ptep
, pte_t pte
)
112 if (pte_present(*ptep
)) {
113 /* We open-code pte_clear because we need to pass the right
114 * argument to hpte_update (huge / !huge)
116 unsigned long old
= pte_update(ptep
, ~0UL);
117 if (old
& _PAGE_HASHPTE
)
118 hpte_update(mm
, addr
& HPAGE_MASK
, ptep
, old
, 1);
121 *ptep
= __pte(pte_val(pte
) & ~_PAGE_HPTEFLAGS
);
124 pte_t
huge_ptep_get_and_clear(struct mm_struct
*mm
, unsigned long addr
,
127 unsigned long old
= pte_update(ptep
, ~0UL);
129 if (old
& _PAGE_HASHPTE
)
130 hpte_update(mm
, addr
& HPAGE_MASK
, ptep
, old
, 1);
137 * This function checks for proper alignment of input addr and len parameters.
139 int is_aligned_hugepage_range(unsigned long addr
, unsigned long len
)
141 if (len
& ~HPAGE_MASK
)
143 if (addr
& ~HPAGE_MASK
)
145 if (! (within_hugepage_low_range(addr
, len
)
146 || within_hugepage_high_range(addr
, len
)) )
151 static void flush_low_segments(void *parm
)
153 u16 areas
= (unsigned long) parm
;
156 asm volatile("isync" : : : "memory");
158 BUILD_BUG_ON((sizeof(areas
)*8) != NUM_LOW_AREAS
);
160 for (i
= 0; i
< NUM_LOW_AREAS
; i
++) {
161 if (! (areas
& (1U << i
)))
163 asm volatile("slbie %0"
164 : : "r" ((i
<< SID_SHIFT
) | SLBIE_C
));
167 asm volatile("isync" : : : "memory");
170 static void flush_high_segments(void *parm
)
172 u16 areas
= (unsigned long) parm
;
175 asm volatile("isync" : : : "memory");
177 BUILD_BUG_ON((sizeof(areas
)*8) != NUM_HIGH_AREAS
);
179 for (i
= 0; i
< NUM_HIGH_AREAS
; i
++) {
180 if (! (areas
& (1U << i
)))
182 for (j
= 0; j
< (1UL << (HTLB_AREA_SHIFT
-SID_SHIFT
)); j
++)
183 asm volatile("slbie %0"
184 :: "r" (((i
<< HTLB_AREA_SHIFT
)
185 + (j
<< SID_SHIFT
)) | SLBIE_C
));
188 asm volatile("isync" : : : "memory");
191 static int prepare_low_area_for_htlb(struct mm_struct
*mm
, unsigned long area
)
193 unsigned long start
= area
<< SID_SHIFT
;
194 unsigned long end
= (area
+1) << SID_SHIFT
;
195 struct vm_area_struct
*vma
;
197 BUG_ON(area
>= NUM_LOW_AREAS
);
199 /* Check no VMAs are in the region */
200 vma
= find_vma(mm
, start
);
201 if (vma
&& (vma
->vm_start
< end
))
207 static int prepare_high_area_for_htlb(struct mm_struct
*mm
, unsigned long area
)
209 unsigned long start
= area
<< HTLB_AREA_SHIFT
;
210 unsigned long end
= (area
+1) << HTLB_AREA_SHIFT
;
211 struct vm_area_struct
*vma
;
213 BUG_ON(area
>= NUM_HIGH_AREAS
);
215 /* Hack, so that each addresses is controlled by exactly one
216 * of the high or low area bitmaps, the first high area starts
219 start
= 0x100000000UL
;
221 /* Check no VMAs are in the region */
222 vma
= find_vma(mm
, start
);
223 if (vma
&& (vma
->vm_start
< end
))
229 static int open_low_hpage_areas(struct mm_struct
*mm
, u16 newareas
)
233 BUILD_BUG_ON((sizeof(newareas
)*8) != NUM_LOW_AREAS
);
234 BUILD_BUG_ON((sizeof(mm
->context
.low_htlb_areas
)*8) != NUM_LOW_AREAS
);
236 newareas
&= ~(mm
->context
.low_htlb_areas
);
238 return 0; /* The segments we want are already open */
240 for (i
= 0; i
< NUM_LOW_AREAS
; i
++)
241 if ((1 << i
) & newareas
)
242 if (prepare_low_area_for_htlb(mm
, i
) != 0)
245 mm
->context
.low_htlb_areas
|= newareas
;
247 /* update the paca copy of the context struct */
248 get_paca()->context
= mm
->context
;
250 /* the context change must make it to memory before the flush,
251 * so that further SLB misses do the right thing. */
253 on_each_cpu(flush_low_segments
, (void *)(unsigned long)newareas
, 0, 1);
258 static int open_high_hpage_areas(struct mm_struct
*mm
, u16 newareas
)
262 BUILD_BUG_ON((sizeof(newareas
)*8) != NUM_HIGH_AREAS
);
263 BUILD_BUG_ON((sizeof(mm
->context
.high_htlb_areas
)*8)
266 newareas
&= ~(mm
->context
.high_htlb_areas
);
268 return 0; /* The areas we want are already open */
270 for (i
= 0; i
< NUM_HIGH_AREAS
; i
++)
271 if ((1 << i
) & newareas
)
272 if (prepare_high_area_for_htlb(mm
, i
) != 0)
275 mm
->context
.high_htlb_areas
|= newareas
;
277 /* update the paca copy of the context struct */
278 get_paca()->context
= mm
->context
;
280 /* the context change must make it to memory before the flush,
281 * so that further SLB misses do the right thing. */
283 on_each_cpu(flush_high_segments
, (void *)(unsigned long)newareas
, 0, 1);
288 int prepare_hugepage_range(unsigned long addr
, unsigned long len
)
292 if ( (addr
+len
) < addr
)
295 if (addr
< 0x100000000UL
)
296 err
= open_low_hpage_areas(current
->mm
,
297 LOW_ESID_MASK(addr
, len
));
298 if ((addr
+ len
) > 0x100000000UL
)
299 err
= open_high_hpage_areas(current
->mm
,
300 HTLB_AREA_MASK(addr
, len
));
302 printk(KERN_DEBUG
"prepare_hugepage_range(%lx, %lx)"
303 " failed (lowmask: 0x%04hx, highmask: 0x%04hx)\n",
305 LOW_ESID_MASK(addr
, len
), HTLB_AREA_MASK(addr
, len
));
313 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
, int write
)
318 if (! in_hugepage_area(mm
->context
, address
))
319 return ERR_PTR(-EINVAL
);
321 ptep
= huge_pte_offset(mm
, address
);
322 page
= pte_page(*ptep
);
324 page
+= (address
% HPAGE_SIZE
) / PAGE_SIZE
;
329 int pmd_huge(pmd_t pmd
)
335 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
336 pmd_t
*pmd
, int write
)
342 /* Because we have an exclusive hugepage region which lies within the
343 * normal user address space, we have to take special measures to make
344 * non-huge mmap()s evade the hugepage reserved regions. */
345 unsigned long arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
346 unsigned long len
, unsigned long pgoff
,
349 struct mm_struct
*mm
= current
->mm
;
350 struct vm_area_struct
*vma
;
351 unsigned long start_addr
;
357 addr
= PAGE_ALIGN(addr
);
358 vma
= find_vma(mm
, addr
);
359 if (((TASK_SIZE
- len
) >= addr
)
360 && (!vma
|| (addr
+len
) <= vma
->vm_start
)
361 && !is_hugepage_only_range(mm
, addr
,len
))
364 if (len
> mm
->cached_hole_size
) {
365 start_addr
= addr
= mm
->free_area_cache
;
367 start_addr
= addr
= TASK_UNMAPPED_BASE
;
368 mm
->cached_hole_size
= 0;
372 vma
= find_vma(mm
, addr
);
373 while (TASK_SIZE
- len
>= addr
) {
374 BUG_ON(vma
&& (addr
>= vma
->vm_end
));
376 if (touches_hugepage_low_range(mm
, addr
, len
)) {
377 addr
= ALIGN(addr
+1, 1<<SID_SHIFT
);
378 vma
= find_vma(mm
, addr
);
381 if (touches_hugepage_high_range(mm
, addr
, len
)) {
382 addr
= ALIGN(addr
+1, 1UL<<HTLB_AREA_SHIFT
);
383 vma
= find_vma(mm
, addr
);
386 if (!vma
|| addr
+ len
<= vma
->vm_start
) {
388 * Remember the place where we stopped the search:
390 mm
->free_area_cache
= addr
+ len
;
393 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
394 mm
->cached_hole_size
= vma
->vm_start
- addr
;
399 /* Make sure we didn't miss any holes */
400 if (start_addr
!= TASK_UNMAPPED_BASE
) {
401 start_addr
= addr
= TASK_UNMAPPED_BASE
;
402 mm
->cached_hole_size
= 0;
409 * This mmap-allocator allocates new areas top-down from below the
410 * stack's low limit (the base):
412 * Because we have an exclusive hugepage region which lies within the
413 * normal user address space, we have to take special measures to make
414 * non-huge mmap()s evade the hugepage reserved regions.
417 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
418 const unsigned long len
, const unsigned long pgoff
,
419 const unsigned long flags
)
421 struct vm_area_struct
*vma
, *prev_vma
;
422 struct mm_struct
*mm
= current
->mm
;
423 unsigned long base
= mm
->mmap_base
, addr
= addr0
;
424 unsigned long largest_hole
= mm
->cached_hole_size
;
427 /* requested length too big for entire address space */
431 /* dont allow allocations above current base */
432 if (mm
->free_area_cache
> base
)
433 mm
->free_area_cache
= base
;
435 /* requesting a specific address */
437 addr
= PAGE_ALIGN(addr
);
438 vma
= find_vma(mm
, addr
);
439 if (TASK_SIZE
- len
>= addr
&&
440 (!vma
|| addr
+ len
<= vma
->vm_start
)
441 && !is_hugepage_only_range(mm
, addr
,len
))
445 if (len
<= largest_hole
) {
447 mm
->free_area_cache
= base
;
450 /* make sure it can fit in the remaining address space */
451 if (mm
->free_area_cache
< len
)
454 /* either no address requested or cant fit in requested address hole */
455 addr
= (mm
->free_area_cache
- len
) & PAGE_MASK
;
458 if (touches_hugepage_low_range(mm
, addr
, len
)) {
459 addr
= (addr
& ((~0) << SID_SHIFT
)) - len
;
460 goto hugepage_recheck
;
461 } else if (touches_hugepage_high_range(mm
, addr
, len
)) {
462 addr
= (addr
& ((~0UL) << HTLB_AREA_SHIFT
)) - len
;
463 goto hugepage_recheck
;
467 * Lookup failure means no vma is above this address,
468 * i.e. return with success:
470 if (!(vma
= find_vma_prev(mm
, addr
, &prev_vma
)))
474 * new region fits between prev_vma->vm_end and
475 * vma->vm_start, use it:
477 if (addr
+len
<= vma
->vm_start
&&
478 (!prev_vma
|| (addr
>= prev_vma
->vm_end
))) {
479 /* remember the address as a hint for next time */
480 mm
->cached_hole_size
= largest_hole
;
481 return (mm
->free_area_cache
= addr
);
483 /* pull free_area_cache down to the first hole */
484 if (mm
->free_area_cache
== vma
->vm_end
) {
485 mm
->free_area_cache
= vma
->vm_start
;
486 mm
->cached_hole_size
= largest_hole
;
490 /* remember the largest hole we saw so far */
491 if (addr
+ largest_hole
< vma
->vm_start
)
492 largest_hole
= vma
->vm_start
- addr
;
494 /* try just below the current vma->vm_start */
495 addr
= vma
->vm_start
-len
;
496 } while (len
<= vma
->vm_start
);
500 * if hint left us with no space for the requested
501 * mapping then try again:
504 mm
->free_area_cache
= base
;
510 * A failed mmap() very likely causes application failure,
511 * so fall back to the bottom-up function here. This scenario
512 * can happen with large stack limits and large mmap()
515 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
516 mm
->cached_hole_size
= ~0UL;
517 addr
= arch_get_unmapped_area(filp
, addr0
, len
, pgoff
, flags
);
519 * Restore the topdown base:
521 mm
->free_area_cache
= base
;
522 mm
->cached_hole_size
= ~0UL;
527 static unsigned long htlb_get_low_area(unsigned long len
, u16 segmask
)
529 unsigned long addr
= 0;
530 struct vm_area_struct
*vma
;
532 vma
= find_vma(current
->mm
, addr
);
533 while (addr
+ len
<= 0x100000000UL
) {
534 BUG_ON(vma
&& (addr
>= vma
->vm_end
)); /* invariant */
536 if (! __within_hugepage_low_range(addr
, len
, segmask
)) {
537 addr
= ALIGN(addr
+1, 1<<SID_SHIFT
);
538 vma
= find_vma(current
->mm
, addr
);
542 if (!vma
|| (addr
+ len
) <= vma
->vm_start
)
544 addr
= ALIGN(vma
->vm_end
, HPAGE_SIZE
);
545 /* Depending on segmask this might not be a confirmed
546 * hugepage region, so the ALIGN could have skipped
548 vma
= find_vma(current
->mm
, addr
);
554 static unsigned long htlb_get_high_area(unsigned long len
, u16 areamask
)
556 unsigned long addr
= 0x100000000UL
;
557 struct vm_area_struct
*vma
;
559 vma
= find_vma(current
->mm
, addr
);
560 while (addr
+ len
<= TASK_SIZE_USER64
) {
561 BUG_ON(vma
&& (addr
>= vma
->vm_end
)); /* invariant */
563 if (! __within_hugepage_high_range(addr
, len
, areamask
)) {
564 addr
= ALIGN(addr
+1, 1UL<<HTLB_AREA_SHIFT
);
565 vma
= find_vma(current
->mm
, addr
);
569 if (!vma
|| (addr
+ len
) <= vma
->vm_start
)
571 addr
= ALIGN(vma
->vm_end
, HPAGE_SIZE
);
572 /* Depending on segmask this might not be a confirmed
573 * hugepage region, so the ALIGN could have skipped
575 vma
= find_vma(current
->mm
, addr
);
581 unsigned long hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
582 unsigned long len
, unsigned long pgoff
,
586 u16 areamask
, curareas
;
588 if (HPAGE_SHIFT
== 0)
590 if (len
& ~HPAGE_MASK
)
593 if (!cpu_has_feature(CPU_FTR_16M_PAGE
))
596 if (test_thread_flag(TIF_32BIT
)) {
597 curareas
= current
->mm
->context
.low_htlb_areas
;
599 /* First see if we can do the mapping in the existing
601 addr
= htlb_get_low_area(len
, curareas
);
606 for (areamask
= LOW_ESID_MASK(0x100000000UL
-len
, len
);
607 ! lastshift
; areamask
>>=1) {
611 addr
= htlb_get_low_area(len
, curareas
| areamask
);
612 if ((addr
!= -ENOMEM
)
613 && open_low_hpage_areas(current
->mm
, areamask
) == 0)
617 curareas
= current
->mm
->context
.high_htlb_areas
;
619 /* First see if we can do the mapping in the existing
621 addr
= htlb_get_high_area(len
, curareas
);
626 for (areamask
= HTLB_AREA_MASK(TASK_SIZE_USER64
-len
, len
);
627 ! lastshift
; areamask
>>=1) {
631 addr
= htlb_get_high_area(len
, curareas
| areamask
);
632 if ((addr
!= -ENOMEM
)
633 && open_high_hpage_areas(current
->mm
, areamask
) == 0)
637 printk(KERN_DEBUG
"hugetlb_get_unmapped_area() unable to open"
642 int hash_huge_page(struct mm_struct
*mm
, unsigned long access
,
643 unsigned long ea
, unsigned long vsid
, int local
)
646 unsigned long old_pte
, new_pte
;
647 unsigned long va
, rflags
, pa
;
651 ptep
= huge_pte_offset(mm
, ea
);
653 /* Search the Linux page table for a match with va */
654 va
= (vsid
<< 28) | (ea
& 0x0fffffff);
657 * If no pte found or not present, send the problem up to
660 if (unlikely(!ptep
|| pte_none(*ptep
)))
664 * Check the user's access rights to the page. If access should be
665 * prevented then send the problem up to do_page_fault.
667 if (unlikely(access
& ~pte_val(*ptep
)))
670 * At this point, we have a pte (old_pte) which can be used to build
671 * or update an HPTE. There are 2 cases:
673 * 1. There is a valid (present) pte with no associated HPTE (this is
674 * the most common case)
675 * 2. There is a valid (present) pte with an associated HPTE. The
676 * current values of the pp bits in the HPTE prevent access
677 * because we are doing software DIRTY bit management and the
678 * page is currently not DIRTY.
683 old_pte
= pte_val(*ptep
);
684 if (old_pte
& _PAGE_BUSY
)
686 new_pte
= old_pte
| _PAGE_BUSY
|
687 _PAGE_ACCESSED
| _PAGE_HASHPTE
;
688 } while(old_pte
!= __cmpxchg_u64((unsigned long *)ptep
,
691 rflags
= 0x2 | (!(new_pte
& _PAGE_RW
));
692 /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
693 rflags
|= ((new_pte
& _PAGE_EXEC
) ? 0 : HPTE_R_N
);
695 /* Check if pte already has an hpte (case 2) */
696 if (unlikely(old_pte
& _PAGE_HASHPTE
)) {
697 /* There MIGHT be an HPTE for this pte */
698 unsigned long hash
, slot
;
700 hash
= hpt_hash(va
, HPAGE_SHIFT
);
701 if (old_pte
& _PAGE_F_SECOND
)
703 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
704 slot
+= (old_pte
& _PAGE_F_GIX
) >> 12;
706 if (ppc_md
.hpte_updatepp(slot
, rflags
, va
, mmu_huge_psize
,
708 old_pte
&= ~_PAGE_HPTEFLAGS
;
711 if (likely(!(old_pte
& _PAGE_HASHPTE
))) {
712 unsigned long hash
= hpt_hash(va
, HPAGE_SHIFT
);
713 unsigned long hpte_group
;
715 pa
= pte_pfn(__pte(old_pte
)) << PAGE_SHIFT
;
718 hpte_group
= ((hash
& htab_hash_mask
) *
719 HPTES_PER_GROUP
) & ~0x7UL
;
721 /* clear HPTE slot informations in new PTE */
722 new_pte
= (new_pte
& ~_PAGE_HPTEFLAGS
) | _PAGE_HASHPTE
;
724 /* Add in WIMG bits */
725 /* XXX We should store these in the pte */
726 /* --BenH: I think they are ... */
727 rflags
|= _PAGE_COHERENT
;
729 /* Insert into the hash table, primary slot */
730 slot
= ppc_md
.hpte_insert(hpte_group
, va
, pa
, rflags
, 0,
733 /* Primary is full, try the secondary */
734 if (unlikely(slot
== -1)) {
735 new_pte
|= _PAGE_F_SECOND
;
736 hpte_group
= ((~hash
& htab_hash_mask
) *
737 HPTES_PER_GROUP
) & ~0x7UL
;
738 slot
= ppc_md
.hpte_insert(hpte_group
, va
, pa
, rflags
,
743 hpte_group
= ((hash
& htab_hash_mask
) *
744 HPTES_PER_GROUP
)&~0x7UL
;
746 ppc_md
.hpte_remove(hpte_group
);
751 if (unlikely(slot
== -2))
752 panic("hash_huge_page: pte_insert failed\n");
754 new_pte
|= (slot
<< 12) & _PAGE_F_GIX
;
758 * No need to use ldarx/stdcx here
760 *ptep
= __pte(new_pte
& ~_PAGE_BUSY
);