[SCSI] libfc, fcoe: ignore rx frame with wrong xid info
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / libfc / fc_exch.c
blob01ff082dc34cfaac127eb62ebc4ad2cd02ef3ff5
1 /*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
4 * Copyright(c) 2008 Mike Christie
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 * Maintained at www.Open-FCoE.org
23 * Fibre Channel exchange and sequence handling.
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
30 #include <scsi/fc/fc_fc2.h>
32 #include <scsi/libfc.h>
33 #include <scsi/fc_encode.h>
35 #include "fc_libfc.h"
37 u16 fc_cpu_mask; /* cpu mask for possible cpus */
38 EXPORT_SYMBOL(fc_cpu_mask);
39 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
40 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
41 static struct workqueue_struct *fc_exch_workqueue;
44 * Structure and function definitions for managing Fibre Channel Exchanges
45 * and Sequences.
47 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
49 * fc_exch_mgr holds the exchange state for an N port
51 * fc_exch holds state for one exchange and links to its active sequence.
53 * fc_seq holds the state for an individual sequence.
56 /**
57 * struct fc_exch_pool - Per cpu exchange pool
58 * @next_index: Next possible free exchange index
59 * @total_exches: Total allocated exchanges
60 * @lock: Exch pool lock
61 * @ex_list: List of exchanges
63 * This structure manages per cpu exchanges in array of exchange pointers.
64 * This array is allocated followed by struct fc_exch_pool memory for
65 * assigned range of exchanges to per cpu pool.
67 struct fc_exch_pool {
68 u16 next_index;
69 u16 total_exches;
71 /* two cache of free slot in exch array */
72 u16 left;
73 u16 right;
75 spinlock_t lock;
76 struct list_head ex_list;
79 /**
80 * struct fc_exch_mgr - The Exchange Manager (EM).
81 * @class: Default class for new sequences
82 * @kref: Reference counter
83 * @min_xid: Minimum exchange ID
84 * @max_xid: Maximum exchange ID
85 * @ep_pool: Reserved exchange pointers
86 * @pool_max_index: Max exch array index in exch pool
87 * @pool: Per cpu exch pool
88 * @stats: Statistics structure
90 * This structure is the center for creating exchanges and sequences.
91 * It manages the allocation of exchange IDs.
93 struct fc_exch_mgr {
94 enum fc_class class;
95 struct kref kref;
96 u16 min_xid;
97 u16 max_xid;
98 mempool_t *ep_pool;
99 u16 pool_max_index;
100 struct fc_exch_pool *pool;
103 * currently exchange mgr stats are updated but not used.
104 * either stats can be expose via sysfs or remove them
105 * all together if not used XXX
107 struct {
108 atomic_t no_free_exch;
109 atomic_t no_free_exch_xid;
110 atomic_t xid_not_found;
111 atomic_t xid_busy;
112 atomic_t seq_not_found;
113 atomic_t non_bls_resp;
114 } stats;
118 * struct fc_exch_mgr_anchor - primary structure for list of EMs
119 * @ema_list: Exchange Manager Anchor list
120 * @mp: Exchange Manager associated with this anchor
121 * @match: Routine to determine if this anchor's EM should be used
123 * When walking the list of anchors the match routine will be called
124 * for each anchor to determine if that EM should be used. The last
125 * anchor in the list will always match to handle any exchanges not
126 * handled by other EMs. The non-default EMs would be added to the
127 * anchor list by HW that provides FCoE offloads.
129 struct fc_exch_mgr_anchor {
130 struct list_head ema_list;
131 struct fc_exch_mgr *mp;
132 bool (*match)(struct fc_frame *);
135 static void fc_exch_rrq(struct fc_exch *);
136 static void fc_seq_ls_acc(struct fc_frame *);
137 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
138 enum fc_els_rjt_explan);
139 static void fc_exch_els_rec(struct fc_frame *);
140 static void fc_exch_els_rrq(struct fc_frame *);
143 * Internal implementation notes.
145 * The exchange manager is one by default in libfc but LLD may choose
146 * to have one per CPU. The sequence manager is one per exchange manager
147 * and currently never separated.
149 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
150 * assigned by the Sequence Initiator that shall be unique for a specific
151 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
152 * qualified by exchange ID, which one might think it would be.
153 * In practice this limits the number of open sequences and exchanges to 256
154 * per session. For most targets we could treat this limit as per exchange.
156 * The exchange and its sequence are freed when the last sequence is received.
157 * It's possible for the remote port to leave an exchange open without
158 * sending any sequences.
160 * Notes on reference counts:
162 * Exchanges are reference counted and exchange gets freed when the reference
163 * count becomes zero.
165 * Timeouts:
166 * Sequences are timed out for E_D_TOV and R_A_TOV.
168 * Sequence event handling:
170 * The following events may occur on initiator sequences:
172 * Send.
173 * For now, the whole thing is sent.
174 * Receive ACK
175 * This applies only to class F.
176 * The sequence is marked complete.
177 * ULP completion.
178 * The upper layer calls fc_exch_done() when done
179 * with exchange and sequence tuple.
180 * RX-inferred completion.
181 * When we receive the next sequence on the same exchange, we can
182 * retire the previous sequence ID. (XXX not implemented).
183 * Timeout.
184 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
185 * E_D_TOV causes abort and calls upper layer response handler
186 * with FC_EX_TIMEOUT error.
187 * Receive RJT
188 * XXX defer.
189 * Send ABTS
190 * On timeout.
192 * The following events may occur on recipient sequences:
194 * Receive
195 * Allocate sequence for first frame received.
196 * Hold during receive handler.
197 * Release when final frame received.
198 * Keep status of last N of these for the ELS RES command. XXX TBD.
199 * Receive ABTS
200 * Deallocate sequence
201 * Send RJT
202 * Deallocate
204 * For now, we neglect conditions where only part of a sequence was
205 * received or transmitted, or where out-of-order receipt is detected.
209 * Locking notes:
211 * The EM code run in a per-CPU worker thread.
213 * To protect against concurrency between a worker thread code and timers,
214 * sequence allocation and deallocation must be locked.
215 * - exchange refcnt can be done atomicly without locks.
216 * - sequence allocation must be locked by exch lock.
217 * - If the EM pool lock and ex_lock must be taken at the same time, then the
218 * EM pool lock must be taken before the ex_lock.
222 * opcode names for debugging.
224 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
227 * fc_exch_name_lookup() - Lookup name by opcode
228 * @op: Opcode to be looked up
229 * @table: Opcode/name table
230 * @max_index: Index not to be exceeded
232 * This routine is used to determine a human-readable string identifying
233 * a R_CTL opcode.
235 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
236 unsigned int max_index)
238 const char *name = NULL;
240 if (op < max_index)
241 name = table[op];
242 if (!name)
243 name = "unknown";
244 return name;
248 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
249 * @op: The opcode to be looked up
251 static const char *fc_exch_rctl_name(unsigned int op)
253 return fc_exch_name_lookup(op, fc_exch_rctl_names,
254 ARRAY_SIZE(fc_exch_rctl_names));
258 * fc_exch_hold() - Increment an exchange's reference count
259 * @ep: Echange to be held
261 static inline void fc_exch_hold(struct fc_exch *ep)
263 atomic_inc(&ep->ex_refcnt);
267 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
268 * and determine SOF and EOF.
269 * @ep: The exchange to that will use the header
270 * @fp: The frame whose header is to be modified
271 * @f_ctl: F_CTL bits that will be used for the frame header
273 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
274 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
276 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
277 u32 f_ctl)
279 struct fc_frame_header *fh = fc_frame_header_get(fp);
280 u16 fill;
282 fr_sof(fp) = ep->class;
283 if (ep->seq.cnt)
284 fr_sof(fp) = fc_sof_normal(ep->class);
286 if (f_ctl & FC_FC_END_SEQ) {
287 fr_eof(fp) = FC_EOF_T;
288 if (fc_sof_needs_ack(ep->class))
289 fr_eof(fp) = FC_EOF_N;
291 * From F_CTL.
292 * The number of fill bytes to make the length a 4-byte
293 * multiple is the low order 2-bits of the f_ctl.
294 * The fill itself will have been cleared by the frame
295 * allocation.
296 * After this, the length will be even, as expected by
297 * the transport.
299 fill = fr_len(fp) & 3;
300 if (fill) {
301 fill = 4 - fill;
302 /* TODO, this may be a problem with fragmented skb */
303 skb_put(fp_skb(fp), fill);
304 hton24(fh->fh_f_ctl, f_ctl | fill);
306 } else {
307 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
308 fr_eof(fp) = FC_EOF_N;
312 * Initialize remainig fh fields
313 * from fc_fill_fc_hdr
315 fh->fh_ox_id = htons(ep->oxid);
316 fh->fh_rx_id = htons(ep->rxid);
317 fh->fh_seq_id = ep->seq.id;
318 fh->fh_seq_cnt = htons(ep->seq.cnt);
322 * fc_exch_release() - Decrement an exchange's reference count
323 * @ep: Exchange to be released
325 * If the reference count reaches zero and the exchange is complete,
326 * it is freed.
328 static void fc_exch_release(struct fc_exch *ep)
330 struct fc_exch_mgr *mp;
332 if (atomic_dec_and_test(&ep->ex_refcnt)) {
333 mp = ep->em;
334 if (ep->destructor)
335 ep->destructor(&ep->seq, ep->arg);
336 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
337 mempool_free(ep, mp->ep_pool);
342 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
343 * @ep: The exchange that is complete
345 static int fc_exch_done_locked(struct fc_exch *ep)
347 int rc = 1;
350 * We must check for completion in case there are two threads
351 * tyring to complete this. But the rrq code will reuse the
352 * ep, and in that case we only clear the resp and set it as
353 * complete, so it can be reused by the timer to send the rrq.
355 ep->resp = NULL;
356 if (ep->state & FC_EX_DONE)
357 return rc;
358 ep->esb_stat |= ESB_ST_COMPLETE;
360 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
361 ep->state |= FC_EX_DONE;
362 if (cancel_delayed_work(&ep->timeout_work))
363 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
364 rc = 0;
366 return rc;
370 * fc_exch_ptr_get() - Return an exchange from an exchange pool
371 * @pool: Exchange Pool to get an exchange from
372 * @index: Index of the exchange within the pool
374 * Use the index to get an exchange from within an exchange pool. exches
375 * will point to an array of exchange pointers. The index will select
376 * the exchange within the array.
378 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
379 u16 index)
381 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
382 return exches[index];
386 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
387 * @pool: The pool to assign the exchange to
388 * @index: The index in the pool where the exchange will be assigned
389 * @ep: The exchange to assign to the pool
391 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
392 struct fc_exch *ep)
394 ((struct fc_exch **)(pool + 1))[index] = ep;
398 * fc_exch_delete() - Delete an exchange
399 * @ep: The exchange to be deleted
401 static void fc_exch_delete(struct fc_exch *ep)
403 struct fc_exch_pool *pool;
404 u16 index;
406 pool = ep->pool;
407 spin_lock_bh(&pool->lock);
408 WARN_ON(pool->total_exches <= 0);
409 pool->total_exches--;
411 /* update cache of free slot */
412 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
413 if (pool->left == FC_XID_UNKNOWN)
414 pool->left = index;
415 else if (pool->right == FC_XID_UNKNOWN)
416 pool->right = index;
417 else
418 pool->next_index = index;
420 fc_exch_ptr_set(pool, index, NULL);
421 list_del(&ep->ex_list);
422 spin_unlock_bh(&pool->lock);
423 fc_exch_release(ep); /* drop hold for exch in mp */
427 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
428 * the exchange lock held
429 * @ep: The exchange whose timer will start
430 * @timer_msec: The timeout period
432 * Used for upper level protocols to time out the exchange.
433 * The timer is cancelled when it fires or when the exchange completes.
435 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
436 unsigned int timer_msec)
438 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
439 return;
441 FC_EXCH_DBG(ep, "Exchange timer armed\n");
443 if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
444 msecs_to_jiffies(timer_msec)))
445 fc_exch_hold(ep); /* hold for timer */
449 * fc_exch_timer_set() - Lock the exchange and set the timer
450 * @ep: The exchange whose timer will start
451 * @timer_msec: The timeout period
453 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
455 spin_lock_bh(&ep->ex_lock);
456 fc_exch_timer_set_locked(ep, timer_msec);
457 spin_unlock_bh(&ep->ex_lock);
461 * fc_seq_send() - Send a frame using existing sequence/exchange pair
462 * @lport: The local port that the exchange will be sent on
463 * @sp: The sequence to be sent
464 * @fp: The frame to be sent on the exchange
466 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
467 struct fc_frame *fp)
469 struct fc_exch *ep;
470 struct fc_frame_header *fh = fc_frame_header_get(fp);
471 int error;
472 u32 f_ctl;
474 ep = fc_seq_exch(sp);
475 WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
477 f_ctl = ntoh24(fh->fh_f_ctl);
478 fc_exch_setup_hdr(ep, fp, f_ctl);
479 fr_encaps(fp) = ep->encaps;
482 * update sequence count if this frame is carrying
483 * multiple FC frames when sequence offload is enabled
484 * by LLD.
486 if (fr_max_payload(fp))
487 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
488 fr_max_payload(fp));
489 else
490 sp->cnt++;
493 * Send the frame.
495 error = lport->tt.frame_send(lport, fp);
498 * Update the exchange and sequence flags,
499 * assuming all frames for the sequence have been sent.
500 * We can only be called to send once for each sequence.
502 spin_lock_bh(&ep->ex_lock);
503 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
504 if (f_ctl & FC_FC_SEQ_INIT)
505 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
506 spin_unlock_bh(&ep->ex_lock);
507 return error;
511 * fc_seq_alloc() - Allocate a sequence for a given exchange
512 * @ep: The exchange to allocate a new sequence for
513 * @seq_id: The sequence ID to be used
515 * We don't support multiple originated sequences on the same exchange.
516 * By implication, any previously originated sequence on this exchange
517 * is complete, and we reallocate the same sequence.
519 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
521 struct fc_seq *sp;
523 sp = &ep->seq;
524 sp->ssb_stat = 0;
525 sp->cnt = 0;
526 sp->id = seq_id;
527 return sp;
531 * fc_seq_start_next_locked() - Allocate a new sequence on the same
532 * exchange as the supplied sequence
533 * @sp: The sequence/exchange to get a new sequence for
535 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
537 struct fc_exch *ep = fc_seq_exch(sp);
539 sp = fc_seq_alloc(ep, ep->seq_id++);
540 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
541 ep->f_ctl, sp->id);
542 return sp;
546 * fc_seq_start_next() - Lock the exchange and get a new sequence
547 * for a given sequence/exchange pair
548 * @sp: The sequence/exchange to get a new exchange for
550 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
552 struct fc_exch *ep = fc_seq_exch(sp);
554 spin_lock_bh(&ep->ex_lock);
555 sp = fc_seq_start_next_locked(sp);
556 spin_unlock_bh(&ep->ex_lock);
558 return sp;
562 * Set the response handler for the exchange associated with a sequence.
564 static void fc_seq_set_resp(struct fc_seq *sp,
565 void (*resp)(struct fc_seq *, struct fc_frame *,
566 void *),
567 void *arg)
569 struct fc_exch *ep = fc_seq_exch(sp);
571 spin_lock_bh(&ep->ex_lock);
572 ep->resp = resp;
573 ep->arg = arg;
574 spin_unlock_bh(&ep->ex_lock);
578 * fc_seq_exch_abort() - Abort an exchange and sequence
579 * @req_sp: The sequence to be aborted
580 * @timer_msec: The period of time to wait before aborting
582 * Generally called because of a timeout or an abort from the upper layer.
584 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
585 unsigned int timer_msec)
587 struct fc_seq *sp;
588 struct fc_exch *ep;
589 struct fc_frame *fp;
590 int error;
592 ep = fc_seq_exch(req_sp);
594 spin_lock_bh(&ep->ex_lock);
595 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
596 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
597 spin_unlock_bh(&ep->ex_lock);
598 return -ENXIO;
602 * Send the abort on a new sequence if possible.
604 sp = fc_seq_start_next_locked(&ep->seq);
605 if (!sp) {
606 spin_unlock_bh(&ep->ex_lock);
607 return -ENOMEM;
610 ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
611 if (timer_msec)
612 fc_exch_timer_set_locked(ep, timer_msec);
613 spin_unlock_bh(&ep->ex_lock);
616 * If not logged into the fabric, don't send ABTS but leave
617 * sequence active until next timeout.
619 if (!ep->sid)
620 return 0;
623 * Send an abort for the sequence that timed out.
625 fp = fc_frame_alloc(ep->lp, 0);
626 if (fp) {
627 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
628 FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
629 error = fc_seq_send(ep->lp, sp, fp);
630 } else
631 error = -ENOBUFS;
632 return error;
636 * fc_exch_timeout() - Handle exchange timer expiration
637 * @work: The work_struct identifying the exchange that timed out
639 static void fc_exch_timeout(struct work_struct *work)
641 struct fc_exch *ep = container_of(work, struct fc_exch,
642 timeout_work.work);
643 struct fc_seq *sp = &ep->seq;
644 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
645 void *arg;
646 u32 e_stat;
647 int rc = 1;
649 FC_EXCH_DBG(ep, "Exchange timed out\n");
651 spin_lock_bh(&ep->ex_lock);
652 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
653 goto unlock;
655 e_stat = ep->esb_stat;
656 if (e_stat & ESB_ST_COMPLETE) {
657 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
658 spin_unlock_bh(&ep->ex_lock);
659 if (e_stat & ESB_ST_REC_QUAL)
660 fc_exch_rrq(ep);
661 goto done;
662 } else {
663 resp = ep->resp;
664 arg = ep->arg;
665 ep->resp = NULL;
666 if (e_stat & ESB_ST_ABNORMAL)
667 rc = fc_exch_done_locked(ep);
668 spin_unlock_bh(&ep->ex_lock);
669 if (!rc)
670 fc_exch_delete(ep);
671 if (resp)
672 resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
673 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
674 goto done;
676 unlock:
677 spin_unlock_bh(&ep->ex_lock);
678 done:
680 * This release matches the hold taken when the timer was set.
682 fc_exch_release(ep);
686 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
687 * @lport: The local port that the exchange is for
688 * @mp: The exchange manager that will allocate the exchange
690 * Returns pointer to allocated fc_exch with exch lock held.
692 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
693 struct fc_exch_mgr *mp)
695 struct fc_exch *ep;
696 unsigned int cpu;
697 u16 index;
698 struct fc_exch_pool *pool;
700 /* allocate memory for exchange */
701 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
702 if (!ep) {
703 atomic_inc(&mp->stats.no_free_exch);
704 goto out;
706 memset(ep, 0, sizeof(*ep));
708 cpu = get_cpu();
709 pool = per_cpu_ptr(mp->pool, cpu);
710 spin_lock_bh(&pool->lock);
711 put_cpu();
713 /* peek cache of free slot */
714 if (pool->left != FC_XID_UNKNOWN) {
715 index = pool->left;
716 pool->left = FC_XID_UNKNOWN;
717 goto hit;
719 if (pool->right != FC_XID_UNKNOWN) {
720 index = pool->right;
721 pool->right = FC_XID_UNKNOWN;
722 goto hit;
725 index = pool->next_index;
726 /* allocate new exch from pool */
727 while (fc_exch_ptr_get(pool, index)) {
728 index = index == mp->pool_max_index ? 0 : index + 1;
729 if (index == pool->next_index)
730 goto err;
732 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
733 hit:
734 fc_exch_hold(ep); /* hold for exch in mp */
735 spin_lock_init(&ep->ex_lock);
737 * Hold exch lock for caller to prevent fc_exch_reset()
738 * from releasing exch while fc_exch_alloc() caller is
739 * still working on exch.
741 spin_lock_bh(&ep->ex_lock);
743 fc_exch_ptr_set(pool, index, ep);
744 list_add_tail(&ep->ex_list, &pool->ex_list);
745 fc_seq_alloc(ep, ep->seq_id++);
746 pool->total_exches++;
747 spin_unlock_bh(&pool->lock);
750 * update exchange
752 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
753 ep->em = mp;
754 ep->pool = pool;
755 ep->lp = lport;
756 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
757 ep->rxid = FC_XID_UNKNOWN;
758 ep->class = mp->class;
759 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
760 out:
761 return ep;
762 err:
763 spin_unlock_bh(&pool->lock);
764 atomic_inc(&mp->stats.no_free_exch_xid);
765 mempool_free(ep, mp->ep_pool);
766 return NULL;
770 * fc_exch_alloc() - Allocate an exchange from an EM on a
771 * local port's list of EMs.
772 * @lport: The local port that will own the exchange
773 * @fp: The FC frame that the exchange will be for
775 * This function walks the list of exchange manager(EM)
776 * anchors to select an EM for a new exchange allocation. The
777 * EM is selected when a NULL match function pointer is encountered
778 * or when a call to a match function returns true.
780 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
781 struct fc_frame *fp)
783 struct fc_exch_mgr_anchor *ema;
785 list_for_each_entry(ema, &lport->ema_list, ema_list)
786 if (!ema->match || ema->match(fp))
787 return fc_exch_em_alloc(lport, ema->mp);
788 return NULL;
792 * fc_exch_find() - Lookup and hold an exchange
793 * @mp: The exchange manager to lookup the exchange from
794 * @xid: The XID of the exchange to look up
796 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
798 struct fc_exch_pool *pool;
799 struct fc_exch *ep = NULL;
801 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
802 pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
803 spin_lock_bh(&pool->lock);
804 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
805 if (ep && ep->xid == xid)
806 fc_exch_hold(ep);
807 spin_unlock_bh(&pool->lock);
809 return ep;
814 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
815 * the memory allocated for the related objects may be freed.
816 * @sp: The sequence that has completed
818 static void fc_exch_done(struct fc_seq *sp)
820 struct fc_exch *ep = fc_seq_exch(sp);
821 int rc;
823 spin_lock_bh(&ep->ex_lock);
824 rc = fc_exch_done_locked(ep);
825 spin_unlock_bh(&ep->ex_lock);
826 if (!rc)
827 fc_exch_delete(ep);
831 * fc_exch_resp() - Allocate a new exchange for a response frame
832 * @lport: The local port that the exchange was for
833 * @mp: The exchange manager to allocate the exchange from
834 * @fp: The response frame
836 * Sets the responder ID in the frame header.
838 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
839 struct fc_exch_mgr *mp,
840 struct fc_frame *fp)
842 struct fc_exch *ep;
843 struct fc_frame_header *fh;
845 ep = fc_exch_alloc(lport, fp);
846 if (ep) {
847 ep->class = fc_frame_class(fp);
850 * Set EX_CTX indicating we're responding on this exchange.
852 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
853 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
854 fh = fc_frame_header_get(fp);
855 ep->sid = ntoh24(fh->fh_d_id);
856 ep->did = ntoh24(fh->fh_s_id);
857 ep->oid = ep->did;
860 * Allocated exchange has placed the XID in the
861 * originator field. Move it to the responder field,
862 * and set the originator XID from the frame.
864 ep->rxid = ep->xid;
865 ep->oxid = ntohs(fh->fh_ox_id);
866 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
867 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
868 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
870 fc_exch_hold(ep); /* hold for caller */
871 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
873 return ep;
877 * fc_seq_lookup_recip() - Find a sequence where the other end
878 * originated the sequence
879 * @lport: The local port that the frame was sent to
880 * @mp: The Exchange Manager to lookup the exchange from
881 * @fp: The frame associated with the sequence we're looking for
883 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
884 * on the ep that should be released by the caller.
886 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
887 struct fc_exch_mgr *mp,
888 struct fc_frame *fp)
890 struct fc_frame_header *fh = fc_frame_header_get(fp);
891 struct fc_exch *ep = NULL;
892 struct fc_seq *sp = NULL;
893 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
894 u32 f_ctl;
895 u16 xid;
897 f_ctl = ntoh24(fh->fh_f_ctl);
898 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
901 * Lookup or create the exchange if we will be creating the sequence.
903 if (f_ctl & FC_FC_EX_CTX) {
904 xid = ntohs(fh->fh_ox_id); /* we originated exch */
905 ep = fc_exch_find(mp, xid);
906 if (!ep) {
907 atomic_inc(&mp->stats.xid_not_found);
908 reject = FC_RJT_OX_ID;
909 goto out;
911 if (ep->rxid == FC_XID_UNKNOWN)
912 ep->rxid = ntohs(fh->fh_rx_id);
913 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
914 reject = FC_RJT_OX_ID;
915 goto rel;
917 } else {
918 xid = ntohs(fh->fh_rx_id); /* we are the responder */
921 * Special case for MDS issuing an ELS TEST with a
922 * bad rxid of 0.
923 * XXX take this out once we do the proper reject.
925 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
926 fc_frame_payload_op(fp) == ELS_TEST) {
927 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
928 xid = FC_XID_UNKNOWN;
932 * new sequence - find the exchange
934 ep = fc_exch_find(mp, xid);
935 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
936 if (ep) {
937 atomic_inc(&mp->stats.xid_busy);
938 reject = FC_RJT_RX_ID;
939 goto rel;
941 ep = fc_exch_resp(lport, mp, fp);
942 if (!ep) {
943 reject = FC_RJT_EXCH_EST; /* XXX */
944 goto out;
946 xid = ep->xid; /* get our XID */
947 } else if (!ep) {
948 atomic_inc(&mp->stats.xid_not_found);
949 reject = FC_RJT_RX_ID; /* XID not found */
950 goto out;
955 * At this point, we have the exchange held.
956 * Find or create the sequence.
958 if (fc_sof_is_init(fr_sof(fp))) {
959 sp = &ep->seq;
960 sp->ssb_stat |= SSB_ST_RESP;
961 sp->id = fh->fh_seq_id;
962 } else {
963 sp = &ep->seq;
964 if (sp->id != fh->fh_seq_id) {
965 atomic_inc(&mp->stats.seq_not_found);
966 if (f_ctl & FC_FC_END_SEQ) {
968 * Update sequence_id based on incoming last
969 * frame of sequence exchange. This is needed
970 * for FCoE target where DDP has been used
971 * on target where, stack is indicated only
972 * about last frame's (payload _header) header.
973 * Whereas "seq_id" which is part of
974 * frame_header is allocated by initiator
975 * which is totally different from "seq_id"
976 * allocated when XFER_RDY was sent by target.
977 * To avoid false -ve which results into not
978 * sending RSP, hence write request on other
979 * end never finishes.
981 spin_lock_bh(&ep->ex_lock);
982 sp->ssb_stat |= SSB_ST_RESP;
983 sp->id = fh->fh_seq_id;
984 spin_unlock_bh(&ep->ex_lock);
985 } else {
986 /* sequence/exch should exist */
987 reject = FC_RJT_SEQ_ID;
988 goto rel;
992 WARN_ON(ep != fc_seq_exch(sp));
994 if (f_ctl & FC_FC_SEQ_INIT)
995 ep->esb_stat |= ESB_ST_SEQ_INIT;
997 fr_seq(fp) = sp;
998 out:
999 return reject;
1000 rel:
1001 fc_exch_done(&ep->seq);
1002 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
1003 return reject;
1007 * fc_seq_lookup_orig() - Find a sequence where this end
1008 * originated the sequence
1009 * @mp: The Exchange Manager to lookup the exchange from
1010 * @fp: The frame associated with the sequence we're looking for
1012 * Does not hold the sequence for the caller.
1014 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1015 struct fc_frame *fp)
1017 struct fc_frame_header *fh = fc_frame_header_get(fp);
1018 struct fc_exch *ep;
1019 struct fc_seq *sp = NULL;
1020 u32 f_ctl;
1021 u16 xid;
1023 f_ctl = ntoh24(fh->fh_f_ctl);
1024 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1025 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1026 ep = fc_exch_find(mp, xid);
1027 if (!ep)
1028 return NULL;
1029 if (ep->seq.id == fh->fh_seq_id) {
1031 * Save the RX_ID if we didn't previously know it.
1033 sp = &ep->seq;
1034 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1035 ep->rxid == FC_XID_UNKNOWN) {
1036 ep->rxid = ntohs(fh->fh_rx_id);
1039 fc_exch_release(ep);
1040 return sp;
1044 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1045 * @ep: The exchange to set the addresses for
1046 * @orig_id: The originator's ID
1047 * @resp_id: The responder's ID
1049 * Note this must be done before the first sequence of the exchange is sent.
1051 static void fc_exch_set_addr(struct fc_exch *ep,
1052 u32 orig_id, u32 resp_id)
1054 ep->oid = orig_id;
1055 if (ep->esb_stat & ESB_ST_RESP) {
1056 ep->sid = resp_id;
1057 ep->did = orig_id;
1058 } else {
1059 ep->sid = orig_id;
1060 ep->did = resp_id;
1065 * fc_seq_els_rsp_send() - Send an ELS response using information from
1066 * the existing sequence/exchange.
1067 * @fp: The received frame
1068 * @els_cmd: The ELS command to be sent
1069 * @els_data: The ELS data to be sent
1071 * The received frame is not freed.
1073 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1074 struct fc_seq_els_data *els_data)
1076 switch (els_cmd) {
1077 case ELS_LS_RJT:
1078 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1079 break;
1080 case ELS_LS_ACC:
1081 fc_seq_ls_acc(fp);
1082 break;
1083 case ELS_RRQ:
1084 fc_exch_els_rrq(fp);
1085 break;
1086 case ELS_REC:
1087 fc_exch_els_rec(fp);
1088 break;
1089 default:
1090 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1095 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1096 * @sp: The sequence that is to be sent
1097 * @fp: The frame that will be sent on the sequence
1098 * @rctl: The R_CTL information to be sent
1099 * @fh_type: The frame header type
1101 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1102 enum fc_rctl rctl, enum fc_fh_type fh_type)
1104 u32 f_ctl;
1105 struct fc_exch *ep = fc_seq_exch(sp);
1107 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1108 f_ctl |= ep->f_ctl;
1109 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1110 fc_seq_send(ep->lp, sp, fp);
1114 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1115 * @sp: The sequence to send the ACK on
1116 * @rx_fp: The received frame that is being acknoledged
1118 * Send ACK_1 (or equiv.) indicating we received something.
1120 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1122 struct fc_frame *fp;
1123 struct fc_frame_header *rx_fh;
1124 struct fc_frame_header *fh;
1125 struct fc_exch *ep = fc_seq_exch(sp);
1126 struct fc_lport *lport = ep->lp;
1127 unsigned int f_ctl;
1130 * Don't send ACKs for class 3.
1132 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1133 fp = fc_frame_alloc(lport, 0);
1134 if (!fp)
1135 return;
1137 fh = fc_frame_header_get(fp);
1138 fh->fh_r_ctl = FC_RCTL_ACK_1;
1139 fh->fh_type = FC_TYPE_BLS;
1142 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1143 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1144 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1145 * Last ACK uses bits 7-6 (continue sequence),
1146 * bits 5-4 are meaningful (what kind of ACK to use).
1148 rx_fh = fc_frame_header_get(rx_fp);
1149 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1150 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1151 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1152 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1153 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1154 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1155 hton24(fh->fh_f_ctl, f_ctl);
1157 fc_exch_setup_hdr(ep, fp, f_ctl);
1158 fh->fh_seq_id = rx_fh->fh_seq_id;
1159 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1160 fh->fh_parm_offset = htonl(1); /* ack single frame */
1162 fr_sof(fp) = fr_sof(rx_fp);
1163 if (f_ctl & FC_FC_END_SEQ)
1164 fr_eof(fp) = FC_EOF_T;
1165 else
1166 fr_eof(fp) = FC_EOF_N;
1168 lport->tt.frame_send(lport, fp);
1173 * fc_exch_send_ba_rjt() - Send BLS Reject
1174 * @rx_fp: The frame being rejected
1175 * @reason: The reason the frame is being rejected
1176 * @explan: The explanation for the rejection
1178 * This is for rejecting BA_ABTS only.
1180 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1181 enum fc_ba_rjt_reason reason,
1182 enum fc_ba_rjt_explan explan)
1184 struct fc_frame *fp;
1185 struct fc_frame_header *rx_fh;
1186 struct fc_frame_header *fh;
1187 struct fc_ba_rjt *rp;
1188 struct fc_lport *lport;
1189 unsigned int f_ctl;
1191 lport = fr_dev(rx_fp);
1192 fp = fc_frame_alloc(lport, sizeof(*rp));
1193 if (!fp)
1194 return;
1195 fh = fc_frame_header_get(fp);
1196 rx_fh = fc_frame_header_get(rx_fp);
1198 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1200 rp = fc_frame_payload_get(fp, sizeof(*rp));
1201 rp->br_reason = reason;
1202 rp->br_explan = explan;
1205 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1207 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1208 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1209 fh->fh_ox_id = rx_fh->fh_ox_id;
1210 fh->fh_rx_id = rx_fh->fh_rx_id;
1211 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1212 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1213 fh->fh_type = FC_TYPE_BLS;
1216 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1217 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1218 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1219 * Last ACK uses bits 7-6 (continue sequence),
1220 * bits 5-4 are meaningful (what kind of ACK to use).
1221 * Always set LAST_SEQ, END_SEQ.
1223 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1224 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1225 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1226 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1227 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1228 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1229 f_ctl &= ~FC_FC_FIRST_SEQ;
1230 hton24(fh->fh_f_ctl, f_ctl);
1232 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1233 fr_eof(fp) = FC_EOF_T;
1234 if (fc_sof_needs_ack(fr_sof(fp)))
1235 fr_eof(fp) = FC_EOF_N;
1237 lport->tt.frame_send(lport, fp);
1241 * fc_exch_recv_abts() - Handle an incoming ABTS
1242 * @ep: The exchange the abort was on
1243 * @rx_fp: The ABTS frame
1245 * This would be for target mode usually, but could be due to lost
1246 * FCP transfer ready, confirm or RRQ. We always handle this as an
1247 * exchange abort, ignoring the parameter.
1249 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1251 struct fc_frame *fp;
1252 struct fc_ba_acc *ap;
1253 struct fc_frame_header *fh;
1254 struct fc_seq *sp;
1256 if (!ep)
1257 goto reject;
1258 spin_lock_bh(&ep->ex_lock);
1259 if (ep->esb_stat & ESB_ST_COMPLETE) {
1260 spin_unlock_bh(&ep->ex_lock);
1261 goto reject;
1263 if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1264 fc_exch_hold(ep); /* hold for REC_QUAL */
1265 ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1266 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1268 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1269 if (!fp) {
1270 spin_unlock_bh(&ep->ex_lock);
1271 goto free;
1273 fh = fc_frame_header_get(fp);
1274 ap = fc_frame_payload_get(fp, sizeof(*ap));
1275 memset(ap, 0, sizeof(*ap));
1276 sp = &ep->seq;
1277 ap->ba_high_seq_cnt = htons(0xffff);
1278 if (sp->ssb_stat & SSB_ST_RESP) {
1279 ap->ba_seq_id = sp->id;
1280 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1281 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1282 ap->ba_low_seq_cnt = htons(sp->cnt);
1284 sp = fc_seq_start_next_locked(sp);
1285 spin_unlock_bh(&ep->ex_lock);
1286 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1287 fc_frame_free(rx_fp);
1288 return;
1290 reject:
1291 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1292 free:
1293 fc_frame_free(rx_fp);
1297 * fc_seq_assign() - Assign exchange and sequence for incoming request
1298 * @lport: The local port that received the request
1299 * @fp: The request frame
1301 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1302 * A reference will be held on the exchange/sequence for the caller, which
1303 * must call fc_seq_release().
1305 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1307 struct fc_exch_mgr_anchor *ema;
1309 WARN_ON(lport != fr_dev(fp));
1310 WARN_ON(fr_seq(fp));
1311 fr_seq(fp) = NULL;
1313 list_for_each_entry(ema, &lport->ema_list, ema_list)
1314 if ((!ema->match || ema->match(fp)) &&
1315 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1316 break;
1317 return fr_seq(fp);
1321 * fc_seq_release() - Release the hold
1322 * @sp: The sequence.
1324 static void fc_seq_release(struct fc_seq *sp)
1326 fc_exch_release(fc_seq_exch(sp));
1330 * fc_exch_recv_req() - Handler for an incoming request
1331 * @lport: The local port that received the request
1332 * @mp: The EM that the exchange is on
1333 * @fp: The request frame
1335 * This is used when the other end is originating the exchange
1336 * and the sequence.
1338 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1339 struct fc_frame *fp)
1341 struct fc_frame_header *fh = fc_frame_header_get(fp);
1342 struct fc_seq *sp = NULL;
1343 struct fc_exch *ep = NULL;
1344 enum fc_pf_rjt_reason reject;
1346 /* We can have the wrong fc_lport at this point with NPIV, which is a
1347 * problem now that we know a new exchange needs to be allocated
1349 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1350 if (!lport) {
1351 fc_frame_free(fp);
1352 return;
1354 fr_dev(fp) = lport;
1356 BUG_ON(fr_seq(fp)); /* XXX remove later */
1359 * If the RX_ID is 0xffff, don't allocate an exchange.
1360 * The upper-level protocol may request one later, if needed.
1362 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1363 return lport->tt.lport_recv(lport, fp);
1365 reject = fc_seq_lookup_recip(lport, mp, fp);
1366 if (reject == FC_RJT_NONE) {
1367 sp = fr_seq(fp); /* sequence will be held */
1368 ep = fc_seq_exch(sp);
1369 fc_seq_send_ack(sp, fp);
1370 ep->encaps = fr_encaps(fp);
1373 * Call the receive function.
1375 * The receive function may allocate a new sequence
1376 * over the old one, so we shouldn't change the
1377 * sequence after this.
1379 * The frame will be freed by the receive function.
1380 * If new exch resp handler is valid then call that
1381 * first.
1383 if (ep->resp)
1384 ep->resp(sp, fp, ep->arg);
1385 else
1386 lport->tt.lport_recv(lport, fp);
1387 fc_exch_release(ep); /* release from lookup */
1388 } else {
1389 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1390 reject);
1391 fc_frame_free(fp);
1396 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1397 * end is the originator of the sequence that is a
1398 * response to our initial exchange
1399 * @mp: The EM that the exchange is on
1400 * @fp: The response frame
1402 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1404 struct fc_frame_header *fh = fc_frame_header_get(fp);
1405 struct fc_seq *sp;
1406 struct fc_exch *ep;
1407 enum fc_sof sof;
1408 u32 f_ctl;
1409 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1410 void *ex_resp_arg;
1411 int rc;
1413 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1414 if (!ep) {
1415 atomic_inc(&mp->stats.xid_not_found);
1416 goto out;
1418 if (ep->esb_stat & ESB_ST_COMPLETE) {
1419 atomic_inc(&mp->stats.xid_not_found);
1420 goto rel;
1422 if (ep->rxid == FC_XID_UNKNOWN)
1423 ep->rxid = ntohs(fh->fh_rx_id);
1424 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1425 atomic_inc(&mp->stats.xid_not_found);
1426 goto rel;
1428 if (ep->did != ntoh24(fh->fh_s_id) &&
1429 ep->did != FC_FID_FLOGI) {
1430 atomic_inc(&mp->stats.xid_not_found);
1431 goto rel;
1433 sof = fr_sof(fp);
1434 sp = &ep->seq;
1435 if (fc_sof_is_init(sof)) {
1436 sp->ssb_stat |= SSB_ST_RESP;
1437 sp->id = fh->fh_seq_id;
1438 } else if (sp->id != fh->fh_seq_id) {
1439 atomic_inc(&mp->stats.seq_not_found);
1440 goto rel;
1443 f_ctl = ntoh24(fh->fh_f_ctl);
1444 fr_seq(fp) = sp;
1445 if (f_ctl & FC_FC_SEQ_INIT)
1446 ep->esb_stat |= ESB_ST_SEQ_INIT;
1448 if (fc_sof_needs_ack(sof))
1449 fc_seq_send_ack(sp, fp);
1450 resp = ep->resp;
1451 ex_resp_arg = ep->arg;
1453 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1454 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1455 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1456 spin_lock_bh(&ep->ex_lock);
1457 resp = ep->resp;
1458 rc = fc_exch_done_locked(ep);
1459 WARN_ON(fc_seq_exch(sp) != ep);
1460 spin_unlock_bh(&ep->ex_lock);
1461 if (!rc)
1462 fc_exch_delete(ep);
1466 * Call the receive function.
1467 * The sequence is held (has a refcnt) for us,
1468 * but not for the receive function.
1470 * The receive function may allocate a new sequence
1471 * over the old one, so we shouldn't change the
1472 * sequence after this.
1474 * The frame will be freed by the receive function.
1475 * If new exch resp handler is valid then call that
1476 * first.
1478 if (resp)
1479 resp(sp, fp, ex_resp_arg);
1480 else
1481 fc_frame_free(fp);
1482 fc_exch_release(ep);
1483 return;
1484 rel:
1485 fc_exch_release(ep);
1486 out:
1487 fc_frame_free(fp);
1491 * fc_exch_recv_resp() - Handler for a sequence where other end is
1492 * responding to our sequence
1493 * @mp: The EM that the exchange is on
1494 * @fp: The response frame
1496 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1498 struct fc_seq *sp;
1500 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1502 if (!sp)
1503 atomic_inc(&mp->stats.xid_not_found);
1504 else
1505 atomic_inc(&mp->stats.non_bls_resp);
1507 fc_frame_free(fp);
1511 * fc_exch_abts_resp() - Handler for a response to an ABT
1512 * @ep: The exchange that the frame is on
1513 * @fp: The response frame
1515 * This response would be to an ABTS cancelling an exchange or sequence.
1516 * The response can be either BA_ACC or BA_RJT
1518 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1520 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1521 void *ex_resp_arg;
1522 struct fc_frame_header *fh;
1523 struct fc_ba_acc *ap;
1524 struct fc_seq *sp;
1525 u16 low;
1526 u16 high;
1527 int rc = 1, has_rec = 0;
1529 fh = fc_frame_header_get(fp);
1530 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1531 fc_exch_rctl_name(fh->fh_r_ctl));
1533 if (cancel_delayed_work_sync(&ep->timeout_work))
1534 fc_exch_release(ep); /* release from pending timer hold */
1536 spin_lock_bh(&ep->ex_lock);
1537 switch (fh->fh_r_ctl) {
1538 case FC_RCTL_BA_ACC:
1539 ap = fc_frame_payload_get(fp, sizeof(*ap));
1540 if (!ap)
1541 break;
1544 * Decide whether to establish a Recovery Qualifier.
1545 * We do this if there is a non-empty SEQ_CNT range and
1546 * SEQ_ID is the same as the one we aborted.
1548 low = ntohs(ap->ba_low_seq_cnt);
1549 high = ntohs(ap->ba_high_seq_cnt);
1550 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1551 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1552 ap->ba_seq_id == ep->seq_id) && low != high) {
1553 ep->esb_stat |= ESB_ST_REC_QUAL;
1554 fc_exch_hold(ep); /* hold for recovery qualifier */
1555 has_rec = 1;
1557 break;
1558 case FC_RCTL_BA_RJT:
1559 break;
1560 default:
1561 break;
1564 resp = ep->resp;
1565 ex_resp_arg = ep->arg;
1567 /* do we need to do some other checks here. Can we reuse more of
1568 * fc_exch_recv_seq_resp
1570 sp = &ep->seq;
1572 * do we want to check END_SEQ as well as LAST_SEQ here?
1574 if (ep->fh_type != FC_TYPE_FCP &&
1575 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1576 rc = fc_exch_done_locked(ep);
1577 spin_unlock_bh(&ep->ex_lock);
1578 if (!rc)
1579 fc_exch_delete(ep);
1581 if (resp)
1582 resp(sp, fp, ex_resp_arg);
1583 else
1584 fc_frame_free(fp);
1586 if (has_rec)
1587 fc_exch_timer_set(ep, ep->r_a_tov);
1592 * fc_exch_recv_bls() - Handler for a BLS sequence
1593 * @mp: The EM that the exchange is on
1594 * @fp: The request frame
1596 * The BLS frame is always a sequence initiated by the remote side.
1597 * We may be either the originator or recipient of the exchange.
1599 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1601 struct fc_frame_header *fh;
1602 struct fc_exch *ep;
1603 u32 f_ctl;
1605 fh = fc_frame_header_get(fp);
1606 f_ctl = ntoh24(fh->fh_f_ctl);
1607 fr_seq(fp) = NULL;
1609 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1610 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1611 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1612 spin_lock_bh(&ep->ex_lock);
1613 ep->esb_stat |= ESB_ST_SEQ_INIT;
1614 spin_unlock_bh(&ep->ex_lock);
1616 if (f_ctl & FC_FC_SEQ_CTX) {
1618 * A response to a sequence we initiated.
1619 * This should only be ACKs for class 2 or F.
1621 switch (fh->fh_r_ctl) {
1622 case FC_RCTL_ACK_1:
1623 case FC_RCTL_ACK_0:
1624 break;
1625 default:
1626 FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1627 fh->fh_r_ctl,
1628 fc_exch_rctl_name(fh->fh_r_ctl));
1629 break;
1631 fc_frame_free(fp);
1632 } else {
1633 switch (fh->fh_r_ctl) {
1634 case FC_RCTL_BA_RJT:
1635 case FC_RCTL_BA_ACC:
1636 if (ep)
1637 fc_exch_abts_resp(ep, fp);
1638 else
1639 fc_frame_free(fp);
1640 break;
1641 case FC_RCTL_BA_ABTS:
1642 fc_exch_recv_abts(ep, fp);
1643 break;
1644 default: /* ignore junk */
1645 fc_frame_free(fp);
1646 break;
1649 if (ep)
1650 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1654 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1655 * @rx_fp: The received frame, not freed here.
1657 * If this fails due to allocation or transmit congestion, assume the
1658 * originator will repeat the sequence.
1660 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1662 struct fc_lport *lport;
1663 struct fc_els_ls_acc *acc;
1664 struct fc_frame *fp;
1666 lport = fr_dev(rx_fp);
1667 fp = fc_frame_alloc(lport, sizeof(*acc));
1668 if (!fp)
1669 return;
1670 acc = fc_frame_payload_get(fp, sizeof(*acc));
1671 memset(acc, 0, sizeof(*acc));
1672 acc->la_cmd = ELS_LS_ACC;
1673 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1674 lport->tt.frame_send(lport, fp);
1678 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1679 * @rx_fp: The received frame, not freed here.
1680 * @reason: The reason the sequence is being rejected
1681 * @explan: The explanation for the rejection
1683 * If this fails due to allocation or transmit congestion, assume the
1684 * originator will repeat the sequence.
1686 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1687 enum fc_els_rjt_explan explan)
1689 struct fc_lport *lport;
1690 struct fc_els_ls_rjt *rjt;
1691 struct fc_frame *fp;
1693 lport = fr_dev(rx_fp);
1694 fp = fc_frame_alloc(lport, sizeof(*rjt));
1695 if (!fp)
1696 return;
1697 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1698 memset(rjt, 0, sizeof(*rjt));
1699 rjt->er_cmd = ELS_LS_RJT;
1700 rjt->er_reason = reason;
1701 rjt->er_explan = explan;
1702 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1703 lport->tt.frame_send(lport, fp);
1707 * fc_exch_reset() - Reset an exchange
1708 * @ep: The exchange to be reset
1710 static void fc_exch_reset(struct fc_exch *ep)
1712 struct fc_seq *sp;
1713 void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1714 void *arg;
1715 int rc = 1;
1717 spin_lock_bh(&ep->ex_lock);
1718 ep->state |= FC_EX_RST_CLEANUP;
1719 if (cancel_delayed_work(&ep->timeout_work))
1720 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
1721 resp = ep->resp;
1722 ep->resp = NULL;
1723 if (ep->esb_stat & ESB_ST_REC_QUAL)
1724 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1725 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1726 arg = ep->arg;
1727 sp = &ep->seq;
1728 rc = fc_exch_done_locked(ep);
1729 spin_unlock_bh(&ep->ex_lock);
1730 if (!rc)
1731 fc_exch_delete(ep);
1733 if (resp)
1734 resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1738 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1739 * @lport: The local port that the exchange pool is on
1740 * @pool: The exchange pool to be reset
1741 * @sid: The source ID
1742 * @did: The destination ID
1744 * Resets a per cpu exches pool, releasing all of its sequences
1745 * and exchanges. If sid is non-zero then reset only exchanges
1746 * we sourced from the local port's FID. If did is non-zero then
1747 * only reset exchanges destined for the local port's FID.
1749 static void fc_exch_pool_reset(struct fc_lport *lport,
1750 struct fc_exch_pool *pool,
1751 u32 sid, u32 did)
1753 struct fc_exch *ep;
1754 struct fc_exch *next;
1756 spin_lock_bh(&pool->lock);
1757 restart:
1758 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1759 if ((lport == ep->lp) &&
1760 (sid == 0 || sid == ep->sid) &&
1761 (did == 0 || did == ep->did)) {
1762 fc_exch_hold(ep);
1763 spin_unlock_bh(&pool->lock);
1765 fc_exch_reset(ep);
1767 fc_exch_release(ep);
1768 spin_lock_bh(&pool->lock);
1771 * must restart loop incase while lock
1772 * was down multiple eps were released.
1774 goto restart;
1777 spin_unlock_bh(&pool->lock);
1781 * fc_exch_mgr_reset() - Reset all EMs of a local port
1782 * @lport: The local port whose EMs are to be reset
1783 * @sid: The source ID
1784 * @did: The destination ID
1786 * Reset all EMs associated with a given local port. Release all
1787 * sequences and exchanges. If sid is non-zero then reset only the
1788 * exchanges sent from the local port's FID. If did is non-zero then
1789 * reset only exchanges destined for the local port's FID.
1791 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1793 struct fc_exch_mgr_anchor *ema;
1794 unsigned int cpu;
1796 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1797 for_each_possible_cpu(cpu)
1798 fc_exch_pool_reset(lport,
1799 per_cpu_ptr(ema->mp->pool, cpu),
1800 sid, did);
1803 EXPORT_SYMBOL(fc_exch_mgr_reset);
1806 * fc_exch_lookup() - find an exchange
1807 * @lport: The local port
1808 * @xid: The exchange ID
1810 * Returns exchange pointer with hold for caller, or NULL if not found.
1812 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1814 struct fc_exch_mgr_anchor *ema;
1816 list_for_each_entry(ema, &lport->ema_list, ema_list)
1817 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1818 return fc_exch_find(ema->mp, xid);
1819 return NULL;
1823 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1824 * @rfp: The REC frame, not freed here.
1826 * Note that the requesting port may be different than the S_ID in the request.
1828 static void fc_exch_els_rec(struct fc_frame *rfp)
1830 struct fc_lport *lport;
1831 struct fc_frame *fp;
1832 struct fc_exch *ep;
1833 struct fc_els_rec *rp;
1834 struct fc_els_rec_acc *acc;
1835 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1836 enum fc_els_rjt_explan explan;
1837 u32 sid;
1838 u16 rxid;
1839 u16 oxid;
1841 lport = fr_dev(rfp);
1842 rp = fc_frame_payload_get(rfp, sizeof(*rp));
1843 explan = ELS_EXPL_INV_LEN;
1844 if (!rp)
1845 goto reject;
1846 sid = ntoh24(rp->rec_s_id);
1847 rxid = ntohs(rp->rec_rx_id);
1848 oxid = ntohs(rp->rec_ox_id);
1850 ep = fc_exch_lookup(lport,
1851 sid == fc_host_port_id(lport->host) ? oxid : rxid);
1852 explan = ELS_EXPL_OXID_RXID;
1853 if (!ep)
1854 goto reject;
1855 if (ep->oid != sid || oxid != ep->oxid)
1856 goto rel;
1857 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1858 goto rel;
1859 fp = fc_frame_alloc(lport, sizeof(*acc));
1860 if (!fp)
1861 goto out;
1863 acc = fc_frame_payload_get(fp, sizeof(*acc));
1864 memset(acc, 0, sizeof(*acc));
1865 acc->reca_cmd = ELS_LS_ACC;
1866 acc->reca_ox_id = rp->rec_ox_id;
1867 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1868 acc->reca_rx_id = htons(ep->rxid);
1869 if (ep->sid == ep->oid)
1870 hton24(acc->reca_rfid, ep->did);
1871 else
1872 hton24(acc->reca_rfid, ep->sid);
1873 acc->reca_fc4value = htonl(ep->seq.rec_data);
1874 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1875 ESB_ST_SEQ_INIT |
1876 ESB_ST_COMPLETE));
1877 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1878 lport->tt.frame_send(lport, fp);
1879 out:
1880 fc_exch_release(ep);
1881 return;
1883 rel:
1884 fc_exch_release(ep);
1885 reject:
1886 fc_seq_ls_rjt(rfp, reason, explan);
1890 * fc_exch_rrq_resp() - Handler for RRQ responses
1891 * @sp: The sequence that the RRQ is on
1892 * @fp: The RRQ frame
1893 * @arg: The exchange that the RRQ is on
1895 * TODO: fix error handler.
1897 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1899 struct fc_exch *aborted_ep = arg;
1900 unsigned int op;
1902 if (IS_ERR(fp)) {
1903 int err = PTR_ERR(fp);
1905 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1906 goto cleanup;
1907 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1908 "frame error %d\n", err);
1909 return;
1912 op = fc_frame_payload_op(fp);
1913 fc_frame_free(fp);
1915 switch (op) {
1916 case ELS_LS_RJT:
1917 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1918 /* fall through */
1919 case ELS_LS_ACC:
1920 goto cleanup;
1921 default:
1922 FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1923 "for RRQ", op);
1924 return;
1927 cleanup:
1928 fc_exch_done(&aborted_ep->seq);
1929 /* drop hold for rec qual */
1930 fc_exch_release(aborted_ep);
1935 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1936 * @lport: The local port to send the frame on
1937 * @fp: The frame to be sent
1938 * @resp: The response handler for this request
1939 * @destructor: The destructor for the exchange
1940 * @arg: The argument to be passed to the response handler
1941 * @timer_msec: The timeout period for the exchange
1943 * The frame pointer with some of the header's fields must be
1944 * filled before calling this routine, those fields are:
1946 * - routing control
1947 * - FC port did
1948 * - FC port sid
1949 * - FC header type
1950 * - frame control
1951 * - parameter or relative offset
1953 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1954 struct fc_frame *fp,
1955 void (*resp)(struct fc_seq *,
1956 struct fc_frame *fp,
1957 void *arg),
1958 void (*destructor)(struct fc_seq *,
1959 void *),
1960 void *arg, u32 timer_msec)
1962 struct fc_exch *ep;
1963 struct fc_seq *sp = NULL;
1964 struct fc_frame_header *fh;
1965 int rc = 1;
1967 ep = fc_exch_alloc(lport, fp);
1968 if (!ep) {
1969 fc_frame_free(fp);
1970 return NULL;
1972 ep->esb_stat |= ESB_ST_SEQ_INIT;
1973 fh = fc_frame_header_get(fp);
1974 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1975 ep->resp = resp;
1976 ep->destructor = destructor;
1977 ep->arg = arg;
1978 ep->r_a_tov = FC_DEF_R_A_TOV;
1979 ep->lp = lport;
1980 sp = &ep->seq;
1982 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
1983 ep->f_ctl = ntoh24(fh->fh_f_ctl);
1984 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
1985 sp->cnt++;
1987 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD)
1988 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
1990 if (unlikely(lport->tt.frame_send(lport, fp)))
1991 goto err;
1993 if (timer_msec)
1994 fc_exch_timer_set_locked(ep, timer_msec);
1995 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
1997 if (ep->f_ctl & FC_FC_SEQ_INIT)
1998 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1999 spin_unlock_bh(&ep->ex_lock);
2000 return sp;
2001 err:
2002 fc_fcp_ddp_done(fr_fsp(fp));
2003 rc = fc_exch_done_locked(ep);
2004 spin_unlock_bh(&ep->ex_lock);
2005 if (!rc)
2006 fc_exch_delete(ep);
2007 return NULL;
2011 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2012 * @ep: The exchange to send the RRQ on
2014 * This tells the remote port to stop blocking the use of
2015 * the exchange and the seq_cnt range.
2017 static void fc_exch_rrq(struct fc_exch *ep)
2019 struct fc_lport *lport;
2020 struct fc_els_rrq *rrq;
2021 struct fc_frame *fp;
2022 u32 did;
2024 lport = ep->lp;
2026 fp = fc_frame_alloc(lport, sizeof(*rrq));
2027 if (!fp)
2028 goto retry;
2030 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2031 memset(rrq, 0, sizeof(*rrq));
2032 rrq->rrq_cmd = ELS_RRQ;
2033 hton24(rrq->rrq_s_id, ep->sid);
2034 rrq->rrq_ox_id = htons(ep->oxid);
2035 rrq->rrq_rx_id = htons(ep->rxid);
2037 did = ep->did;
2038 if (ep->esb_stat & ESB_ST_RESP)
2039 did = ep->sid;
2041 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2042 lport->port_id, FC_TYPE_ELS,
2043 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2045 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2046 lport->e_d_tov))
2047 return;
2049 retry:
2050 spin_lock_bh(&ep->ex_lock);
2051 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2052 spin_unlock_bh(&ep->ex_lock);
2053 /* drop hold for rec qual */
2054 fc_exch_release(ep);
2055 return;
2057 ep->esb_stat |= ESB_ST_REC_QUAL;
2058 fc_exch_timer_set_locked(ep, ep->r_a_tov);
2059 spin_unlock_bh(&ep->ex_lock);
2063 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2064 * @fp: The RRQ frame, not freed here.
2066 static void fc_exch_els_rrq(struct fc_frame *fp)
2068 struct fc_lport *lport;
2069 struct fc_exch *ep = NULL; /* request or subject exchange */
2070 struct fc_els_rrq *rp;
2071 u32 sid;
2072 u16 xid;
2073 enum fc_els_rjt_explan explan;
2075 lport = fr_dev(fp);
2076 rp = fc_frame_payload_get(fp, sizeof(*rp));
2077 explan = ELS_EXPL_INV_LEN;
2078 if (!rp)
2079 goto reject;
2082 * lookup subject exchange.
2084 sid = ntoh24(rp->rrq_s_id); /* subject source */
2085 xid = fc_host_port_id(lport->host) == sid ?
2086 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2087 ep = fc_exch_lookup(lport, xid);
2088 explan = ELS_EXPL_OXID_RXID;
2089 if (!ep)
2090 goto reject;
2091 spin_lock_bh(&ep->ex_lock);
2092 if (ep->oxid != ntohs(rp->rrq_ox_id))
2093 goto unlock_reject;
2094 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2095 ep->rxid != FC_XID_UNKNOWN)
2096 goto unlock_reject;
2097 explan = ELS_EXPL_SID;
2098 if (ep->sid != sid)
2099 goto unlock_reject;
2102 * Clear Recovery Qualifier state, and cancel timer if complete.
2104 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2105 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2106 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2108 if (ep->esb_stat & ESB_ST_COMPLETE) {
2109 if (cancel_delayed_work(&ep->timeout_work))
2110 atomic_dec(&ep->ex_refcnt); /* drop timer hold */
2113 spin_unlock_bh(&ep->ex_lock);
2116 * Send LS_ACC.
2118 fc_seq_ls_acc(fp);
2119 goto out;
2121 unlock_reject:
2122 spin_unlock_bh(&ep->ex_lock);
2123 reject:
2124 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2125 out:
2126 if (ep)
2127 fc_exch_release(ep); /* drop hold from fc_exch_find */
2131 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2132 * @lport: The local port to add the exchange manager to
2133 * @mp: The exchange manager to be added to the local port
2134 * @match: The match routine that indicates when this EM should be used
2136 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2137 struct fc_exch_mgr *mp,
2138 bool (*match)(struct fc_frame *))
2140 struct fc_exch_mgr_anchor *ema;
2142 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2143 if (!ema)
2144 return ema;
2146 ema->mp = mp;
2147 ema->match = match;
2148 /* add EM anchor to EM anchors list */
2149 list_add_tail(&ema->ema_list, &lport->ema_list);
2150 kref_get(&mp->kref);
2151 return ema;
2153 EXPORT_SYMBOL(fc_exch_mgr_add);
2156 * fc_exch_mgr_destroy() - Destroy an exchange manager
2157 * @kref: The reference to the EM to be destroyed
2159 static void fc_exch_mgr_destroy(struct kref *kref)
2161 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2163 mempool_destroy(mp->ep_pool);
2164 free_percpu(mp->pool);
2165 kfree(mp);
2169 * fc_exch_mgr_del() - Delete an EM from a local port's list
2170 * @ema: The exchange manager anchor identifying the EM to be deleted
2172 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2174 /* remove EM anchor from EM anchors list */
2175 list_del(&ema->ema_list);
2176 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2177 kfree(ema);
2179 EXPORT_SYMBOL(fc_exch_mgr_del);
2182 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2183 * @src: Source lport to clone exchange managers from
2184 * @dst: New lport that takes references to all the exchange managers
2186 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2188 struct fc_exch_mgr_anchor *ema, *tmp;
2190 list_for_each_entry(ema, &src->ema_list, ema_list) {
2191 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2192 goto err;
2194 return 0;
2195 err:
2196 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2197 fc_exch_mgr_del(ema);
2198 return -ENOMEM;
2200 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2203 * fc_exch_mgr_alloc() - Allocate an exchange manager
2204 * @lport: The local port that the new EM will be associated with
2205 * @class: The default FC class for new exchanges
2206 * @min_xid: The minimum XID for exchanges from the new EM
2207 * @max_xid: The maximum XID for exchanges from the new EM
2208 * @match: The match routine for the new EM
2210 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2211 enum fc_class class,
2212 u16 min_xid, u16 max_xid,
2213 bool (*match)(struct fc_frame *))
2215 struct fc_exch_mgr *mp;
2216 u16 pool_exch_range;
2217 size_t pool_size;
2218 unsigned int cpu;
2219 struct fc_exch_pool *pool;
2221 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2222 (min_xid & fc_cpu_mask) != 0) {
2223 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2224 min_xid, max_xid);
2225 return NULL;
2229 * allocate memory for EM
2231 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2232 if (!mp)
2233 return NULL;
2235 mp->class = class;
2236 /* adjust em exch xid range for offload */
2237 mp->min_xid = min_xid;
2238 mp->max_xid = max_xid;
2240 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2241 if (!mp->ep_pool)
2242 goto free_mp;
2245 * Setup per cpu exch pool with entire exchange id range equally
2246 * divided across all cpus. The exch pointers array memory is
2247 * allocated for exch range per pool.
2249 pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
2250 mp->pool_max_index = pool_exch_range - 1;
2253 * Allocate and initialize per cpu exch pool
2255 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2256 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2257 if (!mp->pool)
2258 goto free_mempool;
2259 for_each_possible_cpu(cpu) {
2260 pool = per_cpu_ptr(mp->pool, cpu);
2261 pool->left = FC_XID_UNKNOWN;
2262 pool->right = FC_XID_UNKNOWN;
2263 spin_lock_init(&pool->lock);
2264 INIT_LIST_HEAD(&pool->ex_list);
2267 kref_init(&mp->kref);
2268 if (!fc_exch_mgr_add(lport, mp, match)) {
2269 free_percpu(mp->pool);
2270 goto free_mempool;
2274 * Above kref_init() sets mp->kref to 1 and then
2275 * call to fc_exch_mgr_add incremented mp->kref again,
2276 * so adjust that extra increment.
2278 kref_put(&mp->kref, fc_exch_mgr_destroy);
2279 return mp;
2281 free_mempool:
2282 mempool_destroy(mp->ep_pool);
2283 free_mp:
2284 kfree(mp);
2285 return NULL;
2287 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2290 * fc_exch_mgr_free() - Free all exchange managers on a local port
2291 * @lport: The local port whose EMs are to be freed
2293 void fc_exch_mgr_free(struct fc_lport *lport)
2295 struct fc_exch_mgr_anchor *ema, *next;
2297 flush_workqueue(fc_exch_workqueue);
2298 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2299 fc_exch_mgr_del(ema);
2301 EXPORT_SYMBOL(fc_exch_mgr_free);
2304 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2305 * upon 'xid'.
2306 * @f_ctl: f_ctl
2307 * @lport: The local port the frame was received on
2308 * @fh: The received frame header
2310 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2311 struct fc_lport *lport,
2312 struct fc_frame_header *fh)
2314 struct fc_exch_mgr_anchor *ema;
2315 u16 xid;
2317 if (f_ctl & FC_FC_EX_CTX)
2318 xid = ntohs(fh->fh_ox_id);
2319 else {
2320 xid = ntohs(fh->fh_rx_id);
2321 if (xid == FC_XID_UNKNOWN)
2322 return list_entry(lport->ema_list.prev,
2323 typeof(*ema), ema_list);
2326 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2327 if ((xid >= ema->mp->min_xid) &&
2328 (xid <= ema->mp->max_xid))
2329 return ema;
2331 return NULL;
2334 * fc_exch_recv() - Handler for received frames
2335 * @lport: The local port the frame was received on
2336 * @fp: The received frame
2338 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2340 struct fc_frame_header *fh = fc_frame_header_get(fp);
2341 struct fc_exch_mgr_anchor *ema;
2342 u32 f_ctl;
2344 /* lport lock ? */
2345 if (!lport || lport->state == LPORT_ST_DISABLED) {
2346 FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2347 "has not been initialized correctly\n");
2348 fc_frame_free(fp);
2349 return;
2352 f_ctl = ntoh24(fh->fh_f_ctl);
2353 ema = fc_find_ema(f_ctl, lport, fh);
2354 if (!ema) {
2355 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2356 "fc_ctl <0x%x>, xid <0x%x>\n",
2357 f_ctl,
2358 (f_ctl & FC_FC_EX_CTX) ?
2359 ntohs(fh->fh_ox_id) :
2360 ntohs(fh->fh_rx_id));
2361 fc_frame_free(fp);
2362 return;
2366 * If frame is marked invalid, just drop it.
2368 switch (fr_eof(fp)) {
2369 case FC_EOF_T:
2370 if (f_ctl & FC_FC_END_SEQ)
2371 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2372 /* fall through */
2373 case FC_EOF_N:
2374 if (fh->fh_type == FC_TYPE_BLS)
2375 fc_exch_recv_bls(ema->mp, fp);
2376 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2377 FC_FC_EX_CTX)
2378 fc_exch_recv_seq_resp(ema->mp, fp);
2379 else if (f_ctl & FC_FC_SEQ_CTX)
2380 fc_exch_recv_resp(ema->mp, fp);
2381 else /* no EX_CTX and no SEQ_CTX */
2382 fc_exch_recv_req(lport, ema->mp, fp);
2383 break;
2384 default:
2385 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2386 fr_eof(fp));
2387 fc_frame_free(fp);
2390 EXPORT_SYMBOL(fc_exch_recv);
2393 * fc_exch_init() - Initialize the exchange layer for a local port
2394 * @lport: The local port to initialize the exchange layer for
2396 int fc_exch_init(struct fc_lport *lport)
2398 if (!lport->tt.seq_start_next)
2399 lport->tt.seq_start_next = fc_seq_start_next;
2401 if (!lport->tt.seq_set_resp)
2402 lport->tt.seq_set_resp = fc_seq_set_resp;
2404 if (!lport->tt.exch_seq_send)
2405 lport->tt.exch_seq_send = fc_exch_seq_send;
2407 if (!lport->tt.seq_send)
2408 lport->tt.seq_send = fc_seq_send;
2410 if (!lport->tt.seq_els_rsp_send)
2411 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2413 if (!lport->tt.exch_done)
2414 lport->tt.exch_done = fc_exch_done;
2416 if (!lport->tt.exch_mgr_reset)
2417 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2419 if (!lport->tt.seq_exch_abort)
2420 lport->tt.seq_exch_abort = fc_seq_exch_abort;
2422 if (!lport->tt.seq_assign)
2423 lport->tt.seq_assign = fc_seq_assign;
2425 if (!lport->tt.seq_release)
2426 lport->tt.seq_release = fc_seq_release;
2428 return 0;
2430 EXPORT_SYMBOL(fc_exch_init);
2433 * fc_setup_exch_mgr() - Setup an exchange manager
2435 int fc_setup_exch_mgr(void)
2437 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2438 0, SLAB_HWCACHE_ALIGN, NULL);
2439 if (!fc_em_cachep)
2440 return -ENOMEM;
2443 * Initialize fc_cpu_mask and fc_cpu_order. The
2444 * fc_cpu_mask is set for nr_cpu_ids rounded up
2445 * to order of 2's * power and order is stored
2446 * in fc_cpu_order as this is later required in
2447 * mapping between an exch id and exch array index
2448 * in per cpu exch pool.
2450 * This round up is required to align fc_cpu_mask
2451 * to exchange id's lower bits such that all incoming
2452 * frames of an exchange gets delivered to the same
2453 * cpu on which exchange originated by simple bitwise
2454 * AND operation between fc_cpu_mask and exchange id.
2456 fc_cpu_mask = 1;
2457 fc_cpu_order = 0;
2458 while (fc_cpu_mask < nr_cpu_ids) {
2459 fc_cpu_mask <<= 1;
2460 fc_cpu_order++;
2462 fc_cpu_mask--;
2464 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2465 if (!fc_exch_workqueue)
2466 goto err;
2467 return 0;
2468 err:
2469 kmem_cache_destroy(fc_em_cachep);
2470 return -ENOMEM;
2474 * fc_destroy_exch_mgr() - Destroy an exchange manager
2476 void fc_destroy_exch_mgr(void)
2478 destroy_workqueue(fc_exch_workqueue);
2479 kmem_cache_destroy(fc_em_cachep);