ACPI: thinkpad-acpi: keep track of module state
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid5.c
blob308522851cedabaa5fccc54013b780cc8074fe33
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
58 * Stripe cache
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK (NR_HASH - 1)
69 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72 * order without overlap. There may be several bio's per stripe+device, and
73 * a bio could span several devices.
74 * When walking this list for a particular stripe+device, we must never proceed
75 * beyond a bio that extends past this device, as the next bio might no longer
76 * be valid.
77 * This macro is used to determine the 'next' bio in the list, given the sector
78 * of the current stripe+device
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 * The following can be used to debug the driver
84 #define RAID5_PARANOIA 1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
91 #ifdef DEBUG
92 #define inline
93 #define __inline__
94 #endif
96 #if !RAID6_USE_EMPTY_ZERO_PAGE
97 /* In .bss so it's zeroed */
98 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
99 #endif
101 static inline int raid6_next_disk(int disk, int raid_disks)
103 disk++;
104 return (disk < raid_disks) ? disk : 0;
107 static void return_io(struct bio *return_bi)
109 struct bio *bi = return_bi;
110 while (bi) {
111 int bytes = bi->bi_size;
113 return_bi = bi->bi_next;
114 bi->bi_next = NULL;
115 bi->bi_size = 0;
116 bi->bi_end_io(bi, bytes,
117 test_bit(BIO_UPTODATE, &bi->bi_flags)
118 ? 0 : -EIO);
119 bi = return_bi;
123 static void print_raid5_conf (raid5_conf_t *conf);
125 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
127 if (atomic_dec_and_test(&sh->count)) {
128 BUG_ON(!list_empty(&sh->lru));
129 BUG_ON(atomic_read(&conf->active_stripes)==0);
130 if (test_bit(STRIPE_HANDLE, &sh->state)) {
131 if (test_bit(STRIPE_DELAYED, &sh->state)) {
132 list_add_tail(&sh->lru, &conf->delayed_list);
133 blk_plug_device(conf->mddev->queue);
134 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
135 sh->bm_seq - conf->seq_write > 0) {
136 list_add_tail(&sh->lru, &conf->bitmap_list);
137 blk_plug_device(conf->mddev->queue);
138 } else {
139 clear_bit(STRIPE_BIT_DELAY, &sh->state);
140 list_add_tail(&sh->lru, &conf->handle_list);
142 md_wakeup_thread(conf->mddev->thread);
143 } else {
144 BUG_ON(sh->ops.pending);
145 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146 atomic_dec(&conf->preread_active_stripes);
147 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148 md_wakeup_thread(conf->mddev->thread);
150 atomic_dec(&conf->active_stripes);
151 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152 list_add_tail(&sh->lru, &conf->inactive_list);
153 wake_up(&conf->wait_for_stripe);
154 if (conf->retry_read_aligned)
155 md_wakeup_thread(conf->mddev->thread);
160 static void release_stripe(struct stripe_head *sh)
162 raid5_conf_t *conf = sh->raid_conf;
163 unsigned long flags;
165 spin_lock_irqsave(&conf->device_lock, flags);
166 __release_stripe(conf, sh);
167 spin_unlock_irqrestore(&conf->device_lock, flags);
170 static inline void remove_hash(struct stripe_head *sh)
172 pr_debug("remove_hash(), stripe %llu\n",
173 (unsigned long long)sh->sector);
175 hlist_del_init(&sh->hash);
178 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
180 struct hlist_head *hp = stripe_hash(conf, sh->sector);
182 pr_debug("insert_hash(), stripe %llu\n",
183 (unsigned long long)sh->sector);
185 CHECK_DEVLOCK();
186 hlist_add_head(&sh->hash, hp);
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
193 struct stripe_head *sh = NULL;
194 struct list_head *first;
196 CHECK_DEVLOCK();
197 if (list_empty(&conf->inactive_list))
198 goto out;
199 first = conf->inactive_list.next;
200 sh = list_entry(first, struct stripe_head, lru);
201 list_del_init(first);
202 remove_hash(sh);
203 atomic_inc(&conf->active_stripes);
204 out:
205 return sh;
208 static void shrink_buffers(struct stripe_head *sh, int num)
210 struct page *p;
211 int i;
213 for (i=0; i<num ; i++) {
214 p = sh->dev[i].page;
215 if (!p)
216 continue;
217 sh->dev[i].page = NULL;
218 put_page(p);
222 static int grow_buffers(struct stripe_head *sh, int num)
224 int i;
226 for (i=0; i<num; i++) {
227 struct page *page;
229 if (!(page = alloc_page(GFP_KERNEL))) {
230 return 1;
232 sh->dev[i].page = page;
234 return 0;
237 static void raid5_build_block (struct stripe_head *sh, int i);
239 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
241 raid5_conf_t *conf = sh->raid_conf;
242 int i;
244 BUG_ON(atomic_read(&sh->count) != 0);
245 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
246 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
248 CHECK_DEVLOCK();
249 pr_debug("init_stripe called, stripe %llu\n",
250 (unsigned long long)sh->sector);
252 remove_hash(sh);
254 sh->sector = sector;
255 sh->pd_idx = pd_idx;
256 sh->state = 0;
258 sh->disks = disks;
260 for (i = sh->disks; i--; ) {
261 struct r5dev *dev = &sh->dev[i];
263 if (dev->toread || dev->read || dev->towrite || dev->written ||
264 test_bit(R5_LOCKED, &dev->flags)) {
265 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
266 (unsigned long long)sh->sector, i, dev->toread,
267 dev->read, dev->towrite, dev->written,
268 test_bit(R5_LOCKED, &dev->flags));
269 BUG();
271 dev->flags = 0;
272 raid5_build_block(sh, i);
274 insert_hash(conf, sh);
277 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
279 struct stripe_head *sh;
280 struct hlist_node *hn;
282 CHECK_DEVLOCK();
283 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
284 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
285 if (sh->sector == sector && sh->disks == disks)
286 return sh;
287 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
288 return NULL;
291 static void unplug_slaves(mddev_t *mddev);
292 static void raid5_unplug_device(struct request_queue *q);
294 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295 int pd_idx, int noblock)
297 struct stripe_head *sh;
299 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
301 spin_lock_irq(&conf->device_lock);
303 do {
304 wait_event_lock_irq(conf->wait_for_stripe,
305 conf->quiesce == 0,
306 conf->device_lock, /* nothing */);
307 sh = __find_stripe(conf, sector, disks);
308 if (!sh) {
309 if (!conf->inactive_blocked)
310 sh = get_free_stripe(conf);
311 if (noblock && sh == NULL)
312 break;
313 if (!sh) {
314 conf->inactive_blocked = 1;
315 wait_event_lock_irq(conf->wait_for_stripe,
316 !list_empty(&conf->inactive_list) &&
317 (atomic_read(&conf->active_stripes)
318 < (conf->max_nr_stripes *3/4)
319 || !conf->inactive_blocked),
320 conf->device_lock,
321 raid5_unplug_device(conf->mddev->queue)
323 conf->inactive_blocked = 0;
324 } else
325 init_stripe(sh, sector, pd_idx, disks);
326 } else {
327 if (atomic_read(&sh->count)) {
328 BUG_ON(!list_empty(&sh->lru));
329 } else {
330 if (!test_bit(STRIPE_HANDLE, &sh->state))
331 atomic_inc(&conf->active_stripes);
332 if (list_empty(&sh->lru) &&
333 !test_bit(STRIPE_EXPANDING, &sh->state))
334 BUG();
335 list_del_init(&sh->lru);
338 } while (sh == NULL);
340 if (sh)
341 atomic_inc(&sh->count);
343 spin_unlock_irq(&conf->device_lock);
344 return sh;
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
349 do { \
350 if (test_bit(op, &sh->ops.pending) && \
351 !test_bit(op, &sh->ops.complete)) { \
352 if (test_and_set_bit(op, &sh->ops.ack)) \
353 clear_bit(op, &pend); \
354 else \
355 ack++; \
356 } else \
357 clear_bit(op, &pend); \
358 } while (0)
360 /* find new work to run, do not resubmit work that is already
361 * in flight
363 static unsigned long get_stripe_work(struct stripe_head *sh)
365 unsigned long pending;
366 int ack = 0;
368 pending = sh->ops.pending;
370 test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372 test_and_ack_op(STRIPE_OP_PREXOR, pending);
373 test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374 test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375 test_and_ack_op(STRIPE_OP_CHECK, pending);
376 if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
377 ack++;
379 sh->ops.count -= ack;
380 if (unlikely(sh->ops.count < 0)) {
381 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
382 "ops.complete: %#lx\n", pending, sh->ops.pending,
383 sh->ops.ack, sh->ops.complete);
384 BUG();
387 return pending;
390 static int
391 raid5_end_read_request(struct bio *bi, unsigned int bytes_done, int error);
392 static int
393 raid5_end_write_request (struct bio *bi, unsigned int bytes_done, int error);
395 static void ops_run_io(struct stripe_head *sh)
397 raid5_conf_t *conf = sh->raid_conf;
398 int i, disks = sh->disks;
400 might_sleep();
402 for (i = disks; i--; ) {
403 int rw;
404 struct bio *bi;
405 mdk_rdev_t *rdev;
406 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
407 rw = WRITE;
408 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
409 rw = READ;
410 else
411 continue;
413 bi = &sh->dev[i].req;
415 bi->bi_rw = rw;
416 if (rw == WRITE)
417 bi->bi_end_io = raid5_end_write_request;
418 else
419 bi->bi_end_io = raid5_end_read_request;
421 rcu_read_lock();
422 rdev = rcu_dereference(conf->disks[i].rdev);
423 if (rdev && test_bit(Faulty, &rdev->flags))
424 rdev = NULL;
425 if (rdev)
426 atomic_inc(&rdev->nr_pending);
427 rcu_read_unlock();
429 if (rdev) {
430 if (test_bit(STRIPE_SYNCING, &sh->state) ||
431 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
432 test_bit(STRIPE_EXPAND_READY, &sh->state))
433 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
435 bi->bi_bdev = rdev->bdev;
436 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
437 __FUNCTION__, (unsigned long long)sh->sector,
438 bi->bi_rw, i);
439 atomic_inc(&sh->count);
440 bi->bi_sector = sh->sector + rdev->data_offset;
441 bi->bi_flags = 1 << BIO_UPTODATE;
442 bi->bi_vcnt = 1;
443 bi->bi_max_vecs = 1;
444 bi->bi_idx = 0;
445 bi->bi_io_vec = &sh->dev[i].vec;
446 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
447 bi->bi_io_vec[0].bv_offset = 0;
448 bi->bi_size = STRIPE_SIZE;
449 bi->bi_next = NULL;
450 if (rw == WRITE &&
451 test_bit(R5_ReWrite, &sh->dev[i].flags))
452 atomic_add(STRIPE_SECTORS,
453 &rdev->corrected_errors);
454 generic_make_request(bi);
455 } else {
456 if (rw == WRITE)
457 set_bit(STRIPE_DEGRADED, &sh->state);
458 pr_debug("skip op %ld on disc %d for sector %llu\n",
459 bi->bi_rw, i, (unsigned long long)sh->sector);
460 clear_bit(R5_LOCKED, &sh->dev[i].flags);
461 set_bit(STRIPE_HANDLE, &sh->state);
466 static struct dma_async_tx_descriptor *
467 async_copy_data(int frombio, struct bio *bio, struct page *page,
468 sector_t sector, struct dma_async_tx_descriptor *tx)
470 struct bio_vec *bvl;
471 struct page *bio_page;
472 int i;
473 int page_offset;
475 if (bio->bi_sector >= sector)
476 page_offset = (signed)(bio->bi_sector - sector) * 512;
477 else
478 page_offset = (signed)(sector - bio->bi_sector) * -512;
479 bio_for_each_segment(bvl, bio, i) {
480 int len = bio_iovec_idx(bio, i)->bv_len;
481 int clen;
482 int b_offset = 0;
484 if (page_offset < 0) {
485 b_offset = -page_offset;
486 page_offset += b_offset;
487 len -= b_offset;
490 if (len > 0 && page_offset + len > STRIPE_SIZE)
491 clen = STRIPE_SIZE - page_offset;
492 else
493 clen = len;
495 if (clen > 0) {
496 b_offset += bio_iovec_idx(bio, i)->bv_offset;
497 bio_page = bio_iovec_idx(bio, i)->bv_page;
498 if (frombio)
499 tx = async_memcpy(page, bio_page, page_offset,
500 b_offset, clen,
501 ASYNC_TX_DEP_ACK,
502 tx, NULL, NULL);
503 else
504 tx = async_memcpy(bio_page, page, b_offset,
505 page_offset, clen,
506 ASYNC_TX_DEP_ACK,
507 tx, NULL, NULL);
509 if (clen < len) /* hit end of page */
510 break;
511 page_offset += len;
514 return tx;
517 static void ops_complete_biofill(void *stripe_head_ref)
519 struct stripe_head *sh = stripe_head_ref;
520 struct bio *return_bi = NULL;
521 raid5_conf_t *conf = sh->raid_conf;
522 int i;
524 pr_debug("%s: stripe %llu\n", __FUNCTION__,
525 (unsigned long long)sh->sector);
527 /* clear completed biofills */
528 for (i = sh->disks; i--; ) {
529 struct r5dev *dev = &sh->dev[i];
531 /* acknowledge completion of a biofill operation */
532 /* and check if we need to reply to a read request,
533 * new R5_Wantfill requests are held off until
534 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
536 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
537 struct bio *rbi, *rbi2;
539 /* The access to dev->read is outside of the
540 * spin_lock_irq(&conf->device_lock), but is protected
541 * by the STRIPE_OP_BIOFILL pending bit
543 BUG_ON(!dev->read);
544 rbi = dev->read;
545 dev->read = NULL;
546 while (rbi && rbi->bi_sector <
547 dev->sector + STRIPE_SECTORS) {
548 rbi2 = r5_next_bio(rbi, dev->sector);
549 spin_lock_irq(&conf->device_lock);
550 if (--rbi->bi_phys_segments == 0) {
551 rbi->bi_next = return_bi;
552 return_bi = rbi;
554 spin_unlock_irq(&conf->device_lock);
555 rbi = rbi2;
559 set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
561 return_io(return_bi);
563 set_bit(STRIPE_HANDLE, &sh->state);
564 release_stripe(sh);
567 static void ops_run_biofill(struct stripe_head *sh)
569 struct dma_async_tx_descriptor *tx = NULL;
570 raid5_conf_t *conf = sh->raid_conf;
571 int i;
573 pr_debug("%s: stripe %llu\n", __FUNCTION__,
574 (unsigned long long)sh->sector);
576 for (i = sh->disks; i--; ) {
577 struct r5dev *dev = &sh->dev[i];
578 if (test_bit(R5_Wantfill, &dev->flags)) {
579 struct bio *rbi;
580 spin_lock_irq(&conf->device_lock);
581 dev->read = rbi = dev->toread;
582 dev->toread = NULL;
583 spin_unlock_irq(&conf->device_lock);
584 while (rbi && rbi->bi_sector <
585 dev->sector + STRIPE_SECTORS) {
586 tx = async_copy_data(0, rbi, dev->page,
587 dev->sector, tx);
588 rbi = r5_next_bio(rbi, dev->sector);
593 atomic_inc(&sh->count);
594 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
595 ops_complete_biofill, sh);
598 static void ops_complete_compute5(void *stripe_head_ref)
600 struct stripe_head *sh = stripe_head_ref;
601 int target = sh->ops.target;
602 struct r5dev *tgt = &sh->dev[target];
604 pr_debug("%s: stripe %llu\n", __FUNCTION__,
605 (unsigned long long)sh->sector);
607 set_bit(R5_UPTODATE, &tgt->flags);
608 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
609 clear_bit(R5_Wantcompute, &tgt->flags);
610 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
611 set_bit(STRIPE_HANDLE, &sh->state);
612 release_stripe(sh);
615 static struct dma_async_tx_descriptor *
616 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
618 /* kernel stack size limits the total number of disks */
619 int disks = sh->disks;
620 struct page *xor_srcs[disks];
621 int target = sh->ops.target;
622 struct r5dev *tgt = &sh->dev[target];
623 struct page *xor_dest = tgt->page;
624 int count = 0;
625 struct dma_async_tx_descriptor *tx;
626 int i;
628 pr_debug("%s: stripe %llu block: %d\n",
629 __FUNCTION__, (unsigned long long)sh->sector, target);
630 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
632 for (i = disks; i--; )
633 if (i != target)
634 xor_srcs[count++] = sh->dev[i].page;
636 atomic_inc(&sh->count);
638 if (unlikely(count == 1))
639 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
640 0, NULL, ops_complete_compute5, sh);
641 else
642 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
643 ASYNC_TX_XOR_ZERO_DST, NULL,
644 ops_complete_compute5, sh);
646 /* ack now if postxor is not set to be run */
647 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
648 async_tx_ack(tx);
650 return tx;
653 static void ops_complete_prexor(void *stripe_head_ref)
655 struct stripe_head *sh = stripe_head_ref;
657 pr_debug("%s: stripe %llu\n", __FUNCTION__,
658 (unsigned long long)sh->sector);
660 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
663 static struct dma_async_tx_descriptor *
664 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
666 /* kernel stack size limits the total number of disks */
667 int disks = sh->disks;
668 struct page *xor_srcs[disks];
669 int count = 0, pd_idx = sh->pd_idx, i;
671 /* existing parity data subtracted */
672 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
674 pr_debug("%s: stripe %llu\n", __FUNCTION__,
675 (unsigned long long)sh->sector);
677 for (i = disks; i--; ) {
678 struct r5dev *dev = &sh->dev[i];
679 /* Only process blocks that are known to be uptodate */
680 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
681 xor_srcs[count++] = dev->page;
684 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
685 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
686 ops_complete_prexor, sh);
688 return tx;
691 static struct dma_async_tx_descriptor *
692 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
693 unsigned long pending)
695 int disks = sh->disks;
696 int pd_idx = sh->pd_idx, i;
698 /* check if prexor is active which means only process blocks
699 * that are part of a read-modify-write (Wantprexor)
701 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
703 pr_debug("%s: stripe %llu\n", __FUNCTION__,
704 (unsigned long long)sh->sector);
706 for (i = disks; i--; ) {
707 struct r5dev *dev = &sh->dev[i];
708 struct bio *chosen;
709 int towrite;
711 towrite = 0;
712 if (prexor) { /* rmw */
713 if (dev->towrite &&
714 test_bit(R5_Wantprexor, &dev->flags))
715 towrite = 1;
716 } else { /* rcw */
717 if (i != pd_idx && dev->towrite &&
718 test_bit(R5_LOCKED, &dev->flags))
719 towrite = 1;
722 if (towrite) {
723 struct bio *wbi;
725 spin_lock(&sh->lock);
726 chosen = dev->towrite;
727 dev->towrite = NULL;
728 BUG_ON(dev->written);
729 wbi = dev->written = chosen;
730 spin_unlock(&sh->lock);
732 while (wbi && wbi->bi_sector <
733 dev->sector + STRIPE_SECTORS) {
734 tx = async_copy_data(1, wbi, dev->page,
735 dev->sector, tx);
736 wbi = r5_next_bio(wbi, dev->sector);
741 return tx;
744 static void ops_complete_postxor(void *stripe_head_ref)
746 struct stripe_head *sh = stripe_head_ref;
748 pr_debug("%s: stripe %llu\n", __FUNCTION__,
749 (unsigned long long)sh->sector);
751 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
752 set_bit(STRIPE_HANDLE, &sh->state);
753 release_stripe(sh);
756 static void ops_complete_write(void *stripe_head_ref)
758 struct stripe_head *sh = stripe_head_ref;
759 int disks = sh->disks, i, pd_idx = sh->pd_idx;
761 pr_debug("%s: stripe %llu\n", __FUNCTION__,
762 (unsigned long long)sh->sector);
764 for (i = disks; i--; ) {
765 struct r5dev *dev = &sh->dev[i];
766 if (dev->written || i == pd_idx)
767 set_bit(R5_UPTODATE, &dev->flags);
770 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
771 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
773 set_bit(STRIPE_HANDLE, &sh->state);
774 release_stripe(sh);
777 static void
778 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
779 unsigned long pending)
781 /* kernel stack size limits the total number of disks */
782 int disks = sh->disks;
783 struct page *xor_srcs[disks];
785 int count = 0, pd_idx = sh->pd_idx, i;
786 struct page *xor_dest;
787 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
788 unsigned long flags;
789 dma_async_tx_callback callback;
791 pr_debug("%s: stripe %llu\n", __FUNCTION__,
792 (unsigned long long)sh->sector);
794 /* check if prexor is active which means only process blocks
795 * that are part of a read-modify-write (written)
797 if (prexor) {
798 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
799 for (i = disks; i--; ) {
800 struct r5dev *dev = &sh->dev[i];
801 if (dev->written)
802 xor_srcs[count++] = dev->page;
804 } else {
805 xor_dest = sh->dev[pd_idx].page;
806 for (i = disks; i--; ) {
807 struct r5dev *dev = &sh->dev[i];
808 if (i != pd_idx)
809 xor_srcs[count++] = dev->page;
813 /* check whether this postxor is part of a write */
814 callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
815 ops_complete_write : ops_complete_postxor;
817 /* 1/ if we prexor'd then the dest is reused as a source
818 * 2/ if we did not prexor then we are redoing the parity
819 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
820 * for the synchronous xor case
822 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
823 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
825 atomic_inc(&sh->count);
827 if (unlikely(count == 1)) {
828 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
829 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
830 flags, tx, callback, sh);
831 } else
832 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
833 flags, tx, callback, sh);
836 static void ops_complete_check(void *stripe_head_ref)
838 struct stripe_head *sh = stripe_head_ref;
839 int pd_idx = sh->pd_idx;
841 pr_debug("%s: stripe %llu\n", __FUNCTION__,
842 (unsigned long long)sh->sector);
844 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
845 sh->ops.zero_sum_result == 0)
846 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
848 set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
849 set_bit(STRIPE_HANDLE, &sh->state);
850 release_stripe(sh);
853 static void ops_run_check(struct stripe_head *sh)
855 /* kernel stack size limits the total number of disks */
856 int disks = sh->disks;
857 struct page *xor_srcs[disks];
858 struct dma_async_tx_descriptor *tx;
860 int count = 0, pd_idx = sh->pd_idx, i;
861 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
863 pr_debug("%s: stripe %llu\n", __FUNCTION__,
864 (unsigned long long)sh->sector);
866 for (i = disks; i--; ) {
867 struct r5dev *dev = &sh->dev[i];
868 if (i != pd_idx)
869 xor_srcs[count++] = dev->page;
872 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
873 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
875 if (tx)
876 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
877 else
878 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
880 atomic_inc(&sh->count);
881 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
882 ops_complete_check, sh);
885 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
887 int overlap_clear = 0, i, disks = sh->disks;
888 struct dma_async_tx_descriptor *tx = NULL;
890 if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
891 ops_run_biofill(sh);
892 overlap_clear++;
895 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
896 tx = ops_run_compute5(sh, pending);
898 if (test_bit(STRIPE_OP_PREXOR, &pending))
899 tx = ops_run_prexor(sh, tx);
901 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
902 tx = ops_run_biodrain(sh, tx, pending);
903 overlap_clear++;
906 if (test_bit(STRIPE_OP_POSTXOR, &pending))
907 ops_run_postxor(sh, tx, pending);
909 if (test_bit(STRIPE_OP_CHECK, &pending))
910 ops_run_check(sh);
912 if (test_bit(STRIPE_OP_IO, &pending))
913 ops_run_io(sh);
915 if (overlap_clear)
916 for (i = disks; i--; ) {
917 struct r5dev *dev = &sh->dev[i];
918 if (test_and_clear_bit(R5_Overlap, &dev->flags))
919 wake_up(&sh->raid_conf->wait_for_overlap);
923 static int grow_one_stripe(raid5_conf_t *conf)
925 struct stripe_head *sh;
926 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
927 if (!sh)
928 return 0;
929 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
930 sh->raid_conf = conf;
931 spin_lock_init(&sh->lock);
933 if (grow_buffers(sh, conf->raid_disks)) {
934 shrink_buffers(sh, conf->raid_disks);
935 kmem_cache_free(conf->slab_cache, sh);
936 return 0;
938 sh->disks = conf->raid_disks;
939 /* we just created an active stripe so... */
940 atomic_set(&sh->count, 1);
941 atomic_inc(&conf->active_stripes);
942 INIT_LIST_HEAD(&sh->lru);
943 release_stripe(sh);
944 return 1;
947 static int grow_stripes(raid5_conf_t *conf, int num)
949 struct kmem_cache *sc;
950 int devs = conf->raid_disks;
952 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
953 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
954 conf->active_name = 0;
955 sc = kmem_cache_create(conf->cache_name[conf->active_name],
956 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
957 0, 0, NULL);
958 if (!sc)
959 return 1;
960 conf->slab_cache = sc;
961 conf->pool_size = devs;
962 while (num--)
963 if (!grow_one_stripe(conf))
964 return 1;
965 return 0;
968 #ifdef CONFIG_MD_RAID5_RESHAPE
969 static int resize_stripes(raid5_conf_t *conf, int newsize)
971 /* Make all the stripes able to hold 'newsize' devices.
972 * New slots in each stripe get 'page' set to a new page.
974 * This happens in stages:
975 * 1/ create a new kmem_cache and allocate the required number of
976 * stripe_heads.
977 * 2/ gather all the old stripe_heads and tranfer the pages across
978 * to the new stripe_heads. This will have the side effect of
979 * freezing the array as once all stripe_heads have been collected,
980 * no IO will be possible. Old stripe heads are freed once their
981 * pages have been transferred over, and the old kmem_cache is
982 * freed when all stripes are done.
983 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
984 * we simple return a failre status - no need to clean anything up.
985 * 4/ allocate new pages for the new slots in the new stripe_heads.
986 * If this fails, we don't bother trying the shrink the
987 * stripe_heads down again, we just leave them as they are.
988 * As each stripe_head is processed the new one is released into
989 * active service.
991 * Once step2 is started, we cannot afford to wait for a write,
992 * so we use GFP_NOIO allocations.
994 struct stripe_head *osh, *nsh;
995 LIST_HEAD(newstripes);
996 struct disk_info *ndisks;
997 int err = 0;
998 struct kmem_cache *sc;
999 int i;
1001 if (newsize <= conf->pool_size)
1002 return 0; /* never bother to shrink */
1004 md_allow_write(conf->mddev);
1006 /* Step 1 */
1007 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1008 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1009 0, 0, NULL);
1010 if (!sc)
1011 return -ENOMEM;
1013 for (i = conf->max_nr_stripes; i; i--) {
1014 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1015 if (!nsh)
1016 break;
1018 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1020 nsh->raid_conf = conf;
1021 spin_lock_init(&nsh->lock);
1023 list_add(&nsh->lru, &newstripes);
1025 if (i) {
1026 /* didn't get enough, give up */
1027 while (!list_empty(&newstripes)) {
1028 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1029 list_del(&nsh->lru);
1030 kmem_cache_free(sc, nsh);
1032 kmem_cache_destroy(sc);
1033 return -ENOMEM;
1035 /* Step 2 - Must use GFP_NOIO now.
1036 * OK, we have enough stripes, start collecting inactive
1037 * stripes and copying them over
1039 list_for_each_entry(nsh, &newstripes, lru) {
1040 spin_lock_irq(&conf->device_lock);
1041 wait_event_lock_irq(conf->wait_for_stripe,
1042 !list_empty(&conf->inactive_list),
1043 conf->device_lock,
1044 unplug_slaves(conf->mddev)
1046 osh = get_free_stripe(conf);
1047 spin_unlock_irq(&conf->device_lock);
1048 atomic_set(&nsh->count, 1);
1049 for(i=0; i<conf->pool_size; i++)
1050 nsh->dev[i].page = osh->dev[i].page;
1051 for( ; i<newsize; i++)
1052 nsh->dev[i].page = NULL;
1053 kmem_cache_free(conf->slab_cache, osh);
1055 kmem_cache_destroy(conf->slab_cache);
1057 /* Step 3.
1058 * At this point, we are holding all the stripes so the array
1059 * is completely stalled, so now is a good time to resize
1060 * conf->disks.
1062 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1063 if (ndisks) {
1064 for (i=0; i<conf->raid_disks; i++)
1065 ndisks[i] = conf->disks[i];
1066 kfree(conf->disks);
1067 conf->disks = ndisks;
1068 } else
1069 err = -ENOMEM;
1071 /* Step 4, return new stripes to service */
1072 while(!list_empty(&newstripes)) {
1073 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1074 list_del_init(&nsh->lru);
1075 for (i=conf->raid_disks; i < newsize; i++)
1076 if (nsh->dev[i].page == NULL) {
1077 struct page *p = alloc_page(GFP_NOIO);
1078 nsh->dev[i].page = p;
1079 if (!p)
1080 err = -ENOMEM;
1082 release_stripe(nsh);
1084 /* critical section pass, GFP_NOIO no longer needed */
1086 conf->slab_cache = sc;
1087 conf->active_name = 1-conf->active_name;
1088 conf->pool_size = newsize;
1089 return err;
1091 #endif
1093 static int drop_one_stripe(raid5_conf_t *conf)
1095 struct stripe_head *sh;
1097 spin_lock_irq(&conf->device_lock);
1098 sh = get_free_stripe(conf);
1099 spin_unlock_irq(&conf->device_lock);
1100 if (!sh)
1101 return 0;
1102 BUG_ON(atomic_read(&sh->count));
1103 shrink_buffers(sh, conf->pool_size);
1104 kmem_cache_free(conf->slab_cache, sh);
1105 atomic_dec(&conf->active_stripes);
1106 return 1;
1109 static void shrink_stripes(raid5_conf_t *conf)
1111 while (drop_one_stripe(conf))
1114 if (conf->slab_cache)
1115 kmem_cache_destroy(conf->slab_cache);
1116 conf->slab_cache = NULL;
1119 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
1120 int error)
1122 struct stripe_head *sh = bi->bi_private;
1123 raid5_conf_t *conf = sh->raid_conf;
1124 int disks = sh->disks, i;
1125 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1126 char b[BDEVNAME_SIZE];
1127 mdk_rdev_t *rdev;
1129 if (bi->bi_size)
1130 return 1;
1132 for (i=0 ; i<disks; i++)
1133 if (bi == &sh->dev[i].req)
1134 break;
1136 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1137 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1138 uptodate);
1139 if (i == disks) {
1140 BUG();
1141 return 0;
1144 if (uptodate) {
1145 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1146 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1147 rdev = conf->disks[i].rdev;
1148 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1149 mdname(conf->mddev), STRIPE_SECTORS,
1150 (unsigned long long)sh->sector + rdev->data_offset,
1151 bdevname(rdev->bdev, b));
1152 clear_bit(R5_ReadError, &sh->dev[i].flags);
1153 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1155 if (atomic_read(&conf->disks[i].rdev->read_errors))
1156 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1157 } else {
1158 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1159 int retry = 0;
1160 rdev = conf->disks[i].rdev;
1162 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1163 atomic_inc(&rdev->read_errors);
1164 if (conf->mddev->degraded)
1165 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
1166 mdname(conf->mddev),
1167 (unsigned long long)sh->sector + rdev->data_offset,
1168 bdn);
1169 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1170 /* Oh, no!!! */
1171 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1172 mdname(conf->mddev),
1173 (unsigned long long)sh->sector + rdev->data_offset,
1174 bdn);
1175 else if (atomic_read(&rdev->read_errors)
1176 > conf->max_nr_stripes)
1177 printk(KERN_WARNING
1178 "raid5:%s: Too many read errors, failing device %s.\n",
1179 mdname(conf->mddev), bdn);
1180 else
1181 retry = 1;
1182 if (retry)
1183 set_bit(R5_ReadError, &sh->dev[i].flags);
1184 else {
1185 clear_bit(R5_ReadError, &sh->dev[i].flags);
1186 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1187 md_error(conf->mddev, rdev);
1190 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1191 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1192 set_bit(STRIPE_HANDLE, &sh->state);
1193 release_stripe(sh);
1194 return 0;
1197 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
1198 int error)
1200 struct stripe_head *sh = bi->bi_private;
1201 raid5_conf_t *conf = sh->raid_conf;
1202 int disks = sh->disks, i;
1203 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1205 if (bi->bi_size)
1206 return 1;
1208 for (i=0 ; i<disks; i++)
1209 if (bi == &sh->dev[i].req)
1210 break;
1212 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1213 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1214 uptodate);
1215 if (i == disks) {
1216 BUG();
1217 return 0;
1220 if (!uptodate)
1221 md_error(conf->mddev, conf->disks[i].rdev);
1223 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1225 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1226 set_bit(STRIPE_HANDLE, &sh->state);
1227 release_stripe(sh);
1228 return 0;
1232 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1234 static void raid5_build_block (struct stripe_head *sh, int i)
1236 struct r5dev *dev = &sh->dev[i];
1238 bio_init(&dev->req);
1239 dev->req.bi_io_vec = &dev->vec;
1240 dev->req.bi_vcnt++;
1241 dev->req.bi_max_vecs++;
1242 dev->vec.bv_page = dev->page;
1243 dev->vec.bv_len = STRIPE_SIZE;
1244 dev->vec.bv_offset = 0;
1246 dev->req.bi_sector = sh->sector;
1247 dev->req.bi_private = sh;
1249 dev->flags = 0;
1250 dev->sector = compute_blocknr(sh, i);
1253 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1255 char b[BDEVNAME_SIZE];
1256 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1257 pr_debug("raid5: error called\n");
1259 if (!test_bit(Faulty, &rdev->flags)) {
1260 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1261 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1262 unsigned long flags;
1263 spin_lock_irqsave(&conf->device_lock, flags);
1264 mddev->degraded++;
1265 spin_unlock_irqrestore(&conf->device_lock, flags);
1267 * if recovery was running, make sure it aborts.
1269 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1271 set_bit(Faulty, &rdev->flags);
1272 printk (KERN_ALERT
1273 "raid5: Disk failure on %s, disabling device."
1274 " Operation continuing on %d devices\n",
1275 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1280 * Input: a 'big' sector number,
1281 * Output: index of the data and parity disk, and the sector # in them.
1283 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1284 unsigned int data_disks, unsigned int * dd_idx,
1285 unsigned int * pd_idx, raid5_conf_t *conf)
1287 long stripe;
1288 unsigned long chunk_number;
1289 unsigned int chunk_offset;
1290 sector_t new_sector;
1291 int sectors_per_chunk = conf->chunk_size >> 9;
1293 /* First compute the information on this sector */
1296 * Compute the chunk number and the sector offset inside the chunk
1298 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1299 chunk_number = r_sector;
1300 BUG_ON(r_sector != chunk_number);
1303 * Compute the stripe number
1305 stripe = chunk_number / data_disks;
1308 * Compute the data disk and parity disk indexes inside the stripe
1310 *dd_idx = chunk_number % data_disks;
1313 * Select the parity disk based on the user selected algorithm.
1315 switch(conf->level) {
1316 case 4:
1317 *pd_idx = data_disks;
1318 break;
1319 case 5:
1320 switch (conf->algorithm) {
1321 case ALGORITHM_LEFT_ASYMMETRIC:
1322 *pd_idx = data_disks - stripe % raid_disks;
1323 if (*dd_idx >= *pd_idx)
1324 (*dd_idx)++;
1325 break;
1326 case ALGORITHM_RIGHT_ASYMMETRIC:
1327 *pd_idx = stripe % raid_disks;
1328 if (*dd_idx >= *pd_idx)
1329 (*dd_idx)++;
1330 break;
1331 case ALGORITHM_LEFT_SYMMETRIC:
1332 *pd_idx = data_disks - stripe % raid_disks;
1333 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1334 break;
1335 case ALGORITHM_RIGHT_SYMMETRIC:
1336 *pd_idx = stripe % raid_disks;
1337 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1338 break;
1339 default:
1340 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1341 conf->algorithm);
1343 break;
1344 case 6:
1346 /**** FIX THIS ****/
1347 switch (conf->algorithm) {
1348 case ALGORITHM_LEFT_ASYMMETRIC:
1349 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1350 if (*pd_idx == raid_disks-1)
1351 (*dd_idx)++; /* Q D D D P */
1352 else if (*dd_idx >= *pd_idx)
1353 (*dd_idx) += 2; /* D D P Q D */
1354 break;
1355 case ALGORITHM_RIGHT_ASYMMETRIC:
1356 *pd_idx = stripe % raid_disks;
1357 if (*pd_idx == raid_disks-1)
1358 (*dd_idx)++; /* Q D D D P */
1359 else if (*dd_idx >= *pd_idx)
1360 (*dd_idx) += 2; /* D D P Q D */
1361 break;
1362 case ALGORITHM_LEFT_SYMMETRIC:
1363 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1364 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1365 break;
1366 case ALGORITHM_RIGHT_SYMMETRIC:
1367 *pd_idx = stripe % raid_disks;
1368 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1369 break;
1370 default:
1371 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1372 conf->algorithm);
1374 break;
1378 * Finally, compute the new sector number
1380 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1381 return new_sector;
1385 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1387 raid5_conf_t *conf = sh->raid_conf;
1388 int raid_disks = sh->disks;
1389 int data_disks = raid_disks - conf->max_degraded;
1390 sector_t new_sector = sh->sector, check;
1391 int sectors_per_chunk = conf->chunk_size >> 9;
1392 sector_t stripe;
1393 int chunk_offset;
1394 int chunk_number, dummy1, dummy2, dd_idx = i;
1395 sector_t r_sector;
1398 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1399 stripe = new_sector;
1400 BUG_ON(new_sector != stripe);
1402 if (i == sh->pd_idx)
1403 return 0;
1404 switch(conf->level) {
1405 case 4: break;
1406 case 5:
1407 switch (conf->algorithm) {
1408 case ALGORITHM_LEFT_ASYMMETRIC:
1409 case ALGORITHM_RIGHT_ASYMMETRIC:
1410 if (i > sh->pd_idx)
1411 i--;
1412 break;
1413 case ALGORITHM_LEFT_SYMMETRIC:
1414 case ALGORITHM_RIGHT_SYMMETRIC:
1415 if (i < sh->pd_idx)
1416 i += raid_disks;
1417 i -= (sh->pd_idx + 1);
1418 break;
1419 default:
1420 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1421 conf->algorithm);
1423 break;
1424 case 6:
1425 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1426 return 0; /* It is the Q disk */
1427 switch (conf->algorithm) {
1428 case ALGORITHM_LEFT_ASYMMETRIC:
1429 case ALGORITHM_RIGHT_ASYMMETRIC:
1430 if (sh->pd_idx == raid_disks-1)
1431 i--; /* Q D D D P */
1432 else if (i > sh->pd_idx)
1433 i -= 2; /* D D P Q D */
1434 break;
1435 case ALGORITHM_LEFT_SYMMETRIC:
1436 case ALGORITHM_RIGHT_SYMMETRIC:
1437 if (sh->pd_idx == raid_disks-1)
1438 i--; /* Q D D D P */
1439 else {
1440 /* D D P Q D */
1441 if (i < sh->pd_idx)
1442 i += raid_disks;
1443 i -= (sh->pd_idx + 2);
1445 break;
1446 default:
1447 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1448 conf->algorithm);
1450 break;
1453 chunk_number = stripe * data_disks + i;
1454 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1456 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1457 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1458 printk(KERN_ERR "compute_blocknr: map not correct\n");
1459 return 0;
1461 return r_sector;
1467 * Copy data between a page in the stripe cache, and one or more bion
1468 * The page could align with the middle of the bio, or there could be
1469 * several bion, each with several bio_vecs, which cover part of the page
1470 * Multiple bion are linked together on bi_next. There may be extras
1471 * at the end of this list. We ignore them.
1473 static void copy_data(int frombio, struct bio *bio,
1474 struct page *page,
1475 sector_t sector)
1477 char *pa = page_address(page);
1478 struct bio_vec *bvl;
1479 int i;
1480 int page_offset;
1482 if (bio->bi_sector >= sector)
1483 page_offset = (signed)(bio->bi_sector - sector) * 512;
1484 else
1485 page_offset = (signed)(sector - bio->bi_sector) * -512;
1486 bio_for_each_segment(bvl, bio, i) {
1487 int len = bio_iovec_idx(bio,i)->bv_len;
1488 int clen;
1489 int b_offset = 0;
1491 if (page_offset < 0) {
1492 b_offset = -page_offset;
1493 page_offset += b_offset;
1494 len -= b_offset;
1497 if (len > 0 && page_offset + len > STRIPE_SIZE)
1498 clen = STRIPE_SIZE - page_offset;
1499 else clen = len;
1501 if (clen > 0) {
1502 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1503 if (frombio)
1504 memcpy(pa+page_offset, ba+b_offset, clen);
1505 else
1506 memcpy(ba+b_offset, pa+page_offset, clen);
1507 __bio_kunmap_atomic(ba, KM_USER0);
1509 if (clen < len) /* hit end of page */
1510 break;
1511 page_offset += len;
1515 #define check_xor() do { \
1516 if (count == MAX_XOR_BLOCKS) { \
1517 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1518 count = 0; \
1520 } while(0)
1522 static void compute_parity6(struct stripe_head *sh, int method)
1524 raid6_conf_t *conf = sh->raid_conf;
1525 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1526 struct bio *chosen;
1527 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1528 void *ptrs[disks];
1530 qd_idx = raid6_next_disk(pd_idx, disks);
1531 d0_idx = raid6_next_disk(qd_idx, disks);
1533 pr_debug("compute_parity, stripe %llu, method %d\n",
1534 (unsigned long long)sh->sector, method);
1536 switch(method) {
1537 case READ_MODIFY_WRITE:
1538 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1539 case RECONSTRUCT_WRITE:
1540 for (i= disks; i-- ;)
1541 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1542 chosen = sh->dev[i].towrite;
1543 sh->dev[i].towrite = NULL;
1545 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1546 wake_up(&conf->wait_for_overlap);
1548 BUG_ON(sh->dev[i].written);
1549 sh->dev[i].written = chosen;
1551 break;
1552 case CHECK_PARITY:
1553 BUG(); /* Not implemented yet */
1556 for (i = disks; i--;)
1557 if (sh->dev[i].written) {
1558 sector_t sector = sh->dev[i].sector;
1559 struct bio *wbi = sh->dev[i].written;
1560 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1561 copy_data(1, wbi, sh->dev[i].page, sector);
1562 wbi = r5_next_bio(wbi, sector);
1565 set_bit(R5_LOCKED, &sh->dev[i].flags);
1566 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1569 // switch(method) {
1570 // case RECONSTRUCT_WRITE:
1571 // case CHECK_PARITY:
1572 // case UPDATE_PARITY:
1573 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1574 /* FIX: Is this ordering of drives even remotely optimal? */
1575 count = 0;
1576 i = d0_idx;
1577 do {
1578 ptrs[count++] = page_address(sh->dev[i].page);
1579 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1580 printk("block %d/%d not uptodate on parity calc\n", i,count);
1581 i = raid6_next_disk(i, disks);
1582 } while ( i != d0_idx );
1583 // break;
1584 // }
1586 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1588 switch(method) {
1589 case RECONSTRUCT_WRITE:
1590 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1591 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1592 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1593 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1594 break;
1595 case UPDATE_PARITY:
1596 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1597 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1598 break;
1603 /* Compute one missing block */
1604 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1606 int i, count, disks = sh->disks;
1607 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1608 int pd_idx = sh->pd_idx;
1609 int qd_idx = raid6_next_disk(pd_idx, disks);
1611 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1612 (unsigned long long)sh->sector, dd_idx);
1614 if ( dd_idx == qd_idx ) {
1615 /* We're actually computing the Q drive */
1616 compute_parity6(sh, UPDATE_PARITY);
1617 } else {
1618 dest = page_address(sh->dev[dd_idx].page);
1619 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1620 count = 0;
1621 for (i = disks ; i--; ) {
1622 if (i == dd_idx || i == qd_idx)
1623 continue;
1624 p = page_address(sh->dev[i].page);
1625 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1626 ptr[count++] = p;
1627 else
1628 printk("compute_block() %d, stripe %llu, %d"
1629 " not present\n", dd_idx,
1630 (unsigned long long)sh->sector, i);
1632 check_xor();
1634 if (count)
1635 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1636 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1637 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1641 /* Compute two missing blocks */
1642 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1644 int i, count, disks = sh->disks;
1645 int pd_idx = sh->pd_idx;
1646 int qd_idx = raid6_next_disk(pd_idx, disks);
1647 int d0_idx = raid6_next_disk(qd_idx, disks);
1648 int faila, failb;
1650 /* faila and failb are disk numbers relative to d0_idx */
1651 /* pd_idx become disks-2 and qd_idx become disks-1 */
1652 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1653 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1655 BUG_ON(faila == failb);
1656 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1658 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1659 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1661 if ( failb == disks-1 ) {
1662 /* Q disk is one of the missing disks */
1663 if ( faila == disks-2 ) {
1664 /* Missing P+Q, just recompute */
1665 compute_parity6(sh, UPDATE_PARITY);
1666 return;
1667 } else {
1668 /* We're missing D+Q; recompute D from P */
1669 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1670 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1671 return;
1675 /* We're missing D+P or D+D; build pointer table */
1677 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1678 void *ptrs[disks];
1680 count = 0;
1681 i = d0_idx;
1682 do {
1683 ptrs[count++] = page_address(sh->dev[i].page);
1684 i = raid6_next_disk(i, disks);
1685 if (i != dd_idx1 && i != dd_idx2 &&
1686 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1687 printk("compute_2 with missing block %d/%d\n", count, i);
1688 } while ( i != d0_idx );
1690 if ( failb == disks-2 ) {
1691 /* We're missing D+P. */
1692 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1693 } else {
1694 /* We're missing D+D. */
1695 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1698 /* Both the above update both missing blocks */
1699 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1700 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1704 static int
1705 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1707 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1708 int locked = 0;
1710 if (rcw) {
1711 /* if we are not expanding this is a proper write request, and
1712 * there will be bios with new data to be drained into the
1713 * stripe cache
1715 if (!expand) {
1716 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1717 sh->ops.count++;
1720 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1721 sh->ops.count++;
1723 for (i = disks; i--; ) {
1724 struct r5dev *dev = &sh->dev[i];
1726 if (dev->towrite) {
1727 set_bit(R5_LOCKED, &dev->flags);
1728 if (!expand)
1729 clear_bit(R5_UPTODATE, &dev->flags);
1730 locked++;
1733 } else {
1734 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1735 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1737 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1738 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1739 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1741 sh->ops.count += 3;
1743 for (i = disks; i--; ) {
1744 struct r5dev *dev = &sh->dev[i];
1745 if (i == pd_idx)
1746 continue;
1748 /* For a read-modify write there may be blocks that are
1749 * locked for reading while others are ready to be
1750 * written so we distinguish these blocks by the
1751 * R5_Wantprexor bit
1753 if (dev->towrite &&
1754 (test_bit(R5_UPTODATE, &dev->flags) ||
1755 test_bit(R5_Wantcompute, &dev->flags))) {
1756 set_bit(R5_Wantprexor, &dev->flags);
1757 set_bit(R5_LOCKED, &dev->flags);
1758 clear_bit(R5_UPTODATE, &dev->flags);
1759 locked++;
1764 /* keep the parity disk locked while asynchronous operations
1765 * are in flight
1767 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1768 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1769 locked++;
1771 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1772 __FUNCTION__, (unsigned long long)sh->sector,
1773 locked, sh->ops.pending);
1775 return locked;
1779 * Each stripe/dev can have one or more bion attached.
1780 * toread/towrite point to the first in a chain.
1781 * The bi_next chain must be in order.
1783 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1785 struct bio **bip;
1786 raid5_conf_t *conf = sh->raid_conf;
1787 int firstwrite=0;
1789 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1790 (unsigned long long)bi->bi_sector,
1791 (unsigned long long)sh->sector);
1794 spin_lock(&sh->lock);
1795 spin_lock_irq(&conf->device_lock);
1796 if (forwrite) {
1797 bip = &sh->dev[dd_idx].towrite;
1798 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1799 firstwrite = 1;
1800 } else
1801 bip = &sh->dev[dd_idx].toread;
1802 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1803 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1804 goto overlap;
1805 bip = & (*bip)->bi_next;
1807 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1808 goto overlap;
1810 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1811 if (*bip)
1812 bi->bi_next = *bip;
1813 *bip = bi;
1814 bi->bi_phys_segments ++;
1815 spin_unlock_irq(&conf->device_lock);
1816 spin_unlock(&sh->lock);
1818 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1819 (unsigned long long)bi->bi_sector,
1820 (unsigned long long)sh->sector, dd_idx);
1822 if (conf->mddev->bitmap && firstwrite) {
1823 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1824 STRIPE_SECTORS, 0);
1825 sh->bm_seq = conf->seq_flush+1;
1826 set_bit(STRIPE_BIT_DELAY, &sh->state);
1829 if (forwrite) {
1830 /* check if page is covered */
1831 sector_t sector = sh->dev[dd_idx].sector;
1832 for (bi=sh->dev[dd_idx].towrite;
1833 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1834 bi && bi->bi_sector <= sector;
1835 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1836 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1837 sector = bi->bi_sector + (bi->bi_size>>9);
1839 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1840 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1842 return 1;
1844 overlap:
1845 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1846 spin_unlock_irq(&conf->device_lock);
1847 spin_unlock(&sh->lock);
1848 return 0;
1851 static void end_reshape(raid5_conf_t *conf);
1853 static int page_is_zero(struct page *p)
1855 char *a = page_address(p);
1856 return ((*(u32*)a) == 0 &&
1857 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1860 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1862 int sectors_per_chunk = conf->chunk_size >> 9;
1863 int pd_idx, dd_idx;
1864 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1866 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1867 *sectors_per_chunk + chunk_offset,
1868 disks, disks - conf->max_degraded,
1869 &dd_idx, &pd_idx, conf);
1870 return pd_idx;
1873 static void
1874 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1875 struct stripe_head_state *s, int disks,
1876 struct bio **return_bi)
1878 int i;
1879 for (i = disks; i--; ) {
1880 struct bio *bi;
1881 int bitmap_end = 0;
1883 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1884 mdk_rdev_t *rdev;
1885 rcu_read_lock();
1886 rdev = rcu_dereference(conf->disks[i].rdev);
1887 if (rdev && test_bit(In_sync, &rdev->flags))
1888 /* multiple read failures in one stripe */
1889 md_error(conf->mddev, rdev);
1890 rcu_read_unlock();
1892 spin_lock_irq(&conf->device_lock);
1893 /* fail all writes first */
1894 bi = sh->dev[i].towrite;
1895 sh->dev[i].towrite = NULL;
1896 if (bi) {
1897 s->to_write--;
1898 bitmap_end = 1;
1901 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1902 wake_up(&conf->wait_for_overlap);
1904 while (bi && bi->bi_sector <
1905 sh->dev[i].sector + STRIPE_SECTORS) {
1906 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1907 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1908 if (--bi->bi_phys_segments == 0) {
1909 md_write_end(conf->mddev);
1910 bi->bi_next = *return_bi;
1911 *return_bi = bi;
1913 bi = nextbi;
1915 /* and fail all 'written' */
1916 bi = sh->dev[i].written;
1917 sh->dev[i].written = NULL;
1918 if (bi) bitmap_end = 1;
1919 while (bi && bi->bi_sector <
1920 sh->dev[i].sector + STRIPE_SECTORS) {
1921 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1922 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1923 if (--bi->bi_phys_segments == 0) {
1924 md_write_end(conf->mddev);
1925 bi->bi_next = *return_bi;
1926 *return_bi = bi;
1928 bi = bi2;
1931 /* fail any reads if this device is non-operational and
1932 * the data has not reached the cache yet.
1934 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1935 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1936 test_bit(R5_ReadError, &sh->dev[i].flags))) {
1937 bi = sh->dev[i].toread;
1938 sh->dev[i].toread = NULL;
1939 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1940 wake_up(&conf->wait_for_overlap);
1941 if (bi) s->to_read--;
1942 while (bi && bi->bi_sector <
1943 sh->dev[i].sector + STRIPE_SECTORS) {
1944 struct bio *nextbi =
1945 r5_next_bio(bi, sh->dev[i].sector);
1946 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1947 if (--bi->bi_phys_segments == 0) {
1948 bi->bi_next = *return_bi;
1949 *return_bi = bi;
1951 bi = nextbi;
1954 spin_unlock_irq(&conf->device_lock);
1955 if (bitmap_end)
1956 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1957 STRIPE_SECTORS, 0, 0);
1962 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1963 * to process
1965 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1966 struct stripe_head_state *s, int disk_idx, int disks)
1968 struct r5dev *dev = &sh->dev[disk_idx];
1969 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1971 /* don't schedule compute operations or reads on the parity block while
1972 * a check is in flight
1974 if ((disk_idx == sh->pd_idx) &&
1975 test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1976 return ~0;
1978 /* is the data in this block needed, and can we get it? */
1979 if (!test_bit(R5_LOCKED, &dev->flags) &&
1980 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1981 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1982 s->syncing || s->expanding || (s->failed &&
1983 (failed_dev->toread || (failed_dev->towrite &&
1984 !test_bit(R5_OVERWRITE, &failed_dev->flags)
1985 ))))) {
1986 /* 1/ We would like to get this block, possibly by computing it,
1987 * but we might not be able to.
1989 * 2/ Since parity check operations potentially make the parity
1990 * block !uptodate it will need to be refreshed before any
1991 * compute operations on data disks are scheduled.
1993 * 3/ We hold off parity block re-reads until check operations
1994 * have quiesced.
1996 if ((s->uptodate == disks - 1) &&
1997 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1998 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1999 set_bit(R5_Wantcompute, &dev->flags);
2000 sh->ops.target = disk_idx;
2001 s->req_compute = 1;
2002 sh->ops.count++;
2003 /* Careful: from this point on 'uptodate' is in the eye
2004 * of raid5_run_ops which services 'compute' operations
2005 * before writes. R5_Wantcompute flags a block that will
2006 * be R5_UPTODATE by the time it is needed for a
2007 * subsequent operation.
2009 s->uptodate++;
2010 return 0; /* uptodate + compute == disks */
2011 } else if ((s->uptodate < disks - 1) &&
2012 test_bit(R5_Insync, &dev->flags)) {
2013 /* Note: we hold off compute operations while checks are
2014 * in flight, but we still prefer 'compute' over 'read'
2015 * hence we only read if (uptodate < * disks-1)
2017 set_bit(R5_LOCKED, &dev->flags);
2018 set_bit(R5_Wantread, &dev->flags);
2019 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2020 sh->ops.count++;
2021 s->locked++;
2022 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2023 s->syncing);
2027 return ~0;
2030 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2031 struct stripe_head_state *s, int disks)
2033 int i;
2035 /* Clear completed compute operations. Parity recovery
2036 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2037 * later on in this routine
2039 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2040 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2041 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2042 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2043 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2046 /* look for blocks to read/compute, skip this if a compute
2047 * is already in flight, or if the stripe contents are in the
2048 * midst of changing due to a write
2050 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2051 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2052 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2053 for (i = disks; i--; )
2054 if (__handle_issuing_new_read_requests5(
2055 sh, s, i, disks) == 0)
2056 break;
2058 set_bit(STRIPE_HANDLE, &sh->state);
2061 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2062 struct stripe_head_state *s, struct r6_state *r6s,
2063 int disks)
2065 int i;
2066 for (i = disks; i--; ) {
2067 struct r5dev *dev = &sh->dev[i];
2068 if (!test_bit(R5_LOCKED, &dev->flags) &&
2069 !test_bit(R5_UPTODATE, &dev->flags) &&
2070 (dev->toread || (dev->towrite &&
2071 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2072 s->syncing || s->expanding ||
2073 (s->failed >= 1 &&
2074 (sh->dev[r6s->failed_num[0]].toread ||
2075 s->to_write)) ||
2076 (s->failed >= 2 &&
2077 (sh->dev[r6s->failed_num[1]].toread ||
2078 s->to_write)))) {
2079 /* we would like to get this block, possibly
2080 * by computing it, but we might not be able to
2082 if (s->uptodate == disks-1) {
2083 pr_debug("Computing stripe %llu block %d\n",
2084 (unsigned long long)sh->sector, i);
2085 compute_block_1(sh, i, 0);
2086 s->uptodate++;
2087 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2088 /* Computing 2-failure is *very* expensive; only
2089 * do it if failed >= 2
2091 int other;
2092 for (other = disks; other--; ) {
2093 if (other == i)
2094 continue;
2095 if (!test_bit(R5_UPTODATE,
2096 &sh->dev[other].flags))
2097 break;
2099 BUG_ON(other < 0);
2100 pr_debug("Computing stripe %llu blocks %d,%d\n",
2101 (unsigned long long)sh->sector,
2102 i, other);
2103 compute_block_2(sh, i, other);
2104 s->uptodate += 2;
2105 } else if (test_bit(R5_Insync, &dev->flags)) {
2106 set_bit(R5_LOCKED, &dev->flags);
2107 set_bit(R5_Wantread, &dev->flags);
2108 s->locked++;
2109 pr_debug("Reading block %d (sync=%d)\n",
2110 i, s->syncing);
2114 set_bit(STRIPE_HANDLE, &sh->state);
2118 /* handle_completed_write_requests
2119 * any written block on an uptodate or failed drive can be returned.
2120 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2121 * never LOCKED, so we don't need to test 'failed' directly.
2123 static void handle_completed_write_requests(raid5_conf_t *conf,
2124 struct stripe_head *sh, int disks, struct bio **return_bi)
2126 int i;
2127 struct r5dev *dev;
2129 for (i = disks; i--; )
2130 if (sh->dev[i].written) {
2131 dev = &sh->dev[i];
2132 if (!test_bit(R5_LOCKED, &dev->flags) &&
2133 test_bit(R5_UPTODATE, &dev->flags)) {
2134 /* We can return any write requests */
2135 struct bio *wbi, *wbi2;
2136 int bitmap_end = 0;
2137 pr_debug("Return write for disc %d\n", i);
2138 spin_lock_irq(&conf->device_lock);
2139 wbi = dev->written;
2140 dev->written = NULL;
2141 while (wbi && wbi->bi_sector <
2142 dev->sector + STRIPE_SECTORS) {
2143 wbi2 = r5_next_bio(wbi, dev->sector);
2144 if (--wbi->bi_phys_segments == 0) {
2145 md_write_end(conf->mddev);
2146 wbi->bi_next = *return_bi;
2147 *return_bi = wbi;
2149 wbi = wbi2;
2151 if (dev->towrite == NULL)
2152 bitmap_end = 1;
2153 spin_unlock_irq(&conf->device_lock);
2154 if (bitmap_end)
2155 bitmap_endwrite(conf->mddev->bitmap,
2156 sh->sector,
2157 STRIPE_SECTORS,
2158 !test_bit(STRIPE_DEGRADED, &sh->state),
2164 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2165 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2167 int rmw = 0, rcw = 0, i;
2168 for (i = disks; i--; ) {
2169 /* would I have to read this buffer for read_modify_write */
2170 struct r5dev *dev = &sh->dev[i];
2171 if ((dev->towrite || i == sh->pd_idx) &&
2172 !test_bit(R5_LOCKED, &dev->flags) &&
2173 !(test_bit(R5_UPTODATE, &dev->flags) ||
2174 test_bit(R5_Wantcompute, &dev->flags))) {
2175 if (test_bit(R5_Insync, &dev->flags))
2176 rmw++;
2177 else
2178 rmw += 2*disks; /* cannot read it */
2180 /* Would I have to read this buffer for reconstruct_write */
2181 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2182 !test_bit(R5_LOCKED, &dev->flags) &&
2183 !(test_bit(R5_UPTODATE, &dev->flags) ||
2184 test_bit(R5_Wantcompute, &dev->flags))) {
2185 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2186 else
2187 rcw += 2*disks;
2190 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2191 (unsigned long long)sh->sector, rmw, rcw);
2192 set_bit(STRIPE_HANDLE, &sh->state);
2193 if (rmw < rcw && rmw > 0)
2194 /* prefer read-modify-write, but need to get some data */
2195 for (i = disks; i--; ) {
2196 struct r5dev *dev = &sh->dev[i];
2197 if ((dev->towrite || i == sh->pd_idx) &&
2198 !test_bit(R5_LOCKED, &dev->flags) &&
2199 !(test_bit(R5_UPTODATE, &dev->flags) ||
2200 test_bit(R5_Wantcompute, &dev->flags)) &&
2201 test_bit(R5_Insync, &dev->flags)) {
2202 if (
2203 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2204 pr_debug("Read_old block "
2205 "%d for r-m-w\n", i);
2206 set_bit(R5_LOCKED, &dev->flags);
2207 set_bit(R5_Wantread, &dev->flags);
2208 if (!test_and_set_bit(
2209 STRIPE_OP_IO, &sh->ops.pending))
2210 sh->ops.count++;
2211 s->locked++;
2212 } else {
2213 set_bit(STRIPE_DELAYED, &sh->state);
2214 set_bit(STRIPE_HANDLE, &sh->state);
2218 if (rcw <= rmw && rcw > 0)
2219 /* want reconstruct write, but need to get some data */
2220 for (i = disks; i--; ) {
2221 struct r5dev *dev = &sh->dev[i];
2222 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2223 i != sh->pd_idx &&
2224 !test_bit(R5_LOCKED, &dev->flags) &&
2225 !(test_bit(R5_UPTODATE, &dev->flags) ||
2226 test_bit(R5_Wantcompute, &dev->flags)) &&
2227 test_bit(R5_Insync, &dev->flags)) {
2228 if (
2229 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2230 pr_debug("Read_old block "
2231 "%d for Reconstruct\n", i);
2232 set_bit(R5_LOCKED, &dev->flags);
2233 set_bit(R5_Wantread, &dev->flags);
2234 if (!test_and_set_bit(
2235 STRIPE_OP_IO, &sh->ops.pending))
2236 sh->ops.count++;
2237 s->locked++;
2238 } else {
2239 set_bit(STRIPE_DELAYED, &sh->state);
2240 set_bit(STRIPE_HANDLE, &sh->state);
2244 /* now if nothing is locked, and if we have enough data,
2245 * we can start a write request
2247 /* since handle_stripe can be called at any time we need to handle the
2248 * case where a compute block operation has been submitted and then a
2249 * subsequent call wants to start a write request. raid5_run_ops only
2250 * handles the case where compute block and postxor are requested
2251 * simultaneously. If this is not the case then new writes need to be
2252 * held off until the compute completes.
2254 if ((s->req_compute ||
2255 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2256 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2257 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2258 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2261 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2262 struct stripe_head *sh, struct stripe_head_state *s,
2263 struct r6_state *r6s, int disks)
2265 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2266 int qd_idx = r6s->qd_idx;
2267 for (i = disks; i--; ) {
2268 struct r5dev *dev = &sh->dev[i];
2269 /* Would I have to read this buffer for reconstruct_write */
2270 if (!test_bit(R5_OVERWRITE, &dev->flags)
2271 && i != pd_idx && i != qd_idx
2272 && (!test_bit(R5_LOCKED, &dev->flags)
2273 ) &&
2274 !test_bit(R5_UPTODATE, &dev->flags)) {
2275 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2276 else {
2277 pr_debug("raid6: must_compute: "
2278 "disk %d flags=%#lx\n", i, dev->flags);
2279 must_compute++;
2283 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2284 (unsigned long long)sh->sector, rcw, must_compute);
2285 set_bit(STRIPE_HANDLE, &sh->state);
2287 if (rcw > 0)
2288 /* want reconstruct write, but need to get some data */
2289 for (i = disks; i--; ) {
2290 struct r5dev *dev = &sh->dev[i];
2291 if (!test_bit(R5_OVERWRITE, &dev->flags)
2292 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2293 && !test_bit(R5_LOCKED, &dev->flags) &&
2294 !test_bit(R5_UPTODATE, &dev->flags) &&
2295 test_bit(R5_Insync, &dev->flags)) {
2296 if (
2297 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2298 pr_debug("Read_old stripe %llu "
2299 "block %d for Reconstruct\n",
2300 (unsigned long long)sh->sector, i);
2301 set_bit(R5_LOCKED, &dev->flags);
2302 set_bit(R5_Wantread, &dev->flags);
2303 s->locked++;
2304 } else {
2305 pr_debug("Request delayed stripe %llu "
2306 "block %d for Reconstruct\n",
2307 (unsigned long long)sh->sector, i);
2308 set_bit(STRIPE_DELAYED, &sh->state);
2309 set_bit(STRIPE_HANDLE, &sh->state);
2313 /* now if nothing is locked, and if we have enough data, we can start a
2314 * write request
2316 if (s->locked == 0 && rcw == 0 &&
2317 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2318 if (must_compute > 0) {
2319 /* We have failed blocks and need to compute them */
2320 switch (s->failed) {
2321 case 0:
2322 BUG();
2323 case 1:
2324 compute_block_1(sh, r6s->failed_num[0], 0);
2325 break;
2326 case 2:
2327 compute_block_2(sh, r6s->failed_num[0],
2328 r6s->failed_num[1]);
2329 break;
2330 default: /* This request should have been failed? */
2331 BUG();
2335 pr_debug("Computing parity for stripe %llu\n",
2336 (unsigned long long)sh->sector);
2337 compute_parity6(sh, RECONSTRUCT_WRITE);
2338 /* now every locked buffer is ready to be written */
2339 for (i = disks; i--; )
2340 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2341 pr_debug("Writing stripe %llu block %d\n",
2342 (unsigned long long)sh->sector, i);
2343 s->locked++;
2344 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2346 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2347 set_bit(STRIPE_INSYNC, &sh->state);
2349 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2350 atomic_dec(&conf->preread_active_stripes);
2351 if (atomic_read(&conf->preread_active_stripes) <
2352 IO_THRESHOLD)
2353 md_wakeup_thread(conf->mddev->thread);
2358 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2359 struct stripe_head_state *s, int disks)
2361 set_bit(STRIPE_HANDLE, &sh->state);
2362 /* Take one of the following actions:
2363 * 1/ start a check parity operation if (uptodate == disks)
2364 * 2/ finish a check parity operation and act on the result
2365 * 3/ skip to the writeback section if we previously
2366 * initiated a recovery operation
2368 if (s->failed == 0 &&
2369 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2370 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2371 BUG_ON(s->uptodate != disks);
2372 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2373 sh->ops.count++;
2374 s->uptodate--;
2375 } else if (
2376 test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2377 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2378 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2380 if (sh->ops.zero_sum_result == 0)
2381 /* parity is correct (on disc,
2382 * not in buffer any more)
2384 set_bit(STRIPE_INSYNC, &sh->state);
2385 else {
2386 conf->mddev->resync_mismatches +=
2387 STRIPE_SECTORS;
2388 if (test_bit(
2389 MD_RECOVERY_CHECK, &conf->mddev->recovery))
2390 /* don't try to repair!! */
2391 set_bit(STRIPE_INSYNC, &sh->state);
2392 else {
2393 set_bit(STRIPE_OP_COMPUTE_BLK,
2394 &sh->ops.pending);
2395 set_bit(STRIPE_OP_MOD_REPAIR_PD,
2396 &sh->ops.pending);
2397 set_bit(R5_Wantcompute,
2398 &sh->dev[sh->pd_idx].flags);
2399 sh->ops.target = sh->pd_idx;
2400 sh->ops.count++;
2401 s->uptodate++;
2407 /* check if we can clear a parity disk reconstruct */
2408 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2409 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2411 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2412 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2413 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2414 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2417 /* Wait for check parity and compute block operations to complete
2418 * before write-back
2420 if (!test_bit(STRIPE_INSYNC, &sh->state) &&
2421 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2422 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2423 struct r5dev *dev;
2424 /* either failed parity check, or recovery is happening */
2425 if (s->failed == 0)
2426 s->failed_num = sh->pd_idx;
2427 dev = &sh->dev[s->failed_num];
2428 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2429 BUG_ON(s->uptodate != disks);
2431 set_bit(R5_LOCKED, &dev->flags);
2432 set_bit(R5_Wantwrite, &dev->flags);
2433 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2434 sh->ops.count++;
2436 clear_bit(STRIPE_DEGRADED, &sh->state);
2437 s->locked++;
2438 set_bit(STRIPE_INSYNC, &sh->state);
2443 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2444 struct stripe_head_state *s,
2445 struct r6_state *r6s, struct page *tmp_page,
2446 int disks)
2448 int update_p = 0, update_q = 0;
2449 struct r5dev *dev;
2450 int pd_idx = sh->pd_idx;
2451 int qd_idx = r6s->qd_idx;
2453 set_bit(STRIPE_HANDLE, &sh->state);
2455 BUG_ON(s->failed > 2);
2456 BUG_ON(s->uptodate < disks);
2457 /* Want to check and possibly repair P and Q.
2458 * However there could be one 'failed' device, in which
2459 * case we can only check one of them, possibly using the
2460 * other to generate missing data
2463 /* If !tmp_page, we cannot do the calculations,
2464 * but as we have set STRIPE_HANDLE, we will soon be called
2465 * by stripe_handle with a tmp_page - just wait until then.
2467 if (tmp_page) {
2468 if (s->failed == r6s->q_failed) {
2469 /* The only possible failed device holds 'Q', so it
2470 * makes sense to check P (If anything else were failed,
2471 * we would have used P to recreate it).
2473 compute_block_1(sh, pd_idx, 1);
2474 if (!page_is_zero(sh->dev[pd_idx].page)) {
2475 compute_block_1(sh, pd_idx, 0);
2476 update_p = 1;
2479 if (!r6s->q_failed && s->failed < 2) {
2480 /* q is not failed, and we didn't use it to generate
2481 * anything, so it makes sense to check it
2483 memcpy(page_address(tmp_page),
2484 page_address(sh->dev[qd_idx].page),
2485 STRIPE_SIZE);
2486 compute_parity6(sh, UPDATE_PARITY);
2487 if (memcmp(page_address(tmp_page),
2488 page_address(sh->dev[qd_idx].page),
2489 STRIPE_SIZE) != 0) {
2490 clear_bit(STRIPE_INSYNC, &sh->state);
2491 update_q = 1;
2494 if (update_p || update_q) {
2495 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2496 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2497 /* don't try to repair!! */
2498 update_p = update_q = 0;
2501 /* now write out any block on a failed drive,
2502 * or P or Q if they need it
2505 if (s->failed == 2) {
2506 dev = &sh->dev[r6s->failed_num[1]];
2507 s->locked++;
2508 set_bit(R5_LOCKED, &dev->flags);
2509 set_bit(R5_Wantwrite, &dev->flags);
2511 if (s->failed >= 1) {
2512 dev = &sh->dev[r6s->failed_num[0]];
2513 s->locked++;
2514 set_bit(R5_LOCKED, &dev->flags);
2515 set_bit(R5_Wantwrite, &dev->flags);
2518 if (update_p) {
2519 dev = &sh->dev[pd_idx];
2520 s->locked++;
2521 set_bit(R5_LOCKED, &dev->flags);
2522 set_bit(R5_Wantwrite, &dev->flags);
2524 if (update_q) {
2525 dev = &sh->dev[qd_idx];
2526 s->locked++;
2527 set_bit(R5_LOCKED, &dev->flags);
2528 set_bit(R5_Wantwrite, &dev->flags);
2530 clear_bit(STRIPE_DEGRADED, &sh->state);
2532 set_bit(STRIPE_INSYNC, &sh->state);
2536 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2537 struct r6_state *r6s)
2539 int i;
2541 /* We have read all the blocks in this stripe and now we need to
2542 * copy some of them into a target stripe for expand.
2544 struct dma_async_tx_descriptor *tx = NULL;
2545 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2546 for (i = 0; i < sh->disks; i++)
2547 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2548 int dd_idx, pd_idx, j;
2549 struct stripe_head *sh2;
2551 sector_t bn = compute_blocknr(sh, i);
2552 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2553 conf->raid_disks -
2554 conf->max_degraded, &dd_idx,
2555 &pd_idx, conf);
2556 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2557 pd_idx, 1);
2558 if (sh2 == NULL)
2559 /* so far only the early blocks of this stripe
2560 * have been requested. When later blocks
2561 * get requested, we will try again
2563 continue;
2564 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2565 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2566 /* must have already done this block */
2567 release_stripe(sh2);
2568 continue;
2571 /* place all the copies on one channel */
2572 tx = async_memcpy(sh2->dev[dd_idx].page,
2573 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2574 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2576 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2577 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2578 for (j = 0; j < conf->raid_disks; j++)
2579 if (j != sh2->pd_idx &&
2580 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2581 sh2->disks)) &&
2582 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2583 break;
2584 if (j == conf->raid_disks) {
2585 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2586 set_bit(STRIPE_HANDLE, &sh2->state);
2588 release_stripe(sh2);
2591 /* done submitting copies, wait for them to complete */
2592 if (tx) {
2593 async_tx_ack(tx);
2594 dma_wait_for_async_tx(tx);
2599 * handle_stripe - do things to a stripe.
2601 * We lock the stripe and then examine the state of various bits
2602 * to see what needs to be done.
2603 * Possible results:
2604 * return some read request which now have data
2605 * return some write requests which are safely on disc
2606 * schedule a read on some buffers
2607 * schedule a write of some buffers
2608 * return confirmation of parity correctness
2610 * buffers are taken off read_list or write_list, and bh_cache buffers
2611 * get BH_Lock set before the stripe lock is released.
2615 static void handle_stripe5(struct stripe_head *sh)
2617 raid5_conf_t *conf = sh->raid_conf;
2618 int disks = sh->disks, i;
2619 struct bio *return_bi = NULL;
2620 struct stripe_head_state s;
2621 struct r5dev *dev;
2622 unsigned long pending = 0;
2624 memset(&s, 0, sizeof(s));
2625 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2626 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2627 atomic_read(&sh->count), sh->pd_idx,
2628 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2630 spin_lock(&sh->lock);
2631 clear_bit(STRIPE_HANDLE, &sh->state);
2632 clear_bit(STRIPE_DELAYED, &sh->state);
2634 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2635 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2636 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2637 /* Now to look around and see what can be done */
2639 /* clean-up completed biofill operations */
2640 if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2641 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2642 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2643 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2646 rcu_read_lock();
2647 for (i=disks; i--; ) {
2648 mdk_rdev_t *rdev;
2649 struct r5dev *dev = &sh->dev[i];
2650 clear_bit(R5_Insync, &dev->flags);
2652 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2653 "written %p\n", i, dev->flags, dev->toread, dev->read,
2654 dev->towrite, dev->written);
2656 /* maybe we can request a biofill operation
2658 * new wantfill requests are only permitted while
2659 * STRIPE_OP_BIOFILL is clear
2661 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2662 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2663 set_bit(R5_Wantfill, &dev->flags);
2665 /* now count some things */
2666 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2667 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2668 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2670 if (test_bit(R5_Wantfill, &dev->flags))
2671 s.to_fill++;
2672 else if (dev->toread)
2673 s.to_read++;
2674 if (dev->towrite) {
2675 s.to_write++;
2676 if (!test_bit(R5_OVERWRITE, &dev->flags))
2677 s.non_overwrite++;
2679 if (dev->written)
2680 s.written++;
2681 rdev = rcu_dereference(conf->disks[i].rdev);
2682 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2683 /* The ReadError flag will just be confusing now */
2684 clear_bit(R5_ReadError, &dev->flags);
2685 clear_bit(R5_ReWrite, &dev->flags);
2687 if (!rdev || !test_bit(In_sync, &rdev->flags)
2688 || test_bit(R5_ReadError, &dev->flags)) {
2689 s.failed++;
2690 s.failed_num = i;
2691 } else
2692 set_bit(R5_Insync, &dev->flags);
2694 rcu_read_unlock();
2696 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2697 sh->ops.count++;
2699 pr_debug("locked=%d uptodate=%d to_read=%d"
2700 " to_write=%d failed=%d failed_num=%d\n",
2701 s.locked, s.uptodate, s.to_read, s.to_write,
2702 s.failed, s.failed_num);
2703 /* check if the array has lost two devices and, if so, some requests might
2704 * need to be failed
2706 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2707 handle_requests_to_failed_array(conf, sh, &s, disks,
2708 &return_bi);
2709 if (s.failed > 1 && s.syncing) {
2710 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2711 clear_bit(STRIPE_SYNCING, &sh->state);
2712 s.syncing = 0;
2715 /* might be able to return some write requests if the parity block
2716 * is safe, or on a failed drive
2718 dev = &sh->dev[sh->pd_idx];
2719 if ( s.written &&
2720 ((test_bit(R5_Insync, &dev->flags) &&
2721 !test_bit(R5_LOCKED, &dev->flags) &&
2722 test_bit(R5_UPTODATE, &dev->flags)) ||
2723 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2724 handle_completed_write_requests(conf, sh, disks, &return_bi);
2726 /* Now we might consider reading some blocks, either to check/generate
2727 * parity, or to satisfy requests
2728 * or to load a block that is being partially written.
2730 if (s.to_read || s.non_overwrite ||
2731 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2732 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2733 handle_issuing_new_read_requests5(sh, &s, disks);
2735 /* Now we check to see if any write operations have recently
2736 * completed
2739 /* leave prexor set until postxor is done, allows us to distinguish
2740 * a rmw from a rcw during biodrain
2742 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2743 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2745 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2746 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2747 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2749 for (i = disks; i--; )
2750 clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2753 /* if only POSTXOR is set then this is an 'expand' postxor */
2754 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2755 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2757 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2758 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2759 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2761 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2762 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2763 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2765 /* All the 'written' buffers and the parity block are ready to
2766 * be written back to disk
2768 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2769 for (i = disks; i--; ) {
2770 dev = &sh->dev[i];
2771 if (test_bit(R5_LOCKED, &dev->flags) &&
2772 (i == sh->pd_idx || dev->written)) {
2773 pr_debug("Writing block %d\n", i);
2774 set_bit(R5_Wantwrite, &dev->flags);
2775 if (!test_and_set_bit(
2776 STRIPE_OP_IO, &sh->ops.pending))
2777 sh->ops.count++;
2778 if (!test_bit(R5_Insync, &dev->flags) ||
2779 (i == sh->pd_idx && s.failed == 0))
2780 set_bit(STRIPE_INSYNC, &sh->state);
2783 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2784 atomic_dec(&conf->preread_active_stripes);
2785 if (atomic_read(&conf->preread_active_stripes) <
2786 IO_THRESHOLD)
2787 md_wakeup_thread(conf->mddev->thread);
2791 /* Now to consider new write requests and what else, if anything
2792 * should be read. We do not handle new writes when:
2793 * 1/ A 'write' operation (copy+xor) is already in flight.
2794 * 2/ A 'check' operation is in flight, as it may clobber the parity
2795 * block.
2797 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2798 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2799 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2801 /* maybe we need to check and possibly fix the parity for this stripe
2802 * Any reads will already have been scheduled, so we just see if enough
2803 * data is available. The parity check is held off while parity
2804 * dependent operations are in flight.
2806 if ((s.syncing && s.locked == 0 &&
2807 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2808 !test_bit(STRIPE_INSYNC, &sh->state)) ||
2809 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2810 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2811 handle_parity_checks5(conf, sh, &s, disks);
2813 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2814 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2815 clear_bit(STRIPE_SYNCING, &sh->state);
2818 /* If the failed drive is just a ReadError, then we might need to progress
2819 * the repair/check process
2821 if (s.failed == 1 && !conf->mddev->ro &&
2822 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2823 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2824 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2826 dev = &sh->dev[s.failed_num];
2827 if (!test_bit(R5_ReWrite, &dev->flags)) {
2828 set_bit(R5_Wantwrite, &dev->flags);
2829 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2830 sh->ops.count++;
2831 set_bit(R5_ReWrite, &dev->flags);
2832 set_bit(R5_LOCKED, &dev->flags);
2833 s.locked++;
2834 } else {
2835 /* let's read it back */
2836 set_bit(R5_Wantread, &dev->flags);
2837 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2838 sh->ops.count++;
2839 set_bit(R5_LOCKED, &dev->flags);
2840 s.locked++;
2844 /* Finish postxor operations initiated by the expansion
2845 * process
2847 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2848 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2850 clear_bit(STRIPE_EXPANDING, &sh->state);
2852 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2853 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2854 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2856 for (i = conf->raid_disks; i--; ) {
2857 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2858 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2859 sh->ops.count++;
2863 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2864 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2865 /* Need to write out all blocks after computing parity */
2866 sh->disks = conf->raid_disks;
2867 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2868 conf->raid_disks);
2869 s.locked += handle_write_operations5(sh, 1, 1);
2870 } else if (s.expanded &&
2871 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2872 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2873 atomic_dec(&conf->reshape_stripes);
2874 wake_up(&conf->wait_for_overlap);
2875 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2878 if (s.expanding && s.locked == 0 &&
2879 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2880 handle_stripe_expansion(conf, sh, NULL);
2882 if (sh->ops.count)
2883 pending = get_stripe_work(sh);
2885 spin_unlock(&sh->lock);
2887 if (pending)
2888 raid5_run_ops(sh, pending);
2890 return_io(return_bi);
2894 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2896 raid6_conf_t *conf = sh->raid_conf;
2897 int disks = sh->disks;
2898 struct bio *return_bi = NULL;
2899 int i, pd_idx = sh->pd_idx;
2900 struct stripe_head_state s;
2901 struct r6_state r6s;
2902 struct r5dev *dev, *pdev, *qdev;
2904 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2905 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2906 "pd_idx=%d, qd_idx=%d\n",
2907 (unsigned long long)sh->sector, sh->state,
2908 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2909 memset(&s, 0, sizeof(s));
2911 spin_lock(&sh->lock);
2912 clear_bit(STRIPE_HANDLE, &sh->state);
2913 clear_bit(STRIPE_DELAYED, &sh->state);
2915 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2916 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2917 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2918 /* Now to look around and see what can be done */
2920 rcu_read_lock();
2921 for (i=disks; i--; ) {
2922 mdk_rdev_t *rdev;
2923 dev = &sh->dev[i];
2924 clear_bit(R5_Insync, &dev->flags);
2926 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2927 i, dev->flags, dev->toread, dev->towrite, dev->written);
2928 /* maybe we can reply to a read */
2929 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2930 struct bio *rbi, *rbi2;
2931 pr_debug("Return read for disc %d\n", i);
2932 spin_lock_irq(&conf->device_lock);
2933 rbi = dev->toread;
2934 dev->toread = NULL;
2935 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2936 wake_up(&conf->wait_for_overlap);
2937 spin_unlock_irq(&conf->device_lock);
2938 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2939 copy_data(0, rbi, dev->page, dev->sector);
2940 rbi2 = r5_next_bio(rbi, dev->sector);
2941 spin_lock_irq(&conf->device_lock);
2942 if (--rbi->bi_phys_segments == 0) {
2943 rbi->bi_next = return_bi;
2944 return_bi = rbi;
2946 spin_unlock_irq(&conf->device_lock);
2947 rbi = rbi2;
2951 /* now count some things */
2952 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2953 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2956 if (dev->toread)
2957 s.to_read++;
2958 if (dev->towrite) {
2959 s.to_write++;
2960 if (!test_bit(R5_OVERWRITE, &dev->flags))
2961 s.non_overwrite++;
2963 if (dev->written)
2964 s.written++;
2965 rdev = rcu_dereference(conf->disks[i].rdev);
2966 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2967 /* The ReadError flag will just be confusing now */
2968 clear_bit(R5_ReadError, &dev->flags);
2969 clear_bit(R5_ReWrite, &dev->flags);
2971 if (!rdev || !test_bit(In_sync, &rdev->flags)
2972 || test_bit(R5_ReadError, &dev->flags)) {
2973 if (s.failed < 2)
2974 r6s.failed_num[s.failed] = i;
2975 s.failed++;
2976 } else
2977 set_bit(R5_Insync, &dev->flags);
2979 rcu_read_unlock();
2980 pr_debug("locked=%d uptodate=%d to_read=%d"
2981 " to_write=%d failed=%d failed_num=%d,%d\n",
2982 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2983 r6s.failed_num[0], r6s.failed_num[1]);
2984 /* check if the array has lost >2 devices and, if so, some requests
2985 * might need to be failed
2987 if (s.failed > 2 && s.to_read+s.to_write+s.written)
2988 handle_requests_to_failed_array(conf, sh, &s, disks,
2989 &return_bi);
2990 if (s.failed > 2 && s.syncing) {
2991 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2992 clear_bit(STRIPE_SYNCING, &sh->state);
2993 s.syncing = 0;
2997 * might be able to return some write requests if the parity blocks
2998 * are safe, or on a failed drive
3000 pdev = &sh->dev[pd_idx];
3001 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3002 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3003 qdev = &sh->dev[r6s.qd_idx];
3004 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3005 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3007 if ( s.written &&
3008 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3009 && !test_bit(R5_LOCKED, &pdev->flags)
3010 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3011 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3012 && !test_bit(R5_LOCKED, &qdev->flags)
3013 && test_bit(R5_UPTODATE, &qdev->flags)))))
3014 handle_completed_write_requests(conf, sh, disks, &return_bi);
3016 /* Now we might consider reading some blocks, either to check/generate
3017 * parity, or to satisfy requests
3018 * or to load a block that is being partially written.
3020 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3021 (s.syncing && (s.uptodate < disks)) || s.expanding)
3022 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3024 /* now to consider writing and what else, if anything should be read */
3025 if (s.to_write)
3026 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3028 /* maybe we need to check and possibly fix the parity for this stripe
3029 * Any reads will already have been scheduled, so we just see if enough
3030 * data is available
3032 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3033 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3035 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3036 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3037 clear_bit(STRIPE_SYNCING, &sh->state);
3040 /* If the failed drives are just a ReadError, then we might need
3041 * to progress the repair/check process
3043 if (s.failed <= 2 && !conf->mddev->ro)
3044 for (i = 0; i < s.failed; i++) {
3045 dev = &sh->dev[r6s.failed_num[i]];
3046 if (test_bit(R5_ReadError, &dev->flags)
3047 && !test_bit(R5_LOCKED, &dev->flags)
3048 && test_bit(R5_UPTODATE, &dev->flags)
3050 if (!test_bit(R5_ReWrite, &dev->flags)) {
3051 set_bit(R5_Wantwrite, &dev->flags);
3052 set_bit(R5_ReWrite, &dev->flags);
3053 set_bit(R5_LOCKED, &dev->flags);
3054 } else {
3055 /* let's read it back */
3056 set_bit(R5_Wantread, &dev->flags);
3057 set_bit(R5_LOCKED, &dev->flags);
3062 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3063 /* Need to write out all blocks after computing P&Q */
3064 sh->disks = conf->raid_disks;
3065 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3066 conf->raid_disks);
3067 compute_parity6(sh, RECONSTRUCT_WRITE);
3068 for (i = conf->raid_disks ; i-- ; ) {
3069 set_bit(R5_LOCKED, &sh->dev[i].flags);
3070 s.locked++;
3071 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3073 clear_bit(STRIPE_EXPANDING, &sh->state);
3074 } else if (s.expanded) {
3075 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3076 atomic_dec(&conf->reshape_stripes);
3077 wake_up(&conf->wait_for_overlap);
3078 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3081 if (s.expanding && s.locked == 0 &&
3082 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
3083 handle_stripe_expansion(conf, sh, &r6s);
3085 spin_unlock(&sh->lock);
3087 return_io(return_bi);
3089 for (i=disks; i-- ;) {
3090 int rw;
3091 struct bio *bi;
3092 mdk_rdev_t *rdev;
3093 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3094 rw = WRITE;
3095 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3096 rw = READ;
3097 else
3098 continue;
3100 bi = &sh->dev[i].req;
3102 bi->bi_rw = rw;
3103 if (rw == WRITE)
3104 bi->bi_end_io = raid5_end_write_request;
3105 else
3106 bi->bi_end_io = raid5_end_read_request;
3108 rcu_read_lock();
3109 rdev = rcu_dereference(conf->disks[i].rdev);
3110 if (rdev && test_bit(Faulty, &rdev->flags))
3111 rdev = NULL;
3112 if (rdev)
3113 atomic_inc(&rdev->nr_pending);
3114 rcu_read_unlock();
3116 if (rdev) {
3117 if (s.syncing || s.expanding || s.expanded)
3118 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3120 bi->bi_bdev = rdev->bdev;
3121 pr_debug("for %llu schedule op %ld on disc %d\n",
3122 (unsigned long long)sh->sector, bi->bi_rw, i);
3123 atomic_inc(&sh->count);
3124 bi->bi_sector = sh->sector + rdev->data_offset;
3125 bi->bi_flags = 1 << BIO_UPTODATE;
3126 bi->bi_vcnt = 1;
3127 bi->bi_max_vecs = 1;
3128 bi->bi_idx = 0;
3129 bi->bi_io_vec = &sh->dev[i].vec;
3130 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3131 bi->bi_io_vec[0].bv_offset = 0;
3132 bi->bi_size = STRIPE_SIZE;
3133 bi->bi_next = NULL;
3134 if (rw == WRITE &&
3135 test_bit(R5_ReWrite, &sh->dev[i].flags))
3136 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3137 generic_make_request(bi);
3138 } else {
3139 if (rw == WRITE)
3140 set_bit(STRIPE_DEGRADED, &sh->state);
3141 pr_debug("skip op %ld on disc %d for sector %llu\n",
3142 bi->bi_rw, i, (unsigned long long)sh->sector);
3143 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3144 set_bit(STRIPE_HANDLE, &sh->state);
3149 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3151 if (sh->raid_conf->level == 6)
3152 handle_stripe6(sh, tmp_page);
3153 else
3154 handle_stripe5(sh);
3159 static void raid5_activate_delayed(raid5_conf_t *conf)
3161 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3162 while (!list_empty(&conf->delayed_list)) {
3163 struct list_head *l = conf->delayed_list.next;
3164 struct stripe_head *sh;
3165 sh = list_entry(l, struct stripe_head, lru);
3166 list_del_init(l);
3167 clear_bit(STRIPE_DELAYED, &sh->state);
3168 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3169 atomic_inc(&conf->preread_active_stripes);
3170 list_add_tail(&sh->lru, &conf->handle_list);
3175 static void activate_bit_delay(raid5_conf_t *conf)
3177 /* device_lock is held */
3178 struct list_head head;
3179 list_add(&head, &conf->bitmap_list);
3180 list_del_init(&conf->bitmap_list);
3181 while (!list_empty(&head)) {
3182 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3183 list_del_init(&sh->lru);
3184 atomic_inc(&sh->count);
3185 __release_stripe(conf, sh);
3189 static void unplug_slaves(mddev_t *mddev)
3191 raid5_conf_t *conf = mddev_to_conf(mddev);
3192 int i;
3194 rcu_read_lock();
3195 for (i=0; i<mddev->raid_disks; i++) {
3196 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3197 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3198 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3200 atomic_inc(&rdev->nr_pending);
3201 rcu_read_unlock();
3203 if (r_queue->unplug_fn)
3204 r_queue->unplug_fn(r_queue);
3206 rdev_dec_pending(rdev, mddev);
3207 rcu_read_lock();
3210 rcu_read_unlock();
3213 static void raid5_unplug_device(struct request_queue *q)
3215 mddev_t *mddev = q->queuedata;
3216 raid5_conf_t *conf = mddev_to_conf(mddev);
3217 unsigned long flags;
3219 spin_lock_irqsave(&conf->device_lock, flags);
3221 if (blk_remove_plug(q)) {
3222 conf->seq_flush++;
3223 raid5_activate_delayed(conf);
3225 md_wakeup_thread(mddev->thread);
3227 spin_unlock_irqrestore(&conf->device_lock, flags);
3229 unplug_slaves(mddev);
3232 static int raid5_issue_flush(struct request_queue *q, struct gendisk *disk,
3233 sector_t *error_sector)
3235 mddev_t *mddev = q->queuedata;
3236 raid5_conf_t *conf = mddev_to_conf(mddev);
3237 int i, ret = 0;
3239 rcu_read_lock();
3240 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
3241 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3242 if (rdev && !test_bit(Faulty, &rdev->flags)) {
3243 struct block_device *bdev = rdev->bdev;
3244 struct request_queue *r_queue = bdev_get_queue(bdev);
3246 if (!r_queue->issue_flush_fn)
3247 ret = -EOPNOTSUPP;
3248 else {
3249 atomic_inc(&rdev->nr_pending);
3250 rcu_read_unlock();
3251 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
3252 error_sector);
3253 rdev_dec_pending(rdev, mddev);
3254 rcu_read_lock();
3258 rcu_read_unlock();
3259 return ret;
3262 static int raid5_congested(void *data, int bits)
3264 mddev_t *mddev = data;
3265 raid5_conf_t *conf = mddev_to_conf(mddev);
3267 /* No difference between reads and writes. Just check
3268 * how busy the stripe_cache is
3270 if (conf->inactive_blocked)
3271 return 1;
3272 if (conf->quiesce)
3273 return 1;
3274 if (list_empty_careful(&conf->inactive_list))
3275 return 1;
3277 return 0;
3280 /* We want read requests to align with chunks where possible,
3281 * but write requests don't need to.
3283 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3285 mddev_t *mddev = q->queuedata;
3286 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3287 int max;
3288 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3289 unsigned int bio_sectors = bio->bi_size >> 9;
3291 if (bio_data_dir(bio) == WRITE)
3292 return biovec->bv_len; /* always allow writes to be mergeable */
3294 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3295 if (max < 0) max = 0;
3296 if (max <= biovec->bv_len && bio_sectors == 0)
3297 return biovec->bv_len;
3298 else
3299 return max;
3303 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3305 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3306 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3307 unsigned int bio_sectors = bio->bi_size >> 9;
3309 return chunk_sectors >=
3310 ((sector & (chunk_sectors - 1)) + bio_sectors);
3314 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3315 * later sampled by raid5d.
3317 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3319 unsigned long flags;
3321 spin_lock_irqsave(&conf->device_lock, flags);
3323 bi->bi_next = conf->retry_read_aligned_list;
3324 conf->retry_read_aligned_list = bi;
3326 spin_unlock_irqrestore(&conf->device_lock, flags);
3327 md_wakeup_thread(conf->mddev->thread);
3331 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3333 struct bio *bi;
3335 bi = conf->retry_read_aligned;
3336 if (bi) {
3337 conf->retry_read_aligned = NULL;
3338 return bi;
3340 bi = conf->retry_read_aligned_list;
3341 if(bi) {
3342 conf->retry_read_aligned_list = bi->bi_next;
3343 bi->bi_next = NULL;
3344 bi->bi_phys_segments = 1; /* biased count of active stripes */
3345 bi->bi_hw_segments = 0; /* count of processed stripes */
3348 return bi;
3353 * The "raid5_align_endio" should check if the read succeeded and if it
3354 * did, call bio_endio on the original bio (having bio_put the new bio
3355 * first).
3356 * If the read failed..
3358 static int raid5_align_endio(struct bio *bi, unsigned int bytes, int error)
3360 struct bio* raid_bi = bi->bi_private;
3361 mddev_t *mddev;
3362 raid5_conf_t *conf;
3363 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3364 mdk_rdev_t *rdev;
3366 if (bi->bi_size)
3367 return 1;
3368 bio_put(bi);
3370 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3371 conf = mddev_to_conf(mddev);
3372 rdev = (void*)raid_bi->bi_next;
3373 raid_bi->bi_next = NULL;
3375 rdev_dec_pending(rdev, conf->mddev);
3377 if (!error && uptodate) {
3378 bio_endio(raid_bi, bytes, 0);
3379 if (atomic_dec_and_test(&conf->active_aligned_reads))
3380 wake_up(&conf->wait_for_stripe);
3381 return 0;
3385 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3387 add_bio_to_retry(raid_bi, conf);
3388 return 0;
3391 static int bio_fits_rdev(struct bio *bi)
3393 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3395 if ((bi->bi_size>>9) > q->max_sectors)
3396 return 0;
3397 blk_recount_segments(q, bi);
3398 if (bi->bi_phys_segments > q->max_phys_segments ||
3399 bi->bi_hw_segments > q->max_hw_segments)
3400 return 0;
3402 if (q->merge_bvec_fn)
3403 /* it's too hard to apply the merge_bvec_fn at this stage,
3404 * just just give up
3406 return 0;
3408 return 1;
3412 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3414 mddev_t *mddev = q->queuedata;
3415 raid5_conf_t *conf = mddev_to_conf(mddev);
3416 const unsigned int raid_disks = conf->raid_disks;
3417 const unsigned int data_disks = raid_disks - conf->max_degraded;
3418 unsigned int dd_idx, pd_idx;
3419 struct bio* align_bi;
3420 mdk_rdev_t *rdev;
3422 if (!in_chunk_boundary(mddev, raid_bio)) {
3423 pr_debug("chunk_aligned_read : non aligned\n");
3424 return 0;
3427 * use bio_clone to make a copy of the bio
3429 align_bi = bio_clone(raid_bio, GFP_NOIO);
3430 if (!align_bi)
3431 return 0;
3433 * set bi_end_io to a new function, and set bi_private to the
3434 * original bio.
3436 align_bi->bi_end_io = raid5_align_endio;
3437 align_bi->bi_private = raid_bio;
3439 * compute position
3441 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3442 raid_disks,
3443 data_disks,
3444 &dd_idx,
3445 &pd_idx,
3446 conf);
3448 rcu_read_lock();
3449 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3450 if (rdev && test_bit(In_sync, &rdev->flags)) {
3451 atomic_inc(&rdev->nr_pending);
3452 rcu_read_unlock();
3453 raid_bio->bi_next = (void*)rdev;
3454 align_bi->bi_bdev = rdev->bdev;
3455 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3456 align_bi->bi_sector += rdev->data_offset;
3458 if (!bio_fits_rdev(align_bi)) {
3459 /* too big in some way */
3460 bio_put(align_bi);
3461 rdev_dec_pending(rdev, mddev);
3462 return 0;
3465 spin_lock_irq(&conf->device_lock);
3466 wait_event_lock_irq(conf->wait_for_stripe,
3467 conf->quiesce == 0,
3468 conf->device_lock, /* nothing */);
3469 atomic_inc(&conf->active_aligned_reads);
3470 spin_unlock_irq(&conf->device_lock);
3472 generic_make_request(align_bi);
3473 return 1;
3474 } else {
3475 rcu_read_unlock();
3476 bio_put(align_bi);
3477 return 0;
3482 static int make_request(struct request_queue *q, struct bio * bi)
3484 mddev_t *mddev = q->queuedata;
3485 raid5_conf_t *conf = mddev_to_conf(mddev);
3486 unsigned int dd_idx, pd_idx;
3487 sector_t new_sector;
3488 sector_t logical_sector, last_sector;
3489 struct stripe_head *sh;
3490 const int rw = bio_data_dir(bi);
3491 int remaining;
3493 if (unlikely(bio_barrier(bi))) {
3494 bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
3495 return 0;
3498 md_write_start(mddev, bi);
3500 disk_stat_inc(mddev->gendisk, ios[rw]);
3501 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3503 if (rw == READ &&
3504 mddev->reshape_position == MaxSector &&
3505 chunk_aligned_read(q,bi))
3506 return 0;
3508 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3509 last_sector = bi->bi_sector + (bi->bi_size>>9);
3510 bi->bi_next = NULL;
3511 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3513 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3514 DEFINE_WAIT(w);
3515 int disks, data_disks;
3517 retry:
3518 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3519 if (likely(conf->expand_progress == MaxSector))
3520 disks = conf->raid_disks;
3521 else {
3522 /* spinlock is needed as expand_progress may be
3523 * 64bit on a 32bit platform, and so it might be
3524 * possible to see a half-updated value
3525 * Ofcourse expand_progress could change after
3526 * the lock is dropped, so once we get a reference
3527 * to the stripe that we think it is, we will have
3528 * to check again.
3530 spin_lock_irq(&conf->device_lock);
3531 disks = conf->raid_disks;
3532 if (logical_sector >= conf->expand_progress)
3533 disks = conf->previous_raid_disks;
3534 else {
3535 if (logical_sector >= conf->expand_lo) {
3536 spin_unlock_irq(&conf->device_lock);
3537 schedule();
3538 goto retry;
3541 spin_unlock_irq(&conf->device_lock);
3543 data_disks = disks - conf->max_degraded;
3545 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3546 &dd_idx, &pd_idx, conf);
3547 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3548 (unsigned long long)new_sector,
3549 (unsigned long long)logical_sector);
3551 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3552 if (sh) {
3553 if (unlikely(conf->expand_progress != MaxSector)) {
3554 /* expansion might have moved on while waiting for a
3555 * stripe, so we must do the range check again.
3556 * Expansion could still move past after this
3557 * test, but as we are holding a reference to
3558 * 'sh', we know that if that happens,
3559 * STRIPE_EXPANDING will get set and the expansion
3560 * won't proceed until we finish with the stripe.
3562 int must_retry = 0;
3563 spin_lock_irq(&conf->device_lock);
3564 if (logical_sector < conf->expand_progress &&
3565 disks == conf->previous_raid_disks)
3566 /* mismatch, need to try again */
3567 must_retry = 1;
3568 spin_unlock_irq(&conf->device_lock);
3569 if (must_retry) {
3570 release_stripe(sh);
3571 goto retry;
3574 /* FIXME what if we get a false positive because these
3575 * are being updated.
3577 if (logical_sector >= mddev->suspend_lo &&
3578 logical_sector < mddev->suspend_hi) {
3579 release_stripe(sh);
3580 schedule();
3581 goto retry;
3584 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3585 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3586 /* Stripe is busy expanding or
3587 * add failed due to overlap. Flush everything
3588 * and wait a while
3590 raid5_unplug_device(mddev->queue);
3591 release_stripe(sh);
3592 schedule();
3593 goto retry;
3595 finish_wait(&conf->wait_for_overlap, &w);
3596 handle_stripe(sh, NULL);
3597 release_stripe(sh);
3598 } else {
3599 /* cannot get stripe for read-ahead, just give-up */
3600 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3601 finish_wait(&conf->wait_for_overlap, &w);
3602 break;
3606 spin_lock_irq(&conf->device_lock);
3607 remaining = --bi->bi_phys_segments;
3608 spin_unlock_irq(&conf->device_lock);
3609 if (remaining == 0) {
3610 int bytes = bi->bi_size;
3612 if ( rw == WRITE )
3613 md_write_end(mddev);
3614 bi->bi_size = 0;
3615 bi->bi_end_io(bi, bytes,
3616 test_bit(BIO_UPTODATE, &bi->bi_flags)
3617 ? 0 : -EIO);
3619 return 0;
3622 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3624 /* reshaping is quite different to recovery/resync so it is
3625 * handled quite separately ... here.
3627 * On each call to sync_request, we gather one chunk worth of
3628 * destination stripes and flag them as expanding.
3629 * Then we find all the source stripes and request reads.
3630 * As the reads complete, handle_stripe will copy the data
3631 * into the destination stripe and release that stripe.
3633 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3634 struct stripe_head *sh;
3635 int pd_idx;
3636 sector_t first_sector, last_sector;
3637 int raid_disks = conf->previous_raid_disks;
3638 int data_disks = raid_disks - conf->max_degraded;
3639 int new_data_disks = conf->raid_disks - conf->max_degraded;
3640 int i;
3641 int dd_idx;
3642 sector_t writepos, safepos, gap;
3644 if (sector_nr == 0 &&
3645 conf->expand_progress != 0) {
3646 /* restarting in the middle, skip the initial sectors */
3647 sector_nr = conf->expand_progress;
3648 sector_div(sector_nr, new_data_disks);
3649 *skipped = 1;
3650 return sector_nr;
3653 /* we update the metadata when there is more than 3Meg
3654 * in the block range (that is rather arbitrary, should
3655 * probably be time based) or when the data about to be
3656 * copied would over-write the source of the data at
3657 * the front of the range.
3658 * i.e. one new_stripe forward from expand_progress new_maps
3659 * to after where expand_lo old_maps to
3661 writepos = conf->expand_progress +
3662 conf->chunk_size/512*(new_data_disks);
3663 sector_div(writepos, new_data_disks);
3664 safepos = conf->expand_lo;
3665 sector_div(safepos, data_disks);
3666 gap = conf->expand_progress - conf->expand_lo;
3668 if (writepos >= safepos ||
3669 gap > (new_data_disks)*3000*2 /*3Meg*/) {
3670 /* Cannot proceed until we've updated the superblock... */
3671 wait_event(conf->wait_for_overlap,
3672 atomic_read(&conf->reshape_stripes)==0);
3673 mddev->reshape_position = conf->expand_progress;
3674 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3675 md_wakeup_thread(mddev->thread);
3676 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3677 kthread_should_stop());
3678 spin_lock_irq(&conf->device_lock);
3679 conf->expand_lo = mddev->reshape_position;
3680 spin_unlock_irq(&conf->device_lock);
3681 wake_up(&conf->wait_for_overlap);
3684 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3685 int j;
3686 int skipped = 0;
3687 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3688 sh = get_active_stripe(conf, sector_nr+i,
3689 conf->raid_disks, pd_idx, 0);
3690 set_bit(STRIPE_EXPANDING, &sh->state);
3691 atomic_inc(&conf->reshape_stripes);
3692 /* If any of this stripe is beyond the end of the old
3693 * array, then we need to zero those blocks
3695 for (j=sh->disks; j--;) {
3696 sector_t s;
3697 if (j == sh->pd_idx)
3698 continue;
3699 if (conf->level == 6 &&
3700 j == raid6_next_disk(sh->pd_idx, sh->disks))
3701 continue;
3702 s = compute_blocknr(sh, j);
3703 if (s < (mddev->array_size<<1)) {
3704 skipped = 1;
3705 continue;
3707 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3708 set_bit(R5_Expanded, &sh->dev[j].flags);
3709 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3711 if (!skipped) {
3712 set_bit(STRIPE_EXPAND_READY, &sh->state);
3713 set_bit(STRIPE_HANDLE, &sh->state);
3715 release_stripe(sh);
3717 spin_lock_irq(&conf->device_lock);
3718 conf->expand_progress = (sector_nr + i) * new_data_disks;
3719 spin_unlock_irq(&conf->device_lock);
3720 /* Ok, those stripe are ready. We can start scheduling
3721 * reads on the source stripes.
3722 * The source stripes are determined by mapping the first and last
3723 * block on the destination stripes.
3725 first_sector =
3726 raid5_compute_sector(sector_nr*(new_data_disks),
3727 raid_disks, data_disks,
3728 &dd_idx, &pd_idx, conf);
3729 last_sector =
3730 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3731 *(new_data_disks) -1,
3732 raid_disks, data_disks,
3733 &dd_idx, &pd_idx, conf);
3734 if (last_sector >= (mddev->size<<1))
3735 last_sector = (mddev->size<<1)-1;
3736 while (first_sector <= last_sector) {
3737 pd_idx = stripe_to_pdidx(first_sector, conf,
3738 conf->previous_raid_disks);
3739 sh = get_active_stripe(conf, first_sector,
3740 conf->previous_raid_disks, pd_idx, 0);
3741 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3742 set_bit(STRIPE_HANDLE, &sh->state);
3743 release_stripe(sh);
3744 first_sector += STRIPE_SECTORS;
3746 return conf->chunk_size>>9;
3749 /* FIXME go_faster isn't used */
3750 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3752 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3753 struct stripe_head *sh;
3754 int pd_idx;
3755 int raid_disks = conf->raid_disks;
3756 sector_t max_sector = mddev->size << 1;
3757 int sync_blocks;
3758 int still_degraded = 0;
3759 int i;
3761 if (sector_nr >= max_sector) {
3762 /* just being told to finish up .. nothing much to do */
3763 unplug_slaves(mddev);
3764 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3765 end_reshape(conf);
3766 return 0;
3769 if (mddev->curr_resync < max_sector) /* aborted */
3770 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3771 &sync_blocks, 1);
3772 else /* completed sync */
3773 conf->fullsync = 0;
3774 bitmap_close_sync(mddev->bitmap);
3776 return 0;
3779 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3780 return reshape_request(mddev, sector_nr, skipped);
3782 /* if there is too many failed drives and we are trying
3783 * to resync, then assert that we are finished, because there is
3784 * nothing we can do.
3786 if (mddev->degraded >= conf->max_degraded &&
3787 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3788 sector_t rv = (mddev->size << 1) - sector_nr;
3789 *skipped = 1;
3790 return rv;
3792 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3793 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3794 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3795 /* we can skip this block, and probably more */
3796 sync_blocks /= STRIPE_SECTORS;
3797 *skipped = 1;
3798 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3801 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3802 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3803 if (sh == NULL) {
3804 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3805 /* make sure we don't swamp the stripe cache if someone else
3806 * is trying to get access
3808 schedule_timeout_uninterruptible(1);
3810 /* Need to check if array will still be degraded after recovery/resync
3811 * We don't need to check the 'failed' flag as when that gets set,
3812 * recovery aborts.
3814 for (i=0; i<mddev->raid_disks; i++)
3815 if (conf->disks[i].rdev == NULL)
3816 still_degraded = 1;
3818 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3820 spin_lock(&sh->lock);
3821 set_bit(STRIPE_SYNCING, &sh->state);
3822 clear_bit(STRIPE_INSYNC, &sh->state);
3823 spin_unlock(&sh->lock);
3825 handle_stripe(sh, NULL);
3826 release_stripe(sh);
3828 return STRIPE_SECTORS;
3831 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3833 /* We may not be able to submit a whole bio at once as there
3834 * may not be enough stripe_heads available.
3835 * We cannot pre-allocate enough stripe_heads as we may need
3836 * more than exist in the cache (if we allow ever large chunks).
3837 * So we do one stripe head at a time and record in
3838 * ->bi_hw_segments how many have been done.
3840 * We *know* that this entire raid_bio is in one chunk, so
3841 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3843 struct stripe_head *sh;
3844 int dd_idx, pd_idx;
3845 sector_t sector, logical_sector, last_sector;
3846 int scnt = 0;
3847 int remaining;
3848 int handled = 0;
3850 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3851 sector = raid5_compute_sector( logical_sector,
3852 conf->raid_disks,
3853 conf->raid_disks - conf->max_degraded,
3854 &dd_idx,
3855 &pd_idx,
3856 conf);
3857 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3859 for (; logical_sector < last_sector;
3860 logical_sector += STRIPE_SECTORS,
3861 sector += STRIPE_SECTORS,
3862 scnt++) {
3864 if (scnt < raid_bio->bi_hw_segments)
3865 /* already done this stripe */
3866 continue;
3868 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3870 if (!sh) {
3871 /* failed to get a stripe - must wait */
3872 raid_bio->bi_hw_segments = scnt;
3873 conf->retry_read_aligned = raid_bio;
3874 return handled;
3877 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3878 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3879 release_stripe(sh);
3880 raid_bio->bi_hw_segments = scnt;
3881 conf->retry_read_aligned = raid_bio;
3882 return handled;
3885 handle_stripe(sh, NULL);
3886 release_stripe(sh);
3887 handled++;
3889 spin_lock_irq(&conf->device_lock);
3890 remaining = --raid_bio->bi_phys_segments;
3891 spin_unlock_irq(&conf->device_lock);
3892 if (remaining == 0) {
3893 int bytes = raid_bio->bi_size;
3895 raid_bio->bi_size = 0;
3896 raid_bio->bi_end_io(raid_bio, bytes,
3897 test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3898 ? 0 : -EIO);
3900 if (atomic_dec_and_test(&conf->active_aligned_reads))
3901 wake_up(&conf->wait_for_stripe);
3902 return handled;
3908 * This is our raid5 kernel thread.
3910 * We scan the hash table for stripes which can be handled now.
3911 * During the scan, completed stripes are saved for us by the interrupt
3912 * handler, so that they will not have to wait for our next wakeup.
3914 static void raid5d (mddev_t *mddev)
3916 struct stripe_head *sh;
3917 raid5_conf_t *conf = mddev_to_conf(mddev);
3918 int handled;
3920 pr_debug("+++ raid5d active\n");
3922 md_check_recovery(mddev);
3924 handled = 0;
3925 spin_lock_irq(&conf->device_lock);
3926 while (1) {
3927 struct list_head *first;
3928 struct bio *bio;
3930 if (conf->seq_flush != conf->seq_write) {
3931 int seq = conf->seq_flush;
3932 spin_unlock_irq(&conf->device_lock);
3933 bitmap_unplug(mddev->bitmap);
3934 spin_lock_irq(&conf->device_lock);
3935 conf->seq_write = seq;
3936 activate_bit_delay(conf);
3939 if (list_empty(&conf->handle_list) &&
3940 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
3941 !blk_queue_plugged(mddev->queue) &&
3942 !list_empty(&conf->delayed_list))
3943 raid5_activate_delayed(conf);
3945 while ((bio = remove_bio_from_retry(conf))) {
3946 int ok;
3947 spin_unlock_irq(&conf->device_lock);
3948 ok = retry_aligned_read(conf, bio);
3949 spin_lock_irq(&conf->device_lock);
3950 if (!ok)
3951 break;
3952 handled++;
3955 if (list_empty(&conf->handle_list)) {
3956 async_tx_issue_pending_all();
3957 break;
3960 first = conf->handle_list.next;
3961 sh = list_entry(first, struct stripe_head, lru);
3963 list_del_init(first);
3964 atomic_inc(&sh->count);
3965 BUG_ON(atomic_read(&sh->count)!= 1);
3966 spin_unlock_irq(&conf->device_lock);
3968 handled++;
3969 handle_stripe(sh, conf->spare_page);
3970 release_stripe(sh);
3972 spin_lock_irq(&conf->device_lock);
3974 pr_debug("%d stripes handled\n", handled);
3976 spin_unlock_irq(&conf->device_lock);
3978 unplug_slaves(mddev);
3980 pr_debug("--- raid5d inactive\n");
3983 static ssize_t
3984 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3986 raid5_conf_t *conf = mddev_to_conf(mddev);
3987 if (conf)
3988 return sprintf(page, "%d\n", conf->max_nr_stripes);
3989 else
3990 return 0;
3993 static ssize_t
3994 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3996 raid5_conf_t *conf = mddev_to_conf(mddev);
3997 char *end;
3998 int new;
3999 if (len >= PAGE_SIZE)
4000 return -EINVAL;
4001 if (!conf)
4002 return -ENODEV;
4004 new = simple_strtoul(page, &end, 10);
4005 if (!*page || (*end && *end != '\n') )
4006 return -EINVAL;
4007 if (new <= 16 || new > 32768)
4008 return -EINVAL;
4009 while (new < conf->max_nr_stripes) {
4010 if (drop_one_stripe(conf))
4011 conf->max_nr_stripes--;
4012 else
4013 break;
4015 md_allow_write(mddev);
4016 while (new > conf->max_nr_stripes) {
4017 if (grow_one_stripe(conf))
4018 conf->max_nr_stripes++;
4019 else break;
4021 return len;
4024 static struct md_sysfs_entry
4025 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4026 raid5_show_stripe_cache_size,
4027 raid5_store_stripe_cache_size);
4029 static ssize_t
4030 stripe_cache_active_show(mddev_t *mddev, char *page)
4032 raid5_conf_t *conf = mddev_to_conf(mddev);
4033 if (conf)
4034 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4035 else
4036 return 0;
4039 static struct md_sysfs_entry
4040 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4042 static struct attribute *raid5_attrs[] = {
4043 &raid5_stripecache_size.attr,
4044 &raid5_stripecache_active.attr,
4045 NULL,
4047 static struct attribute_group raid5_attrs_group = {
4048 .name = NULL,
4049 .attrs = raid5_attrs,
4052 static int run(mddev_t *mddev)
4054 raid5_conf_t *conf;
4055 int raid_disk, memory;
4056 mdk_rdev_t *rdev;
4057 struct disk_info *disk;
4058 struct list_head *tmp;
4059 int working_disks = 0;
4061 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4062 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4063 mdname(mddev), mddev->level);
4064 return -EIO;
4067 if (mddev->reshape_position != MaxSector) {
4068 /* Check that we can continue the reshape.
4069 * Currently only disks can change, it must
4070 * increase, and we must be past the point where
4071 * a stripe over-writes itself
4073 sector_t here_new, here_old;
4074 int old_disks;
4075 int max_degraded = (mddev->level == 5 ? 1 : 2);
4077 if (mddev->new_level != mddev->level ||
4078 mddev->new_layout != mddev->layout ||
4079 mddev->new_chunk != mddev->chunk_size) {
4080 printk(KERN_ERR "raid5: %s: unsupported reshape "
4081 "required - aborting.\n",
4082 mdname(mddev));
4083 return -EINVAL;
4085 if (mddev->delta_disks <= 0) {
4086 printk(KERN_ERR "raid5: %s: unsupported reshape "
4087 "(reduce disks) required - aborting.\n",
4088 mdname(mddev));
4089 return -EINVAL;
4091 old_disks = mddev->raid_disks - mddev->delta_disks;
4092 /* reshape_position must be on a new-stripe boundary, and one
4093 * further up in new geometry must map after here in old
4094 * geometry.
4096 here_new = mddev->reshape_position;
4097 if (sector_div(here_new, (mddev->chunk_size>>9)*
4098 (mddev->raid_disks - max_degraded))) {
4099 printk(KERN_ERR "raid5: reshape_position not "
4100 "on a stripe boundary\n");
4101 return -EINVAL;
4103 /* here_new is the stripe we will write to */
4104 here_old = mddev->reshape_position;
4105 sector_div(here_old, (mddev->chunk_size>>9)*
4106 (old_disks-max_degraded));
4107 /* here_old is the first stripe that we might need to read
4108 * from */
4109 if (here_new >= here_old) {
4110 /* Reading from the same stripe as writing to - bad */
4111 printk(KERN_ERR "raid5: reshape_position too early for "
4112 "auto-recovery - aborting.\n");
4113 return -EINVAL;
4115 printk(KERN_INFO "raid5: reshape will continue\n");
4116 /* OK, we should be able to continue; */
4120 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4121 if ((conf = mddev->private) == NULL)
4122 goto abort;
4123 if (mddev->reshape_position == MaxSector) {
4124 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4125 } else {
4126 conf->raid_disks = mddev->raid_disks;
4127 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4130 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4131 GFP_KERNEL);
4132 if (!conf->disks)
4133 goto abort;
4135 conf->mddev = mddev;
4137 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4138 goto abort;
4140 if (mddev->level == 6) {
4141 conf->spare_page = alloc_page(GFP_KERNEL);
4142 if (!conf->spare_page)
4143 goto abort;
4145 spin_lock_init(&conf->device_lock);
4146 init_waitqueue_head(&conf->wait_for_stripe);
4147 init_waitqueue_head(&conf->wait_for_overlap);
4148 INIT_LIST_HEAD(&conf->handle_list);
4149 INIT_LIST_HEAD(&conf->delayed_list);
4150 INIT_LIST_HEAD(&conf->bitmap_list);
4151 INIT_LIST_HEAD(&conf->inactive_list);
4152 atomic_set(&conf->active_stripes, 0);
4153 atomic_set(&conf->preread_active_stripes, 0);
4154 atomic_set(&conf->active_aligned_reads, 0);
4156 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4158 ITERATE_RDEV(mddev,rdev,tmp) {
4159 raid_disk = rdev->raid_disk;
4160 if (raid_disk >= conf->raid_disks
4161 || raid_disk < 0)
4162 continue;
4163 disk = conf->disks + raid_disk;
4165 disk->rdev = rdev;
4167 if (test_bit(In_sync, &rdev->flags)) {
4168 char b[BDEVNAME_SIZE];
4169 printk(KERN_INFO "raid5: device %s operational as raid"
4170 " disk %d\n", bdevname(rdev->bdev,b),
4171 raid_disk);
4172 working_disks++;
4177 * 0 for a fully functional array, 1 or 2 for a degraded array.
4179 mddev->degraded = conf->raid_disks - working_disks;
4180 conf->mddev = mddev;
4181 conf->chunk_size = mddev->chunk_size;
4182 conf->level = mddev->level;
4183 if (conf->level == 6)
4184 conf->max_degraded = 2;
4185 else
4186 conf->max_degraded = 1;
4187 conf->algorithm = mddev->layout;
4188 conf->max_nr_stripes = NR_STRIPES;
4189 conf->expand_progress = mddev->reshape_position;
4191 /* device size must be a multiple of chunk size */
4192 mddev->size &= ~(mddev->chunk_size/1024 -1);
4193 mddev->resync_max_sectors = mddev->size << 1;
4195 if (conf->level == 6 && conf->raid_disks < 4) {
4196 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4197 mdname(mddev), conf->raid_disks);
4198 goto abort;
4200 if (!conf->chunk_size || conf->chunk_size % 4) {
4201 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4202 conf->chunk_size, mdname(mddev));
4203 goto abort;
4205 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4206 printk(KERN_ERR
4207 "raid5: unsupported parity algorithm %d for %s\n",
4208 conf->algorithm, mdname(mddev));
4209 goto abort;
4211 if (mddev->degraded > conf->max_degraded) {
4212 printk(KERN_ERR "raid5: not enough operational devices for %s"
4213 " (%d/%d failed)\n",
4214 mdname(mddev), mddev->degraded, conf->raid_disks);
4215 goto abort;
4218 if (mddev->degraded > 0 &&
4219 mddev->recovery_cp != MaxSector) {
4220 if (mddev->ok_start_degraded)
4221 printk(KERN_WARNING
4222 "raid5: starting dirty degraded array: %s"
4223 "- data corruption possible.\n",
4224 mdname(mddev));
4225 else {
4226 printk(KERN_ERR
4227 "raid5: cannot start dirty degraded array for %s\n",
4228 mdname(mddev));
4229 goto abort;
4234 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4235 if (!mddev->thread) {
4236 printk(KERN_ERR
4237 "raid5: couldn't allocate thread for %s\n",
4238 mdname(mddev));
4239 goto abort;
4242 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4243 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4244 if (grow_stripes(conf, conf->max_nr_stripes)) {
4245 printk(KERN_ERR
4246 "raid5: couldn't allocate %dkB for buffers\n", memory);
4247 shrink_stripes(conf);
4248 md_unregister_thread(mddev->thread);
4249 goto abort;
4250 } else
4251 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4252 memory, mdname(mddev));
4254 if (mddev->degraded == 0)
4255 printk("raid5: raid level %d set %s active with %d out of %d"
4256 " devices, algorithm %d\n", conf->level, mdname(mddev),
4257 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4258 conf->algorithm);
4259 else
4260 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4261 " out of %d devices, algorithm %d\n", conf->level,
4262 mdname(mddev), mddev->raid_disks - mddev->degraded,
4263 mddev->raid_disks, conf->algorithm);
4265 print_raid5_conf(conf);
4267 if (conf->expand_progress != MaxSector) {
4268 printk("...ok start reshape thread\n");
4269 conf->expand_lo = conf->expand_progress;
4270 atomic_set(&conf->reshape_stripes, 0);
4271 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4272 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4273 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4274 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4275 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4276 "%s_reshape");
4279 /* read-ahead size must cover two whole stripes, which is
4280 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4283 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4284 int stripe = data_disks *
4285 (mddev->chunk_size / PAGE_SIZE);
4286 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4287 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4290 /* Ok, everything is just fine now */
4291 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4292 printk(KERN_WARNING
4293 "raid5: failed to create sysfs attributes for %s\n",
4294 mdname(mddev));
4296 mddev->queue->unplug_fn = raid5_unplug_device;
4297 mddev->queue->issue_flush_fn = raid5_issue_flush;
4298 mddev->queue->backing_dev_info.congested_data = mddev;
4299 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4301 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4302 conf->max_degraded);
4304 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4306 return 0;
4307 abort:
4308 if (conf) {
4309 print_raid5_conf(conf);
4310 safe_put_page(conf->spare_page);
4311 kfree(conf->disks);
4312 kfree(conf->stripe_hashtbl);
4313 kfree(conf);
4315 mddev->private = NULL;
4316 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4317 return -EIO;
4322 static int stop(mddev_t *mddev)
4324 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4326 md_unregister_thread(mddev->thread);
4327 mddev->thread = NULL;
4328 shrink_stripes(conf);
4329 kfree(conf->stripe_hashtbl);
4330 mddev->queue->backing_dev_info.congested_fn = NULL;
4331 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4332 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4333 kfree(conf->disks);
4334 kfree(conf);
4335 mddev->private = NULL;
4336 return 0;
4339 #ifdef DEBUG
4340 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4342 int i;
4344 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4345 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4346 seq_printf(seq, "sh %llu, count %d.\n",
4347 (unsigned long long)sh->sector, atomic_read(&sh->count));
4348 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4349 for (i = 0; i < sh->disks; i++) {
4350 seq_printf(seq, "(cache%d: %p %ld) ",
4351 i, sh->dev[i].page, sh->dev[i].flags);
4353 seq_printf(seq, "\n");
4356 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4358 struct stripe_head *sh;
4359 struct hlist_node *hn;
4360 int i;
4362 spin_lock_irq(&conf->device_lock);
4363 for (i = 0; i < NR_HASH; i++) {
4364 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4365 if (sh->raid_conf != conf)
4366 continue;
4367 print_sh(seq, sh);
4370 spin_unlock_irq(&conf->device_lock);
4372 #endif
4374 static void status (struct seq_file *seq, mddev_t *mddev)
4376 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4377 int i;
4379 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4380 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4381 for (i = 0; i < conf->raid_disks; i++)
4382 seq_printf (seq, "%s",
4383 conf->disks[i].rdev &&
4384 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4385 seq_printf (seq, "]");
4386 #ifdef DEBUG
4387 seq_printf (seq, "\n");
4388 printall(seq, conf);
4389 #endif
4392 static void print_raid5_conf (raid5_conf_t *conf)
4394 int i;
4395 struct disk_info *tmp;
4397 printk("RAID5 conf printout:\n");
4398 if (!conf) {
4399 printk("(conf==NULL)\n");
4400 return;
4402 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4403 conf->raid_disks - conf->mddev->degraded);
4405 for (i = 0; i < conf->raid_disks; i++) {
4406 char b[BDEVNAME_SIZE];
4407 tmp = conf->disks + i;
4408 if (tmp->rdev)
4409 printk(" disk %d, o:%d, dev:%s\n",
4410 i, !test_bit(Faulty, &tmp->rdev->flags),
4411 bdevname(tmp->rdev->bdev,b));
4415 static int raid5_spare_active(mddev_t *mddev)
4417 int i;
4418 raid5_conf_t *conf = mddev->private;
4419 struct disk_info *tmp;
4421 for (i = 0; i < conf->raid_disks; i++) {
4422 tmp = conf->disks + i;
4423 if (tmp->rdev
4424 && !test_bit(Faulty, &tmp->rdev->flags)
4425 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4426 unsigned long flags;
4427 spin_lock_irqsave(&conf->device_lock, flags);
4428 mddev->degraded--;
4429 spin_unlock_irqrestore(&conf->device_lock, flags);
4432 print_raid5_conf(conf);
4433 return 0;
4436 static int raid5_remove_disk(mddev_t *mddev, int number)
4438 raid5_conf_t *conf = mddev->private;
4439 int err = 0;
4440 mdk_rdev_t *rdev;
4441 struct disk_info *p = conf->disks + number;
4443 print_raid5_conf(conf);
4444 rdev = p->rdev;
4445 if (rdev) {
4446 if (test_bit(In_sync, &rdev->flags) ||
4447 atomic_read(&rdev->nr_pending)) {
4448 err = -EBUSY;
4449 goto abort;
4451 p->rdev = NULL;
4452 synchronize_rcu();
4453 if (atomic_read(&rdev->nr_pending)) {
4454 /* lost the race, try later */
4455 err = -EBUSY;
4456 p->rdev = rdev;
4459 abort:
4461 print_raid5_conf(conf);
4462 return err;
4465 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4467 raid5_conf_t *conf = mddev->private;
4468 int found = 0;
4469 int disk;
4470 struct disk_info *p;
4472 if (mddev->degraded > conf->max_degraded)
4473 /* no point adding a device */
4474 return 0;
4477 * find the disk ... but prefer rdev->saved_raid_disk
4478 * if possible.
4480 if (rdev->saved_raid_disk >= 0 &&
4481 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4482 disk = rdev->saved_raid_disk;
4483 else
4484 disk = 0;
4485 for ( ; disk < conf->raid_disks; disk++)
4486 if ((p=conf->disks + disk)->rdev == NULL) {
4487 clear_bit(In_sync, &rdev->flags);
4488 rdev->raid_disk = disk;
4489 found = 1;
4490 if (rdev->saved_raid_disk != disk)
4491 conf->fullsync = 1;
4492 rcu_assign_pointer(p->rdev, rdev);
4493 break;
4495 print_raid5_conf(conf);
4496 return found;
4499 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4501 /* no resync is happening, and there is enough space
4502 * on all devices, so we can resize.
4503 * We need to make sure resync covers any new space.
4504 * If the array is shrinking we should possibly wait until
4505 * any io in the removed space completes, but it hardly seems
4506 * worth it.
4508 raid5_conf_t *conf = mddev_to_conf(mddev);
4510 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4511 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4512 set_capacity(mddev->gendisk, mddev->array_size << 1);
4513 mddev->changed = 1;
4514 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4515 mddev->recovery_cp = mddev->size << 1;
4516 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4518 mddev->size = sectors /2;
4519 mddev->resync_max_sectors = sectors;
4520 return 0;
4523 #ifdef CONFIG_MD_RAID5_RESHAPE
4524 static int raid5_check_reshape(mddev_t *mddev)
4526 raid5_conf_t *conf = mddev_to_conf(mddev);
4527 int err;
4529 if (mddev->delta_disks < 0 ||
4530 mddev->new_level != mddev->level)
4531 return -EINVAL; /* Cannot shrink array or change level yet */
4532 if (mddev->delta_disks == 0)
4533 return 0; /* nothing to do */
4535 /* Can only proceed if there are plenty of stripe_heads.
4536 * We need a minimum of one full stripe,, and for sensible progress
4537 * it is best to have about 4 times that.
4538 * If we require 4 times, then the default 256 4K stripe_heads will
4539 * allow for chunk sizes up to 256K, which is probably OK.
4540 * If the chunk size is greater, user-space should request more
4541 * stripe_heads first.
4543 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4544 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4545 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4546 (mddev->chunk_size / STRIPE_SIZE)*4);
4547 return -ENOSPC;
4550 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4551 if (err)
4552 return err;
4554 if (mddev->degraded > conf->max_degraded)
4555 return -EINVAL;
4556 /* looks like we might be able to manage this */
4557 return 0;
4560 static int raid5_start_reshape(mddev_t *mddev)
4562 raid5_conf_t *conf = mddev_to_conf(mddev);
4563 mdk_rdev_t *rdev;
4564 struct list_head *rtmp;
4565 int spares = 0;
4566 int added_devices = 0;
4567 unsigned long flags;
4569 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4570 return -EBUSY;
4572 ITERATE_RDEV(mddev, rdev, rtmp)
4573 if (rdev->raid_disk < 0 &&
4574 !test_bit(Faulty, &rdev->flags))
4575 spares++;
4577 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4578 /* Not enough devices even to make a degraded array
4579 * of that size
4581 return -EINVAL;
4583 atomic_set(&conf->reshape_stripes, 0);
4584 spin_lock_irq(&conf->device_lock);
4585 conf->previous_raid_disks = conf->raid_disks;
4586 conf->raid_disks += mddev->delta_disks;
4587 conf->expand_progress = 0;
4588 conf->expand_lo = 0;
4589 spin_unlock_irq(&conf->device_lock);
4591 /* Add some new drives, as many as will fit.
4592 * We know there are enough to make the newly sized array work.
4594 ITERATE_RDEV(mddev, rdev, rtmp)
4595 if (rdev->raid_disk < 0 &&
4596 !test_bit(Faulty, &rdev->flags)) {
4597 if (raid5_add_disk(mddev, rdev)) {
4598 char nm[20];
4599 set_bit(In_sync, &rdev->flags);
4600 added_devices++;
4601 rdev->recovery_offset = 0;
4602 sprintf(nm, "rd%d", rdev->raid_disk);
4603 if (sysfs_create_link(&mddev->kobj,
4604 &rdev->kobj, nm))
4605 printk(KERN_WARNING
4606 "raid5: failed to create "
4607 " link %s for %s\n",
4608 nm, mdname(mddev));
4609 } else
4610 break;
4613 spin_lock_irqsave(&conf->device_lock, flags);
4614 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4615 spin_unlock_irqrestore(&conf->device_lock, flags);
4616 mddev->raid_disks = conf->raid_disks;
4617 mddev->reshape_position = 0;
4618 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4620 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4621 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4622 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4623 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4624 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4625 "%s_reshape");
4626 if (!mddev->sync_thread) {
4627 mddev->recovery = 0;
4628 spin_lock_irq(&conf->device_lock);
4629 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4630 conf->expand_progress = MaxSector;
4631 spin_unlock_irq(&conf->device_lock);
4632 return -EAGAIN;
4634 md_wakeup_thread(mddev->sync_thread);
4635 md_new_event(mddev);
4636 return 0;
4638 #endif
4640 static void end_reshape(raid5_conf_t *conf)
4642 struct block_device *bdev;
4644 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4645 conf->mddev->array_size = conf->mddev->size *
4646 (conf->raid_disks - conf->max_degraded);
4647 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4648 conf->mddev->changed = 1;
4650 bdev = bdget_disk(conf->mddev->gendisk, 0);
4651 if (bdev) {
4652 mutex_lock(&bdev->bd_inode->i_mutex);
4653 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4654 mutex_unlock(&bdev->bd_inode->i_mutex);
4655 bdput(bdev);
4657 spin_lock_irq(&conf->device_lock);
4658 conf->expand_progress = MaxSector;
4659 spin_unlock_irq(&conf->device_lock);
4660 conf->mddev->reshape_position = MaxSector;
4662 /* read-ahead size must cover two whole stripes, which is
4663 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4666 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4667 int stripe = data_disks *
4668 (conf->mddev->chunk_size / PAGE_SIZE);
4669 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4670 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4675 static void raid5_quiesce(mddev_t *mddev, int state)
4677 raid5_conf_t *conf = mddev_to_conf(mddev);
4679 switch(state) {
4680 case 2: /* resume for a suspend */
4681 wake_up(&conf->wait_for_overlap);
4682 break;
4684 case 1: /* stop all writes */
4685 spin_lock_irq(&conf->device_lock);
4686 conf->quiesce = 1;
4687 wait_event_lock_irq(conf->wait_for_stripe,
4688 atomic_read(&conf->active_stripes) == 0 &&
4689 atomic_read(&conf->active_aligned_reads) == 0,
4690 conf->device_lock, /* nothing */);
4691 spin_unlock_irq(&conf->device_lock);
4692 break;
4694 case 0: /* re-enable writes */
4695 spin_lock_irq(&conf->device_lock);
4696 conf->quiesce = 0;
4697 wake_up(&conf->wait_for_stripe);
4698 wake_up(&conf->wait_for_overlap);
4699 spin_unlock_irq(&conf->device_lock);
4700 break;
4704 static struct mdk_personality raid6_personality =
4706 .name = "raid6",
4707 .level = 6,
4708 .owner = THIS_MODULE,
4709 .make_request = make_request,
4710 .run = run,
4711 .stop = stop,
4712 .status = status,
4713 .error_handler = error,
4714 .hot_add_disk = raid5_add_disk,
4715 .hot_remove_disk= raid5_remove_disk,
4716 .spare_active = raid5_spare_active,
4717 .sync_request = sync_request,
4718 .resize = raid5_resize,
4719 #ifdef CONFIG_MD_RAID5_RESHAPE
4720 .check_reshape = raid5_check_reshape,
4721 .start_reshape = raid5_start_reshape,
4722 #endif
4723 .quiesce = raid5_quiesce,
4725 static struct mdk_personality raid5_personality =
4727 .name = "raid5",
4728 .level = 5,
4729 .owner = THIS_MODULE,
4730 .make_request = make_request,
4731 .run = run,
4732 .stop = stop,
4733 .status = status,
4734 .error_handler = error,
4735 .hot_add_disk = raid5_add_disk,
4736 .hot_remove_disk= raid5_remove_disk,
4737 .spare_active = raid5_spare_active,
4738 .sync_request = sync_request,
4739 .resize = raid5_resize,
4740 #ifdef CONFIG_MD_RAID5_RESHAPE
4741 .check_reshape = raid5_check_reshape,
4742 .start_reshape = raid5_start_reshape,
4743 #endif
4744 .quiesce = raid5_quiesce,
4747 static struct mdk_personality raid4_personality =
4749 .name = "raid4",
4750 .level = 4,
4751 .owner = THIS_MODULE,
4752 .make_request = make_request,
4753 .run = run,
4754 .stop = stop,
4755 .status = status,
4756 .error_handler = error,
4757 .hot_add_disk = raid5_add_disk,
4758 .hot_remove_disk= raid5_remove_disk,
4759 .spare_active = raid5_spare_active,
4760 .sync_request = sync_request,
4761 .resize = raid5_resize,
4762 #ifdef CONFIG_MD_RAID5_RESHAPE
4763 .check_reshape = raid5_check_reshape,
4764 .start_reshape = raid5_start_reshape,
4765 #endif
4766 .quiesce = raid5_quiesce,
4769 static int __init raid5_init(void)
4771 int e;
4773 e = raid6_select_algo();
4774 if ( e )
4775 return e;
4776 register_md_personality(&raid6_personality);
4777 register_md_personality(&raid5_personality);
4778 register_md_personality(&raid4_personality);
4779 return 0;
4782 static void raid5_exit(void)
4784 unregister_md_personality(&raid6_personality);
4785 unregister_md_personality(&raid5_personality);
4786 unregister_md_personality(&raid4_personality);
4789 module_init(raid5_init);
4790 module_exit(raid5_exit);
4791 MODULE_LICENSE("GPL");
4792 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4793 MODULE_ALIAS("md-raid5");
4794 MODULE_ALIAS("md-raid4");
4795 MODULE_ALIAS("md-level-5");
4796 MODULE_ALIAS("md-level-4");
4797 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4798 MODULE_ALIAS("md-raid6");
4799 MODULE_ALIAS("md-level-6");
4801 /* This used to be two separate modules, they were: */
4802 MODULE_ALIAS("raid5");
4803 MODULE_ALIAS("raid6");