ACPI: thinkpad-acpi: keep track of module state
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / dm-table.c
blob72d2250e1575da7e3c413b4588b89fbe6512a34f
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/mutex.h>
18 #include <asm/atomic.h>
20 #define DM_MSG_PREFIX "table"
22 #define MAX_DEPTH 16
23 #define NODE_SIZE L1_CACHE_BYTES
24 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
25 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
27 struct dm_table {
28 struct mapped_device *md;
29 atomic_t holders;
31 /* btree table */
32 unsigned int depth;
33 unsigned int counts[MAX_DEPTH]; /* in nodes */
34 sector_t *index[MAX_DEPTH];
36 unsigned int num_targets;
37 unsigned int num_allocated;
38 sector_t *highs;
39 struct dm_target *targets;
42 * Indicates the rw permissions for the new logical
43 * device. This should be a combination of FMODE_READ
44 * and FMODE_WRITE.
46 int mode;
48 /* a list of devices used by this table */
49 struct list_head devices;
52 * These are optimistic limits taken from all the
53 * targets, some targets will need smaller limits.
55 struct io_restrictions limits;
57 /* events get handed up using this callback */
58 void (*event_fn)(void *);
59 void *event_context;
63 * Similar to ceiling(log_size(n))
65 static unsigned int int_log(unsigned int n, unsigned int base)
67 int result = 0;
69 while (n > 1) {
70 n = dm_div_up(n, base);
71 result++;
74 return result;
78 * Returns the minimum that is _not_ zero, unless both are zero.
80 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
83 * Combine two io_restrictions, always taking the lower value.
85 static void combine_restrictions_low(struct io_restrictions *lhs,
86 struct io_restrictions *rhs)
88 lhs->max_sectors =
89 min_not_zero(lhs->max_sectors, rhs->max_sectors);
91 lhs->max_phys_segments =
92 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
94 lhs->max_hw_segments =
95 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
97 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size);
99 lhs->max_segment_size =
100 min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
102 lhs->seg_boundary_mask =
103 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
105 lhs->no_cluster |= rhs->no_cluster;
109 * Calculate the index of the child node of the n'th node k'th key.
111 static inline unsigned int get_child(unsigned int n, unsigned int k)
113 return (n * CHILDREN_PER_NODE) + k;
117 * Return the n'th node of level l from table t.
119 static inline sector_t *get_node(struct dm_table *t,
120 unsigned int l, unsigned int n)
122 return t->index[l] + (n * KEYS_PER_NODE);
126 * Return the highest key that you could lookup from the n'th
127 * node on level l of the btree.
129 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
131 for (; l < t->depth - 1; l++)
132 n = get_child(n, CHILDREN_PER_NODE - 1);
134 if (n >= t->counts[l])
135 return (sector_t) - 1;
137 return get_node(t, l, n)[KEYS_PER_NODE - 1];
141 * Fills in a level of the btree based on the highs of the level
142 * below it.
144 static int setup_btree_index(unsigned int l, struct dm_table *t)
146 unsigned int n, k;
147 sector_t *node;
149 for (n = 0U; n < t->counts[l]; n++) {
150 node = get_node(t, l, n);
152 for (k = 0U; k < KEYS_PER_NODE; k++)
153 node[k] = high(t, l + 1, get_child(n, k));
156 return 0;
159 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
161 unsigned long size;
162 void *addr;
165 * Check that we're not going to overflow.
167 if (nmemb > (ULONG_MAX / elem_size))
168 return NULL;
170 size = nmemb * elem_size;
171 addr = vmalloc(size);
172 if (addr)
173 memset(addr, 0, size);
175 return addr;
179 * highs, and targets are managed as dynamic arrays during a
180 * table load.
182 static int alloc_targets(struct dm_table *t, unsigned int num)
184 sector_t *n_highs;
185 struct dm_target *n_targets;
186 int n = t->num_targets;
189 * Allocate both the target array and offset array at once.
190 * Append an empty entry to catch sectors beyond the end of
191 * the device.
193 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
194 sizeof(sector_t));
195 if (!n_highs)
196 return -ENOMEM;
198 n_targets = (struct dm_target *) (n_highs + num);
200 if (n) {
201 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
202 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
205 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
206 vfree(t->highs);
208 t->num_allocated = num;
209 t->highs = n_highs;
210 t->targets = n_targets;
212 return 0;
215 int dm_table_create(struct dm_table **result, int mode,
216 unsigned num_targets, struct mapped_device *md)
218 struct dm_table *t = kmalloc(sizeof(*t), GFP_KERNEL);
220 if (!t)
221 return -ENOMEM;
223 memset(t, 0, sizeof(*t));
224 INIT_LIST_HEAD(&t->devices);
225 atomic_set(&t->holders, 1);
227 if (!num_targets)
228 num_targets = KEYS_PER_NODE;
230 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
232 if (alloc_targets(t, num_targets)) {
233 kfree(t);
234 t = NULL;
235 return -ENOMEM;
238 t->mode = mode;
239 t->md = md;
240 *result = t;
241 return 0;
244 int dm_create_error_table(struct dm_table **result, struct mapped_device *md)
246 struct dm_table *t;
247 sector_t dev_size = 1;
248 int r;
251 * Find current size of device.
252 * Default to 1 sector if inactive.
254 t = dm_get_table(md);
255 if (t) {
256 dev_size = dm_table_get_size(t);
257 dm_table_put(t);
260 r = dm_table_create(&t, FMODE_READ, 1, md);
261 if (r)
262 return r;
264 r = dm_table_add_target(t, "error", 0, dev_size, NULL);
265 if (r)
266 goto out;
268 r = dm_table_complete(t);
269 if (r)
270 goto out;
272 *result = t;
274 out:
275 if (r)
276 dm_table_put(t);
278 return r;
280 EXPORT_SYMBOL_GPL(dm_create_error_table);
282 static void free_devices(struct list_head *devices)
284 struct list_head *tmp, *next;
286 for (tmp = devices->next; tmp != devices; tmp = next) {
287 struct dm_dev *dd = list_entry(tmp, struct dm_dev, list);
288 next = tmp->next;
289 kfree(dd);
293 static void table_destroy(struct dm_table *t)
295 unsigned int i;
297 /* free the indexes (see dm_table_complete) */
298 if (t->depth >= 2)
299 vfree(t->index[t->depth - 2]);
301 /* free the targets */
302 for (i = 0; i < t->num_targets; i++) {
303 struct dm_target *tgt = t->targets + i;
305 if (tgt->type->dtr)
306 tgt->type->dtr(tgt);
308 dm_put_target_type(tgt->type);
311 vfree(t->highs);
313 /* free the device list */
314 if (t->devices.next != &t->devices) {
315 DMWARN("devices still present during destroy: "
316 "dm_table_remove_device calls missing");
318 free_devices(&t->devices);
321 kfree(t);
324 void dm_table_get(struct dm_table *t)
326 atomic_inc(&t->holders);
329 void dm_table_put(struct dm_table *t)
331 if (!t)
332 return;
334 if (atomic_dec_and_test(&t->holders))
335 table_destroy(t);
339 * Checks to see if we need to extend highs or targets.
341 static inline int check_space(struct dm_table *t)
343 if (t->num_targets >= t->num_allocated)
344 return alloc_targets(t, t->num_allocated * 2);
346 return 0;
350 * Convert a device path to a dev_t.
352 static int lookup_device(const char *path, dev_t *dev)
354 int r;
355 struct nameidata nd;
356 struct inode *inode;
358 if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd)))
359 return r;
361 inode = nd.dentry->d_inode;
362 if (!inode) {
363 r = -ENOENT;
364 goto out;
367 if (!S_ISBLK(inode->i_mode)) {
368 r = -ENOTBLK;
369 goto out;
372 *dev = inode->i_rdev;
374 out:
375 path_release(&nd);
376 return r;
380 * See if we've already got a device in the list.
382 static struct dm_dev *find_device(struct list_head *l, dev_t dev)
384 struct dm_dev *dd;
386 list_for_each_entry (dd, l, list)
387 if (dd->bdev->bd_dev == dev)
388 return dd;
390 return NULL;
394 * Open a device so we can use it as a map destination.
396 static int open_dev(struct dm_dev *d, dev_t dev, struct mapped_device *md)
398 static char *_claim_ptr = "I belong to device-mapper";
399 struct block_device *bdev;
401 int r;
403 BUG_ON(d->bdev);
405 bdev = open_by_devnum(dev, d->mode);
406 if (IS_ERR(bdev))
407 return PTR_ERR(bdev);
408 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
409 if (r)
410 blkdev_put(bdev);
411 else
412 d->bdev = bdev;
413 return r;
417 * Close a device that we've been using.
419 static void close_dev(struct dm_dev *d, struct mapped_device *md)
421 if (!d->bdev)
422 return;
424 bd_release_from_disk(d->bdev, dm_disk(md));
425 blkdev_put(d->bdev);
426 d->bdev = NULL;
430 * If possible, this checks an area of a destination device is valid.
432 static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len)
434 sector_t dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT;
436 if (!dev_size)
437 return 1;
439 return ((start < dev_size) && (len <= (dev_size - start)));
443 * This upgrades the mode on an already open dm_dev. Being
444 * careful to leave things as they were if we fail to reopen the
445 * device.
447 static int upgrade_mode(struct dm_dev *dd, int new_mode, struct mapped_device *md)
449 int r;
450 struct dm_dev dd_copy;
451 dev_t dev = dd->bdev->bd_dev;
453 dd_copy = *dd;
455 dd->mode |= new_mode;
456 dd->bdev = NULL;
457 r = open_dev(dd, dev, md);
458 if (!r)
459 close_dev(&dd_copy, md);
460 else
461 *dd = dd_copy;
463 return r;
467 * Add a device to the list, or just increment the usage count if
468 * it's already present.
470 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
471 const char *path, sector_t start, sector_t len,
472 int mode, struct dm_dev **result)
474 int r;
475 dev_t dev;
476 struct dm_dev *dd;
477 unsigned int major, minor;
479 BUG_ON(!t);
481 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
482 /* Extract the major/minor numbers */
483 dev = MKDEV(major, minor);
484 if (MAJOR(dev) != major || MINOR(dev) != minor)
485 return -EOVERFLOW;
486 } else {
487 /* convert the path to a device */
488 if ((r = lookup_device(path, &dev)))
489 return r;
492 dd = find_device(&t->devices, dev);
493 if (!dd) {
494 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
495 if (!dd)
496 return -ENOMEM;
498 dd->mode = mode;
499 dd->bdev = NULL;
501 if ((r = open_dev(dd, dev, t->md))) {
502 kfree(dd);
503 return r;
506 format_dev_t(dd->name, dev);
508 atomic_set(&dd->count, 0);
509 list_add(&dd->list, &t->devices);
511 } else if (dd->mode != (mode | dd->mode)) {
512 r = upgrade_mode(dd, mode, t->md);
513 if (r)
514 return r;
516 atomic_inc(&dd->count);
518 if (!check_device_area(dd, start, len)) {
519 DMWARN("device %s too small for target", path);
520 dm_put_device(ti, dd);
521 return -EINVAL;
524 *result = dd;
526 return 0;
529 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev)
531 struct request_queue *q = bdev_get_queue(bdev);
532 struct io_restrictions *rs = &ti->limits;
535 * Combine the device limits low.
537 * FIXME: if we move an io_restriction struct
538 * into q this would just be a call to
539 * combine_restrictions_low()
541 rs->max_sectors =
542 min_not_zero(rs->max_sectors, q->max_sectors);
544 /* FIXME: Device-Mapper on top of RAID-0 breaks because DM
545 * currently doesn't honor MD's merge_bvec_fn routine.
546 * In this case, we'll force DM to use PAGE_SIZE or
547 * smaller I/O, just to be safe. A better fix is in the
548 * works, but add this for the time being so it will at
549 * least operate correctly.
551 if (q->merge_bvec_fn)
552 rs->max_sectors =
553 min_not_zero(rs->max_sectors,
554 (unsigned int) (PAGE_SIZE >> 9));
556 rs->max_phys_segments =
557 min_not_zero(rs->max_phys_segments,
558 q->max_phys_segments);
560 rs->max_hw_segments =
561 min_not_zero(rs->max_hw_segments, q->max_hw_segments);
563 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size);
565 rs->max_segment_size =
566 min_not_zero(rs->max_segment_size, q->max_segment_size);
568 rs->seg_boundary_mask =
569 min_not_zero(rs->seg_boundary_mask,
570 q->seg_boundary_mask);
572 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
574 EXPORT_SYMBOL_GPL(dm_set_device_limits);
576 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
577 sector_t len, int mode, struct dm_dev **result)
579 int r = __table_get_device(ti->table, ti, path,
580 start, len, mode, result);
582 if (!r)
583 dm_set_device_limits(ti, (*result)->bdev);
585 return r;
589 * Decrement a devices use count and remove it if necessary.
591 void dm_put_device(struct dm_target *ti, struct dm_dev *dd)
593 if (atomic_dec_and_test(&dd->count)) {
594 close_dev(dd, ti->table->md);
595 list_del(&dd->list);
596 kfree(dd);
601 * Checks to see if the target joins onto the end of the table.
603 static int adjoin(struct dm_table *table, struct dm_target *ti)
605 struct dm_target *prev;
607 if (!table->num_targets)
608 return !ti->begin;
610 prev = &table->targets[table->num_targets - 1];
611 return (ti->begin == (prev->begin + prev->len));
615 * Used to dynamically allocate the arg array.
617 static char **realloc_argv(unsigned *array_size, char **old_argv)
619 char **argv;
620 unsigned new_size;
622 new_size = *array_size ? *array_size * 2 : 64;
623 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
624 if (argv) {
625 memcpy(argv, old_argv, *array_size * sizeof(*argv));
626 *array_size = new_size;
629 kfree(old_argv);
630 return argv;
634 * Destructively splits up the argument list to pass to ctr.
636 int dm_split_args(int *argc, char ***argvp, char *input)
638 char *start, *end = input, *out, **argv = NULL;
639 unsigned array_size = 0;
641 *argc = 0;
643 if (!input) {
644 *argvp = NULL;
645 return 0;
648 argv = realloc_argv(&array_size, argv);
649 if (!argv)
650 return -ENOMEM;
652 while (1) {
653 start = end;
655 /* Skip whitespace */
656 while (*start && isspace(*start))
657 start++;
659 if (!*start)
660 break; /* success, we hit the end */
662 /* 'out' is used to remove any back-quotes */
663 end = out = start;
664 while (*end) {
665 /* Everything apart from '\0' can be quoted */
666 if (*end == '\\' && *(end + 1)) {
667 *out++ = *(end + 1);
668 end += 2;
669 continue;
672 if (isspace(*end))
673 break; /* end of token */
675 *out++ = *end++;
678 /* have we already filled the array ? */
679 if ((*argc + 1) > array_size) {
680 argv = realloc_argv(&array_size, argv);
681 if (!argv)
682 return -ENOMEM;
685 /* we know this is whitespace */
686 if (*end)
687 end++;
689 /* terminate the string and put it in the array */
690 *out = '\0';
691 argv[*argc] = start;
692 (*argc)++;
695 *argvp = argv;
696 return 0;
699 static void check_for_valid_limits(struct io_restrictions *rs)
701 if (!rs->max_sectors)
702 rs->max_sectors = SAFE_MAX_SECTORS;
703 if (!rs->max_phys_segments)
704 rs->max_phys_segments = MAX_PHYS_SEGMENTS;
705 if (!rs->max_hw_segments)
706 rs->max_hw_segments = MAX_HW_SEGMENTS;
707 if (!rs->hardsect_size)
708 rs->hardsect_size = 1 << SECTOR_SHIFT;
709 if (!rs->max_segment_size)
710 rs->max_segment_size = MAX_SEGMENT_SIZE;
711 if (!rs->seg_boundary_mask)
712 rs->seg_boundary_mask = -1;
715 int dm_table_add_target(struct dm_table *t, const char *type,
716 sector_t start, sector_t len, char *params)
718 int r = -EINVAL, argc;
719 char **argv;
720 struct dm_target *tgt;
722 if ((r = check_space(t)))
723 return r;
725 tgt = t->targets + t->num_targets;
726 memset(tgt, 0, sizeof(*tgt));
728 if (!len) {
729 DMERR("%s: zero-length target", dm_device_name(t->md));
730 return -EINVAL;
733 tgt->type = dm_get_target_type(type);
734 if (!tgt->type) {
735 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
736 type);
737 return -EINVAL;
740 tgt->table = t;
741 tgt->begin = start;
742 tgt->len = len;
743 tgt->error = "Unknown error";
746 * Does this target adjoin the previous one ?
748 if (!adjoin(t, tgt)) {
749 tgt->error = "Gap in table";
750 r = -EINVAL;
751 goto bad;
754 r = dm_split_args(&argc, &argv, params);
755 if (r) {
756 tgt->error = "couldn't split parameters (insufficient memory)";
757 goto bad;
760 r = tgt->type->ctr(tgt, argc, argv);
761 kfree(argv);
762 if (r)
763 goto bad;
765 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
767 /* FIXME: the plan is to combine high here and then have
768 * the merge fn apply the target level restrictions. */
769 combine_restrictions_low(&t->limits, &tgt->limits);
770 return 0;
772 bad:
773 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
774 dm_put_target_type(tgt->type);
775 return r;
778 static int setup_indexes(struct dm_table *t)
780 int i;
781 unsigned int total = 0;
782 sector_t *indexes;
784 /* allocate the space for *all* the indexes */
785 for (i = t->depth - 2; i >= 0; i--) {
786 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
787 total += t->counts[i];
790 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
791 if (!indexes)
792 return -ENOMEM;
794 /* set up internal nodes, bottom-up */
795 for (i = t->depth - 2, total = 0; i >= 0; i--) {
796 t->index[i] = indexes;
797 indexes += (KEYS_PER_NODE * t->counts[i]);
798 setup_btree_index(i, t);
801 return 0;
805 * Builds the btree to index the map.
807 int dm_table_complete(struct dm_table *t)
809 int r = 0;
810 unsigned int leaf_nodes;
812 check_for_valid_limits(&t->limits);
814 /* how many indexes will the btree have ? */
815 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
816 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
818 /* leaf layer has already been set up */
819 t->counts[t->depth - 1] = leaf_nodes;
820 t->index[t->depth - 1] = t->highs;
822 if (t->depth >= 2)
823 r = setup_indexes(t);
825 return r;
828 static DEFINE_MUTEX(_event_lock);
829 void dm_table_event_callback(struct dm_table *t,
830 void (*fn)(void *), void *context)
832 mutex_lock(&_event_lock);
833 t->event_fn = fn;
834 t->event_context = context;
835 mutex_unlock(&_event_lock);
838 void dm_table_event(struct dm_table *t)
841 * You can no longer call dm_table_event() from interrupt
842 * context, use a bottom half instead.
844 BUG_ON(in_interrupt());
846 mutex_lock(&_event_lock);
847 if (t->event_fn)
848 t->event_fn(t->event_context);
849 mutex_unlock(&_event_lock);
852 sector_t dm_table_get_size(struct dm_table *t)
854 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
857 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
859 if (index >= t->num_targets)
860 return NULL;
862 return t->targets + index;
866 * Search the btree for the correct target.
868 * Caller should check returned pointer with dm_target_is_valid()
869 * to trap I/O beyond end of device.
871 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
873 unsigned int l, n = 0, k = 0;
874 sector_t *node;
876 for (l = 0; l < t->depth; l++) {
877 n = get_child(n, k);
878 node = get_node(t, l, n);
880 for (k = 0; k < KEYS_PER_NODE; k++)
881 if (node[k] >= sector)
882 break;
885 return &t->targets[(KEYS_PER_NODE * n) + k];
888 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
891 * Make sure we obey the optimistic sub devices
892 * restrictions.
894 blk_queue_max_sectors(q, t->limits.max_sectors);
895 q->max_phys_segments = t->limits.max_phys_segments;
896 q->max_hw_segments = t->limits.max_hw_segments;
897 q->hardsect_size = t->limits.hardsect_size;
898 q->max_segment_size = t->limits.max_segment_size;
899 q->seg_boundary_mask = t->limits.seg_boundary_mask;
900 if (t->limits.no_cluster)
901 q->queue_flags &= ~(1 << QUEUE_FLAG_CLUSTER);
902 else
903 q->queue_flags |= (1 << QUEUE_FLAG_CLUSTER);
907 unsigned int dm_table_get_num_targets(struct dm_table *t)
909 return t->num_targets;
912 struct list_head *dm_table_get_devices(struct dm_table *t)
914 return &t->devices;
917 int dm_table_get_mode(struct dm_table *t)
919 return t->mode;
922 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
924 int i = t->num_targets;
925 struct dm_target *ti = t->targets;
927 while (i--) {
928 if (postsuspend) {
929 if (ti->type->postsuspend)
930 ti->type->postsuspend(ti);
931 } else if (ti->type->presuspend)
932 ti->type->presuspend(ti);
934 ti++;
938 void dm_table_presuspend_targets(struct dm_table *t)
940 if (!t)
941 return;
943 return suspend_targets(t, 0);
946 void dm_table_postsuspend_targets(struct dm_table *t)
948 if (!t)
949 return;
951 return suspend_targets(t, 1);
954 int dm_table_resume_targets(struct dm_table *t)
956 int i, r = 0;
958 for (i = 0; i < t->num_targets; i++) {
959 struct dm_target *ti = t->targets + i;
961 if (!ti->type->preresume)
962 continue;
964 r = ti->type->preresume(ti);
965 if (r)
966 return r;
969 for (i = 0; i < t->num_targets; i++) {
970 struct dm_target *ti = t->targets + i;
972 if (ti->type->resume)
973 ti->type->resume(ti);
976 return 0;
979 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
981 struct list_head *d, *devices;
982 int r = 0;
984 devices = dm_table_get_devices(t);
985 for (d = devices->next; d != devices; d = d->next) {
986 struct dm_dev *dd = list_entry(d, struct dm_dev, list);
987 struct request_queue *q = bdev_get_queue(dd->bdev);
988 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
991 return r;
994 void dm_table_unplug_all(struct dm_table *t)
996 struct list_head *d, *devices = dm_table_get_devices(t);
998 for (d = devices->next; d != devices; d = d->next) {
999 struct dm_dev *dd = list_entry(d, struct dm_dev, list);
1000 struct request_queue *q = bdev_get_queue(dd->bdev);
1002 if (q->unplug_fn)
1003 q->unplug_fn(q);
1007 int dm_table_flush_all(struct dm_table *t)
1009 struct list_head *d, *devices = dm_table_get_devices(t);
1010 int ret = 0;
1011 unsigned i;
1013 for (i = 0; i < t->num_targets; i++)
1014 if (t->targets[i].type->flush)
1015 t->targets[i].type->flush(&t->targets[i]);
1017 for (d = devices->next; d != devices; d = d->next) {
1018 struct dm_dev *dd = list_entry(d, struct dm_dev, list);
1019 struct request_queue *q = bdev_get_queue(dd->bdev);
1020 int err;
1022 if (!q->issue_flush_fn)
1023 err = -EOPNOTSUPP;
1024 else
1025 err = q->issue_flush_fn(q, dd->bdev->bd_disk, NULL);
1027 if (!ret)
1028 ret = err;
1031 return ret;
1034 struct mapped_device *dm_table_get_md(struct dm_table *t)
1036 dm_get(t->md);
1038 return t->md;
1041 EXPORT_SYMBOL(dm_vcalloc);
1042 EXPORT_SYMBOL(dm_get_device);
1043 EXPORT_SYMBOL(dm_put_device);
1044 EXPORT_SYMBOL(dm_table_event);
1045 EXPORT_SYMBOL(dm_table_get_size);
1046 EXPORT_SYMBOL(dm_table_get_mode);
1047 EXPORT_SYMBOL(dm_table_get_md);
1048 EXPORT_SYMBOL(dm_table_put);
1049 EXPORT_SYMBOL(dm_table_get);
1050 EXPORT_SYMBOL(dm_table_unplug_all);
1051 EXPORT_SYMBOL(dm_table_flush_all);