hwmon: (w83792d) Convert to a new-style i2c driver
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / aio.c
blob0fb3117ddd93d8a517720a744cd415a4b914f63c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
20 #define DEBUG 0
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/eventfd.h>
35 #include <asm/kmap_types.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
39 #if DEBUG > 1
40 #define dprintk printk
41 #else
42 #define dprintk(x...) do { ; } while (0)
43 #endif
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock);
47 unsigned long aio_nr; /* current system wide number of aio requests */
48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
51 static struct kmem_cache *kiocb_cachep;
52 static struct kmem_cache *kioctx_cachep;
54 static struct workqueue_struct *aio_wq;
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct *);
58 static DECLARE_WORK(fput_work, aio_fput_routine);
60 static DEFINE_SPINLOCK(fput_lock);
61 static LIST_HEAD(fput_head);
63 static void aio_kick_handler(struct work_struct *);
64 static void aio_queue_work(struct kioctx *);
66 /* aio_setup
67 * Creates the slab caches used by the aio routines, panic on
68 * failure as this is done early during the boot sequence.
70 static int __init aio_setup(void)
72 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
75 aio_wq = create_workqueue("aio");
77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
79 return 0;
82 static void aio_free_ring(struct kioctx *ctx)
84 struct aio_ring_info *info = &ctx->ring_info;
85 long i;
87 for (i=0; i<info->nr_pages; i++)
88 put_page(info->ring_pages[i]);
90 if (info->mmap_size) {
91 down_write(&ctx->mm->mmap_sem);
92 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93 up_write(&ctx->mm->mmap_sem);
96 if (info->ring_pages && info->ring_pages != info->internal_pages)
97 kfree(info->ring_pages);
98 info->ring_pages = NULL;
99 info->nr = 0;
102 static int aio_setup_ring(struct kioctx *ctx)
104 struct aio_ring *ring;
105 struct aio_ring_info *info = &ctx->ring_info;
106 unsigned nr_events = ctx->max_reqs;
107 unsigned long size;
108 int nr_pages;
110 /* Compensate for the ring buffer's head/tail overlap entry */
111 nr_events += 2; /* 1 is required, 2 for good luck */
113 size = sizeof(struct aio_ring);
114 size += sizeof(struct io_event) * nr_events;
115 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
117 if (nr_pages < 0)
118 return -EINVAL;
120 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
122 info->nr = 0;
123 info->ring_pages = info->internal_pages;
124 if (nr_pages > AIO_RING_PAGES) {
125 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
126 if (!info->ring_pages)
127 return -ENOMEM;
130 info->mmap_size = nr_pages * PAGE_SIZE;
131 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
132 down_write(&ctx->mm->mmap_sem);
133 info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
134 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
136 if (IS_ERR((void *)info->mmap_base)) {
137 up_write(&ctx->mm->mmap_sem);
138 info->mmap_size = 0;
139 aio_free_ring(ctx);
140 return -EAGAIN;
143 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
144 info->nr_pages = get_user_pages(current, ctx->mm,
145 info->mmap_base, nr_pages,
146 1, 0, info->ring_pages, NULL);
147 up_write(&ctx->mm->mmap_sem);
149 if (unlikely(info->nr_pages != nr_pages)) {
150 aio_free_ring(ctx);
151 return -EAGAIN;
154 ctx->user_id = info->mmap_base;
156 info->nr = nr_events; /* trusted copy */
158 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
159 ring->nr = nr_events; /* user copy */
160 ring->id = ctx->user_id;
161 ring->head = ring->tail = 0;
162 ring->magic = AIO_RING_MAGIC;
163 ring->compat_features = AIO_RING_COMPAT_FEATURES;
164 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
165 ring->header_length = sizeof(struct aio_ring);
166 kunmap_atomic(ring, KM_USER0);
168 return 0;
172 /* aio_ring_event: returns a pointer to the event at the given index from
173 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
179 #define aio_ring_event(info, nr, km) ({ \
180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
181 struct io_event *__event; \
182 __event = kmap_atomic( \
183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 __event += pos % AIO_EVENTS_PER_PAGE; \
185 __event; \
188 #define put_aio_ring_event(event, km) do { \
189 struct io_event *__event = (event); \
190 (void)__event; \
191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
192 } while(0)
195 /* __put_ioctx
196 * Called when the last user of an aio context has gone away,
197 * and the struct needs to be freed.
199 static void __put_ioctx(struct kioctx *ctx)
201 unsigned nr_events = ctx->max_reqs;
203 BUG_ON(ctx->reqs_active);
205 cancel_delayed_work(&ctx->wq);
206 cancel_work_sync(&ctx->wq.work);
207 aio_free_ring(ctx);
208 mmdrop(ctx->mm);
209 ctx->mm = NULL;
210 pr_debug("__put_ioctx: freeing %p\n", ctx);
211 kmem_cache_free(kioctx_cachep, ctx);
213 if (nr_events) {
214 spin_lock(&aio_nr_lock);
215 BUG_ON(aio_nr - nr_events > aio_nr);
216 aio_nr -= nr_events;
217 spin_unlock(&aio_nr_lock);
221 #define get_ioctx(kioctx) do { \
222 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
223 atomic_inc(&(kioctx)->users); \
224 } while (0)
225 #define put_ioctx(kioctx) do { \
226 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
227 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \
228 __put_ioctx(kioctx); \
229 } while (0)
231 /* ioctx_alloc
232 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
234 static struct kioctx *ioctx_alloc(unsigned nr_events)
236 struct mm_struct *mm;
237 struct kioctx *ctx;
239 /* Prevent overflows */
240 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
241 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
242 pr_debug("ENOMEM: nr_events too high\n");
243 return ERR_PTR(-EINVAL);
246 if ((unsigned long)nr_events > aio_max_nr)
247 return ERR_PTR(-EAGAIN);
249 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
250 if (!ctx)
251 return ERR_PTR(-ENOMEM);
253 ctx->max_reqs = nr_events;
254 mm = ctx->mm = current->mm;
255 atomic_inc(&mm->mm_count);
257 atomic_set(&ctx->users, 1);
258 spin_lock_init(&ctx->ctx_lock);
259 spin_lock_init(&ctx->ring_info.ring_lock);
260 init_waitqueue_head(&ctx->wait);
262 INIT_LIST_HEAD(&ctx->active_reqs);
263 INIT_LIST_HEAD(&ctx->run_list);
264 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
266 if (aio_setup_ring(ctx) < 0)
267 goto out_freectx;
269 /* limit the number of system wide aios */
270 spin_lock(&aio_nr_lock);
271 if (aio_nr + ctx->max_reqs > aio_max_nr ||
272 aio_nr + ctx->max_reqs < aio_nr)
273 ctx->max_reqs = 0;
274 else
275 aio_nr += ctx->max_reqs;
276 spin_unlock(&aio_nr_lock);
277 if (ctx->max_reqs == 0)
278 goto out_cleanup;
280 /* now link into global list. */
281 write_lock(&mm->ioctx_list_lock);
282 ctx->next = mm->ioctx_list;
283 mm->ioctx_list = ctx;
284 write_unlock(&mm->ioctx_list_lock);
286 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
287 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
288 return ctx;
290 out_cleanup:
291 __put_ioctx(ctx);
292 return ERR_PTR(-EAGAIN);
294 out_freectx:
295 mmdrop(mm);
296 kmem_cache_free(kioctx_cachep, ctx);
297 ctx = ERR_PTR(-ENOMEM);
299 dprintk("aio: error allocating ioctx %p\n", ctx);
300 return ctx;
303 /* aio_cancel_all
304 * Cancels all outstanding aio requests on an aio context. Used
305 * when the processes owning a context have all exited to encourage
306 * the rapid destruction of the kioctx.
308 static void aio_cancel_all(struct kioctx *ctx)
310 int (*cancel)(struct kiocb *, struct io_event *);
311 struct io_event res;
312 spin_lock_irq(&ctx->ctx_lock);
313 ctx->dead = 1;
314 while (!list_empty(&ctx->active_reqs)) {
315 struct list_head *pos = ctx->active_reqs.next;
316 struct kiocb *iocb = list_kiocb(pos);
317 list_del_init(&iocb->ki_list);
318 cancel = iocb->ki_cancel;
319 kiocbSetCancelled(iocb);
320 if (cancel) {
321 iocb->ki_users++;
322 spin_unlock_irq(&ctx->ctx_lock);
323 cancel(iocb, &res);
324 spin_lock_irq(&ctx->ctx_lock);
327 spin_unlock_irq(&ctx->ctx_lock);
330 static void wait_for_all_aios(struct kioctx *ctx)
332 struct task_struct *tsk = current;
333 DECLARE_WAITQUEUE(wait, tsk);
335 spin_lock_irq(&ctx->ctx_lock);
336 if (!ctx->reqs_active)
337 goto out;
339 add_wait_queue(&ctx->wait, &wait);
340 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
341 while (ctx->reqs_active) {
342 spin_unlock_irq(&ctx->ctx_lock);
343 io_schedule();
344 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
345 spin_lock_irq(&ctx->ctx_lock);
347 __set_task_state(tsk, TASK_RUNNING);
348 remove_wait_queue(&ctx->wait, &wait);
350 out:
351 spin_unlock_irq(&ctx->ctx_lock);
354 /* wait_on_sync_kiocb:
355 * Waits on the given sync kiocb to complete.
357 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
359 while (iocb->ki_users) {
360 set_current_state(TASK_UNINTERRUPTIBLE);
361 if (!iocb->ki_users)
362 break;
363 io_schedule();
365 __set_current_state(TASK_RUNNING);
366 return iocb->ki_user_data;
369 /* exit_aio: called when the last user of mm goes away. At this point,
370 * there is no way for any new requests to be submited or any of the
371 * io_* syscalls to be called on the context. However, there may be
372 * outstanding requests which hold references to the context; as they
373 * go away, they will call put_ioctx and release any pinned memory
374 * associated with the request (held via struct page * references).
376 void exit_aio(struct mm_struct *mm)
378 struct kioctx *ctx = mm->ioctx_list;
379 mm->ioctx_list = NULL;
380 while (ctx) {
381 struct kioctx *next = ctx->next;
382 ctx->next = NULL;
383 aio_cancel_all(ctx);
385 wait_for_all_aios(ctx);
387 * Ensure we don't leave the ctx on the aio_wq
389 cancel_work_sync(&ctx->wq.work);
391 if (1 != atomic_read(&ctx->users))
392 printk(KERN_DEBUG
393 "exit_aio:ioctx still alive: %d %d %d\n",
394 atomic_read(&ctx->users), ctx->dead,
395 ctx->reqs_active);
396 put_ioctx(ctx);
397 ctx = next;
401 /* aio_get_req
402 * Allocate a slot for an aio request. Increments the users count
403 * of the kioctx so that the kioctx stays around until all requests are
404 * complete. Returns NULL if no requests are free.
406 * Returns with kiocb->users set to 2. The io submit code path holds
407 * an extra reference while submitting the i/o.
408 * This prevents races between the aio code path referencing the
409 * req (after submitting it) and aio_complete() freeing the req.
411 static struct kiocb *__aio_get_req(struct kioctx *ctx)
413 struct kiocb *req = NULL;
414 struct aio_ring *ring;
415 int okay = 0;
417 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
418 if (unlikely(!req))
419 return NULL;
421 req->ki_flags = 0;
422 req->ki_users = 2;
423 req->ki_key = 0;
424 req->ki_ctx = ctx;
425 req->ki_cancel = NULL;
426 req->ki_retry = NULL;
427 req->ki_dtor = NULL;
428 req->private = NULL;
429 req->ki_iovec = NULL;
430 INIT_LIST_HEAD(&req->ki_run_list);
431 req->ki_eventfd = ERR_PTR(-EINVAL);
433 /* Check if the completion queue has enough free space to
434 * accept an event from this io.
436 spin_lock_irq(&ctx->ctx_lock);
437 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
438 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
439 list_add(&req->ki_list, &ctx->active_reqs);
440 ctx->reqs_active++;
441 okay = 1;
443 kunmap_atomic(ring, KM_USER0);
444 spin_unlock_irq(&ctx->ctx_lock);
446 if (!okay) {
447 kmem_cache_free(kiocb_cachep, req);
448 req = NULL;
451 return req;
454 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
456 struct kiocb *req;
457 /* Handle a potential starvation case -- should be exceedingly rare as
458 * requests will be stuck on fput_head only if the aio_fput_routine is
459 * delayed and the requests were the last user of the struct file.
461 req = __aio_get_req(ctx);
462 if (unlikely(NULL == req)) {
463 aio_fput_routine(NULL);
464 req = __aio_get_req(ctx);
466 return req;
469 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
471 assert_spin_locked(&ctx->ctx_lock);
473 if (!IS_ERR(req->ki_eventfd))
474 fput(req->ki_eventfd);
475 if (req->ki_dtor)
476 req->ki_dtor(req);
477 if (req->ki_iovec != &req->ki_inline_vec)
478 kfree(req->ki_iovec);
479 kmem_cache_free(kiocb_cachep, req);
480 ctx->reqs_active--;
482 if (unlikely(!ctx->reqs_active && ctx->dead))
483 wake_up(&ctx->wait);
486 static void aio_fput_routine(struct work_struct *data)
488 spin_lock_irq(&fput_lock);
489 while (likely(!list_empty(&fput_head))) {
490 struct kiocb *req = list_kiocb(fput_head.next);
491 struct kioctx *ctx = req->ki_ctx;
493 list_del(&req->ki_list);
494 spin_unlock_irq(&fput_lock);
496 /* Complete the fput */
497 __fput(req->ki_filp);
499 /* Link the iocb into the context's free list */
500 spin_lock_irq(&ctx->ctx_lock);
501 really_put_req(ctx, req);
502 spin_unlock_irq(&ctx->ctx_lock);
504 put_ioctx(ctx);
505 spin_lock_irq(&fput_lock);
507 spin_unlock_irq(&fput_lock);
510 /* __aio_put_req
511 * Returns true if this put was the last user of the request.
513 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
515 dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
516 req, atomic_read(&req->ki_filp->f_count));
518 assert_spin_locked(&ctx->ctx_lock);
520 req->ki_users --;
521 BUG_ON(req->ki_users < 0);
522 if (likely(req->ki_users))
523 return 0;
524 list_del(&req->ki_list); /* remove from active_reqs */
525 req->ki_cancel = NULL;
526 req->ki_retry = NULL;
528 /* Must be done under the lock to serialise against cancellation.
529 * Call this aio_fput as it duplicates fput via the fput_work.
531 if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
532 get_ioctx(ctx);
533 spin_lock(&fput_lock);
534 list_add(&req->ki_list, &fput_head);
535 spin_unlock(&fput_lock);
536 queue_work(aio_wq, &fput_work);
537 } else
538 really_put_req(ctx, req);
539 return 1;
542 /* aio_put_req
543 * Returns true if this put was the last user of the kiocb,
544 * false if the request is still in use.
546 int aio_put_req(struct kiocb *req)
548 struct kioctx *ctx = req->ki_ctx;
549 int ret;
550 spin_lock_irq(&ctx->ctx_lock);
551 ret = __aio_put_req(ctx, req);
552 spin_unlock_irq(&ctx->ctx_lock);
553 return ret;
556 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
558 struct kioctx *ioctx;
559 struct mm_struct *mm;
561 mm = current->mm;
562 read_lock(&mm->ioctx_list_lock);
563 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
564 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
565 get_ioctx(ioctx);
566 break;
568 read_unlock(&mm->ioctx_list_lock);
570 return ioctx;
574 * use_mm
575 * Makes the calling kernel thread take on the specified
576 * mm context.
577 * Called by the retry thread execute retries within the
578 * iocb issuer's mm context, so that copy_from/to_user
579 * operations work seamlessly for aio.
580 * (Note: this routine is intended to be called only
581 * from a kernel thread context)
583 static void use_mm(struct mm_struct *mm)
585 struct mm_struct *active_mm;
586 struct task_struct *tsk = current;
588 task_lock(tsk);
589 tsk->flags |= PF_BORROWED_MM;
590 active_mm = tsk->active_mm;
591 atomic_inc(&mm->mm_count);
592 tsk->mm = mm;
593 tsk->active_mm = mm;
594 switch_mm(active_mm, mm, tsk);
595 task_unlock(tsk);
597 mmdrop(active_mm);
601 * unuse_mm
602 * Reverses the effect of use_mm, i.e. releases the
603 * specified mm context which was earlier taken on
604 * by the calling kernel thread
605 * (Note: this routine is intended to be called only
606 * from a kernel thread context)
608 static void unuse_mm(struct mm_struct *mm)
610 struct task_struct *tsk = current;
612 task_lock(tsk);
613 tsk->flags &= ~PF_BORROWED_MM;
614 tsk->mm = NULL;
615 /* active_mm is still 'mm' */
616 enter_lazy_tlb(mm, tsk);
617 task_unlock(tsk);
621 * Queue up a kiocb to be retried. Assumes that the kiocb
622 * has already been marked as kicked, and places it on
623 * the retry run list for the corresponding ioctx, if it
624 * isn't already queued. Returns 1 if it actually queued
625 * the kiocb (to tell the caller to activate the work
626 * queue to process it), or 0, if it found that it was
627 * already queued.
629 static inline int __queue_kicked_iocb(struct kiocb *iocb)
631 struct kioctx *ctx = iocb->ki_ctx;
633 assert_spin_locked(&ctx->ctx_lock);
635 if (list_empty(&iocb->ki_run_list)) {
636 list_add_tail(&iocb->ki_run_list,
637 &ctx->run_list);
638 return 1;
640 return 0;
643 /* aio_run_iocb
644 * This is the core aio execution routine. It is
645 * invoked both for initial i/o submission and
646 * subsequent retries via the aio_kick_handler.
647 * Expects to be invoked with iocb->ki_ctx->lock
648 * already held. The lock is released and reacquired
649 * as needed during processing.
651 * Calls the iocb retry method (already setup for the
652 * iocb on initial submission) for operation specific
653 * handling, but takes care of most of common retry
654 * execution details for a given iocb. The retry method
655 * needs to be non-blocking as far as possible, to avoid
656 * holding up other iocbs waiting to be serviced by the
657 * retry kernel thread.
659 * The trickier parts in this code have to do with
660 * ensuring that only one retry instance is in progress
661 * for a given iocb at any time. Providing that guarantee
662 * simplifies the coding of individual aio operations as
663 * it avoids various potential races.
665 static ssize_t aio_run_iocb(struct kiocb *iocb)
667 struct kioctx *ctx = iocb->ki_ctx;
668 ssize_t (*retry)(struct kiocb *);
669 ssize_t ret;
671 if (!(retry = iocb->ki_retry)) {
672 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
673 return 0;
677 * We don't want the next retry iteration for this
678 * operation to start until this one has returned and
679 * updated the iocb state. However, wait_queue functions
680 * can trigger a kick_iocb from interrupt context in the
681 * meantime, indicating that data is available for the next
682 * iteration. We want to remember that and enable the
683 * next retry iteration _after_ we are through with
684 * this one.
686 * So, in order to be able to register a "kick", but
687 * prevent it from being queued now, we clear the kick
688 * flag, but make the kick code *think* that the iocb is
689 * still on the run list until we are actually done.
690 * When we are done with this iteration, we check if
691 * the iocb was kicked in the meantime and if so, queue
692 * it up afresh.
695 kiocbClearKicked(iocb);
698 * This is so that aio_complete knows it doesn't need to
699 * pull the iocb off the run list (We can't just call
700 * INIT_LIST_HEAD because we don't want a kick_iocb to
701 * queue this on the run list yet)
703 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
704 spin_unlock_irq(&ctx->ctx_lock);
706 /* Quit retrying if the i/o has been cancelled */
707 if (kiocbIsCancelled(iocb)) {
708 ret = -EINTR;
709 aio_complete(iocb, ret, 0);
710 /* must not access the iocb after this */
711 goto out;
715 * Now we are all set to call the retry method in async
716 * context.
718 ret = retry(iocb);
720 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
721 BUG_ON(!list_empty(&iocb->ki_wait.task_list));
722 aio_complete(iocb, ret, 0);
724 out:
725 spin_lock_irq(&ctx->ctx_lock);
727 if (-EIOCBRETRY == ret) {
729 * OK, now that we are done with this iteration
730 * and know that there is more left to go,
731 * this is where we let go so that a subsequent
732 * "kick" can start the next iteration
735 /* will make __queue_kicked_iocb succeed from here on */
736 INIT_LIST_HEAD(&iocb->ki_run_list);
737 /* we must queue the next iteration ourselves, if it
738 * has already been kicked */
739 if (kiocbIsKicked(iocb)) {
740 __queue_kicked_iocb(iocb);
743 * __queue_kicked_iocb will always return 1 here, because
744 * iocb->ki_run_list is empty at this point so it should
745 * be safe to unconditionally queue the context into the
746 * work queue.
748 aio_queue_work(ctx);
751 return ret;
755 * __aio_run_iocbs:
756 * Process all pending retries queued on the ioctx
757 * run list.
758 * Assumes it is operating within the aio issuer's mm
759 * context.
761 static int __aio_run_iocbs(struct kioctx *ctx)
763 struct kiocb *iocb;
764 struct list_head run_list;
766 assert_spin_locked(&ctx->ctx_lock);
768 list_replace_init(&ctx->run_list, &run_list);
769 while (!list_empty(&run_list)) {
770 iocb = list_entry(run_list.next, struct kiocb,
771 ki_run_list);
772 list_del(&iocb->ki_run_list);
774 * Hold an extra reference while retrying i/o.
776 iocb->ki_users++; /* grab extra reference */
777 aio_run_iocb(iocb);
778 __aio_put_req(ctx, iocb);
780 if (!list_empty(&ctx->run_list))
781 return 1;
782 return 0;
785 static void aio_queue_work(struct kioctx * ctx)
787 unsigned long timeout;
789 * if someone is waiting, get the work started right
790 * away, otherwise, use a longer delay
792 smp_mb();
793 if (waitqueue_active(&ctx->wait))
794 timeout = 1;
795 else
796 timeout = HZ/10;
797 queue_delayed_work(aio_wq, &ctx->wq, timeout);
802 * aio_run_iocbs:
803 * Process all pending retries queued on the ioctx
804 * run list.
805 * Assumes it is operating within the aio issuer's mm
806 * context.
808 static inline void aio_run_iocbs(struct kioctx *ctx)
810 int requeue;
812 spin_lock_irq(&ctx->ctx_lock);
814 requeue = __aio_run_iocbs(ctx);
815 spin_unlock_irq(&ctx->ctx_lock);
816 if (requeue)
817 aio_queue_work(ctx);
821 * just like aio_run_iocbs, but keeps running them until
822 * the list stays empty
824 static inline void aio_run_all_iocbs(struct kioctx *ctx)
826 spin_lock_irq(&ctx->ctx_lock);
827 while (__aio_run_iocbs(ctx))
829 spin_unlock_irq(&ctx->ctx_lock);
833 * aio_kick_handler:
834 * Work queue handler triggered to process pending
835 * retries on an ioctx. Takes on the aio issuer's
836 * mm context before running the iocbs, so that
837 * copy_xxx_user operates on the issuer's address
838 * space.
839 * Run on aiod's context.
841 static void aio_kick_handler(struct work_struct *work)
843 struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
844 mm_segment_t oldfs = get_fs();
845 struct mm_struct *mm;
846 int requeue;
848 set_fs(USER_DS);
849 use_mm(ctx->mm);
850 spin_lock_irq(&ctx->ctx_lock);
851 requeue =__aio_run_iocbs(ctx);
852 mm = ctx->mm;
853 spin_unlock_irq(&ctx->ctx_lock);
854 unuse_mm(mm);
855 set_fs(oldfs);
857 * we're in a worker thread already, don't use queue_delayed_work,
859 if (requeue)
860 queue_delayed_work(aio_wq, &ctx->wq, 0);
865 * Called by kick_iocb to queue the kiocb for retry
866 * and if required activate the aio work queue to process
867 * it
869 static void try_queue_kicked_iocb(struct kiocb *iocb)
871 struct kioctx *ctx = iocb->ki_ctx;
872 unsigned long flags;
873 int run = 0;
875 /* We're supposed to be the only path putting the iocb back on the run
876 * list. If we find that the iocb is *back* on a wait queue already
877 * than retry has happened before we could queue the iocb. This also
878 * means that the retry could have completed and freed our iocb, no
879 * good. */
880 BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
882 spin_lock_irqsave(&ctx->ctx_lock, flags);
883 /* set this inside the lock so that we can't race with aio_run_iocb()
884 * testing it and putting the iocb on the run list under the lock */
885 if (!kiocbTryKick(iocb))
886 run = __queue_kicked_iocb(iocb);
887 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
888 if (run)
889 aio_queue_work(ctx);
893 * kick_iocb:
894 * Called typically from a wait queue callback context
895 * (aio_wake_function) to trigger a retry of the iocb.
896 * The retry is usually executed by aio workqueue
897 * threads (See aio_kick_handler).
899 void kick_iocb(struct kiocb *iocb)
901 /* sync iocbs are easy: they can only ever be executing from a
902 * single context. */
903 if (is_sync_kiocb(iocb)) {
904 kiocbSetKicked(iocb);
905 wake_up_process(iocb->ki_obj.tsk);
906 return;
909 try_queue_kicked_iocb(iocb);
911 EXPORT_SYMBOL(kick_iocb);
913 /* aio_complete
914 * Called when the io request on the given iocb is complete.
915 * Returns true if this is the last user of the request. The
916 * only other user of the request can be the cancellation code.
918 int aio_complete(struct kiocb *iocb, long res, long res2)
920 struct kioctx *ctx = iocb->ki_ctx;
921 struct aio_ring_info *info;
922 struct aio_ring *ring;
923 struct io_event *event;
924 unsigned long flags;
925 unsigned long tail;
926 int ret;
929 * Special case handling for sync iocbs:
930 * - events go directly into the iocb for fast handling
931 * - the sync task with the iocb in its stack holds the single iocb
932 * ref, no other paths have a way to get another ref
933 * - the sync task helpfully left a reference to itself in the iocb
935 if (is_sync_kiocb(iocb)) {
936 BUG_ON(iocb->ki_users != 1);
937 iocb->ki_user_data = res;
938 iocb->ki_users = 0;
939 wake_up_process(iocb->ki_obj.tsk);
940 return 1;
943 info = &ctx->ring_info;
945 /* add a completion event to the ring buffer.
946 * must be done holding ctx->ctx_lock to prevent
947 * other code from messing with the tail
948 * pointer since we might be called from irq
949 * context.
951 spin_lock_irqsave(&ctx->ctx_lock, flags);
953 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
954 list_del_init(&iocb->ki_run_list);
957 * cancelled requests don't get events, userland was given one
958 * when the event got cancelled.
960 if (kiocbIsCancelled(iocb))
961 goto put_rq;
963 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
965 tail = info->tail;
966 event = aio_ring_event(info, tail, KM_IRQ0);
967 if (++tail >= info->nr)
968 tail = 0;
970 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
971 event->data = iocb->ki_user_data;
972 event->res = res;
973 event->res2 = res2;
975 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
976 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
977 res, res2);
979 /* after flagging the request as done, we
980 * must never even look at it again
982 smp_wmb(); /* make event visible before updating tail */
984 info->tail = tail;
985 ring->tail = tail;
987 put_aio_ring_event(event, KM_IRQ0);
988 kunmap_atomic(ring, KM_IRQ1);
990 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
993 * Check if the user asked us to deliver the result through an
994 * eventfd. The eventfd_signal() function is safe to be called
995 * from IRQ context.
997 if (!IS_ERR(iocb->ki_eventfd))
998 eventfd_signal(iocb->ki_eventfd, 1);
1000 put_rq:
1001 /* everything turned out well, dispose of the aiocb. */
1002 ret = __aio_put_req(ctx, iocb);
1005 * We have to order our ring_info tail store above and test
1006 * of the wait list below outside the wait lock. This is
1007 * like in wake_up_bit() where clearing a bit has to be
1008 * ordered with the unlocked test.
1010 smp_mb();
1012 if (waitqueue_active(&ctx->wait))
1013 wake_up(&ctx->wait);
1015 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1016 return ret;
1019 /* aio_read_evt
1020 * Pull an event off of the ioctx's event ring. Returns the number of
1021 * events fetched (0 or 1 ;-)
1022 * FIXME: make this use cmpxchg.
1023 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1025 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1027 struct aio_ring_info *info = &ioctx->ring_info;
1028 struct aio_ring *ring;
1029 unsigned long head;
1030 int ret = 0;
1032 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1033 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1034 (unsigned long)ring->head, (unsigned long)ring->tail,
1035 (unsigned long)ring->nr);
1037 if (ring->head == ring->tail)
1038 goto out;
1040 spin_lock(&info->ring_lock);
1042 head = ring->head % info->nr;
1043 if (head != ring->tail) {
1044 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1045 *ent = *evp;
1046 head = (head + 1) % info->nr;
1047 smp_mb(); /* finish reading the event before updatng the head */
1048 ring->head = head;
1049 ret = 1;
1050 put_aio_ring_event(evp, KM_USER1);
1052 spin_unlock(&info->ring_lock);
1054 out:
1055 kunmap_atomic(ring, KM_USER0);
1056 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1057 (unsigned long)ring->head, (unsigned long)ring->tail);
1058 return ret;
1061 struct aio_timeout {
1062 struct timer_list timer;
1063 int timed_out;
1064 struct task_struct *p;
1067 static void timeout_func(unsigned long data)
1069 struct aio_timeout *to = (struct aio_timeout *)data;
1071 to->timed_out = 1;
1072 wake_up_process(to->p);
1075 static inline void init_timeout(struct aio_timeout *to)
1077 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1078 to->timed_out = 0;
1079 to->p = current;
1082 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1083 const struct timespec *ts)
1085 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1086 if (time_after(to->timer.expires, jiffies))
1087 add_timer(&to->timer);
1088 else
1089 to->timed_out = 1;
1092 static inline void clear_timeout(struct aio_timeout *to)
1094 del_singleshot_timer_sync(&to->timer);
1097 static int read_events(struct kioctx *ctx,
1098 long min_nr, long nr,
1099 struct io_event __user *event,
1100 struct timespec __user *timeout)
1102 long start_jiffies = jiffies;
1103 struct task_struct *tsk = current;
1104 DECLARE_WAITQUEUE(wait, tsk);
1105 int ret;
1106 int i = 0;
1107 struct io_event ent;
1108 struct aio_timeout to;
1109 int retry = 0;
1111 /* needed to zero any padding within an entry (there shouldn't be
1112 * any, but C is fun!
1114 memset(&ent, 0, sizeof(ent));
1115 retry:
1116 ret = 0;
1117 while (likely(i < nr)) {
1118 ret = aio_read_evt(ctx, &ent);
1119 if (unlikely(ret <= 0))
1120 break;
1122 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1123 ent.data, ent.obj, ent.res, ent.res2);
1125 /* Could we split the check in two? */
1126 ret = -EFAULT;
1127 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1128 dprintk("aio: lost an event due to EFAULT.\n");
1129 break;
1131 ret = 0;
1133 /* Good, event copied to userland, update counts. */
1134 event ++;
1135 i ++;
1138 if (min_nr <= i)
1139 return i;
1140 if (ret)
1141 return ret;
1143 /* End fast path */
1145 /* racey check, but it gets redone */
1146 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1147 retry = 1;
1148 aio_run_all_iocbs(ctx);
1149 goto retry;
1152 init_timeout(&to);
1153 if (timeout) {
1154 struct timespec ts;
1155 ret = -EFAULT;
1156 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1157 goto out;
1159 set_timeout(start_jiffies, &to, &ts);
1162 while (likely(i < nr)) {
1163 add_wait_queue_exclusive(&ctx->wait, &wait);
1164 do {
1165 set_task_state(tsk, TASK_INTERRUPTIBLE);
1166 ret = aio_read_evt(ctx, &ent);
1167 if (ret)
1168 break;
1169 if (min_nr <= i)
1170 break;
1171 if (unlikely(ctx->dead)) {
1172 ret = -EINVAL;
1173 break;
1175 if (to.timed_out) /* Only check after read evt */
1176 break;
1177 /* Try to only show up in io wait if there are ops
1178 * in flight */
1179 if (ctx->reqs_active)
1180 io_schedule();
1181 else
1182 schedule();
1183 if (signal_pending(tsk)) {
1184 ret = -EINTR;
1185 break;
1187 /*ret = aio_read_evt(ctx, &ent);*/
1188 } while (1) ;
1190 set_task_state(tsk, TASK_RUNNING);
1191 remove_wait_queue(&ctx->wait, &wait);
1193 if (unlikely(ret <= 0))
1194 break;
1196 ret = -EFAULT;
1197 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1198 dprintk("aio: lost an event due to EFAULT.\n");
1199 break;
1202 /* Good, event copied to userland, update counts. */
1203 event ++;
1204 i ++;
1207 if (timeout)
1208 clear_timeout(&to);
1209 out:
1210 destroy_timer_on_stack(&to.timer);
1211 return i ? i : ret;
1214 /* Take an ioctx and remove it from the list of ioctx's. Protects
1215 * against races with itself via ->dead.
1217 static void io_destroy(struct kioctx *ioctx)
1219 struct mm_struct *mm = current->mm;
1220 struct kioctx **tmp;
1221 int was_dead;
1223 /* delete the entry from the list is someone else hasn't already */
1224 write_lock(&mm->ioctx_list_lock);
1225 was_dead = ioctx->dead;
1226 ioctx->dead = 1;
1227 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1228 tmp = &(*tmp)->next)
1230 if (*tmp)
1231 *tmp = ioctx->next;
1232 write_unlock(&mm->ioctx_list_lock);
1234 dprintk("aio_release(%p)\n", ioctx);
1235 if (likely(!was_dead))
1236 put_ioctx(ioctx); /* twice for the list */
1238 aio_cancel_all(ioctx);
1239 wait_for_all_aios(ioctx);
1242 * Wake up any waiters. The setting of ctx->dead must be seen
1243 * by other CPUs at this point. Right now, we rely on the
1244 * locking done by the above calls to ensure this consistency.
1246 wake_up(&ioctx->wait);
1247 put_ioctx(ioctx); /* once for the lookup */
1250 /* sys_io_setup:
1251 * Create an aio_context capable of receiving at least nr_events.
1252 * ctxp must not point to an aio_context that already exists, and
1253 * must be initialized to 0 prior to the call. On successful
1254 * creation of the aio_context, *ctxp is filled in with the resulting
1255 * handle. May fail with -EINVAL if *ctxp is not initialized,
1256 * if the specified nr_events exceeds internal limits. May fail
1257 * with -EAGAIN if the specified nr_events exceeds the user's limit
1258 * of available events. May fail with -ENOMEM if insufficient kernel
1259 * resources are available. May fail with -EFAULT if an invalid
1260 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1261 * implemented.
1263 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1265 struct kioctx *ioctx = NULL;
1266 unsigned long ctx;
1267 long ret;
1269 ret = get_user(ctx, ctxp);
1270 if (unlikely(ret))
1271 goto out;
1273 ret = -EINVAL;
1274 if (unlikely(ctx || nr_events == 0)) {
1275 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1276 ctx, nr_events);
1277 goto out;
1280 ioctx = ioctx_alloc(nr_events);
1281 ret = PTR_ERR(ioctx);
1282 if (!IS_ERR(ioctx)) {
1283 ret = put_user(ioctx->user_id, ctxp);
1284 if (!ret)
1285 return 0;
1287 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1288 io_destroy(ioctx);
1291 out:
1292 return ret;
1295 /* sys_io_destroy:
1296 * Destroy the aio_context specified. May cancel any outstanding
1297 * AIOs and block on completion. Will fail with -ENOSYS if not
1298 * implemented. May fail with -EFAULT if the context pointed to
1299 * is invalid.
1301 asmlinkage long sys_io_destroy(aio_context_t ctx)
1303 struct kioctx *ioctx = lookup_ioctx(ctx);
1304 if (likely(NULL != ioctx)) {
1305 io_destroy(ioctx);
1306 return 0;
1308 pr_debug("EINVAL: io_destroy: invalid context id\n");
1309 return -EINVAL;
1312 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1314 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1316 BUG_ON(ret <= 0);
1318 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1319 ssize_t this = min((ssize_t)iov->iov_len, ret);
1320 iov->iov_base += this;
1321 iov->iov_len -= this;
1322 iocb->ki_left -= this;
1323 ret -= this;
1324 if (iov->iov_len == 0) {
1325 iocb->ki_cur_seg++;
1326 iov++;
1330 /* the caller should not have done more io than what fit in
1331 * the remaining iovecs */
1332 BUG_ON(ret > 0 && iocb->ki_left == 0);
1335 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1337 struct file *file = iocb->ki_filp;
1338 struct address_space *mapping = file->f_mapping;
1339 struct inode *inode = mapping->host;
1340 ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1341 unsigned long, loff_t);
1342 ssize_t ret = 0;
1343 unsigned short opcode;
1345 if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1346 (iocb->ki_opcode == IOCB_CMD_PREAD)) {
1347 rw_op = file->f_op->aio_read;
1348 opcode = IOCB_CMD_PREADV;
1349 } else {
1350 rw_op = file->f_op->aio_write;
1351 opcode = IOCB_CMD_PWRITEV;
1354 /* This matches the pread()/pwrite() logic */
1355 if (iocb->ki_pos < 0)
1356 return -EINVAL;
1358 do {
1359 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1360 iocb->ki_nr_segs - iocb->ki_cur_seg,
1361 iocb->ki_pos);
1362 if (ret > 0)
1363 aio_advance_iovec(iocb, ret);
1365 /* retry all partial writes. retry partial reads as long as its a
1366 * regular file. */
1367 } while (ret > 0 && iocb->ki_left > 0 &&
1368 (opcode == IOCB_CMD_PWRITEV ||
1369 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1371 /* This means we must have transferred all that we could */
1372 /* No need to retry anymore */
1373 if ((ret == 0) || (iocb->ki_left == 0))
1374 ret = iocb->ki_nbytes - iocb->ki_left;
1376 /* If we managed to write some out we return that, rather than
1377 * the eventual error. */
1378 if (opcode == IOCB_CMD_PWRITEV
1379 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1380 && iocb->ki_nbytes - iocb->ki_left)
1381 ret = iocb->ki_nbytes - iocb->ki_left;
1383 return ret;
1386 static ssize_t aio_fdsync(struct kiocb *iocb)
1388 struct file *file = iocb->ki_filp;
1389 ssize_t ret = -EINVAL;
1391 if (file->f_op->aio_fsync)
1392 ret = file->f_op->aio_fsync(iocb, 1);
1393 return ret;
1396 static ssize_t aio_fsync(struct kiocb *iocb)
1398 struct file *file = iocb->ki_filp;
1399 ssize_t ret = -EINVAL;
1401 if (file->f_op->aio_fsync)
1402 ret = file->f_op->aio_fsync(iocb, 0);
1403 return ret;
1406 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1408 ssize_t ret;
1410 ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1411 kiocb->ki_nbytes, 1,
1412 &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1413 if (ret < 0)
1414 goto out;
1416 kiocb->ki_nr_segs = kiocb->ki_nbytes;
1417 kiocb->ki_cur_seg = 0;
1418 /* ki_nbytes/left now reflect bytes instead of segs */
1419 kiocb->ki_nbytes = ret;
1420 kiocb->ki_left = ret;
1422 ret = 0;
1423 out:
1424 return ret;
1427 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1429 kiocb->ki_iovec = &kiocb->ki_inline_vec;
1430 kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1431 kiocb->ki_iovec->iov_len = kiocb->ki_left;
1432 kiocb->ki_nr_segs = 1;
1433 kiocb->ki_cur_seg = 0;
1434 return 0;
1438 * aio_setup_iocb:
1439 * Performs the initial checks and aio retry method
1440 * setup for the kiocb at the time of io submission.
1442 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1444 struct file *file = kiocb->ki_filp;
1445 ssize_t ret = 0;
1447 switch (kiocb->ki_opcode) {
1448 case IOCB_CMD_PREAD:
1449 ret = -EBADF;
1450 if (unlikely(!(file->f_mode & FMODE_READ)))
1451 break;
1452 ret = -EFAULT;
1453 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1454 kiocb->ki_left)))
1455 break;
1456 ret = security_file_permission(file, MAY_READ);
1457 if (unlikely(ret))
1458 break;
1459 ret = aio_setup_single_vector(kiocb);
1460 if (ret)
1461 break;
1462 ret = -EINVAL;
1463 if (file->f_op->aio_read)
1464 kiocb->ki_retry = aio_rw_vect_retry;
1465 break;
1466 case IOCB_CMD_PWRITE:
1467 ret = -EBADF;
1468 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1469 break;
1470 ret = -EFAULT;
1471 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1472 kiocb->ki_left)))
1473 break;
1474 ret = security_file_permission(file, MAY_WRITE);
1475 if (unlikely(ret))
1476 break;
1477 ret = aio_setup_single_vector(kiocb);
1478 if (ret)
1479 break;
1480 ret = -EINVAL;
1481 if (file->f_op->aio_write)
1482 kiocb->ki_retry = aio_rw_vect_retry;
1483 break;
1484 case IOCB_CMD_PREADV:
1485 ret = -EBADF;
1486 if (unlikely(!(file->f_mode & FMODE_READ)))
1487 break;
1488 ret = security_file_permission(file, MAY_READ);
1489 if (unlikely(ret))
1490 break;
1491 ret = aio_setup_vectored_rw(READ, kiocb);
1492 if (ret)
1493 break;
1494 ret = -EINVAL;
1495 if (file->f_op->aio_read)
1496 kiocb->ki_retry = aio_rw_vect_retry;
1497 break;
1498 case IOCB_CMD_PWRITEV:
1499 ret = -EBADF;
1500 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1501 break;
1502 ret = security_file_permission(file, MAY_WRITE);
1503 if (unlikely(ret))
1504 break;
1505 ret = aio_setup_vectored_rw(WRITE, kiocb);
1506 if (ret)
1507 break;
1508 ret = -EINVAL;
1509 if (file->f_op->aio_write)
1510 kiocb->ki_retry = aio_rw_vect_retry;
1511 break;
1512 case IOCB_CMD_FDSYNC:
1513 ret = -EINVAL;
1514 if (file->f_op->aio_fsync)
1515 kiocb->ki_retry = aio_fdsync;
1516 break;
1517 case IOCB_CMD_FSYNC:
1518 ret = -EINVAL;
1519 if (file->f_op->aio_fsync)
1520 kiocb->ki_retry = aio_fsync;
1521 break;
1522 default:
1523 dprintk("EINVAL: io_submit: no operation provided\n");
1524 ret = -EINVAL;
1527 if (!kiocb->ki_retry)
1528 return ret;
1530 return 0;
1534 * aio_wake_function:
1535 * wait queue callback function for aio notification,
1536 * Simply triggers a retry of the operation via kick_iocb.
1538 * This callback is specified in the wait queue entry in
1539 * a kiocb.
1541 * Note:
1542 * This routine is executed with the wait queue lock held.
1543 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1544 * the ioctx lock inside the wait queue lock. This is safe
1545 * because this callback isn't used for wait queues which
1546 * are nested inside ioctx lock (i.e. ctx->wait)
1548 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1549 int sync, void *key)
1551 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1553 list_del_init(&wait->task_list);
1554 kick_iocb(iocb);
1555 return 1;
1558 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1559 struct iocb *iocb)
1561 struct kiocb *req;
1562 struct file *file;
1563 ssize_t ret;
1565 /* enforce forwards compatibility on users */
1566 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1567 pr_debug("EINVAL: io_submit: reserve field set\n");
1568 return -EINVAL;
1571 /* prevent overflows */
1572 if (unlikely(
1573 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1574 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1575 ((ssize_t)iocb->aio_nbytes < 0)
1576 )) {
1577 pr_debug("EINVAL: io_submit: overflow check\n");
1578 return -EINVAL;
1581 file = fget(iocb->aio_fildes);
1582 if (unlikely(!file))
1583 return -EBADF;
1585 req = aio_get_req(ctx); /* returns with 2 references to req */
1586 if (unlikely(!req)) {
1587 fput(file);
1588 return -EAGAIN;
1590 req->ki_filp = file;
1591 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1593 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1594 * instance of the file* now. The file descriptor must be
1595 * an eventfd() fd, and will be signaled for each completed
1596 * event using the eventfd_signal() function.
1598 req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd);
1599 if (IS_ERR(req->ki_eventfd)) {
1600 ret = PTR_ERR(req->ki_eventfd);
1601 goto out_put_req;
1605 ret = put_user(req->ki_key, &user_iocb->aio_key);
1606 if (unlikely(ret)) {
1607 dprintk("EFAULT: aio_key\n");
1608 goto out_put_req;
1611 req->ki_obj.user = user_iocb;
1612 req->ki_user_data = iocb->aio_data;
1613 req->ki_pos = iocb->aio_offset;
1615 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1616 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1617 req->ki_opcode = iocb->aio_lio_opcode;
1618 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1619 INIT_LIST_HEAD(&req->ki_wait.task_list);
1621 ret = aio_setup_iocb(req);
1623 if (ret)
1624 goto out_put_req;
1626 spin_lock_irq(&ctx->ctx_lock);
1627 aio_run_iocb(req);
1628 if (!list_empty(&ctx->run_list)) {
1629 /* drain the run list */
1630 while (__aio_run_iocbs(ctx))
1633 spin_unlock_irq(&ctx->ctx_lock);
1634 aio_put_req(req); /* drop extra ref to req */
1635 return 0;
1637 out_put_req:
1638 aio_put_req(req); /* drop extra ref to req */
1639 aio_put_req(req); /* drop i/o ref to req */
1640 return ret;
1643 /* sys_io_submit:
1644 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1645 * the number of iocbs queued. May return -EINVAL if the aio_context
1646 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1647 * *iocbpp[0] is not properly initialized, if the operation specified
1648 * is invalid for the file descriptor in the iocb. May fail with
1649 * -EFAULT if any of the data structures point to invalid data. May
1650 * fail with -EBADF if the file descriptor specified in the first
1651 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1652 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1653 * fail with -ENOSYS if not implemented.
1655 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1656 struct iocb __user * __user *iocbpp)
1658 struct kioctx *ctx;
1659 long ret = 0;
1660 int i;
1662 if (unlikely(nr < 0))
1663 return -EINVAL;
1665 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1666 return -EFAULT;
1668 ctx = lookup_ioctx(ctx_id);
1669 if (unlikely(!ctx)) {
1670 pr_debug("EINVAL: io_submit: invalid context id\n");
1671 return -EINVAL;
1675 * AKPM: should this return a partial result if some of the IOs were
1676 * successfully submitted?
1678 for (i=0; i<nr; i++) {
1679 struct iocb __user *user_iocb;
1680 struct iocb tmp;
1682 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1683 ret = -EFAULT;
1684 break;
1687 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1688 ret = -EFAULT;
1689 break;
1692 ret = io_submit_one(ctx, user_iocb, &tmp);
1693 if (ret)
1694 break;
1697 put_ioctx(ctx);
1698 return i ? i : ret;
1701 /* lookup_kiocb
1702 * Finds a given iocb for cancellation.
1704 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1705 u32 key)
1707 struct list_head *pos;
1709 assert_spin_locked(&ctx->ctx_lock);
1711 /* TODO: use a hash or array, this sucks. */
1712 list_for_each(pos, &ctx->active_reqs) {
1713 struct kiocb *kiocb = list_kiocb(pos);
1714 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1715 return kiocb;
1717 return NULL;
1720 /* sys_io_cancel:
1721 * Attempts to cancel an iocb previously passed to io_submit. If
1722 * the operation is successfully cancelled, the resulting event is
1723 * copied into the memory pointed to by result without being placed
1724 * into the completion queue and 0 is returned. May fail with
1725 * -EFAULT if any of the data structures pointed to are invalid.
1726 * May fail with -EINVAL if aio_context specified by ctx_id is
1727 * invalid. May fail with -EAGAIN if the iocb specified was not
1728 * cancelled. Will fail with -ENOSYS if not implemented.
1730 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1731 struct io_event __user *result)
1733 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1734 struct kioctx *ctx;
1735 struct kiocb *kiocb;
1736 u32 key;
1737 int ret;
1739 ret = get_user(key, &iocb->aio_key);
1740 if (unlikely(ret))
1741 return -EFAULT;
1743 ctx = lookup_ioctx(ctx_id);
1744 if (unlikely(!ctx))
1745 return -EINVAL;
1747 spin_lock_irq(&ctx->ctx_lock);
1748 ret = -EAGAIN;
1749 kiocb = lookup_kiocb(ctx, iocb, key);
1750 if (kiocb && kiocb->ki_cancel) {
1751 cancel = kiocb->ki_cancel;
1752 kiocb->ki_users ++;
1753 kiocbSetCancelled(kiocb);
1754 } else
1755 cancel = NULL;
1756 spin_unlock_irq(&ctx->ctx_lock);
1758 if (NULL != cancel) {
1759 struct io_event tmp;
1760 pr_debug("calling cancel\n");
1761 memset(&tmp, 0, sizeof(tmp));
1762 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1763 tmp.data = kiocb->ki_user_data;
1764 ret = cancel(kiocb, &tmp);
1765 if (!ret) {
1766 /* Cancellation succeeded -- copy the result
1767 * into the user's buffer.
1769 if (copy_to_user(result, &tmp, sizeof(tmp)))
1770 ret = -EFAULT;
1772 } else
1773 ret = -EINVAL;
1775 put_ioctx(ctx);
1777 return ret;
1780 /* io_getevents:
1781 * Attempts to read at least min_nr events and up to nr events from
1782 * the completion queue for the aio_context specified by ctx_id. May
1783 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1784 * if nr is out of range, if when is out of range. May fail with
1785 * -EFAULT if any of the memory specified to is invalid. May return
1786 * 0 or < min_nr if no events are available and the timeout specified
1787 * by when has elapsed, where when == NULL specifies an infinite
1788 * timeout. Note that the timeout pointed to by when is relative and
1789 * will be updated if not NULL and the operation blocks. Will fail
1790 * with -ENOSYS if not implemented.
1792 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1793 long min_nr,
1794 long nr,
1795 struct io_event __user *events,
1796 struct timespec __user *timeout)
1798 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1799 long ret = -EINVAL;
1801 if (likely(ioctx)) {
1802 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1803 ret = read_events(ioctx, min_nr, nr, events, timeout);
1804 put_ioctx(ioctx);
1807 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1808 return ret;
1811 __initcall(aio_setup);
1813 EXPORT_SYMBOL(aio_complete);
1814 EXPORT_SYMBOL(aio_put_req);
1815 EXPORT_SYMBOL(wait_on_sync_kiocb);