2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
22 /* max queue in one round of service */
23 static const int cfq_quantum
= 8;
24 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max
= 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty
= 2;
29 static const int cfq_slice_sync
= HZ
/ 10;
30 static int cfq_slice_async
= HZ
/ 25;
31 static const int cfq_slice_async_rq
= 2;
32 static int cfq_slice_idle
= HZ
/ 125;
33 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
34 static const int cfq_hist_divisor
= 4;
37 * offset from end of service tree
39 #define CFQ_IDLE_DELAY (HZ / 5)
42 * below this threshold, we consider thinktime immediate
44 #define CFQ_MIN_TT (2)
46 #define CFQ_SLICE_SCALE (5)
47 #define CFQ_HW_QUEUE_MIN (5)
48 #define CFQ_SERVICE_SHIFT 12
50 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
51 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
52 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
53 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56 ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
58 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
60 static struct kmem_cache
*cfq_pool
;
61 static struct kmem_cache
*cfq_ioc_pool
;
63 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
64 static struct completion
*ioc_gone
;
65 static DEFINE_SPINLOCK(ioc_gone_lock
);
67 static DEFINE_SPINLOCK(cic_index_lock
);
68 static DEFINE_IDA(cic_index_ida
);
70 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
71 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
72 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74 #define sample_valid(samples) ((samples) > 80)
75 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
78 * Most of our rbtree usage is for sorting with min extraction, so
79 * if we cache the leftmost node we don't have to walk down the tree
80 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
81 * move this into the elevator for the rq sorting as well.
87 unsigned total_weight
;
89 struct rb_node
*active
;
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
95 * Per process-grouping structure
100 /* various state flags, see below */
102 /* parent cfq_data */
103 struct cfq_data
*cfqd
;
104 /* service_tree member */
105 struct rb_node rb_node
;
106 /* service_tree key */
107 unsigned long rb_key
;
108 /* prio tree member */
109 struct rb_node p_node
;
110 /* prio tree root we belong to, if any */
111 struct rb_root
*p_root
;
112 /* sorted list of pending requests */
113 struct rb_root sort_list
;
114 /* if fifo isn't expired, next request to serve */
115 struct request
*next_rq
;
116 /* requests queued in sort_list */
118 /* currently allocated requests */
120 /* fifo list of requests in sort_list */
121 struct list_head fifo
;
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start
;
125 unsigned int allocated_slice
;
126 unsigned int slice_dispatch
;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start
;
129 unsigned long slice_end
;
132 /* pending metadata requests */
134 /* number of requests that are on the dispatch list or inside driver */
137 /* io prio of this group */
138 unsigned short ioprio
, org_ioprio
;
139 unsigned short ioprio_class
, org_ioprio_class
;
144 sector_t last_request_pos
;
146 struct cfq_rb_root
*service_tree
;
147 struct cfq_queue
*new_cfqq
;
148 struct cfq_group
*cfqg
;
149 struct cfq_group
*orig_cfqg
;
153 * First index in the service_trees.
154 * IDLE is handled separately, so it has negative index
163 * Second index in the service_trees.
167 SYNC_NOIDLE_WORKLOAD
= 1,
171 /* This is per cgroup per device grouping structure */
173 /* group service_tree member */
174 struct rb_node rb_node
;
176 /* group service_tree key */
181 /* number of cfqq currently on this group */
184 /* Per group busy queus average. Useful for workload slice calc. */
185 unsigned int busy_queues_avg
[2];
187 * rr lists of queues with requests, onle rr for each priority class.
188 * Counts are embedded in the cfq_rb_root
190 struct cfq_rb_root service_trees
[2][3];
191 struct cfq_rb_root service_tree_idle
;
193 unsigned long saved_workload_slice
;
194 enum wl_type_t saved_workload
;
195 enum wl_prio_t saved_serving_prio
;
196 struct blkio_group blkg
;
197 #ifdef CONFIG_CFQ_GROUP_IOSCHED
198 struct hlist_node cfqd_node
;
204 * Per block device queue structure
207 struct request_queue
*queue
;
208 /* Root service tree for cfq_groups */
209 struct cfq_rb_root grp_service_tree
;
210 struct cfq_group root_group
;
213 * The priority currently being served
215 enum wl_prio_t serving_prio
;
216 enum wl_type_t serving_type
;
217 unsigned long workload_expires
;
218 struct cfq_group
*serving_group
;
219 bool noidle_tree_requires_idle
;
222 * Each priority tree is sorted by next_request position. These
223 * trees are used when determining if two or more queues are
224 * interleaving requests (see cfq_close_cooperator).
226 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
228 unsigned int busy_queues
;
234 * queue-depth detection
240 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
241 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
244 int hw_tag_est_depth
;
245 unsigned int hw_tag_samples
;
248 * idle window management
250 struct timer_list idle_slice_timer
;
251 struct work_struct unplug_work
;
253 struct cfq_queue
*active_queue
;
254 struct cfq_io_context
*active_cic
;
257 * async queue for each priority case
259 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
260 struct cfq_queue
*async_idle_cfqq
;
262 sector_t last_position
;
265 * tunables, see top of file
267 unsigned int cfq_quantum
;
268 unsigned int cfq_fifo_expire
[2];
269 unsigned int cfq_back_penalty
;
270 unsigned int cfq_back_max
;
271 unsigned int cfq_slice
[2];
272 unsigned int cfq_slice_async_rq
;
273 unsigned int cfq_slice_idle
;
274 unsigned int cfq_latency
;
275 unsigned int cfq_group_isolation
;
277 unsigned int cic_index
;
278 struct list_head cic_list
;
281 * Fallback dummy cfqq for extreme OOM conditions
283 struct cfq_queue oom_cfqq
;
285 unsigned long last_delayed_sync
;
287 /* List of cfq groups being managed on this device*/
288 struct hlist_head cfqg_list
;
292 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
294 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
301 if (prio
== IDLE_WORKLOAD
)
302 return &cfqg
->service_tree_idle
;
304 return &cfqg
->service_trees
[prio
][type
];
307 enum cfqq_state_flags
{
308 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
309 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
310 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
311 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
312 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
313 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
314 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
315 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
316 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
317 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
318 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
319 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
320 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
323 #define CFQ_CFQQ_FNS(name) \
324 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
326 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
328 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
330 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
332 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
334 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
338 CFQ_CFQQ_FNS(wait_request
);
339 CFQ_CFQQ_FNS(must_dispatch
);
340 CFQ_CFQQ_FNS(must_alloc_slice
);
341 CFQ_CFQQ_FNS(fifo_expire
);
342 CFQ_CFQQ_FNS(idle_window
);
343 CFQ_CFQQ_FNS(prio_changed
);
344 CFQ_CFQQ_FNS(slice_new
);
347 CFQ_CFQQ_FNS(split_coop
);
349 CFQ_CFQQ_FNS(wait_busy
);
352 #ifdef CONFIG_CFQ_GROUP_IOSCHED
353 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
354 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
355 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
356 blkg_path(&(cfqq)->cfqg->blkg), ##args);
358 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
359 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
360 blkg_path(&(cfqg)->blkg), ##args); \
363 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
364 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
365 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
367 #define cfq_log(cfqd, fmt, args...) \
368 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
370 /* Traverses through cfq group service trees */
371 #define for_each_cfqg_st(cfqg, i, j, st) \
372 for (i = 0; i <= IDLE_WORKLOAD; i++) \
373 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
374 : &cfqg->service_tree_idle; \
375 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
376 (i == IDLE_WORKLOAD && j == 0); \
377 j++, st = i < IDLE_WORKLOAD ? \
378 &cfqg->service_trees[i][j]: NULL) \
381 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
383 if (cfq_class_idle(cfqq
))
384 return IDLE_WORKLOAD
;
385 if (cfq_class_rt(cfqq
))
391 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
393 if (!cfq_cfqq_sync(cfqq
))
394 return ASYNC_WORKLOAD
;
395 if (!cfq_cfqq_idle_window(cfqq
))
396 return SYNC_NOIDLE_WORKLOAD
;
397 return SYNC_WORKLOAD
;
400 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
401 struct cfq_data
*cfqd
,
402 struct cfq_group
*cfqg
)
404 if (wl
== IDLE_WORKLOAD
)
405 return cfqg
->service_tree_idle
.count
;
407 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
408 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
409 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
412 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
413 struct cfq_group
*cfqg
)
415 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
416 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
419 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
420 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
421 struct io_context
*, gfp_t
);
422 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
423 struct io_context
*);
425 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
428 return cic
->cfqq
[is_sync
];
431 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
432 struct cfq_queue
*cfqq
, bool is_sync
)
434 cic
->cfqq
[is_sync
] = cfqq
;
437 #define CIC_DEAD_KEY 1ul
438 #define CIC_DEAD_INDEX_SHIFT 1
440 static inline void *cfqd_dead_key(struct cfq_data
*cfqd
)
442 return (void *)(cfqd
->cic_index
<< CIC_DEAD_INDEX_SHIFT
| CIC_DEAD_KEY
);
445 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_context
*cic
)
447 struct cfq_data
*cfqd
= cic
->key
;
449 if (unlikely((unsigned long) cfqd
& CIC_DEAD_KEY
))
456 * We regard a request as SYNC, if it's either a read or has the SYNC bit
457 * set (in which case it could also be direct WRITE).
459 static inline bool cfq_bio_sync(struct bio
*bio
)
461 return bio_data_dir(bio
) == READ
|| (bio
->bi_rw
& REQ_SYNC
);
465 * scheduler run of queue, if there are requests pending and no one in the
466 * driver that will restart queueing
468 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
470 if (cfqd
->busy_queues
) {
471 cfq_log(cfqd
, "schedule dispatch");
472 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
476 static int cfq_queue_empty(struct request_queue
*q
)
478 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
480 return !cfqd
->rq_queued
;
484 * Scale schedule slice based on io priority. Use the sync time slice only
485 * if a queue is marked sync and has sync io queued. A sync queue with async
486 * io only, should not get full sync slice length.
488 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
491 const int base_slice
= cfqd
->cfq_slice
[sync
];
493 WARN_ON(prio
>= IOPRIO_BE_NR
);
495 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
499 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
501 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
504 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
506 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
508 d
= d
* BLKIO_WEIGHT_DEFAULT
;
509 do_div(d
, cfqg
->weight
);
513 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
515 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
517 min_vdisktime
= vdisktime
;
519 return min_vdisktime
;
522 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
524 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
526 min_vdisktime
= vdisktime
;
528 return min_vdisktime
;
531 static void update_min_vdisktime(struct cfq_rb_root
*st
)
533 u64 vdisktime
= st
->min_vdisktime
;
534 struct cfq_group
*cfqg
;
537 cfqg
= rb_entry_cfqg(st
->active
);
538 vdisktime
= cfqg
->vdisktime
;
542 cfqg
= rb_entry_cfqg(st
->left
);
543 vdisktime
= min_vdisktime(vdisktime
, cfqg
->vdisktime
);
546 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
, vdisktime
);
550 * get averaged number of queues of RT/BE priority.
551 * average is updated, with a formula that gives more weight to higher numbers,
552 * to quickly follows sudden increases and decrease slowly
555 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
556 struct cfq_group
*cfqg
, bool rt
)
558 unsigned min_q
, max_q
;
559 unsigned mult
= cfq_hist_divisor
- 1;
560 unsigned round
= cfq_hist_divisor
/ 2;
561 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
563 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
564 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
565 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
567 return cfqg
->busy_queues_avg
[rt
];
570 static inline unsigned
571 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
573 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
575 return cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
579 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
581 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
582 if (cfqd
->cfq_latency
) {
584 * interested queues (we consider only the ones with the same
585 * priority class in the cfq group)
587 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
589 unsigned sync_slice
= cfqd
->cfq_slice
[1];
590 unsigned expect_latency
= sync_slice
* iq
;
591 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
593 if (expect_latency
> group_slice
) {
594 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
595 /* scale low_slice according to IO priority
596 * and sync vs async */
598 min(slice
, base_low_slice
* slice
/ sync_slice
);
599 /* the adapted slice value is scaled to fit all iqs
600 * into the target latency */
601 slice
= max(slice
* group_slice
/ expect_latency
,
605 cfqq
->slice_start
= jiffies
;
606 cfqq
->slice_end
= jiffies
+ slice
;
607 cfqq
->allocated_slice
= slice
;
608 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
612 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
613 * isn't valid until the first request from the dispatch is activated
614 * and the slice time set.
616 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
618 if (cfq_cfqq_slice_new(cfqq
))
620 if (time_before(jiffies
, cfqq
->slice_end
))
627 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
628 * We choose the request that is closest to the head right now. Distance
629 * behind the head is penalized and only allowed to a certain extent.
631 static struct request
*
632 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
634 sector_t s1
, s2
, d1
= 0, d2
= 0;
635 unsigned long back_max
;
636 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
637 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
638 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
640 if (rq1
== NULL
|| rq1
== rq2
)
645 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
647 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
649 if ((rq1
->cmd_flags
& REQ_META
) && !(rq2
->cmd_flags
& REQ_META
))
651 else if ((rq2
->cmd_flags
& REQ_META
) &&
652 !(rq1
->cmd_flags
& REQ_META
))
655 s1
= blk_rq_pos(rq1
);
656 s2
= blk_rq_pos(rq2
);
659 * by definition, 1KiB is 2 sectors
661 back_max
= cfqd
->cfq_back_max
* 2;
664 * Strict one way elevator _except_ in the case where we allow
665 * short backward seeks which are biased as twice the cost of a
666 * similar forward seek.
670 else if (s1
+ back_max
>= last
)
671 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
673 wrap
|= CFQ_RQ1_WRAP
;
677 else if (s2
+ back_max
>= last
)
678 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
680 wrap
|= CFQ_RQ2_WRAP
;
682 /* Found required data */
685 * By doing switch() on the bit mask "wrap" we avoid having to
686 * check two variables for all permutations: --> faster!
689 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
705 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
708 * Since both rqs are wrapped,
709 * start with the one that's further behind head
710 * (--> only *one* back seek required),
711 * since back seek takes more time than forward.
721 * The below is leftmost cache rbtree addon
723 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
725 /* Service tree is empty */
730 root
->left
= rb_first(&root
->rb
);
733 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
738 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
741 root
->left
= rb_first(&root
->rb
);
744 return rb_entry_cfqg(root
->left
);
749 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
755 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
759 rb_erase_init(n
, &root
->rb
);
764 * would be nice to take fifo expire time into account as well
766 static struct request
*
767 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
768 struct request
*last
)
770 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
771 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
772 struct request
*next
= NULL
, *prev
= NULL
;
774 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
777 prev
= rb_entry_rq(rbprev
);
780 next
= rb_entry_rq(rbnext
);
782 rbnext
= rb_first(&cfqq
->sort_list
);
783 if (rbnext
&& rbnext
!= &last
->rb_node
)
784 next
= rb_entry_rq(rbnext
);
787 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
790 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
791 struct cfq_queue
*cfqq
)
794 * just an approximation, should be ok.
796 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
797 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
801 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
803 return cfqg
->vdisktime
- st
->min_vdisktime
;
807 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
809 struct rb_node
**node
= &st
->rb
.rb_node
;
810 struct rb_node
*parent
= NULL
;
811 struct cfq_group
*__cfqg
;
812 s64 key
= cfqg_key(st
, cfqg
);
815 while (*node
!= NULL
) {
817 __cfqg
= rb_entry_cfqg(parent
);
819 if (key
< cfqg_key(st
, __cfqg
))
820 node
= &parent
->rb_left
;
822 node
= &parent
->rb_right
;
828 st
->left
= &cfqg
->rb_node
;
830 rb_link_node(&cfqg
->rb_node
, parent
, node
);
831 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
835 cfq_group_service_tree_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
837 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
838 struct cfq_group
*__cfqg
;
846 * Currently put the group at the end. Later implement something
847 * so that groups get lesser vtime based on their weights, so that
848 * if group does not loose all if it was not continously backlogged.
850 n
= rb_last(&st
->rb
);
852 __cfqg
= rb_entry_cfqg(n
);
853 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
855 cfqg
->vdisktime
= st
->min_vdisktime
;
857 __cfq_group_service_tree_add(st
, cfqg
);
859 st
->total_weight
+= cfqg
->weight
;
863 cfq_group_service_tree_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
865 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
867 if (st
->active
== &cfqg
->rb_node
)
870 BUG_ON(cfqg
->nr_cfqq
< 1);
873 /* If there are other cfq queues under this group, don't delete it */
877 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
879 st
->total_weight
-= cfqg
->weight
;
880 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
881 cfq_rb_erase(&cfqg
->rb_node
, st
);
882 cfqg
->saved_workload_slice
= 0;
883 cfq_blkiocg_update_dequeue_stats(&cfqg
->blkg
, 1);
886 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
)
888 unsigned int slice_used
;
891 * Queue got expired before even a single request completed or
892 * got expired immediately after first request completion.
894 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
896 * Also charge the seek time incurred to the group, otherwise
897 * if there are mutiple queues in the group, each can dispatch
898 * a single request on seeky media and cause lots of seek time
899 * and group will never know it.
901 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
904 slice_used
= jiffies
- cfqq
->slice_start
;
905 if (slice_used
> cfqq
->allocated_slice
)
906 slice_used
= cfqq
->allocated_slice
;
909 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "sl_used=%u", slice_used
);
913 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
914 struct cfq_queue
*cfqq
)
916 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
917 unsigned int used_sl
, charge_sl
;
918 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
919 - cfqg
->service_tree_idle
.count
;
922 used_sl
= charge_sl
= cfq_cfqq_slice_usage(cfqq
);
924 if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
925 charge_sl
= cfqq
->allocated_slice
;
927 /* Can't update vdisktime while group is on service tree */
928 cfq_rb_erase(&cfqg
->rb_node
, st
);
929 cfqg
->vdisktime
+= cfq_scale_slice(charge_sl
, cfqg
);
930 __cfq_group_service_tree_add(st
, cfqg
);
932 /* This group is being expired. Save the context */
933 if (time_after(cfqd
->workload_expires
, jiffies
)) {
934 cfqg
->saved_workload_slice
= cfqd
->workload_expires
936 cfqg
->saved_workload
= cfqd
->serving_type
;
937 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
939 cfqg
->saved_workload_slice
= 0;
941 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
943 cfq_blkiocg_update_timeslice_used(&cfqg
->blkg
, used_sl
);
944 cfq_blkiocg_set_start_empty_time(&cfqg
->blkg
);
947 #ifdef CONFIG_CFQ_GROUP_IOSCHED
948 static inline struct cfq_group
*cfqg_of_blkg(struct blkio_group
*blkg
)
951 return container_of(blkg
, struct cfq_group
, blkg
);
956 cfq_update_blkio_group_weight(struct blkio_group
*blkg
, unsigned int weight
)
958 cfqg_of_blkg(blkg
)->weight
= weight
;
961 static struct cfq_group
*
962 cfq_find_alloc_cfqg(struct cfq_data
*cfqd
, struct cgroup
*cgroup
, int create
)
964 struct blkio_cgroup
*blkcg
= cgroup_to_blkio_cgroup(cgroup
);
965 struct cfq_group
*cfqg
= NULL
;
968 struct cfq_rb_root
*st
;
969 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
970 unsigned int major
, minor
;
972 cfqg
= cfqg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
973 if (cfqg
&& !cfqg
->blkg
.dev
&& bdi
->dev
&& dev_name(bdi
->dev
)) {
974 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
975 cfqg
->blkg
.dev
= MKDEV(major
, minor
);
981 cfqg
= kzalloc_node(sizeof(*cfqg
), GFP_ATOMIC
, cfqd
->queue
->node
);
985 for_each_cfqg_st(cfqg
, i
, j
, st
)
987 RB_CLEAR_NODE(&cfqg
->rb_node
);
990 * Take the initial reference that will be released on destroy
991 * This can be thought of a joint reference by cgroup and
992 * elevator which will be dropped by either elevator exit
993 * or cgroup deletion path depending on who is exiting first.
995 atomic_set(&cfqg
->ref
, 1);
997 /* Add group onto cgroup list */
998 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
999 cfq_blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
, (void *)cfqd
,
1000 MKDEV(major
, minor
));
1001 cfqg
->weight
= blkcg_get_weight(blkcg
, cfqg
->blkg
.dev
);
1003 /* Add group on cfqd list */
1004 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
1011 * Search for the cfq group current task belongs to. If create = 1, then also
1012 * create the cfq group if it does not exist. request_queue lock must be held.
1014 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1016 struct cgroup
*cgroup
;
1017 struct cfq_group
*cfqg
= NULL
;
1020 cgroup
= task_cgroup(current
, blkio_subsys_id
);
1021 cfqg
= cfq_find_alloc_cfqg(cfqd
, cgroup
, create
);
1022 if (!cfqg
&& create
)
1023 cfqg
= &cfqd
->root_group
;
1028 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1030 atomic_inc(&cfqg
->ref
);
1034 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1036 /* Currently, all async queues are mapped to root group */
1037 if (!cfq_cfqq_sync(cfqq
))
1038 cfqg
= &cfqq
->cfqd
->root_group
;
1041 /* cfqq reference on cfqg */
1042 atomic_inc(&cfqq
->cfqg
->ref
);
1045 static void cfq_put_cfqg(struct cfq_group
*cfqg
)
1047 struct cfq_rb_root
*st
;
1050 BUG_ON(atomic_read(&cfqg
->ref
) <= 0);
1051 if (!atomic_dec_and_test(&cfqg
->ref
))
1053 for_each_cfqg_st(cfqg
, i
, j
, st
)
1054 BUG_ON(!RB_EMPTY_ROOT(&st
->rb
) || st
->active
!= NULL
);
1058 static void cfq_destroy_cfqg(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1060 /* Something wrong if we are trying to remove same group twice */
1061 BUG_ON(hlist_unhashed(&cfqg
->cfqd_node
));
1063 hlist_del_init(&cfqg
->cfqd_node
);
1066 * Put the reference taken at the time of creation so that when all
1067 * queues are gone, group can be destroyed.
1072 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
)
1074 struct hlist_node
*pos
, *n
;
1075 struct cfq_group
*cfqg
;
1077 hlist_for_each_entry_safe(cfqg
, pos
, n
, &cfqd
->cfqg_list
, cfqd_node
) {
1079 * If cgroup removal path got to blk_group first and removed
1080 * it from cgroup list, then it will take care of destroying
1083 if (!cfq_blkiocg_del_blkio_group(&cfqg
->blkg
))
1084 cfq_destroy_cfqg(cfqd
, cfqg
);
1089 * Blk cgroup controller notification saying that blkio_group object is being
1090 * delinked as associated cgroup object is going away. That also means that
1091 * no new IO will come in this group. So get rid of this group as soon as
1092 * any pending IO in the group is finished.
1094 * This function is called under rcu_read_lock(). key is the rcu protected
1095 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1098 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1099 * it should not be NULL as even if elevator was exiting, cgroup deltion
1100 * path got to it first.
1102 void cfq_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
1104 unsigned long flags
;
1105 struct cfq_data
*cfqd
= key
;
1107 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1108 cfq_destroy_cfqg(cfqd
, cfqg_of_blkg(blkg
));
1109 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1112 #else /* GROUP_IOSCHED */
1113 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1115 return &cfqd
->root_group
;
1118 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1124 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1128 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
) {}
1129 static inline void cfq_put_cfqg(struct cfq_group
*cfqg
) {}
1131 #endif /* GROUP_IOSCHED */
1134 * The cfqd->service_trees holds all pending cfq_queue's that have
1135 * requests waiting to be processed. It is sorted in the order that
1136 * we will service the queues.
1138 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1141 struct rb_node
**p
, *parent
;
1142 struct cfq_queue
*__cfqq
;
1143 unsigned long rb_key
;
1144 struct cfq_rb_root
*service_tree
;
1147 int group_changed
= 0;
1149 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1150 if (!cfqd
->cfq_group_isolation
1151 && cfqq_type(cfqq
) == SYNC_NOIDLE_WORKLOAD
1152 && cfqq
->cfqg
&& cfqq
->cfqg
!= &cfqd
->root_group
) {
1153 /* Move this cfq to root group */
1154 cfq_log_cfqq(cfqd
, cfqq
, "moving to root group");
1155 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1156 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1157 cfqq
->orig_cfqg
= cfqq
->cfqg
;
1158 cfqq
->cfqg
= &cfqd
->root_group
;
1159 atomic_inc(&cfqd
->root_group
.ref
);
1161 } else if (!cfqd
->cfq_group_isolation
1162 && cfqq_type(cfqq
) == SYNC_WORKLOAD
&& cfqq
->orig_cfqg
) {
1163 /* cfqq is sequential now needs to go to its original group */
1164 BUG_ON(cfqq
->cfqg
!= &cfqd
->root_group
);
1165 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1166 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1167 cfq_put_cfqg(cfqq
->cfqg
);
1168 cfqq
->cfqg
= cfqq
->orig_cfqg
;
1169 cfqq
->orig_cfqg
= NULL
;
1171 cfq_log_cfqq(cfqd
, cfqq
, "moved to origin group");
1175 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1177 if (cfq_class_idle(cfqq
)) {
1178 rb_key
= CFQ_IDLE_DELAY
;
1179 parent
= rb_last(&service_tree
->rb
);
1180 if (parent
&& parent
!= &cfqq
->rb_node
) {
1181 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1182 rb_key
+= __cfqq
->rb_key
;
1185 } else if (!add_front
) {
1187 * Get our rb key offset. Subtract any residual slice
1188 * value carried from last service. A negative resid
1189 * count indicates slice overrun, and this should position
1190 * the next service time further away in the tree.
1192 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1193 rb_key
-= cfqq
->slice_resid
;
1194 cfqq
->slice_resid
= 0;
1197 __cfqq
= cfq_rb_first(service_tree
);
1198 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1201 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1204 * same position, nothing more to do
1206 if (rb_key
== cfqq
->rb_key
&&
1207 cfqq
->service_tree
== service_tree
)
1210 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1211 cfqq
->service_tree
= NULL
;
1216 cfqq
->service_tree
= service_tree
;
1217 p
= &service_tree
->rb
.rb_node
;
1222 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1225 * sort by key, that represents service time.
1227 if (time_before(rb_key
, __cfqq
->rb_key
))
1230 n
= &(*p
)->rb_right
;
1238 service_tree
->left
= &cfqq
->rb_node
;
1240 cfqq
->rb_key
= rb_key
;
1241 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1242 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1243 service_tree
->count
++;
1244 if ((add_front
|| !new_cfqq
) && !group_changed
)
1246 cfq_group_service_tree_add(cfqd
, cfqq
->cfqg
);
1249 static struct cfq_queue
*
1250 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1251 sector_t sector
, struct rb_node
**ret_parent
,
1252 struct rb_node
***rb_link
)
1254 struct rb_node
**p
, *parent
;
1255 struct cfq_queue
*cfqq
= NULL
;
1263 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1266 * Sort strictly based on sector. Smallest to the left,
1267 * largest to the right.
1269 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1270 n
= &(*p
)->rb_right
;
1271 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1279 *ret_parent
= parent
;
1285 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1287 struct rb_node
**p
, *parent
;
1288 struct cfq_queue
*__cfqq
;
1291 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1292 cfqq
->p_root
= NULL
;
1295 if (cfq_class_idle(cfqq
))
1300 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1301 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1302 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1304 rb_link_node(&cfqq
->p_node
, parent
, p
);
1305 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1307 cfqq
->p_root
= NULL
;
1311 * Update cfqq's position in the service tree.
1313 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1316 * Resorting requires the cfqq to be on the RR list already.
1318 if (cfq_cfqq_on_rr(cfqq
)) {
1319 cfq_service_tree_add(cfqd
, cfqq
, 0);
1320 cfq_prio_tree_add(cfqd
, cfqq
);
1325 * add to busy list of queues for service, trying to be fair in ordering
1326 * the pending list according to last request service
1328 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1330 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1331 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1332 cfq_mark_cfqq_on_rr(cfqq
);
1333 cfqd
->busy_queues
++;
1335 cfq_resort_rr_list(cfqd
, cfqq
);
1339 * Called when the cfqq no longer has requests pending, remove it from
1342 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1344 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1345 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1346 cfq_clear_cfqq_on_rr(cfqq
);
1348 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1349 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1350 cfqq
->service_tree
= NULL
;
1353 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1354 cfqq
->p_root
= NULL
;
1357 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1358 BUG_ON(!cfqd
->busy_queues
);
1359 cfqd
->busy_queues
--;
1363 * rb tree support functions
1365 static void cfq_del_rq_rb(struct request
*rq
)
1367 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1368 const int sync
= rq_is_sync(rq
);
1370 BUG_ON(!cfqq
->queued
[sync
]);
1371 cfqq
->queued
[sync
]--;
1373 elv_rb_del(&cfqq
->sort_list
, rq
);
1375 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1377 * Queue will be deleted from service tree when we actually
1378 * expire it later. Right now just remove it from prio tree
1382 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1383 cfqq
->p_root
= NULL
;
1388 static void cfq_add_rq_rb(struct request
*rq
)
1390 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1391 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1392 struct request
*__alias
, *prev
;
1394 cfqq
->queued
[rq_is_sync(rq
)]++;
1397 * looks a little odd, but the first insert might return an alias.
1398 * if that happens, put the alias on the dispatch list
1400 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
1401 cfq_dispatch_insert(cfqd
->queue
, __alias
);
1403 if (!cfq_cfqq_on_rr(cfqq
))
1404 cfq_add_cfqq_rr(cfqd
, cfqq
);
1407 * check if this request is a better next-serve candidate
1409 prev
= cfqq
->next_rq
;
1410 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1413 * adjust priority tree position, if ->next_rq changes
1415 if (prev
!= cfqq
->next_rq
)
1416 cfq_prio_tree_add(cfqd
, cfqq
);
1418 BUG_ON(!cfqq
->next_rq
);
1421 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1423 elv_rb_del(&cfqq
->sort_list
, rq
);
1424 cfqq
->queued
[rq_is_sync(rq
)]--;
1425 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1426 rq_data_dir(rq
), rq_is_sync(rq
));
1428 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
1429 &cfqq
->cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
1433 static struct request
*
1434 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1436 struct task_struct
*tsk
= current
;
1437 struct cfq_io_context
*cic
;
1438 struct cfq_queue
*cfqq
;
1440 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1444 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1446 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1448 return elv_rb_find(&cfqq
->sort_list
, sector
);
1454 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1456 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1458 cfqd
->rq_in_driver
++;
1459 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1460 cfqd
->rq_in_driver
);
1462 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1465 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1467 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1469 WARN_ON(!cfqd
->rq_in_driver
);
1470 cfqd
->rq_in_driver
--;
1471 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1472 cfqd
->rq_in_driver
);
1475 static void cfq_remove_request(struct request
*rq
)
1477 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1479 if (cfqq
->next_rq
== rq
)
1480 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1482 list_del_init(&rq
->queuelist
);
1485 cfqq
->cfqd
->rq_queued
--;
1486 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1487 rq_data_dir(rq
), rq_is_sync(rq
));
1488 if (rq
->cmd_flags
& REQ_META
) {
1489 WARN_ON(!cfqq
->meta_pending
);
1490 cfqq
->meta_pending
--;
1494 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1497 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1498 struct request
*__rq
;
1500 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1501 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1503 return ELEVATOR_FRONT_MERGE
;
1506 return ELEVATOR_NO_MERGE
;
1509 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1512 if (type
== ELEVATOR_FRONT_MERGE
) {
1513 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1515 cfq_reposition_rq_rb(cfqq
, req
);
1519 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
1522 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req
))->blkg
,
1523 bio_data_dir(bio
), cfq_bio_sync(bio
));
1527 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1528 struct request
*next
)
1530 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1532 * reposition in fifo if next is older than rq
1534 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1535 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
1536 list_move(&rq
->queuelist
, &next
->queuelist
);
1537 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1540 if (cfqq
->next_rq
== next
)
1542 cfq_remove_request(next
);
1543 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq
))->blkg
,
1544 rq_data_dir(next
), rq_is_sync(next
));
1547 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
1550 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1551 struct cfq_io_context
*cic
;
1552 struct cfq_queue
*cfqq
;
1555 * Disallow merge of a sync bio into an async request.
1557 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
1561 * Lookup the cfqq that this bio will be queued with. Allow
1562 * merge only if rq is queued there.
1564 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
1568 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1569 return cfqq
== RQ_CFQQ(rq
);
1572 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1574 del_timer(&cfqd
->idle_slice_timer
);
1575 cfq_blkiocg_update_idle_time_stats(&cfqq
->cfqg
->blkg
);
1578 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
1579 struct cfq_queue
*cfqq
)
1582 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_prio:%d wl_type:%d",
1583 cfqd
->serving_prio
, cfqd
->serving_type
);
1584 cfq_blkiocg_update_avg_queue_size_stats(&cfqq
->cfqg
->blkg
);
1585 cfqq
->slice_start
= 0;
1586 cfqq
->dispatch_start
= jiffies
;
1587 cfqq
->allocated_slice
= 0;
1588 cfqq
->slice_end
= 0;
1589 cfqq
->slice_dispatch
= 0;
1591 cfq_clear_cfqq_wait_request(cfqq
);
1592 cfq_clear_cfqq_must_dispatch(cfqq
);
1593 cfq_clear_cfqq_must_alloc_slice(cfqq
);
1594 cfq_clear_cfqq_fifo_expire(cfqq
);
1595 cfq_mark_cfqq_slice_new(cfqq
);
1597 cfq_del_timer(cfqd
, cfqq
);
1600 cfqd
->active_queue
= cfqq
;
1604 * current cfqq expired its slice (or was too idle), select new one
1607 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1610 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
1612 if (cfq_cfqq_wait_request(cfqq
))
1613 cfq_del_timer(cfqd
, cfqq
);
1615 cfq_clear_cfqq_wait_request(cfqq
);
1616 cfq_clear_cfqq_wait_busy(cfqq
);
1619 * If this cfqq is shared between multiple processes, check to
1620 * make sure that those processes are still issuing I/Os within
1621 * the mean seek distance. If not, it may be time to break the
1622 * queues apart again.
1624 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
1625 cfq_mark_cfqq_split_coop(cfqq
);
1628 * store what was left of this slice, if the queue idled/timed out
1630 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
1631 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
1632 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
1635 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
1637 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
1638 cfq_del_cfqq_rr(cfqd
, cfqq
);
1640 cfq_resort_rr_list(cfqd
, cfqq
);
1642 if (cfqq
== cfqd
->active_queue
)
1643 cfqd
->active_queue
= NULL
;
1645 if (&cfqq
->cfqg
->rb_node
== cfqd
->grp_service_tree
.active
)
1646 cfqd
->grp_service_tree
.active
= NULL
;
1648 if (cfqd
->active_cic
) {
1649 put_io_context(cfqd
->active_cic
->ioc
);
1650 cfqd
->active_cic
= NULL
;
1654 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
1656 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1659 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
1663 * Get next queue for service. Unless we have a queue preemption,
1664 * we'll simply select the first cfqq in the service tree.
1666 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
1668 struct cfq_rb_root
*service_tree
=
1669 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
1670 cfqd
->serving_type
);
1672 if (!cfqd
->rq_queued
)
1675 /* There is nothing to dispatch */
1678 if (RB_EMPTY_ROOT(&service_tree
->rb
))
1680 return cfq_rb_first(service_tree
);
1683 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
1685 struct cfq_group
*cfqg
;
1686 struct cfq_queue
*cfqq
;
1688 struct cfq_rb_root
*st
;
1690 if (!cfqd
->rq_queued
)
1693 cfqg
= cfq_get_next_cfqg(cfqd
);
1697 for_each_cfqg_st(cfqg
, i
, j
, st
)
1698 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
1704 * Get and set a new active queue for service.
1706 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
1707 struct cfq_queue
*cfqq
)
1710 cfqq
= cfq_get_next_queue(cfqd
);
1712 __cfq_set_active_queue(cfqd
, cfqq
);
1716 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
1719 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
1720 return blk_rq_pos(rq
) - cfqd
->last_position
;
1722 return cfqd
->last_position
- blk_rq_pos(rq
);
1725 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1728 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
1731 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
1732 struct cfq_queue
*cur_cfqq
)
1734 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
1735 struct rb_node
*parent
, *node
;
1736 struct cfq_queue
*__cfqq
;
1737 sector_t sector
= cfqd
->last_position
;
1739 if (RB_EMPTY_ROOT(root
))
1743 * First, if we find a request starting at the end of the last
1744 * request, choose it.
1746 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1751 * If the exact sector wasn't found, the parent of the NULL leaf
1752 * will contain the closest sector.
1754 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1755 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1758 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1759 node
= rb_next(&__cfqq
->p_node
);
1761 node
= rb_prev(&__cfqq
->p_node
);
1765 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1766 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1774 * cur_cfqq - passed in so that we don't decide that the current queue is
1775 * closely cooperating with itself.
1777 * So, basically we're assuming that that cur_cfqq has dispatched at least
1778 * one request, and that cfqd->last_position reflects a position on the disk
1779 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1782 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1783 struct cfq_queue
*cur_cfqq
)
1785 struct cfq_queue
*cfqq
;
1787 if (cfq_class_idle(cur_cfqq
))
1789 if (!cfq_cfqq_sync(cur_cfqq
))
1791 if (CFQQ_SEEKY(cur_cfqq
))
1795 * Don't search priority tree if it's the only queue in the group.
1797 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
1801 * We should notice if some of the queues are cooperating, eg
1802 * working closely on the same area of the disk. In that case,
1803 * we can group them together and don't waste time idling.
1805 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1809 /* If new queue belongs to different cfq_group, don't choose it */
1810 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
1814 * It only makes sense to merge sync queues.
1816 if (!cfq_cfqq_sync(cfqq
))
1818 if (CFQQ_SEEKY(cfqq
))
1822 * Do not merge queues of different priority classes
1824 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
1831 * Determine whether we should enforce idle window for this queue.
1834 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1836 enum wl_prio_t prio
= cfqq_prio(cfqq
);
1837 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
1839 BUG_ON(!service_tree
);
1840 BUG_ON(!service_tree
->count
);
1842 /* We never do for idle class queues. */
1843 if (prio
== IDLE_WORKLOAD
)
1846 /* We do for queues that were marked with idle window flag. */
1847 if (cfq_cfqq_idle_window(cfqq
) &&
1848 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
1852 * Otherwise, we do only if they are the last ones
1853 * in their service tree.
1855 if (service_tree
->count
== 1 && cfq_cfqq_sync(cfqq
))
1857 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d",
1858 service_tree
->count
);
1862 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1864 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1865 struct cfq_io_context
*cic
;
1869 * SSD device without seek penalty, disable idling. But only do so
1870 * for devices that support queuing, otherwise we still have a problem
1871 * with sync vs async workloads.
1873 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1876 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1877 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1880 * idle is disabled, either manually or by past process history
1882 if (!cfqd
->cfq_slice_idle
|| !cfq_should_idle(cfqd
, cfqq
))
1886 * still active requests from this queue, don't idle
1888 if (cfqq
->dispatched
)
1892 * task has exited, don't wait
1894 cic
= cfqd
->active_cic
;
1895 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1899 * If our average think time is larger than the remaining time
1900 * slice, then don't idle. This avoids overrunning the allotted
1903 if (sample_valid(cic
->ttime_samples
) &&
1904 (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
)) {
1905 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%d",
1910 cfq_mark_cfqq_wait_request(cfqq
);
1912 sl
= cfqd
->cfq_slice_idle
;
1914 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1915 cfq_blkiocg_update_set_idle_time_stats(&cfqq
->cfqg
->blkg
);
1916 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu", sl
);
1920 * Move request from internal lists to the request queue dispatch list.
1922 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1924 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1925 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1927 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1929 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
1930 cfq_remove_request(rq
);
1932 elv_dispatch_sort(q
, rq
);
1934 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
1935 cfq_blkiocg_update_dispatch_stats(&cfqq
->cfqg
->blkg
, blk_rq_bytes(rq
),
1936 rq_data_dir(rq
), rq_is_sync(rq
));
1940 * return expired entry, or NULL to just start from scratch in rbtree
1942 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1944 struct request
*rq
= NULL
;
1946 if (cfq_cfqq_fifo_expire(cfqq
))
1949 cfq_mark_cfqq_fifo_expire(cfqq
);
1951 if (list_empty(&cfqq
->fifo
))
1954 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
1955 if (time_before(jiffies
, rq_fifo_time(rq
)))
1958 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
1963 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1965 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1967 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1969 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1973 * Must be called with the queue_lock held.
1975 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
1977 int process_refs
, io_refs
;
1979 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
1980 process_refs
= atomic_read(&cfqq
->ref
) - io_refs
;
1981 BUG_ON(process_refs
< 0);
1982 return process_refs
;
1985 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
1987 int process_refs
, new_process_refs
;
1988 struct cfq_queue
*__cfqq
;
1991 * If there are no process references on the new_cfqq, then it is
1992 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
1993 * chain may have dropped their last reference (not just their
1994 * last process reference).
1996 if (!cfqq_process_refs(new_cfqq
))
1999 /* Avoid a circular list and skip interim queue merges */
2000 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
2006 process_refs
= cfqq_process_refs(cfqq
);
2007 new_process_refs
= cfqq_process_refs(new_cfqq
);
2009 * If the process for the cfqq has gone away, there is no
2010 * sense in merging the queues.
2012 if (process_refs
== 0 || new_process_refs
== 0)
2016 * Merge in the direction of the lesser amount of work.
2018 if (new_process_refs
>= process_refs
) {
2019 cfqq
->new_cfqq
= new_cfqq
;
2020 atomic_add(process_refs
, &new_cfqq
->ref
);
2022 new_cfqq
->new_cfqq
= cfqq
;
2023 atomic_add(new_process_refs
, &cfqq
->ref
);
2027 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
2028 struct cfq_group
*cfqg
, enum wl_prio_t prio
)
2030 struct cfq_queue
*queue
;
2032 bool key_valid
= false;
2033 unsigned long lowest_key
= 0;
2034 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
2036 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
2037 /* select the one with lowest rb_key */
2038 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
));
2040 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
2041 lowest_key
= queue
->rb_key
;
2050 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
2054 struct cfq_rb_root
*st
;
2055 unsigned group_slice
;
2058 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2059 cfqd
->workload_expires
= jiffies
+ 1;
2063 /* Choose next priority. RT > BE > IDLE */
2064 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
2065 cfqd
->serving_prio
= RT_WORKLOAD
;
2066 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
2067 cfqd
->serving_prio
= BE_WORKLOAD
;
2069 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2070 cfqd
->workload_expires
= jiffies
+ 1;
2075 * For RT and BE, we have to choose also the type
2076 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2079 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2083 * check workload expiration, and that we still have other queues ready
2085 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
2088 /* otherwise select new workload type */
2089 cfqd
->serving_type
=
2090 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
);
2091 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2095 * the workload slice is computed as a fraction of target latency
2096 * proportional to the number of queues in that workload, over
2097 * all the queues in the same priority class
2099 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2101 slice
= group_slice
* count
/
2102 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2103 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2105 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2109 * Async queues are currently system wide. Just taking
2110 * proportion of queues with-in same group will lead to higher
2111 * async ratio system wide as generally root group is going
2112 * to have higher weight. A more accurate thing would be to
2113 * calculate system wide asnc/sync ratio.
2115 tmp
= cfq_target_latency
* cfqg_busy_async_queues(cfqd
, cfqg
);
2116 tmp
= tmp
/cfqd
->busy_queues
;
2117 slice
= min_t(unsigned, slice
, tmp
);
2119 /* async workload slice is scaled down according to
2120 * the sync/async slice ratio. */
2121 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2123 /* sync workload slice is at least 2 * cfq_slice_idle */
2124 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2126 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2127 cfq_log(cfqd
, "workload slice:%d", slice
);
2128 cfqd
->workload_expires
= jiffies
+ slice
;
2129 cfqd
->noidle_tree_requires_idle
= false;
2132 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2134 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2135 struct cfq_group
*cfqg
;
2137 if (RB_EMPTY_ROOT(&st
->rb
))
2139 cfqg
= cfq_rb_first_group(st
);
2140 st
->active
= &cfqg
->rb_node
;
2141 update_min_vdisktime(st
);
2145 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2147 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2149 cfqd
->serving_group
= cfqg
;
2151 /* Restore the workload type data */
2152 if (cfqg
->saved_workload_slice
) {
2153 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2154 cfqd
->serving_type
= cfqg
->saved_workload
;
2155 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2157 cfqd
->workload_expires
= jiffies
- 1;
2159 choose_service_tree(cfqd
, cfqg
);
2163 * Select a queue for service. If we have a current active queue,
2164 * check whether to continue servicing it, or retrieve and set a new one.
2166 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2168 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2170 cfqq
= cfqd
->active_queue
;
2174 if (!cfqd
->rq_queued
)
2178 * We were waiting for group to get backlogged. Expire the queue
2180 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2184 * The active queue has run out of time, expire it and select new.
2186 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2188 * If slice had not expired at the completion of last request
2189 * we might not have turned on wait_busy flag. Don't expire
2190 * the queue yet. Allow the group to get backlogged.
2192 * The very fact that we have used the slice, that means we
2193 * have been idling all along on this queue and it should be
2194 * ok to wait for this request to complete.
2196 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2197 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2205 * The active queue has requests and isn't expired, allow it to
2208 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2212 * If another queue has a request waiting within our mean seek
2213 * distance, let it run. The expire code will check for close
2214 * cooperators and put the close queue at the front of the service
2215 * tree. If possible, merge the expiring queue with the new cfqq.
2217 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2219 if (!cfqq
->new_cfqq
)
2220 cfq_setup_merge(cfqq
, new_cfqq
);
2225 * No requests pending. If the active queue still has requests in
2226 * flight or is idling for a new request, allow either of these
2227 * conditions to happen (or time out) before selecting a new queue.
2229 if (timer_pending(&cfqd
->idle_slice_timer
) ||
2230 (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
))) {
2236 cfq_slice_expired(cfqd
, 0);
2239 * Current queue expired. Check if we have to switch to a new
2243 cfq_choose_cfqg(cfqd
);
2245 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2250 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2254 while (cfqq
->next_rq
) {
2255 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2259 BUG_ON(!list_empty(&cfqq
->fifo
));
2261 /* By default cfqq is not expired if it is empty. Do it explicitly */
2262 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2267 * Drain our current requests. Used for barriers and when switching
2268 * io schedulers on-the-fly.
2270 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2272 struct cfq_queue
*cfqq
;
2275 /* Expire the timeslice of the current active queue first */
2276 cfq_slice_expired(cfqd
, 0);
2277 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
2278 __cfq_set_active_queue(cfqd
, cfqq
);
2279 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2282 BUG_ON(cfqd
->busy_queues
);
2284 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2288 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
2289 struct cfq_queue
*cfqq
)
2291 /* the queue hasn't finished any request, can't estimate */
2292 if (cfq_cfqq_slice_new(cfqq
))
2294 if (time_after(jiffies
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
,
2301 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2303 unsigned int max_dispatch
;
2306 * Drain async requests before we start sync IO
2308 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
2312 * If this is an async queue and we have sync IO in flight, let it wait
2314 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
2317 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
2318 if (cfq_class_idle(cfqq
))
2322 * Does this cfqq already have too much IO in flight?
2324 if (cfqq
->dispatched
>= max_dispatch
) {
2326 * idle queue must always only have a single IO in flight
2328 if (cfq_class_idle(cfqq
))
2332 * We have other queues, don't allow more IO from this one
2334 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
))
2338 * Sole queue user, no limit
2340 if (cfqd
->busy_queues
== 1)
2344 * Normally we start throttling cfqq when cfq_quantum/2
2345 * requests have been dispatched. But we can drive
2346 * deeper queue depths at the beginning of slice
2347 * subjected to upper limit of cfq_quantum.
2349 max_dispatch
= cfqd
->cfq_quantum
;
2353 * Async queues must wait a bit before being allowed dispatch.
2354 * We also ramp up the dispatch depth gradually for async IO,
2355 * based on the last sync IO we serviced
2357 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2358 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2361 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2362 if (!depth
&& !cfqq
->dispatched
)
2364 if (depth
< max_dispatch
)
2365 max_dispatch
= depth
;
2369 * If we're below the current max, allow a dispatch
2371 return cfqq
->dispatched
< max_dispatch
;
2375 * Dispatch a request from cfqq, moving them to the request queue
2378 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2382 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2384 if (!cfq_may_dispatch(cfqd
, cfqq
))
2388 * follow expired path, else get first next available
2390 rq
= cfq_check_fifo(cfqq
);
2395 * insert request into driver dispatch list
2397 cfq_dispatch_insert(cfqd
->queue
, rq
);
2399 if (!cfqd
->active_cic
) {
2400 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2402 atomic_long_inc(&cic
->ioc
->refcount
);
2403 cfqd
->active_cic
= cic
;
2410 * Find the cfqq that we need to service and move a request from that to the
2413 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2415 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2416 struct cfq_queue
*cfqq
;
2418 if (!cfqd
->busy_queues
)
2421 if (unlikely(force
))
2422 return cfq_forced_dispatch(cfqd
);
2424 cfqq
= cfq_select_queue(cfqd
);
2429 * Dispatch a request from this cfqq, if it is allowed
2431 if (!cfq_dispatch_request(cfqd
, cfqq
))
2434 cfqq
->slice_dispatch
++;
2435 cfq_clear_cfqq_must_dispatch(cfqq
);
2438 * expire an async queue immediately if it has used up its slice. idle
2439 * queue always expire after 1 dispatch round.
2441 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2442 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2443 cfq_class_idle(cfqq
))) {
2444 cfqq
->slice_end
= jiffies
+ 1;
2445 cfq_slice_expired(cfqd
, 0);
2448 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2453 * task holds one reference to the queue, dropped when task exits. each rq
2454 * in-flight on this queue also holds a reference, dropped when rq is freed.
2456 * Each cfq queue took a reference on the parent group. Drop it now.
2457 * queue lock must be held here.
2459 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2461 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2462 struct cfq_group
*cfqg
, *orig_cfqg
;
2464 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
2466 if (!atomic_dec_and_test(&cfqq
->ref
))
2469 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2470 BUG_ON(rb_first(&cfqq
->sort_list
));
2471 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2473 orig_cfqg
= cfqq
->orig_cfqg
;
2475 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2476 __cfq_slice_expired(cfqd
, cfqq
, 0);
2477 cfq_schedule_dispatch(cfqd
);
2480 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2481 kmem_cache_free(cfq_pool
, cfqq
);
2484 cfq_put_cfqg(orig_cfqg
);
2488 * Must always be called with the rcu_read_lock() held
2491 __call_for_each_cic(struct io_context
*ioc
,
2492 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2494 struct cfq_io_context
*cic
;
2495 struct hlist_node
*n
;
2497 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
2502 * Call func for each cic attached to this ioc.
2505 call_for_each_cic(struct io_context
*ioc
,
2506 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2509 __call_for_each_cic(ioc
, func
);
2513 static void cfq_cic_free_rcu(struct rcu_head
*head
)
2515 struct cfq_io_context
*cic
;
2517 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
2519 kmem_cache_free(cfq_ioc_pool
, cic
);
2520 elv_ioc_count_dec(cfq_ioc_count
);
2524 * CFQ scheduler is exiting, grab exit lock and check
2525 * the pending io context count. If it hits zero,
2526 * complete ioc_gone and set it back to NULL
2528 spin_lock(&ioc_gone_lock
);
2529 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
2533 spin_unlock(&ioc_gone_lock
);
2537 static void cfq_cic_free(struct cfq_io_context
*cic
)
2539 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
2542 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2544 unsigned long flags
;
2545 unsigned long dead_key
= (unsigned long) cic
->key
;
2547 BUG_ON(!(dead_key
& CIC_DEAD_KEY
));
2549 spin_lock_irqsave(&ioc
->lock
, flags
);
2550 radix_tree_delete(&ioc
->radix_root
, dead_key
>> CIC_DEAD_INDEX_SHIFT
);
2551 hlist_del_rcu(&cic
->cic_list
);
2552 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2558 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2559 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2560 * and ->trim() which is called with the task lock held
2562 static void cfq_free_io_context(struct io_context
*ioc
)
2565 * ioc->refcount is zero here, or we are called from elv_unregister(),
2566 * so no more cic's are allowed to be linked into this ioc. So it
2567 * should be ok to iterate over the known list, we will see all cic's
2568 * since no new ones are added.
2570 __call_for_each_cic(ioc
, cic_free_func
);
2573 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
2575 struct cfq_queue
*__cfqq
, *next
;
2578 * If this queue was scheduled to merge with another queue, be
2579 * sure to drop the reference taken on that queue (and others in
2580 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2582 __cfqq
= cfqq
->new_cfqq
;
2584 if (__cfqq
== cfqq
) {
2585 WARN(1, "cfqq->new_cfqq loop detected\n");
2588 next
= __cfqq
->new_cfqq
;
2589 cfq_put_queue(__cfqq
);
2594 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2596 if (unlikely(cfqq
== cfqd
->active_queue
)) {
2597 __cfq_slice_expired(cfqd
, cfqq
, 0);
2598 cfq_schedule_dispatch(cfqd
);
2601 cfq_put_cooperator(cfqq
);
2603 cfq_put_queue(cfqq
);
2606 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
2607 struct cfq_io_context
*cic
)
2609 struct io_context
*ioc
= cic
->ioc
;
2611 list_del_init(&cic
->queue_list
);
2614 * Make sure dead mark is seen for dead queues
2617 cic
->key
= cfqd_dead_key(cfqd
);
2619 if (ioc
->ioc_data
== cic
)
2620 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
2622 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
2623 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
2624 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
2627 if (cic
->cfqq
[BLK_RW_SYNC
]) {
2628 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
2629 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
2633 static void cfq_exit_single_io_context(struct io_context
*ioc
,
2634 struct cfq_io_context
*cic
)
2636 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2639 struct request_queue
*q
= cfqd
->queue
;
2640 unsigned long flags
;
2642 spin_lock_irqsave(q
->queue_lock
, flags
);
2645 * Ensure we get a fresh copy of the ->key to prevent
2646 * race between exiting task and queue
2648 smp_read_barrier_depends();
2649 if (cic
->key
== cfqd
)
2650 __cfq_exit_single_io_context(cfqd
, cic
);
2652 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2657 * The process that ioc belongs to has exited, we need to clean up
2658 * and put the internal structures we have that belongs to that process.
2660 static void cfq_exit_io_context(struct io_context
*ioc
)
2662 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
2665 static struct cfq_io_context
*
2666 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2668 struct cfq_io_context
*cic
;
2670 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
2673 cic
->last_end_request
= jiffies
;
2674 INIT_LIST_HEAD(&cic
->queue_list
);
2675 INIT_HLIST_NODE(&cic
->cic_list
);
2676 cic
->dtor
= cfq_free_io_context
;
2677 cic
->exit
= cfq_exit_io_context
;
2678 elv_ioc_count_inc(cfq_ioc_count
);
2684 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
2686 struct task_struct
*tsk
= current
;
2689 if (!cfq_cfqq_prio_changed(cfqq
))
2692 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
2693 switch (ioprio_class
) {
2695 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
2696 case IOPRIO_CLASS_NONE
:
2698 * no prio set, inherit CPU scheduling settings
2700 cfqq
->ioprio
= task_nice_ioprio(tsk
);
2701 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
2703 case IOPRIO_CLASS_RT
:
2704 cfqq
->ioprio
= task_ioprio(ioc
);
2705 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
2707 case IOPRIO_CLASS_BE
:
2708 cfqq
->ioprio
= task_ioprio(ioc
);
2709 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2711 case IOPRIO_CLASS_IDLE
:
2712 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
2714 cfq_clear_cfqq_idle_window(cfqq
);
2719 * keep track of original prio settings in case we have to temporarily
2720 * elevate the priority of this queue
2722 cfqq
->org_ioprio
= cfqq
->ioprio
;
2723 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
2724 cfq_clear_cfqq_prio_changed(cfqq
);
2727 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2729 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2730 struct cfq_queue
*cfqq
;
2731 unsigned long flags
;
2733 if (unlikely(!cfqd
))
2736 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2738 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
2740 struct cfq_queue
*new_cfqq
;
2741 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
2744 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
2745 cfq_put_queue(cfqq
);
2749 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
2751 cfq_mark_cfqq_prio_changed(cfqq
);
2753 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2756 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
2758 call_for_each_cic(ioc
, changed_ioprio
);
2759 ioc
->ioprio_changed
= 0;
2762 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2763 pid_t pid
, bool is_sync
)
2765 RB_CLEAR_NODE(&cfqq
->rb_node
);
2766 RB_CLEAR_NODE(&cfqq
->p_node
);
2767 INIT_LIST_HEAD(&cfqq
->fifo
);
2769 atomic_set(&cfqq
->ref
, 0);
2772 cfq_mark_cfqq_prio_changed(cfqq
);
2775 if (!cfq_class_idle(cfqq
))
2776 cfq_mark_cfqq_idle_window(cfqq
);
2777 cfq_mark_cfqq_sync(cfqq
);
2782 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2783 static void changed_cgroup(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2785 struct cfq_queue
*sync_cfqq
= cic_to_cfqq(cic
, 1);
2786 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2787 unsigned long flags
;
2788 struct request_queue
*q
;
2790 if (unlikely(!cfqd
))
2795 spin_lock_irqsave(q
->queue_lock
, flags
);
2799 * Drop reference to sync queue. A new sync queue will be
2800 * assigned in new group upon arrival of a fresh request.
2802 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
2803 cic_set_cfqq(cic
, NULL
, 1);
2804 cfq_put_queue(sync_cfqq
);
2807 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2810 static void cfq_ioc_set_cgroup(struct io_context
*ioc
)
2812 call_for_each_cic(ioc
, changed_cgroup
);
2813 ioc
->cgroup_changed
= 0;
2815 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2817 static struct cfq_queue
*
2818 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
2819 struct io_context
*ioc
, gfp_t gfp_mask
)
2821 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2822 struct cfq_io_context
*cic
;
2823 struct cfq_group
*cfqg
;
2826 cfqg
= cfq_get_cfqg(cfqd
, 1);
2827 cic
= cfq_cic_lookup(cfqd
, ioc
);
2828 /* cic always exists here */
2829 cfqq
= cic_to_cfqq(cic
, is_sync
);
2832 * Always try a new alloc if we fell back to the OOM cfqq
2833 * originally, since it should just be a temporary situation.
2835 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2840 } else if (gfp_mask
& __GFP_WAIT
) {
2841 spin_unlock_irq(cfqd
->queue
->queue_lock
);
2842 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
2843 gfp_mask
| __GFP_ZERO
,
2845 spin_lock_irq(cfqd
->queue
->queue_lock
);
2849 cfqq
= kmem_cache_alloc_node(cfq_pool
,
2850 gfp_mask
| __GFP_ZERO
,
2855 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
2856 cfq_init_prio_data(cfqq
, ioc
);
2857 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
2858 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
2860 cfqq
= &cfqd
->oom_cfqq
;
2864 kmem_cache_free(cfq_pool
, new_cfqq
);
2869 static struct cfq_queue
**
2870 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
2872 switch (ioprio_class
) {
2873 case IOPRIO_CLASS_RT
:
2874 return &cfqd
->async_cfqq
[0][ioprio
];
2875 case IOPRIO_CLASS_BE
:
2876 return &cfqd
->async_cfqq
[1][ioprio
];
2877 case IOPRIO_CLASS_IDLE
:
2878 return &cfqd
->async_idle_cfqq
;
2884 static struct cfq_queue
*
2885 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
2888 const int ioprio
= task_ioprio(ioc
);
2889 const int ioprio_class
= task_ioprio_class(ioc
);
2890 struct cfq_queue
**async_cfqq
= NULL
;
2891 struct cfq_queue
*cfqq
= NULL
;
2894 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
2899 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
2902 * pin the queue now that it's allocated, scheduler exit will prune it
2904 if (!is_sync
&& !(*async_cfqq
)) {
2905 atomic_inc(&cfqq
->ref
);
2909 atomic_inc(&cfqq
->ref
);
2914 * We drop cfq io contexts lazily, so we may find a dead one.
2917 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2918 struct cfq_io_context
*cic
)
2920 unsigned long flags
;
2922 WARN_ON(!list_empty(&cic
->queue_list
));
2923 BUG_ON(cic
->key
!= cfqd_dead_key(cfqd
));
2925 spin_lock_irqsave(&ioc
->lock
, flags
);
2927 BUG_ON(ioc
->ioc_data
== cic
);
2929 radix_tree_delete(&ioc
->radix_root
, cfqd
->cic_index
);
2930 hlist_del_rcu(&cic
->cic_list
);
2931 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2936 static struct cfq_io_context
*
2937 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
2939 struct cfq_io_context
*cic
;
2940 unsigned long flags
;
2948 * we maintain a last-hit cache, to avoid browsing over the tree
2950 cic
= rcu_dereference(ioc
->ioc_data
);
2951 if (cic
&& cic
->key
== cfqd
) {
2957 cic
= radix_tree_lookup(&ioc
->radix_root
, cfqd
->cic_index
);
2961 if (unlikely(cic
->key
!= cfqd
)) {
2962 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
2967 spin_lock_irqsave(&ioc
->lock
, flags
);
2968 rcu_assign_pointer(ioc
->ioc_data
, cic
);
2969 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2977 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2978 * the process specific cfq io context when entered from the block layer.
2979 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2981 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2982 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
2984 unsigned long flags
;
2987 ret
= radix_tree_preload(gfp_mask
);
2992 spin_lock_irqsave(&ioc
->lock
, flags
);
2993 ret
= radix_tree_insert(&ioc
->radix_root
,
2994 cfqd
->cic_index
, cic
);
2996 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
2997 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2999 radix_tree_preload_end();
3002 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3003 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
3004 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3009 printk(KERN_ERR
"cfq: cic link failed!\n");
3015 * Setup general io context and cfq io context. There can be several cfq
3016 * io contexts per general io context, if this process is doing io to more
3017 * than one device managed by cfq.
3019 static struct cfq_io_context
*
3020 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
3022 struct io_context
*ioc
= NULL
;
3023 struct cfq_io_context
*cic
;
3025 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3027 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
3031 cic
= cfq_cic_lookup(cfqd
, ioc
);
3035 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
3039 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
3043 smp_read_barrier_depends();
3044 if (unlikely(ioc
->ioprio_changed
))
3045 cfq_ioc_set_ioprio(ioc
);
3047 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3048 if (unlikely(ioc
->cgroup_changed
))
3049 cfq_ioc_set_cgroup(ioc
);
3055 put_io_context(ioc
);
3060 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
3062 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
3063 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
3065 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
3066 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
3067 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
3071 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3075 sector_t n_sec
= blk_rq_sectors(rq
);
3076 if (cfqq
->last_request_pos
) {
3077 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3078 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3080 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3083 cfqq
->seek_history
<<= 1;
3084 if (blk_queue_nonrot(cfqd
->queue
))
3085 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3087 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3091 * Disable idle window if the process thinks too long or seeks so much that
3095 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3096 struct cfq_io_context
*cic
)
3098 int old_idle
, enable_idle
;
3101 * Don't idle for async or idle io prio class
3103 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3106 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3108 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3109 cfq_mark_cfqq_deep(cfqq
);
3111 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
3112 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3114 else if (sample_valid(cic
->ttime_samples
)) {
3115 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
3121 if (old_idle
!= enable_idle
) {
3122 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3124 cfq_mark_cfqq_idle_window(cfqq
);
3126 cfq_clear_cfqq_idle_window(cfqq
);
3131 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3132 * no or if we aren't sure, a 1 will cause a preempt.
3135 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3138 struct cfq_queue
*cfqq
;
3140 cfqq
= cfqd
->active_queue
;
3144 if (cfq_class_idle(new_cfqq
))
3147 if (cfq_class_idle(cfqq
))
3151 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3153 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3157 * if the new request is sync, but the currently running queue is
3158 * not, let the sync request have priority.
3160 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3163 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3166 if (cfq_slice_used(cfqq
))
3169 /* Allow preemption only if we are idling on sync-noidle tree */
3170 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3171 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3172 new_cfqq
->service_tree
->count
== 2 &&
3173 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3177 * So both queues are sync. Let the new request get disk time if
3178 * it's a metadata request and the current queue is doing regular IO.
3180 if ((rq
->cmd_flags
& REQ_META
) && !cfqq
->meta_pending
)
3184 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3186 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3189 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3193 * if this request is as-good as one we would expect from the
3194 * current cfqq, let it preempt
3196 if (cfq_rq_close(cfqd
, cfqq
, rq
))
3203 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3204 * let it have half of its nominal slice.
3206 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3208 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3209 cfq_slice_expired(cfqd
, 1);
3212 * Put the new queue at the front of the of the current list,
3213 * so we know that it will be selected next.
3215 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3217 cfq_service_tree_add(cfqd
, cfqq
, 1);
3219 cfqq
->slice_end
= 0;
3220 cfq_mark_cfqq_slice_new(cfqq
);
3224 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3225 * something we should do about it
3228 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3231 struct cfq_io_context
*cic
= RQ_CIC(rq
);
3234 if (rq
->cmd_flags
& REQ_META
)
3235 cfqq
->meta_pending
++;
3237 cfq_update_io_thinktime(cfqd
, cic
);
3238 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3239 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3241 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3243 if (cfqq
== cfqd
->active_queue
) {
3245 * Remember that we saw a request from this process, but
3246 * don't start queuing just yet. Otherwise we risk seeing lots
3247 * of tiny requests, because we disrupt the normal plugging
3248 * and merging. If the request is already larger than a single
3249 * page, let it rip immediately. For that case we assume that
3250 * merging is already done. Ditto for a busy system that
3251 * has other work pending, don't risk delaying until the
3252 * idle timer unplug to continue working.
3254 if (cfq_cfqq_wait_request(cfqq
)) {
3255 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3256 cfqd
->busy_queues
> 1) {
3257 cfq_del_timer(cfqd
, cfqq
);
3258 cfq_clear_cfqq_wait_request(cfqq
);
3259 __blk_run_queue(cfqd
->queue
);
3261 cfq_blkiocg_update_idle_time_stats(
3263 cfq_mark_cfqq_must_dispatch(cfqq
);
3266 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3268 * not the active queue - expire current slice if it is
3269 * idle and has expired it's mean thinktime or this new queue
3270 * has some old slice time left and is of higher priority or
3271 * this new queue is RT and the current one is BE
3273 cfq_preempt_queue(cfqd
, cfqq
);
3274 __blk_run_queue(cfqd
->queue
);
3278 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3280 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3281 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3283 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3284 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
3286 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3287 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3289 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
3290 &cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
3292 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3296 * Update hw_tag based on peak queue depth over 50 samples under
3299 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3301 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3303 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
3304 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
3306 if (cfqd
->hw_tag
== 1)
3309 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3310 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
3314 * If active queue hasn't enough requests and can idle, cfq might not
3315 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3318 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3319 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3320 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
3323 if (cfqd
->hw_tag_samples
++ < 50)
3326 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3332 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3334 struct cfq_io_context
*cic
= cfqd
->active_cic
;
3336 /* If there are other queues in the group, don't wait */
3337 if (cfqq
->cfqg
->nr_cfqq
> 1)
3340 if (cfq_slice_used(cfqq
))
3343 /* if slice left is less than think time, wait busy */
3344 if (cic
&& sample_valid(cic
->ttime_samples
)
3345 && (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
3349 * If think times is less than a jiffy than ttime_mean=0 and above
3350 * will not be true. It might happen that slice has not expired yet
3351 * but will expire soon (4-5 ns) during select_queue(). To cover the
3352 * case where think time is less than a jiffy, mark the queue wait
3353 * busy if only 1 jiffy is left in the slice.
3355 if (cfqq
->slice_end
- jiffies
== 1)
3361 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3363 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3364 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3365 const int sync
= rq_is_sync(rq
);
3369 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d",
3370 !!(rq
->cmd_flags
& REQ_NOIDLE
));
3372 cfq_update_hw_tag(cfqd
);
3374 WARN_ON(!cfqd
->rq_in_driver
);
3375 WARN_ON(!cfqq
->dispatched
);
3376 cfqd
->rq_in_driver
--;
3378 cfq_blkiocg_update_completion_stats(&cfqq
->cfqg
->blkg
,
3379 rq_start_time_ns(rq
), rq_io_start_time_ns(rq
),
3380 rq_data_dir(rq
), rq_is_sync(rq
));
3382 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
3385 RQ_CIC(rq
)->last_end_request
= now
;
3386 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3387 cfqd
->last_delayed_sync
= now
;
3391 * If this is the active queue, check if it needs to be expired,
3392 * or if we want to idle in case it has no pending requests.
3394 if (cfqd
->active_queue
== cfqq
) {
3395 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3397 if (cfq_cfqq_slice_new(cfqq
)) {
3398 cfq_set_prio_slice(cfqd
, cfqq
);
3399 cfq_clear_cfqq_slice_new(cfqq
);
3403 * Should we wait for next request to come in before we expire
3406 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3407 cfqq
->slice_end
= jiffies
+ cfqd
->cfq_slice_idle
;
3408 cfq_mark_cfqq_wait_busy(cfqq
);
3409 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
3413 * Idling is not enabled on:
3415 * - idle-priority queues
3417 * - queues with still some requests queued
3418 * - when there is a close cooperator
3420 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3421 cfq_slice_expired(cfqd
, 1);
3422 else if (sync
&& cfqq_empty
&&
3423 !cfq_close_cooperator(cfqd
, cfqq
)) {
3424 cfqd
->noidle_tree_requires_idle
|=
3425 !(rq
->cmd_flags
& REQ_NOIDLE
);
3427 * Idling is enabled for SYNC_WORKLOAD.
3428 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3429 * only if we processed at least one !REQ_NOIDLE request
3431 if (cfqd
->serving_type
== SYNC_WORKLOAD
3432 || cfqd
->noidle_tree_requires_idle
3433 || cfqq
->cfqg
->nr_cfqq
== 1)
3434 cfq_arm_slice_timer(cfqd
);
3438 if (!cfqd
->rq_in_driver
)
3439 cfq_schedule_dispatch(cfqd
);
3443 * we temporarily boost lower priority queues if they are holding fs exclusive
3444 * resources. they are boosted to normal prio (CLASS_BE/4)
3446 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
3448 if (has_fs_excl()) {
3450 * boost idle prio on transactions that would lock out other
3451 * users of the filesystem
3453 if (cfq_class_idle(cfqq
))
3454 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3455 if (cfqq
->ioprio
> IOPRIO_NORM
)
3456 cfqq
->ioprio
= IOPRIO_NORM
;
3459 * unboost the queue (if needed)
3461 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
3462 cfqq
->ioprio
= cfqq
->org_ioprio
;
3466 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3468 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3469 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3470 return ELV_MQUEUE_MUST
;
3473 return ELV_MQUEUE_MAY
;
3476 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3478 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3479 struct task_struct
*tsk
= current
;
3480 struct cfq_io_context
*cic
;
3481 struct cfq_queue
*cfqq
;
3484 * don't force setup of a queue from here, as a call to may_queue
3485 * does not necessarily imply that a request actually will be queued.
3486 * so just lookup a possibly existing queue, or return 'may queue'
3489 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3491 return ELV_MQUEUE_MAY
;
3493 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3495 cfq_init_prio_data(cfqq
, cic
->ioc
);
3496 cfq_prio_boost(cfqq
);
3498 return __cfq_may_queue(cfqq
);
3501 return ELV_MQUEUE_MAY
;
3505 * queue lock held here
3507 static void cfq_put_request(struct request
*rq
)
3509 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3512 const int rw
= rq_data_dir(rq
);
3514 BUG_ON(!cfqq
->allocated
[rw
]);
3515 cfqq
->allocated
[rw
]--;
3517 put_io_context(RQ_CIC(rq
)->ioc
);
3519 rq
->elevator_private
= NULL
;
3520 rq
->elevator_private2
= NULL
;
3522 /* Put down rq reference on cfqg */
3523 cfq_put_cfqg(RQ_CFQG(rq
));
3524 rq
->elevator_private3
= NULL
;
3526 cfq_put_queue(cfqq
);
3530 static struct cfq_queue
*
3531 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
3532 struct cfq_queue
*cfqq
)
3534 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3535 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3536 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3537 cfq_put_queue(cfqq
);
3538 return cic_to_cfqq(cic
, 1);
3542 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3543 * was the last process referring to said cfqq.
3545 static struct cfq_queue
*
3546 split_cfqq(struct cfq_io_context
*cic
, struct cfq_queue
*cfqq
)
3548 if (cfqq_process_refs(cfqq
) == 1) {
3549 cfqq
->pid
= current
->pid
;
3550 cfq_clear_cfqq_coop(cfqq
);
3551 cfq_clear_cfqq_split_coop(cfqq
);
3555 cic_set_cfqq(cic
, NULL
, 1);
3557 cfq_put_cooperator(cfqq
);
3559 cfq_put_queue(cfqq
);
3563 * Allocate cfq data structures associated with this request.
3566 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
3568 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3569 struct cfq_io_context
*cic
;
3570 const int rw
= rq_data_dir(rq
);
3571 const bool is_sync
= rq_is_sync(rq
);
3572 struct cfq_queue
*cfqq
;
3573 unsigned long flags
;
3575 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3577 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
3579 spin_lock_irqsave(q
->queue_lock
, flags
);
3585 cfqq
= cic_to_cfqq(cic
, is_sync
);
3586 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3587 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
3588 cic_set_cfqq(cic
, cfqq
, is_sync
);
3591 * If the queue was seeky for too long, break it apart.
3593 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
3594 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3595 cfqq
= split_cfqq(cic
, cfqq
);
3601 * Check to see if this queue is scheduled to merge with
3602 * another, closely cooperating queue. The merging of
3603 * queues happens here as it must be done in process context.
3604 * The reference on new_cfqq was taken in merge_cfqqs.
3607 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3610 cfqq
->allocated
[rw
]++;
3611 atomic_inc(&cfqq
->ref
);
3613 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3615 rq
->elevator_private
= cic
;
3616 rq
->elevator_private2
= cfqq
;
3617 rq
->elevator_private3
= cfq_ref_get_cfqg(cfqq
->cfqg
);
3622 put_io_context(cic
->ioc
);
3624 cfq_schedule_dispatch(cfqd
);
3625 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3626 cfq_log(cfqd
, "set_request fail");
3630 static void cfq_kick_queue(struct work_struct
*work
)
3632 struct cfq_data
*cfqd
=
3633 container_of(work
, struct cfq_data
, unplug_work
);
3634 struct request_queue
*q
= cfqd
->queue
;
3636 spin_lock_irq(q
->queue_lock
);
3637 __blk_run_queue(cfqd
->queue
);
3638 spin_unlock_irq(q
->queue_lock
);
3642 * Timer running if the active_queue is currently idling inside its time slice
3644 static void cfq_idle_slice_timer(unsigned long data
)
3646 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3647 struct cfq_queue
*cfqq
;
3648 unsigned long flags
;
3651 cfq_log(cfqd
, "idle timer fired");
3653 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3655 cfqq
= cfqd
->active_queue
;
3660 * We saw a request before the queue expired, let it through
3662 if (cfq_cfqq_must_dispatch(cfqq
))
3668 if (cfq_slice_used(cfqq
))
3672 * only expire and reinvoke request handler, if there are
3673 * other queues with pending requests
3675 if (!cfqd
->busy_queues
)
3679 * not expired and it has a request pending, let it dispatch
3681 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3685 * Queue depth flag is reset only when the idle didn't succeed
3687 cfq_clear_cfqq_deep(cfqq
);
3690 cfq_slice_expired(cfqd
, timed_out
);
3692 cfq_schedule_dispatch(cfqd
);
3694 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3697 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3699 del_timer_sync(&cfqd
->idle_slice_timer
);
3700 cancel_work_sync(&cfqd
->unplug_work
);
3703 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3707 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3708 if (cfqd
->async_cfqq
[0][i
])
3709 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3710 if (cfqd
->async_cfqq
[1][i
])
3711 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3714 if (cfqd
->async_idle_cfqq
)
3715 cfq_put_queue(cfqd
->async_idle_cfqq
);
3718 static void cfq_cfqd_free(struct rcu_head
*head
)
3720 kfree(container_of(head
, struct cfq_data
, rcu
));
3723 static void cfq_exit_queue(struct elevator_queue
*e
)
3725 struct cfq_data
*cfqd
= e
->elevator_data
;
3726 struct request_queue
*q
= cfqd
->queue
;
3728 cfq_shutdown_timer_wq(cfqd
);
3730 spin_lock_irq(q
->queue_lock
);
3732 if (cfqd
->active_queue
)
3733 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3735 while (!list_empty(&cfqd
->cic_list
)) {
3736 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
3737 struct cfq_io_context
,
3740 __cfq_exit_single_io_context(cfqd
, cic
);
3743 cfq_put_async_queues(cfqd
);
3744 cfq_release_cfq_groups(cfqd
);
3745 cfq_blkiocg_del_blkio_group(&cfqd
->root_group
.blkg
);
3747 spin_unlock_irq(q
->queue_lock
);
3749 cfq_shutdown_timer_wq(cfqd
);
3751 spin_lock(&cic_index_lock
);
3752 ida_remove(&cic_index_ida
, cfqd
->cic_index
);
3753 spin_unlock(&cic_index_lock
);
3755 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3756 call_rcu(&cfqd
->rcu
, cfq_cfqd_free
);
3759 static int cfq_alloc_cic_index(void)
3764 if (!ida_pre_get(&cic_index_ida
, GFP_KERNEL
))
3767 spin_lock(&cic_index_lock
);
3768 error
= ida_get_new(&cic_index_ida
, &index
);
3769 spin_unlock(&cic_index_lock
);
3770 if (error
&& error
!= -EAGAIN
)
3777 static void *cfq_init_queue(struct request_queue
*q
)
3779 struct cfq_data
*cfqd
;
3781 struct cfq_group
*cfqg
;
3782 struct cfq_rb_root
*st
;
3784 i
= cfq_alloc_cic_index();
3788 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
3792 cfqd
->cic_index
= i
;
3794 /* Init root service tree */
3795 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
3797 /* Init root group */
3798 cfqg
= &cfqd
->root_group
;
3799 for_each_cfqg_st(cfqg
, i
, j
, st
)
3801 RB_CLEAR_NODE(&cfqg
->rb_node
);
3803 /* Give preference to root group over other groups */
3804 cfqg
->weight
= 2*BLKIO_WEIGHT_DEFAULT
;
3806 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3808 * Take a reference to root group which we never drop. This is just
3809 * to make sure that cfq_put_cfqg() does not try to kfree root group
3811 atomic_set(&cfqg
->ref
, 1);
3813 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup
, &cfqg
->blkg
,
3818 * Not strictly needed (since RB_ROOT just clears the node and we
3819 * zeroed cfqd on alloc), but better be safe in case someone decides
3820 * to add magic to the rb code
3822 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
3823 cfqd
->prio_trees
[i
] = RB_ROOT
;
3826 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3827 * Grab a permanent reference to it, so that the normal code flow
3828 * will not attempt to free it.
3830 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
3831 atomic_inc(&cfqd
->oom_cfqq
.ref
);
3832 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, &cfqd
->root_group
);
3834 INIT_LIST_HEAD(&cfqd
->cic_list
);
3838 init_timer(&cfqd
->idle_slice_timer
);
3839 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
3840 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
3842 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
3844 cfqd
->cfq_quantum
= cfq_quantum
;
3845 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
3846 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
3847 cfqd
->cfq_back_max
= cfq_back_max
;
3848 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
3849 cfqd
->cfq_slice
[0] = cfq_slice_async
;
3850 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
3851 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
3852 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
3853 cfqd
->cfq_latency
= 1;
3854 cfqd
->cfq_group_isolation
= 0;
3857 * we optimistically start assuming sync ops weren't delayed in last
3858 * second, in order to have larger depth for async operations.
3860 cfqd
->last_delayed_sync
= jiffies
- HZ
;
3864 static void cfq_slab_kill(void)
3867 * Caller already ensured that pending RCU callbacks are completed,
3868 * so we should have no busy allocations at this point.
3871 kmem_cache_destroy(cfq_pool
);
3873 kmem_cache_destroy(cfq_ioc_pool
);
3876 static int __init
cfq_slab_setup(void)
3878 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
3882 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
3893 * sysfs parts below -->
3896 cfq_var_show(unsigned int var
, char *page
)
3898 return sprintf(page
, "%d\n", var
);
3902 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
3904 char *p
= (char *) page
;
3906 *var
= simple_strtoul(p
, &p
, 10);
3910 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3911 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3913 struct cfq_data *cfqd = e->elevator_data; \
3914 unsigned int __data = __VAR; \
3916 __data = jiffies_to_msecs(__data); \
3917 return cfq_var_show(__data, (page)); \
3919 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
3920 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
3921 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
3922 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
3923 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
3924 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
3925 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
3926 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
3927 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
3928 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
3929 SHOW_FUNCTION(cfq_group_isolation_show
, cfqd
->cfq_group_isolation
, 0);
3930 #undef SHOW_FUNCTION
3932 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3933 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3935 struct cfq_data *cfqd = e->elevator_data; \
3936 unsigned int __data; \
3937 int ret = cfq_var_store(&__data, (page), count); \
3938 if (__data < (MIN)) \
3940 else if (__data > (MAX)) \
3943 *(__PTR) = msecs_to_jiffies(__data); \
3945 *(__PTR) = __data; \
3948 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
3949 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
3951 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
3953 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
3954 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
3956 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
3957 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
3958 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
3959 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
3961 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
3962 STORE_FUNCTION(cfq_group_isolation_store
, &cfqd
->cfq_group_isolation
, 0, 1, 0);
3963 #undef STORE_FUNCTION
3965 #define CFQ_ATTR(name) \
3966 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3968 static struct elv_fs_entry cfq_attrs
[] = {
3970 CFQ_ATTR(fifo_expire_sync
),
3971 CFQ_ATTR(fifo_expire_async
),
3972 CFQ_ATTR(back_seek_max
),
3973 CFQ_ATTR(back_seek_penalty
),
3974 CFQ_ATTR(slice_sync
),
3975 CFQ_ATTR(slice_async
),
3976 CFQ_ATTR(slice_async_rq
),
3977 CFQ_ATTR(slice_idle
),
3978 CFQ_ATTR(low_latency
),
3979 CFQ_ATTR(group_isolation
),
3983 static struct elevator_type iosched_cfq
= {
3985 .elevator_merge_fn
= cfq_merge
,
3986 .elevator_merged_fn
= cfq_merged_request
,
3987 .elevator_merge_req_fn
= cfq_merged_requests
,
3988 .elevator_allow_merge_fn
= cfq_allow_merge
,
3989 .elevator_bio_merged_fn
= cfq_bio_merged
,
3990 .elevator_dispatch_fn
= cfq_dispatch_requests
,
3991 .elevator_add_req_fn
= cfq_insert_request
,
3992 .elevator_activate_req_fn
= cfq_activate_request
,
3993 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
3994 .elevator_queue_empty_fn
= cfq_queue_empty
,
3995 .elevator_completed_req_fn
= cfq_completed_request
,
3996 .elevator_former_req_fn
= elv_rb_former_request
,
3997 .elevator_latter_req_fn
= elv_rb_latter_request
,
3998 .elevator_set_req_fn
= cfq_set_request
,
3999 .elevator_put_req_fn
= cfq_put_request
,
4000 .elevator_may_queue_fn
= cfq_may_queue
,
4001 .elevator_init_fn
= cfq_init_queue
,
4002 .elevator_exit_fn
= cfq_exit_queue
,
4003 .trim
= cfq_free_io_context
,
4005 .elevator_attrs
= cfq_attrs
,
4006 .elevator_name
= "cfq",
4007 .elevator_owner
= THIS_MODULE
,
4010 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4011 static struct blkio_policy_type blkio_policy_cfq
= {
4013 .blkio_unlink_group_fn
= cfq_unlink_blkio_group
,
4014 .blkio_update_group_weight_fn
= cfq_update_blkio_group_weight
,
4018 static struct blkio_policy_type blkio_policy_cfq
;
4021 static int __init
cfq_init(void)
4024 * could be 0 on HZ < 1000 setups
4026 if (!cfq_slice_async
)
4027 cfq_slice_async
= 1;
4028 if (!cfq_slice_idle
)
4031 if (cfq_slab_setup())
4034 elv_register(&iosched_cfq
);
4035 blkio_policy_register(&blkio_policy_cfq
);
4040 static void __exit
cfq_exit(void)
4042 DECLARE_COMPLETION_ONSTACK(all_gone
);
4043 blkio_policy_unregister(&blkio_policy_cfq
);
4044 elv_unregister(&iosched_cfq
);
4045 ioc_gone
= &all_gone
;
4046 /* ioc_gone's update must be visible before reading ioc_count */
4050 * this also protects us from entering cfq_slab_kill() with
4051 * pending RCU callbacks
4053 if (elv_ioc_count_read(cfq_ioc_count
))
4054 wait_for_completion(&all_gone
);
4055 ida_destroy(&cic_index_ida
);
4059 module_init(cfq_init
);
4060 module_exit(cfq_exit
);
4062 MODULE_AUTHOR("Jens Axboe");
4063 MODULE_LICENSE("GPL");
4064 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");