net: move sock_update_memcg outside of CONFIG_INET
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / dcache.c
blob616fedff011a7080c36b6446a33b3479c9c7e7d9
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_alias, d_inode
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
87 EXPORT_SYMBOL(rename_lock);
89 static struct kmem_cache *dentry_cache __read_mostly;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
107 static inline struct hlist_bl_head *d_hash(struct dentry *parent,
108 unsigned long hash)
110 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
111 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
135 dentry_stat.nr_dentry = get_nr_dentry();
136 return proc_dointvec(table, write, buffer, lenp, ppos);
138 #endif
140 static void __d_free(struct rcu_head *head)
142 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
144 WARN_ON(!list_empty(&dentry->d_alias));
145 if (dname_external(dentry))
146 kfree(dentry->d_name.name);
147 kmem_cache_free(dentry_cache, dentry);
151 * no locks, please.
153 static void d_free(struct dentry *dentry)
155 BUG_ON(dentry->d_count);
156 this_cpu_dec(nr_dentry);
157 if (dentry->d_op && dentry->d_op->d_release)
158 dentry->d_op->d_release(dentry);
160 /* if dentry was never visible to RCU, immediate free is OK */
161 if (!(dentry->d_flags & DCACHE_RCUACCESS))
162 __d_free(&dentry->d_u.d_rcu);
163 else
164 call_rcu(&dentry->d_u.d_rcu, __d_free);
168 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
169 * @dentry: the target dentry
170 * After this call, in-progress rcu-walk path lookup will fail. This
171 * should be called after unhashing, and after changing d_inode (if
172 * the dentry has not already been unhashed).
174 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
176 assert_spin_locked(&dentry->d_lock);
177 /* Go through a barrier */
178 write_seqcount_barrier(&dentry->d_seq);
182 * Release the dentry's inode, using the filesystem
183 * d_iput() operation if defined. Dentry has no refcount
184 * and is unhashed.
186 static void dentry_iput(struct dentry * dentry)
187 __releases(dentry->d_lock)
188 __releases(dentry->d_inode->i_lock)
190 struct inode *inode = dentry->d_inode;
191 if (inode) {
192 dentry->d_inode = NULL;
193 list_del_init(&dentry->d_alias);
194 spin_unlock(&dentry->d_lock);
195 spin_unlock(&inode->i_lock);
196 if (!inode->i_nlink)
197 fsnotify_inoderemove(inode);
198 if (dentry->d_op && dentry->d_op->d_iput)
199 dentry->d_op->d_iput(dentry, inode);
200 else
201 iput(inode);
202 } else {
203 spin_unlock(&dentry->d_lock);
208 * Release the dentry's inode, using the filesystem
209 * d_iput() operation if defined. dentry remains in-use.
211 static void dentry_unlink_inode(struct dentry * dentry)
212 __releases(dentry->d_lock)
213 __releases(dentry->d_inode->i_lock)
215 struct inode *inode = dentry->d_inode;
216 dentry->d_inode = NULL;
217 list_del_init(&dentry->d_alias);
218 dentry_rcuwalk_barrier(dentry);
219 spin_unlock(&dentry->d_lock);
220 spin_unlock(&inode->i_lock);
221 if (!inode->i_nlink)
222 fsnotify_inoderemove(inode);
223 if (dentry->d_op && dentry->d_op->d_iput)
224 dentry->d_op->d_iput(dentry, inode);
225 else
226 iput(inode);
230 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
232 static void dentry_lru_add(struct dentry *dentry)
234 if (list_empty(&dentry->d_lru)) {
235 spin_lock(&dcache_lru_lock);
236 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
237 dentry->d_sb->s_nr_dentry_unused++;
238 dentry_stat.nr_unused++;
239 spin_unlock(&dcache_lru_lock);
243 static void __dentry_lru_del(struct dentry *dentry)
245 list_del_init(&dentry->d_lru);
246 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
247 dentry->d_sb->s_nr_dentry_unused--;
248 dentry_stat.nr_unused--;
252 * Remove a dentry with references from the LRU.
254 static void dentry_lru_del(struct dentry *dentry)
256 if (!list_empty(&dentry->d_lru)) {
257 spin_lock(&dcache_lru_lock);
258 __dentry_lru_del(dentry);
259 spin_unlock(&dcache_lru_lock);
264 * Remove a dentry that is unreferenced and about to be pruned
265 * (unhashed and destroyed) from the LRU, and inform the file system.
266 * This wrapper should be called _prior_ to unhashing a victim dentry.
268 static void dentry_lru_prune(struct dentry *dentry)
270 if (!list_empty(&dentry->d_lru)) {
271 if (dentry->d_flags & DCACHE_OP_PRUNE)
272 dentry->d_op->d_prune(dentry);
274 spin_lock(&dcache_lru_lock);
275 __dentry_lru_del(dentry);
276 spin_unlock(&dcache_lru_lock);
280 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
282 spin_lock(&dcache_lru_lock);
283 if (list_empty(&dentry->d_lru)) {
284 list_add_tail(&dentry->d_lru, list);
285 dentry->d_sb->s_nr_dentry_unused++;
286 dentry_stat.nr_unused++;
287 } else {
288 list_move_tail(&dentry->d_lru, list);
290 spin_unlock(&dcache_lru_lock);
294 * d_kill - kill dentry and return parent
295 * @dentry: dentry to kill
296 * @parent: parent dentry
298 * The dentry must already be unhashed and removed from the LRU.
300 * If this is the root of the dentry tree, return NULL.
302 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
303 * d_kill.
305 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
306 __releases(dentry->d_lock)
307 __releases(parent->d_lock)
308 __releases(dentry->d_inode->i_lock)
310 list_del(&dentry->d_u.d_child);
312 * Inform try_to_ascend() that we are no longer attached to the
313 * dentry tree
315 dentry->d_flags |= DCACHE_DISCONNECTED;
316 if (parent)
317 spin_unlock(&parent->d_lock);
318 dentry_iput(dentry);
320 * dentry_iput drops the locks, at which point nobody (except
321 * transient RCU lookups) can reach this dentry.
323 d_free(dentry);
324 return parent;
328 * Unhash a dentry without inserting an RCU walk barrier or checking that
329 * dentry->d_lock is locked. The caller must take care of that, if
330 * appropriate.
332 static void __d_shrink(struct dentry *dentry)
334 if (!d_unhashed(dentry)) {
335 struct hlist_bl_head *b;
336 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
337 b = &dentry->d_sb->s_anon;
338 else
339 b = d_hash(dentry->d_parent, dentry->d_name.hash);
341 hlist_bl_lock(b);
342 __hlist_bl_del(&dentry->d_hash);
343 dentry->d_hash.pprev = NULL;
344 hlist_bl_unlock(b);
349 * d_drop - drop a dentry
350 * @dentry: dentry to drop
352 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
353 * be found through a VFS lookup any more. Note that this is different from
354 * deleting the dentry - d_delete will try to mark the dentry negative if
355 * possible, giving a successful _negative_ lookup, while d_drop will
356 * just make the cache lookup fail.
358 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
359 * reason (NFS timeouts or autofs deletes).
361 * __d_drop requires dentry->d_lock.
363 void __d_drop(struct dentry *dentry)
365 if (!d_unhashed(dentry)) {
366 __d_shrink(dentry);
367 dentry_rcuwalk_barrier(dentry);
370 EXPORT_SYMBOL(__d_drop);
372 void d_drop(struct dentry *dentry)
374 spin_lock(&dentry->d_lock);
375 __d_drop(dentry);
376 spin_unlock(&dentry->d_lock);
378 EXPORT_SYMBOL(d_drop);
381 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
382 * @dentry: dentry to drop
384 * This is called when we do a lookup on a placeholder dentry that needed to be
385 * looked up. The dentry should have been hashed in order for it to be found by
386 * the lookup code, but now needs to be unhashed while we do the actual lookup
387 * and clear the DCACHE_NEED_LOOKUP flag.
389 void d_clear_need_lookup(struct dentry *dentry)
391 spin_lock(&dentry->d_lock);
392 __d_drop(dentry);
393 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
394 spin_unlock(&dentry->d_lock);
396 EXPORT_SYMBOL(d_clear_need_lookup);
399 * Finish off a dentry we've decided to kill.
400 * dentry->d_lock must be held, returns with it unlocked.
401 * If ref is non-zero, then decrement the refcount too.
402 * Returns dentry requiring refcount drop, or NULL if we're done.
404 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
405 __releases(dentry->d_lock)
407 struct inode *inode;
408 struct dentry *parent;
410 inode = dentry->d_inode;
411 if (inode && !spin_trylock(&inode->i_lock)) {
412 relock:
413 spin_unlock(&dentry->d_lock);
414 cpu_relax();
415 return dentry; /* try again with same dentry */
417 if (IS_ROOT(dentry))
418 parent = NULL;
419 else
420 parent = dentry->d_parent;
421 if (parent && !spin_trylock(&parent->d_lock)) {
422 if (inode)
423 spin_unlock(&inode->i_lock);
424 goto relock;
427 if (ref)
428 dentry->d_count--;
430 * if dentry was on the d_lru list delete it from there.
431 * inform the fs via d_prune that this dentry is about to be
432 * unhashed and destroyed.
434 dentry_lru_prune(dentry);
435 /* if it was on the hash then remove it */
436 __d_drop(dentry);
437 return d_kill(dentry, parent);
441 * This is dput
443 * This is complicated by the fact that we do not want to put
444 * dentries that are no longer on any hash chain on the unused
445 * list: we'd much rather just get rid of them immediately.
447 * However, that implies that we have to traverse the dentry
448 * tree upwards to the parents which might _also_ now be
449 * scheduled for deletion (it may have been only waiting for
450 * its last child to go away).
452 * This tail recursion is done by hand as we don't want to depend
453 * on the compiler to always get this right (gcc generally doesn't).
454 * Real recursion would eat up our stack space.
458 * dput - release a dentry
459 * @dentry: dentry to release
461 * Release a dentry. This will drop the usage count and if appropriate
462 * call the dentry unlink method as well as removing it from the queues and
463 * releasing its resources. If the parent dentries were scheduled for release
464 * they too may now get deleted.
466 void dput(struct dentry *dentry)
468 if (!dentry)
469 return;
471 repeat:
472 if (dentry->d_count == 1)
473 might_sleep();
474 spin_lock(&dentry->d_lock);
475 BUG_ON(!dentry->d_count);
476 if (dentry->d_count > 1) {
477 dentry->d_count--;
478 spin_unlock(&dentry->d_lock);
479 return;
482 if (dentry->d_flags & DCACHE_OP_DELETE) {
483 if (dentry->d_op->d_delete(dentry))
484 goto kill_it;
487 /* Unreachable? Get rid of it */
488 if (d_unhashed(dentry))
489 goto kill_it;
492 * If this dentry needs lookup, don't set the referenced flag so that it
493 * is more likely to be cleaned up by the dcache shrinker in case of
494 * memory pressure.
496 if (!d_need_lookup(dentry))
497 dentry->d_flags |= DCACHE_REFERENCED;
498 dentry_lru_add(dentry);
500 dentry->d_count--;
501 spin_unlock(&dentry->d_lock);
502 return;
504 kill_it:
505 dentry = dentry_kill(dentry, 1);
506 if (dentry)
507 goto repeat;
509 EXPORT_SYMBOL(dput);
512 * d_invalidate - invalidate a dentry
513 * @dentry: dentry to invalidate
515 * Try to invalidate the dentry if it turns out to be
516 * possible. If there are other dentries that can be
517 * reached through this one we can't delete it and we
518 * return -EBUSY. On success we return 0.
520 * no dcache lock.
523 int d_invalidate(struct dentry * dentry)
526 * If it's already been dropped, return OK.
528 spin_lock(&dentry->d_lock);
529 if (d_unhashed(dentry)) {
530 spin_unlock(&dentry->d_lock);
531 return 0;
534 * Check whether to do a partial shrink_dcache
535 * to get rid of unused child entries.
537 if (!list_empty(&dentry->d_subdirs)) {
538 spin_unlock(&dentry->d_lock);
539 shrink_dcache_parent(dentry);
540 spin_lock(&dentry->d_lock);
544 * Somebody else still using it?
546 * If it's a directory, we can't drop it
547 * for fear of somebody re-populating it
548 * with children (even though dropping it
549 * would make it unreachable from the root,
550 * we might still populate it if it was a
551 * working directory or similar).
552 * We also need to leave mountpoints alone,
553 * directory or not.
555 if (dentry->d_count > 1 && dentry->d_inode) {
556 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
557 spin_unlock(&dentry->d_lock);
558 return -EBUSY;
562 __d_drop(dentry);
563 spin_unlock(&dentry->d_lock);
564 return 0;
566 EXPORT_SYMBOL(d_invalidate);
568 /* This must be called with d_lock held */
569 static inline void __dget_dlock(struct dentry *dentry)
571 dentry->d_count++;
574 static inline void __dget(struct dentry *dentry)
576 spin_lock(&dentry->d_lock);
577 __dget_dlock(dentry);
578 spin_unlock(&dentry->d_lock);
581 struct dentry *dget_parent(struct dentry *dentry)
583 struct dentry *ret;
585 repeat:
587 * Don't need rcu_dereference because we re-check it was correct under
588 * the lock.
590 rcu_read_lock();
591 ret = dentry->d_parent;
592 spin_lock(&ret->d_lock);
593 if (unlikely(ret != dentry->d_parent)) {
594 spin_unlock(&ret->d_lock);
595 rcu_read_unlock();
596 goto repeat;
598 rcu_read_unlock();
599 BUG_ON(!ret->d_count);
600 ret->d_count++;
601 spin_unlock(&ret->d_lock);
602 return ret;
604 EXPORT_SYMBOL(dget_parent);
607 * d_find_alias - grab a hashed alias of inode
608 * @inode: inode in question
609 * @want_discon: flag, used by d_splice_alias, to request
610 * that only a DISCONNECTED alias be returned.
612 * If inode has a hashed alias, or is a directory and has any alias,
613 * acquire the reference to alias and return it. Otherwise return NULL.
614 * Notice that if inode is a directory there can be only one alias and
615 * it can be unhashed only if it has no children, or if it is the root
616 * of a filesystem.
618 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
619 * any other hashed alias over that one unless @want_discon is set,
620 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
622 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
624 struct dentry *alias, *discon_alias;
626 again:
627 discon_alias = NULL;
628 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
629 spin_lock(&alias->d_lock);
630 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
631 if (IS_ROOT(alias) &&
632 (alias->d_flags & DCACHE_DISCONNECTED)) {
633 discon_alias = alias;
634 } else if (!want_discon) {
635 __dget_dlock(alias);
636 spin_unlock(&alias->d_lock);
637 return alias;
640 spin_unlock(&alias->d_lock);
642 if (discon_alias) {
643 alias = discon_alias;
644 spin_lock(&alias->d_lock);
645 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
646 if (IS_ROOT(alias) &&
647 (alias->d_flags & DCACHE_DISCONNECTED)) {
648 __dget_dlock(alias);
649 spin_unlock(&alias->d_lock);
650 return alias;
653 spin_unlock(&alias->d_lock);
654 goto again;
656 return NULL;
659 struct dentry *d_find_alias(struct inode *inode)
661 struct dentry *de = NULL;
663 if (!list_empty(&inode->i_dentry)) {
664 spin_lock(&inode->i_lock);
665 de = __d_find_alias(inode, 0);
666 spin_unlock(&inode->i_lock);
668 return de;
670 EXPORT_SYMBOL(d_find_alias);
673 * Try to kill dentries associated with this inode.
674 * WARNING: you must own a reference to inode.
676 void d_prune_aliases(struct inode *inode)
678 struct dentry *dentry;
679 restart:
680 spin_lock(&inode->i_lock);
681 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
682 spin_lock(&dentry->d_lock);
683 if (!dentry->d_count) {
684 __dget_dlock(dentry);
685 __d_drop(dentry);
686 spin_unlock(&dentry->d_lock);
687 spin_unlock(&inode->i_lock);
688 dput(dentry);
689 goto restart;
691 spin_unlock(&dentry->d_lock);
693 spin_unlock(&inode->i_lock);
695 EXPORT_SYMBOL(d_prune_aliases);
698 * Try to throw away a dentry - free the inode, dput the parent.
699 * Requires dentry->d_lock is held, and dentry->d_count == 0.
700 * Releases dentry->d_lock.
702 * This may fail if locks cannot be acquired no problem, just try again.
704 static void try_prune_one_dentry(struct dentry *dentry)
705 __releases(dentry->d_lock)
707 struct dentry *parent;
709 parent = dentry_kill(dentry, 0);
711 * If dentry_kill returns NULL, we have nothing more to do.
712 * if it returns the same dentry, trylocks failed. In either
713 * case, just loop again.
715 * Otherwise, we need to prune ancestors too. This is necessary
716 * to prevent quadratic behavior of shrink_dcache_parent(), but
717 * is also expected to be beneficial in reducing dentry cache
718 * fragmentation.
720 if (!parent)
721 return;
722 if (parent == dentry)
723 return;
725 /* Prune ancestors. */
726 dentry = parent;
727 while (dentry) {
728 spin_lock(&dentry->d_lock);
729 if (dentry->d_count > 1) {
730 dentry->d_count--;
731 spin_unlock(&dentry->d_lock);
732 return;
734 dentry = dentry_kill(dentry, 1);
738 static void shrink_dentry_list(struct list_head *list)
740 struct dentry *dentry;
742 rcu_read_lock();
743 for (;;) {
744 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
745 if (&dentry->d_lru == list)
746 break; /* empty */
747 spin_lock(&dentry->d_lock);
748 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
749 spin_unlock(&dentry->d_lock);
750 continue;
754 * We found an inuse dentry which was not removed from
755 * the LRU because of laziness during lookup. Do not free
756 * it - just keep it off the LRU list.
758 if (dentry->d_count) {
759 dentry_lru_del(dentry);
760 spin_unlock(&dentry->d_lock);
761 continue;
764 rcu_read_unlock();
766 try_prune_one_dentry(dentry);
768 rcu_read_lock();
770 rcu_read_unlock();
774 * prune_dcache_sb - shrink the dcache
775 * @sb: superblock
776 * @count: number of entries to try to free
778 * Attempt to shrink the superblock dcache LRU by @count entries. This is
779 * done when we need more memory an called from the superblock shrinker
780 * function.
782 * This function may fail to free any resources if all the dentries are in
783 * use.
785 void prune_dcache_sb(struct super_block *sb, int count)
787 struct dentry *dentry;
788 LIST_HEAD(referenced);
789 LIST_HEAD(tmp);
791 relock:
792 spin_lock(&dcache_lru_lock);
793 while (!list_empty(&sb->s_dentry_lru)) {
794 dentry = list_entry(sb->s_dentry_lru.prev,
795 struct dentry, d_lru);
796 BUG_ON(dentry->d_sb != sb);
798 if (!spin_trylock(&dentry->d_lock)) {
799 spin_unlock(&dcache_lru_lock);
800 cpu_relax();
801 goto relock;
804 if (dentry->d_flags & DCACHE_REFERENCED) {
805 dentry->d_flags &= ~DCACHE_REFERENCED;
806 list_move(&dentry->d_lru, &referenced);
807 spin_unlock(&dentry->d_lock);
808 } else {
809 list_move_tail(&dentry->d_lru, &tmp);
810 dentry->d_flags |= DCACHE_SHRINK_LIST;
811 spin_unlock(&dentry->d_lock);
812 if (!--count)
813 break;
815 cond_resched_lock(&dcache_lru_lock);
817 if (!list_empty(&referenced))
818 list_splice(&referenced, &sb->s_dentry_lru);
819 spin_unlock(&dcache_lru_lock);
821 shrink_dentry_list(&tmp);
825 * shrink_dcache_sb - shrink dcache for a superblock
826 * @sb: superblock
828 * Shrink the dcache for the specified super block. This is used to free
829 * the dcache before unmounting a file system.
831 void shrink_dcache_sb(struct super_block *sb)
833 LIST_HEAD(tmp);
835 spin_lock(&dcache_lru_lock);
836 while (!list_empty(&sb->s_dentry_lru)) {
837 list_splice_init(&sb->s_dentry_lru, &tmp);
838 spin_unlock(&dcache_lru_lock);
839 shrink_dentry_list(&tmp);
840 spin_lock(&dcache_lru_lock);
842 spin_unlock(&dcache_lru_lock);
844 EXPORT_SYMBOL(shrink_dcache_sb);
847 * destroy a single subtree of dentries for unmount
848 * - see the comments on shrink_dcache_for_umount() for a description of the
849 * locking
851 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
853 struct dentry *parent;
855 BUG_ON(!IS_ROOT(dentry));
857 for (;;) {
858 /* descend to the first leaf in the current subtree */
859 while (!list_empty(&dentry->d_subdirs))
860 dentry = list_entry(dentry->d_subdirs.next,
861 struct dentry, d_u.d_child);
863 /* consume the dentries from this leaf up through its parents
864 * until we find one with children or run out altogether */
865 do {
866 struct inode *inode;
869 * remove the dentry from the lru, and inform
870 * the fs that this dentry is about to be
871 * unhashed and destroyed.
873 dentry_lru_prune(dentry);
874 __d_shrink(dentry);
876 if (dentry->d_count != 0) {
877 printk(KERN_ERR
878 "BUG: Dentry %p{i=%lx,n=%s}"
879 " still in use (%d)"
880 " [unmount of %s %s]\n",
881 dentry,
882 dentry->d_inode ?
883 dentry->d_inode->i_ino : 0UL,
884 dentry->d_name.name,
885 dentry->d_count,
886 dentry->d_sb->s_type->name,
887 dentry->d_sb->s_id);
888 BUG();
891 if (IS_ROOT(dentry)) {
892 parent = NULL;
893 list_del(&dentry->d_u.d_child);
894 } else {
895 parent = dentry->d_parent;
896 parent->d_count--;
897 list_del(&dentry->d_u.d_child);
900 inode = dentry->d_inode;
901 if (inode) {
902 dentry->d_inode = NULL;
903 list_del_init(&dentry->d_alias);
904 if (dentry->d_op && dentry->d_op->d_iput)
905 dentry->d_op->d_iput(dentry, inode);
906 else
907 iput(inode);
910 d_free(dentry);
912 /* finished when we fall off the top of the tree,
913 * otherwise we ascend to the parent and move to the
914 * next sibling if there is one */
915 if (!parent)
916 return;
917 dentry = parent;
918 } while (list_empty(&dentry->d_subdirs));
920 dentry = list_entry(dentry->d_subdirs.next,
921 struct dentry, d_u.d_child);
926 * destroy the dentries attached to a superblock on unmounting
927 * - we don't need to use dentry->d_lock because:
928 * - the superblock is detached from all mountings and open files, so the
929 * dentry trees will not be rearranged by the VFS
930 * - s_umount is write-locked, so the memory pressure shrinker will ignore
931 * any dentries belonging to this superblock that it comes across
932 * - the filesystem itself is no longer permitted to rearrange the dentries
933 * in this superblock
935 void shrink_dcache_for_umount(struct super_block *sb)
937 struct dentry *dentry;
939 if (down_read_trylock(&sb->s_umount))
940 BUG();
942 dentry = sb->s_root;
943 sb->s_root = NULL;
944 dentry->d_count--;
945 shrink_dcache_for_umount_subtree(dentry);
947 while (!hlist_bl_empty(&sb->s_anon)) {
948 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
949 shrink_dcache_for_umount_subtree(dentry);
954 * This tries to ascend one level of parenthood, but
955 * we can race with renaming, so we need to re-check
956 * the parenthood after dropping the lock and check
957 * that the sequence number still matches.
959 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
961 struct dentry *new = old->d_parent;
963 rcu_read_lock();
964 spin_unlock(&old->d_lock);
965 spin_lock(&new->d_lock);
968 * might go back up the wrong parent if we have had a rename
969 * or deletion
971 if (new != old->d_parent ||
972 (old->d_flags & DCACHE_DISCONNECTED) ||
973 (!locked && read_seqretry(&rename_lock, seq))) {
974 spin_unlock(&new->d_lock);
975 new = NULL;
977 rcu_read_unlock();
978 return new;
983 * Search for at least 1 mount point in the dentry's subdirs.
984 * We descend to the next level whenever the d_subdirs
985 * list is non-empty and continue searching.
989 * have_submounts - check for mounts over a dentry
990 * @parent: dentry to check.
992 * Return true if the parent or its subdirectories contain
993 * a mount point
995 int have_submounts(struct dentry *parent)
997 struct dentry *this_parent;
998 struct list_head *next;
999 unsigned seq;
1000 int locked = 0;
1002 seq = read_seqbegin(&rename_lock);
1003 again:
1004 this_parent = parent;
1006 if (d_mountpoint(parent))
1007 goto positive;
1008 spin_lock(&this_parent->d_lock);
1009 repeat:
1010 next = this_parent->d_subdirs.next;
1011 resume:
1012 while (next != &this_parent->d_subdirs) {
1013 struct list_head *tmp = next;
1014 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1015 next = tmp->next;
1017 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1018 /* Have we found a mount point ? */
1019 if (d_mountpoint(dentry)) {
1020 spin_unlock(&dentry->d_lock);
1021 spin_unlock(&this_parent->d_lock);
1022 goto positive;
1024 if (!list_empty(&dentry->d_subdirs)) {
1025 spin_unlock(&this_parent->d_lock);
1026 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1027 this_parent = dentry;
1028 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1029 goto repeat;
1031 spin_unlock(&dentry->d_lock);
1034 * All done at this level ... ascend and resume the search.
1036 if (this_parent != parent) {
1037 struct dentry *child = this_parent;
1038 this_parent = try_to_ascend(this_parent, locked, seq);
1039 if (!this_parent)
1040 goto rename_retry;
1041 next = child->d_u.d_child.next;
1042 goto resume;
1044 spin_unlock(&this_parent->d_lock);
1045 if (!locked && read_seqretry(&rename_lock, seq))
1046 goto rename_retry;
1047 if (locked)
1048 write_sequnlock(&rename_lock);
1049 return 0; /* No mount points found in tree */
1050 positive:
1051 if (!locked && read_seqretry(&rename_lock, seq))
1052 goto rename_retry;
1053 if (locked)
1054 write_sequnlock(&rename_lock);
1055 return 1;
1057 rename_retry:
1058 locked = 1;
1059 write_seqlock(&rename_lock);
1060 goto again;
1062 EXPORT_SYMBOL(have_submounts);
1065 * Search the dentry child list for the specified parent,
1066 * and move any unused dentries to the end of the unused
1067 * list for prune_dcache(). We descend to the next level
1068 * whenever the d_subdirs list is non-empty and continue
1069 * searching.
1071 * It returns zero iff there are no unused children,
1072 * otherwise it returns the number of children moved to
1073 * the end of the unused list. This may not be the total
1074 * number of unused children, because select_parent can
1075 * drop the lock and return early due to latency
1076 * constraints.
1078 static int select_parent(struct dentry *parent, struct list_head *dispose)
1080 struct dentry *this_parent;
1081 struct list_head *next;
1082 unsigned seq;
1083 int found = 0;
1084 int locked = 0;
1086 seq = read_seqbegin(&rename_lock);
1087 again:
1088 this_parent = parent;
1089 spin_lock(&this_parent->d_lock);
1090 repeat:
1091 next = this_parent->d_subdirs.next;
1092 resume:
1093 while (next != &this_parent->d_subdirs) {
1094 struct list_head *tmp = next;
1095 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1096 next = tmp->next;
1098 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1101 * move only zero ref count dentries to the dispose list.
1103 * Those which are presently on the shrink list, being processed
1104 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1105 * loop in shrink_dcache_parent() might not make any progress
1106 * and loop forever.
1108 if (dentry->d_count) {
1109 dentry_lru_del(dentry);
1110 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1111 dentry_lru_move_list(dentry, dispose);
1112 dentry->d_flags |= DCACHE_SHRINK_LIST;
1113 found++;
1116 * We can return to the caller if we have found some (this
1117 * ensures forward progress). We'll be coming back to find
1118 * the rest.
1120 if (found && need_resched()) {
1121 spin_unlock(&dentry->d_lock);
1122 goto out;
1126 * Descend a level if the d_subdirs list is non-empty.
1128 if (!list_empty(&dentry->d_subdirs)) {
1129 spin_unlock(&this_parent->d_lock);
1130 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1131 this_parent = dentry;
1132 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1133 goto repeat;
1136 spin_unlock(&dentry->d_lock);
1139 * All done at this level ... ascend and resume the search.
1141 if (this_parent != parent) {
1142 struct dentry *child = this_parent;
1143 this_parent = try_to_ascend(this_parent, locked, seq);
1144 if (!this_parent)
1145 goto rename_retry;
1146 next = child->d_u.d_child.next;
1147 goto resume;
1149 out:
1150 spin_unlock(&this_parent->d_lock);
1151 if (!locked && read_seqretry(&rename_lock, seq))
1152 goto rename_retry;
1153 if (locked)
1154 write_sequnlock(&rename_lock);
1155 return found;
1157 rename_retry:
1158 if (found)
1159 return found;
1160 locked = 1;
1161 write_seqlock(&rename_lock);
1162 goto again;
1166 * shrink_dcache_parent - prune dcache
1167 * @parent: parent of entries to prune
1169 * Prune the dcache to remove unused children of the parent dentry.
1171 void shrink_dcache_parent(struct dentry * parent)
1173 LIST_HEAD(dispose);
1174 int found;
1176 while ((found = select_parent(parent, &dispose)) != 0)
1177 shrink_dentry_list(&dispose);
1179 EXPORT_SYMBOL(shrink_dcache_parent);
1182 * __d_alloc - allocate a dcache entry
1183 * @sb: filesystem it will belong to
1184 * @name: qstr of the name
1186 * Allocates a dentry. It returns %NULL if there is insufficient memory
1187 * available. On a success the dentry is returned. The name passed in is
1188 * copied and the copy passed in may be reused after this call.
1191 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1193 struct dentry *dentry;
1194 char *dname;
1196 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1197 if (!dentry)
1198 return NULL;
1200 if (name->len > DNAME_INLINE_LEN-1) {
1201 dname = kmalloc(name->len + 1, GFP_KERNEL);
1202 if (!dname) {
1203 kmem_cache_free(dentry_cache, dentry);
1204 return NULL;
1206 } else {
1207 dname = dentry->d_iname;
1209 dentry->d_name.name = dname;
1211 dentry->d_name.len = name->len;
1212 dentry->d_name.hash = name->hash;
1213 memcpy(dname, name->name, name->len);
1214 dname[name->len] = 0;
1216 dentry->d_count = 1;
1217 dentry->d_flags = 0;
1218 spin_lock_init(&dentry->d_lock);
1219 seqcount_init(&dentry->d_seq);
1220 dentry->d_inode = NULL;
1221 dentry->d_parent = dentry;
1222 dentry->d_sb = sb;
1223 dentry->d_op = NULL;
1224 dentry->d_fsdata = NULL;
1225 INIT_HLIST_BL_NODE(&dentry->d_hash);
1226 INIT_LIST_HEAD(&dentry->d_lru);
1227 INIT_LIST_HEAD(&dentry->d_subdirs);
1228 INIT_LIST_HEAD(&dentry->d_alias);
1229 INIT_LIST_HEAD(&dentry->d_u.d_child);
1230 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1232 this_cpu_inc(nr_dentry);
1234 return dentry;
1238 * d_alloc - allocate a dcache entry
1239 * @parent: parent of entry to allocate
1240 * @name: qstr of the name
1242 * Allocates a dentry. It returns %NULL if there is insufficient memory
1243 * available. On a success the dentry is returned. The name passed in is
1244 * copied and the copy passed in may be reused after this call.
1246 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1248 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1249 if (!dentry)
1250 return NULL;
1252 spin_lock(&parent->d_lock);
1254 * don't need child lock because it is not subject
1255 * to concurrency here
1257 __dget_dlock(parent);
1258 dentry->d_parent = parent;
1259 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1260 spin_unlock(&parent->d_lock);
1262 return dentry;
1264 EXPORT_SYMBOL(d_alloc);
1266 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1268 struct dentry *dentry = __d_alloc(sb, name);
1269 if (dentry)
1270 dentry->d_flags |= DCACHE_DISCONNECTED;
1271 return dentry;
1273 EXPORT_SYMBOL(d_alloc_pseudo);
1275 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1277 struct qstr q;
1279 q.name = name;
1280 q.len = strlen(name);
1281 q.hash = full_name_hash(q.name, q.len);
1282 return d_alloc(parent, &q);
1284 EXPORT_SYMBOL(d_alloc_name);
1286 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1288 WARN_ON_ONCE(dentry->d_op);
1289 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1290 DCACHE_OP_COMPARE |
1291 DCACHE_OP_REVALIDATE |
1292 DCACHE_OP_DELETE ));
1293 dentry->d_op = op;
1294 if (!op)
1295 return;
1296 if (op->d_hash)
1297 dentry->d_flags |= DCACHE_OP_HASH;
1298 if (op->d_compare)
1299 dentry->d_flags |= DCACHE_OP_COMPARE;
1300 if (op->d_revalidate)
1301 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1302 if (op->d_delete)
1303 dentry->d_flags |= DCACHE_OP_DELETE;
1304 if (op->d_prune)
1305 dentry->d_flags |= DCACHE_OP_PRUNE;
1308 EXPORT_SYMBOL(d_set_d_op);
1310 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1312 spin_lock(&dentry->d_lock);
1313 if (inode) {
1314 if (unlikely(IS_AUTOMOUNT(inode)))
1315 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1316 list_add(&dentry->d_alias, &inode->i_dentry);
1318 dentry->d_inode = inode;
1319 dentry_rcuwalk_barrier(dentry);
1320 spin_unlock(&dentry->d_lock);
1321 fsnotify_d_instantiate(dentry, inode);
1325 * d_instantiate - fill in inode information for a dentry
1326 * @entry: dentry to complete
1327 * @inode: inode to attach to this dentry
1329 * Fill in inode information in the entry.
1331 * This turns negative dentries into productive full members
1332 * of society.
1334 * NOTE! This assumes that the inode count has been incremented
1335 * (or otherwise set) by the caller to indicate that it is now
1336 * in use by the dcache.
1339 void d_instantiate(struct dentry *entry, struct inode * inode)
1341 BUG_ON(!list_empty(&entry->d_alias));
1342 if (inode)
1343 spin_lock(&inode->i_lock);
1344 __d_instantiate(entry, inode);
1345 if (inode)
1346 spin_unlock(&inode->i_lock);
1347 security_d_instantiate(entry, inode);
1349 EXPORT_SYMBOL(d_instantiate);
1352 * d_instantiate_unique - instantiate a non-aliased dentry
1353 * @entry: dentry to instantiate
1354 * @inode: inode to attach to this dentry
1356 * Fill in inode information in the entry. On success, it returns NULL.
1357 * If an unhashed alias of "entry" already exists, then we return the
1358 * aliased dentry instead and drop one reference to inode.
1360 * Note that in order to avoid conflicts with rename() etc, the caller
1361 * had better be holding the parent directory semaphore.
1363 * This also assumes that the inode count has been incremented
1364 * (or otherwise set) by the caller to indicate that it is now
1365 * in use by the dcache.
1367 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1368 struct inode *inode)
1370 struct dentry *alias;
1371 int len = entry->d_name.len;
1372 const char *name = entry->d_name.name;
1373 unsigned int hash = entry->d_name.hash;
1375 if (!inode) {
1376 __d_instantiate(entry, NULL);
1377 return NULL;
1380 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1381 struct qstr *qstr = &alias->d_name;
1384 * Don't need alias->d_lock here, because aliases with
1385 * d_parent == entry->d_parent are not subject to name or
1386 * parent changes, because the parent inode i_mutex is held.
1388 if (qstr->hash != hash)
1389 continue;
1390 if (alias->d_parent != entry->d_parent)
1391 continue;
1392 if (dentry_cmp(qstr->name, qstr->len, name, len))
1393 continue;
1394 __dget(alias);
1395 return alias;
1398 __d_instantiate(entry, inode);
1399 return NULL;
1402 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1404 struct dentry *result;
1406 BUG_ON(!list_empty(&entry->d_alias));
1408 if (inode)
1409 spin_lock(&inode->i_lock);
1410 result = __d_instantiate_unique(entry, inode);
1411 if (inode)
1412 spin_unlock(&inode->i_lock);
1414 if (!result) {
1415 security_d_instantiate(entry, inode);
1416 return NULL;
1419 BUG_ON(!d_unhashed(result));
1420 iput(inode);
1421 return result;
1424 EXPORT_SYMBOL(d_instantiate_unique);
1427 * d_alloc_root - allocate root dentry
1428 * @root_inode: inode to allocate the root for
1430 * Allocate a root ("/") dentry for the inode given. The inode is
1431 * instantiated and returned. %NULL is returned if there is insufficient
1432 * memory or the inode passed is %NULL.
1435 struct dentry * d_alloc_root(struct inode * root_inode)
1437 struct dentry *res = NULL;
1439 if (root_inode) {
1440 static const struct qstr name = { .name = "/", .len = 1 };
1442 res = __d_alloc(root_inode->i_sb, &name);
1443 if (res)
1444 d_instantiate(res, root_inode);
1446 return res;
1448 EXPORT_SYMBOL(d_alloc_root);
1450 struct dentry *d_make_root(struct inode *root_inode)
1452 struct dentry *res = NULL;
1454 if (root_inode) {
1455 static const struct qstr name = { .name = "/", .len = 1 };
1457 res = __d_alloc(root_inode->i_sb, &name);
1458 if (res)
1459 d_instantiate(res, root_inode);
1460 else
1461 iput(root_inode);
1463 return res;
1465 EXPORT_SYMBOL(d_make_root);
1467 static struct dentry * __d_find_any_alias(struct inode *inode)
1469 struct dentry *alias;
1471 if (list_empty(&inode->i_dentry))
1472 return NULL;
1473 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1474 __dget(alias);
1475 return alias;
1478 static struct dentry * d_find_any_alias(struct inode *inode)
1480 struct dentry *de;
1482 spin_lock(&inode->i_lock);
1483 de = __d_find_any_alias(inode);
1484 spin_unlock(&inode->i_lock);
1485 return de;
1490 * d_obtain_alias - find or allocate a dentry for a given inode
1491 * @inode: inode to allocate the dentry for
1493 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1494 * similar open by handle operations. The returned dentry may be anonymous,
1495 * or may have a full name (if the inode was already in the cache).
1497 * When called on a directory inode, we must ensure that the inode only ever
1498 * has one dentry. If a dentry is found, that is returned instead of
1499 * allocating a new one.
1501 * On successful return, the reference to the inode has been transferred
1502 * to the dentry. In case of an error the reference on the inode is released.
1503 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1504 * be passed in and will be the error will be propagate to the return value,
1505 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1507 struct dentry *d_obtain_alias(struct inode *inode)
1509 static const struct qstr anonstring = { .name = "" };
1510 struct dentry *tmp;
1511 struct dentry *res;
1513 if (!inode)
1514 return ERR_PTR(-ESTALE);
1515 if (IS_ERR(inode))
1516 return ERR_CAST(inode);
1518 res = d_find_any_alias(inode);
1519 if (res)
1520 goto out_iput;
1522 tmp = __d_alloc(inode->i_sb, &anonstring);
1523 if (!tmp) {
1524 res = ERR_PTR(-ENOMEM);
1525 goto out_iput;
1528 spin_lock(&inode->i_lock);
1529 res = __d_find_any_alias(inode);
1530 if (res) {
1531 spin_unlock(&inode->i_lock);
1532 dput(tmp);
1533 goto out_iput;
1536 /* attach a disconnected dentry */
1537 spin_lock(&tmp->d_lock);
1538 tmp->d_inode = inode;
1539 tmp->d_flags |= DCACHE_DISCONNECTED;
1540 list_add(&tmp->d_alias, &inode->i_dentry);
1541 hlist_bl_lock(&tmp->d_sb->s_anon);
1542 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1543 hlist_bl_unlock(&tmp->d_sb->s_anon);
1544 spin_unlock(&tmp->d_lock);
1545 spin_unlock(&inode->i_lock);
1546 security_d_instantiate(tmp, inode);
1548 return tmp;
1550 out_iput:
1551 if (res && !IS_ERR(res))
1552 security_d_instantiate(res, inode);
1553 iput(inode);
1554 return res;
1556 EXPORT_SYMBOL(d_obtain_alias);
1559 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1560 * @inode: the inode which may have a disconnected dentry
1561 * @dentry: a negative dentry which we want to point to the inode.
1563 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1564 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1565 * and return it, else simply d_add the inode to the dentry and return NULL.
1567 * This is needed in the lookup routine of any filesystem that is exportable
1568 * (via knfsd) so that we can build dcache paths to directories effectively.
1570 * If a dentry was found and moved, then it is returned. Otherwise NULL
1571 * is returned. This matches the expected return value of ->lookup.
1574 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1576 struct dentry *new = NULL;
1578 if (IS_ERR(inode))
1579 return ERR_CAST(inode);
1581 if (inode && S_ISDIR(inode->i_mode)) {
1582 spin_lock(&inode->i_lock);
1583 new = __d_find_alias(inode, 1);
1584 if (new) {
1585 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1586 spin_unlock(&inode->i_lock);
1587 security_d_instantiate(new, inode);
1588 d_move(new, dentry);
1589 iput(inode);
1590 } else {
1591 /* already taking inode->i_lock, so d_add() by hand */
1592 __d_instantiate(dentry, inode);
1593 spin_unlock(&inode->i_lock);
1594 security_d_instantiate(dentry, inode);
1595 d_rehash(dentry);
1597 } else
1598 d_add(dentry, inode);
1599 return new;
1601 EXPORT_SYMBOL(d_splice_alias);
1604 * d_add_ci - lookup or allocate new dentry with case-exact name
1605 * @inode: the inode case-insensitive lookup has found
1606 * @dentry: the negative dentry that was passed to the parent's lookup func
1607 * @name: the case-exact name to be associated with the returned dentry
1609 * This is to avoid filling the dcache with case-insensitive names to the
1610 * same inode, only the actual correct case is stored in the dcache for
1611 * case-insensitive filesystems.
1613 * For a case-insensitive lookup match and if the the case-exact dentry
1614 * already exists in in the dcache, use it and return it.
1616 * If no entry exists with the exact case name, allocate new dentry with
1617 * the exact case, and return the spliced entry.
1619 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1620 struct qstr *name)
1622 int error;
1623 struct dentry *found;
1624 struct dentry *new;
1627 * First check if a dentry matching the name already exists,
1628 * if not go ahead and create it now.
1630 found = d_hash_and_lookup(dentry->d_parent, name);
1631 if (!found) {
1632 new = d_alloc(dentry->d_parent, name);
1633 if (!new) {
1634 error = -ENOMEM;
1635 goto err_out;
1638 found = d_splice_alias(inode, new);
1639 if (found) {
1640 dput(new);
1641 return found;
1643 return new;
1647 * If a matching dentry exists, and it's not negative use it.
1649 * Decrement the reference count to balance the iget() done
1650 * earlier on.
1652 if (found->d_inode) {
1653 if (unlikely(found->d_inode != inode)) {
1654 /* This can't happen because bad inodes are unhashed. */
1655 BUG_ON(!is_bad_inode(inode));
1656 BUG_ON(!is_bad_inode(found->d_inode));
1658 iput(inode);
1659 return found;
1663 * We are going to instantiate this dentry, unhash it and clear the
1664 * lookup flag so we can do that.
1666 if (unlikely(d_need_lookup(found)))
1667 d_clear_need_lookup(found);
1670 * Negative dentry: instantiate it unless the inode is a directory and
1671 * already has a dentry.
1673 new = d_splice_alias(inode, found);
1674 if (new) {
1675 dput(found);
1676 found = new;
1678 return found;
1680 err_out:
1681 iput(inode);
1682 return ERR_PTR(error);
1684 EXPORT_SYMBOL(d_add_ci);
1687 * __d_lookup_rcu - search for a dentry (racy, store-free)
1688 * @parent: parent dentry
1689 * @name: qstr of name we wish to find
1690 * @seq: returns d_seq value at the point where the dentry was found
1691 * @inode: returns dentry->d_inode when the inode was found valid.
1692 * Returns: dentry, or NULL
1694 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1695 * resolution (store-free path walking) design described in
1696 * Documentation/filesystems/path-lookup.txt.
1698 * This is not to be used outside core vfs.
1700 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1701 * held, and rcu_read_lock held. The returned dentry must not be stored into
1702 * without taking d_lock and checking d_seq sequence count against @seq
1703 * returned here.
1705 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1706 * function.
1708 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1709 * the returned dentry, so long as its parent's seqlock is checked after the
1710 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1711 * is formed, giving integrity down the path walk.
1713 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1714 unsigned *seq, struct inode **inode)
1716 unsigned int len = name->len;
1717 unsigned int hash = name->hash;
1718 const unsigned char *str = name->name;
1719 struct hlist_bl_head *b = d_hash(parent, hash);
1720 struct hlist_bl_node *node;
1721 struct dentry *dentry;
1724 * Note: There is significant duplication with __d_lookup_rcu which is
1725 * required to prevent single threaded performance regressions
1726 * especially on architectures where smp_rmb (in seqcounts) are costly.
1727 * Keep the two functions in sync.
1731 * The hash list is protected using RCU.
1733 * Carefully use d_seq when comparing a candidate dentry, to avoid
1734 * races with d_move().
1736 * It is possible that concurrent renames can mess up our list
1737 * walk here and result in missing our dentry, resulting in the
1738 * false-negative result. d_lookup() protects against concurrent
1739 * renames using rename_lock seqlock.
1741 * See Documentation/filesystems/path-lookup.txt for more details.
1743 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1744 struct inode *i;
1745 const char *tname;
1746 int tlen;
1748 if (dentry->d_name.hash != hash)
1749 continue;
1751 seqretry:
1752 *seq = read_seqcount_begin(&dentry->d_seq);
1753 if (dentry->d_parent != parent)
1754 continue;
1755 if (d_unhashed(dentry))
1756 continue;
1757 tlen = dentry->d_name.len;
1758 tname = dentry->d_name.name;
1759 i = dentry->d_inode;
1760 prefetch(tname);
1762 * This seqcount check is required to ensure name and
1763 * len are loaded atomically, so as not to walk off the
1764 * edge of memory when walking. If we could load this
1765 * atomically some other way, we could drop this check.
1767 if (read_seqcount_retry(&dentry->d_seq, *seq))
1768 goto seqretry;
1769 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1770 if (parent->d_op->d_compare(parent, *inode,
1771 dentry, i,
1772 tlen, tname, name))
1773 continue;
1774 } else {
1775 if (dentry_cmp(tname, tlen, str, len))
1776 continue;
1779 * No extra seqcount check is required after the name
1780 * compare. The caller must perform a seqcount check in
1781 * order to do anything useful with the returned dentry
1782 * anyway.
1784 *inode = i;
1785 return dentry;
1787 return NULL;
1791 * d_lookup - search for a dentry
1792 * @parent: parent dentry
1793 * @name: qstr of name we wish to find
1794 * Returns: dentry, or NULL
1796 * d_lookup searches the children of the parent dentry for the name in
1797 * question. If the dentry is found its reference count is incremented and the
1798 * dentry is returned. The caller must use dput to free the entry when it has
1799 * finished using it. %NULL is returned if the dentry does not exist.
1801 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1803 struct dentry *dentry;
1804 unsigned seq;
1806 do {
1807 seq = read_seqbegin(&rename_lock);
1808 dentry = __d_lookup(parent, name);
1809 if (dentry)
1810 break;
1811 } while (read_seqretry(&rename_lock, seq));
1812 return dentry;
1814 EXPORT_SYMBOL(d_lookup);
1817 * __d_lookup - search for a dentry (racy)
1818 * @parent: parent dentry
1819 * @name: qstr of name we wish to find
1820 * Returns: dentry, or NULL
1822 * __d_lookup is like d_lookup, however it may (rarely) return a
1823 * false-negative result due to unrelated rename activity.
1825 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1826 * however it must be used carefully, eg. with a following d_lookup in
1827 * the case of failure.
1829 * __d_lookup callers must be commented.
1831 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1833 unsigned int len = name->len;
1834 unsigned int hash = name->hash;
1835 const unsigned char *str = name->name;
1836 struct hlist_bl_head *b = d_hash(parent, hash);
1837 struct hlist_bl_node *node;
1838 struct dentry *found = NULL;
1839 struct dentry *dentry;
1842 * Note: There is significant duplication with __d_lookup_rcu which is
1843 * required to prevent single threaded performance regressions
1844 * especially on architectures where smp_rmb (in seqcounts) are costly.
1845 * Keep the two functions in sync.
1849 * The hash list is protected using RCU.
1851 * Take d_lock when comparing a candidate dentry, to avoid races
1852 * with d_move().
1854 * It is possible that concurrent renames can mess up our list
1855 * walk here and result in missing our dentry, resulting in the
1856 * false-negative result. d_lookup() protects against concurrent
1857 * renames using rename_lock seqlock.
1859 * See Documentation/filesystems/path-lookup.txt for more details.
1861 rcu_read_lock();
1863 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1864 const char *tname;
1865 int tlen;
1867 if (dentry->d_name.hash != hash)
1868 continue;
1870 spin_lock(&dentry->d_lock);
1871 if (dentry->d_parent != parent)
1872 goto next;
1873 if (d_unhashed(dentry))
1874 goto next;
1877 * It is safe to compare names since d_move() cannot
1878 * change the qstr (protected by d_lock).
1880 tlen = dentry->d_name.len;
1881 tname = dentry->d_name.name;
1882 if (parent->d_flags & DCACHE_OP_COMPARE) {
1883 if (parent->d_op->d_compare(parent, parent->d_inode,
1884 dentry, dentry->d_inode,
1885 tlen, tname, name))
1886 goto next;
1887 } else {
1888 if (dentry_cmp(tname, tlen, str, len))
1889 goto next;
1892 dentry->d_count++;
1893 found = dentry;
1894 spin_unlock(&dentry->d_lock);
1895 break;
1896 next:
1897 spin_unlock(&dentry->d_lock);
1899 rcu_read_unlock();
1901 return found;
1905 * d_hash_and_lookup - hash the qstr then search for a dentry
1906 * @dir: Directory to search in
1907 * @name: qstr of name we wish to find
1909 * On hash failure or on lookup failure NULL is returned.
1911 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1913 struct dentry *dentry = NULL;
1916 * Check for a fs-specific hash function. Note that we must
1917 * calculate the standard hash first, as the d_op->d_hash()
1918 * routine may choose to leave the hash value unchanged.
1920 name->hash = full_name_hash(name->name, name->len);
1921 if (dir->d_flags & DCACHE_OP_HASH) {
1922 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1923 goto out;
1925 dentry = d_lookup(dir, name);
1926 out:
1927 return dentry;
1931 * d_validate - verify dentry provided from insecure source (deprecated)
1932 * @dentry: The dentry alleged to be valid child of @dparent
1933 * @dparent: The parent dentry (known to be valid)
1935 * An insecure source has sent us a dentry, here we verify it and dget() it.
1936 * This is used by ncpfs in its readdir implementation.
1937 * Zero is returned in the dentry is invalid.
1939 * This function is slow for big directories, and deprecated, do not use it.
1941 int d_validate(struct dentry *dentry, struct dentry *dparent)
1943 struct dentry *child;
1945 spin_lock(&dparent->d_lock);
1946 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1947 if (dentry == child) {
1948 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1949 __dget_dlock(dentry);
1950 spin_unlock(&dentry->d_lock);
1951 spin_unlock(&dparent->d_lock);
1952 return 1;
1955 spin_unlock(&dparent->d_lock);
1957 return 0;
1959 EXPORT_SYMBOL(d_validate);
1962 * When a file is deleted, we have two options:
1963 * - turn this dentry into a negative dentry
1964 * - unhash this dentry and free it.
1966 * Usually, we want to just turn this into
1967 * a negative dentry, but if anybody else is
1968 * currently using the dentry or the inode
1969 * we can't do that and we fall back on removing
1970 * it from the hash queues and waiting for
1971 * it to be deleted later when it has no users
1975 * d_delete - delete a dentry
1976 * @dentry: The dentry to delete
1978 * Turn the dentry into a negative dentry if possible, otherwise
1979 * remove it from the hash queues so it can be deleted later
1982 void d_delete(struct dentry * dentry)
1984 struct inode *inode;
1985 int isdir = 0;
1987 * Are we the only user?
1989 again:
1990 spin_lock(&dentry->d_lock);
1991 inode = dentry->d_inode;
1992 isdir = S_ISDIR(inode->i_mode);
1993 if (dentry->d_count == 1) {
1994 if (inode && !spin_trylock(&inode->i_lock)) {
1995 spin_unlock(&dentry->d_lock);
1996 cpu_relax();
1997 goto again;
1999 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2000 dentry_unlink_inode(dentry);
2001 fsnotify_nameremove(dentry, isdir);
2002 return;
2005 if (!d_unhashed(dentry))
2006 __d_drop(dentry);
2008 spin_unlock(&dentry->d_lock);
2010 fsnotify_nameremove(dentry, isdir);
2012 EXPORT_SYMBOL(d_delete);
2014 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2016 BUG_ON(!d_unhashed(entry));
2017 hlist_bl_lock(b);
2018 entry->d_flags |= DCACHE_RCUACCESS;
2019 hlist_bl_add_head_rcu(&entry->d_hash, b);
2020 hlist_bl_unlock(b);
2023 static void _d_rehash(struct dentry * entry)
2025 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2029 * d_rehash - add an entry back to the hash
2030 * @entry: dentry to add to the hash
2032 * Adds a dentry to the hash according to its name.
2035 void d_rehash(struct dentry * entry)
2037 spin_lock(&entry->d_lock);
2038 _d_rehash(entry);
2039 spin_unlock(&entry->d_lock);
2041 EXPORT_SYMBOL(d_rehash);
2044 * dentry_update_name_case - update case insensitive dentry with a new name
2045 * @dentry: dentry to be updated
2046 * @name: new name
2048 * Update a case insensitive dentry with new case of name.
2050 * dentry must have been returned by d_lookup with name @name. Old and new
2051 * name lengths must match (ie. no d_compare which allows mismatched name
2052 * lengths).
2054 * Parent inode i_mutex must be held over d_lookup and into this call (to
2055 * keep renames and concurrent inserts, and readdir(2) away).
2057 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2059 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2060 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2062 spin_lock(&dentry->d_lock);
2063 write_seqcount_begin(&dentry->d_seq);
2064 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2065 write_seqcount_end(&dentry->d_seq);
2066 spin_unlock(&dentry->d_lock);
2068 EXPORT_SYMBOL(dentry_update_name_case);
2070 static void switch_names(struct dentry *dentry, struct dentry *target)
2072 if (dname_external(target)) {
2073 if (dname_external(dentry)) {
2075 * Both external: swap the pointers
2077 swap(target->d_name.name, dentry->d_name.name);
2078 } else {
2080 * dentry:internal, target:external. Steal target's
2081 * storage and make target internal.
2083 memcpy(target->d_iname, dentry->d_name.name,
2084 dentry->d_name.len + 1);
2085 dentry->d_name.name = target->d_name.name;
2086 target->d_name.name = target->d_iname;
2088 } else {
2089 if (dname_external(dentry)) {
2091 * dentry:external, target:internal. Give dentry's
2092 * storage to target and make dentry internal
2094 memcpy(dentry->d_iname, target->d_name.name,
2095 target->d_name.len + 1);
2096 target->d_name.name = dentry->d_name.name;
2097 dentry->d_name.name = dentry->d_iname;
2098 } else {
2100 * Both are internal. Just copy target to dentry
2102 memcpy(dentry->d_iname, target->d_name.name,
2103 target->d_name.len + 1);
2104 dentry->d_name.len = target->d_name.len;
2105 return;
2108 swap(dentry->d_name.len, target->d_name.len);
2111 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2114 * XXXX: do we really need to take target->d_lock?
2116 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2117 spin_lock(&target->d_parent->d_lock);
2118 else {
2119 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2120 spin_lock(&dentry->d_parent->d_lock);
2121 spin_lock_nested(&target->d_parent->d_lock,
2122 DENTRY_D_LOCK_NESTED);
2123 } else {
2124 spin_lock(&target->d_parent->d_lock);
2125 spin_lock_nested(&dentry->d_parent->d_lock,
2126 DENTRY_D_LOCK_NESTED);
2129 if (target < dentry) {
2130 spin_lock_nested(&target->d_lock, 2);
2131 spin_lock_nested(&dentry->d_lock, 3);
2132 } else {
2133 spin_lock_nested(&dentry->d_lock, 2);
2134 spin_lock_nested(&target->d_lock, 3);
2138 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2139 struct dentry *target)
2141 if (target->d_parent != dentry->d_parent)
2142 spin_unlock(&dentry->d_parent->d_lock);
2143 if (target->d_parent != target)
2144 spin_unlock(&target->d_parent->d_lock);
2148 * When switching names, the actual string doesn't strictly have to
2149 * be preserved in the target - because we're dropping the target
2150 * anyway. As such, we can just do a simple memcpy() to copy over
2151 * the new name before we switch.
2153 * Note that we have to be a lot more careful about getting the hash
2154 * switched - we have to switch the hash value properly even if it
2155 * then no longer matches the actual (corrupted) string of the target.
2156 * The hash value has to match the hash queue that the dentry is on..
2159 * __d_move - move a dentry
2160 * @dentry: entry to move
2161 * @target: new dentry
2163 * Update the dcache to reflect the move of a file name. Negative
2164 * dcache entries should not be moved in this way. Caller must hold
2165 * rename_lock, the i_mutex of the source and target directories,
2166 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2168 static void __d_move(struct dentry * dentry, struct dentry * target)
2170 if (!dentry->d_inode)
2171 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2173 BUG_ON(d_ancestor(dentry, target));
2174 BUG_ON(d_ancestor(target, dentry));
2176 dentry_lock_for_move(dentry, target);
2178 write_seqcount_begin(&dentry->d_seq);
2179 write_seqcount_begin(&target->d_seq);
2181 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2184 * Move the dentry to the target hash queue. Don't bother checking
2185 * for the same hash queue because of how unlikely it is.
2187 __d_drop(dentry);
2188 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2190 /* Unhash the target: dput() will then get rid of it */
2191 __d_drop(target);
2193 list_del(&dentry->d_u.d_child);
2194 list_del(&target->d_u.d_child);
2196 /* Switch the names.. */
2197 switch_names(dentry, target);
2198 swap(dentry->d_name.hash, target->d_name.hash);
2200 /* ... and switch the parents */
2201 if (IS_ROOT(dentry)) {
2202 dentry->d_parent = target->d_parent;
2203 target->d_parent = target;
2204 INIT_LIST_HEAD(&target->d_u.d_child);
2205 } else {
2206 swap(dentry->d_parent, target->d_parent);
2208 /* And add them back to the (new) parent lists */
2209 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2212 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2214 write_seqcount_end(&target->d_seq);
2215 write_seqcount_end(&dentry->d_seq);
2217 dentry_unlock_parents_for_move(dentry, target);
2218 spin_unlock(&target->d_lock);
2219 fsnotify_d_move(dentry);
2220 spin_unlock(&dentry->d_lock);
2224 * d_move - move a dentry
2225 * @dentry: entry to move
2226 * @target: new dentry
2228 * Update the dcache to reflect the move of a file name. Negative
2229 * dcache entries should not be moved in this way. See the locking
2230 * requirements for __d_move.
2232 void d_move(struct dentry *dentry, struct dentry *target)
2234 write_seqlock(&rename_lock);
2235 __d_move(dentry, target);
2236 write_sequnlock(&rename_lock);
2238 EXPORT_SYMBOL(d_move);
2241 * d_ancestor - search for an ancestor
2242 * @p1: ancestor dentry
2243 * @p2: child dentry
2245 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2246 * an ancestor of p2, else NULL.
2248 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2250 struct dentry *p;
2252 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2253 if (p->d_parent == p1)
2254 return p;
2256 return NULL;
2260 * This helper attempts to cope with remotely renamed directories
2262 * It assumes that the caller is already holding
2263 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2265 * Note: If ever the locking in lock_rename() changes, then please
2266 * remember to update this too...
2268 static struct dentry *__d_unalias(struct inode *inode,
2269 struct dentry *dentry, struct dentry *alias)
2271 struct mutex *m1 = NULL, *m2 = NULL;
2272 struct dentry *ret;
2274 /* If alias and dentry share a parent, then no extra locks required */
2275 if (alias->d_parent == dentry->d_parent)
2276 goto out_unalias;
2278 /* See lock_rename() */
2279 ret = ERR_PTR(-EBUSY);
2280 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2281 goto out_err;
2282 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2283 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2284 goto out_err;
2285 m2 = &alias->d_parent->d_inode->i_mutex;
2286 out_unalias:
2287 __d_move(alias, dentry);
2288 ret = alias;
2289 out_err:
2290 spin_unlock(&inode->i_lock);
2291 if (m2)
2292 mutex_unlock(m2);
2293 if (m1)
2294 mutex_unlock(m1);
2295 return ret;
2299 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2300 * named dentry in place of the dentry to be replaced.
2301 * returns with anon->d_lock held!
2303 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2305 struct dentry *dparent, *aparent;
2307 dentry_lock_for_move(anon, dentry);
2309 write_seqcount_begin(&dentry->d_seq);
2310 write_seqcount_begin(&anon->d_seq);
2312 dparent = dentry->d_parent;
2313 aparent = anon->d_parent;
2315 switch_names(dentry, anon);
2316 swap(dentry->d_name.hash, anon->d_name.hash);
2318 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2319 list_del(&dentry->d_u.d_child);
2320 if (!IS_ROOT(dentry))
2321 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2322 else
2323 INIT_LIST_HEAD(&dentry->d_u.d_child);
2325 anon->d_parent = (dparent == dentry) ? anon : dparent;
2326 list_del(&anon->d_u.d_child);
2327 if (!IS_ROOT(anon))
2328 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2329 else
2330 INIT_LIST_HEAD(&anon->d_u.d_child);
2332 write_seqcount_end(&dentry->d_seq);
2333 write_seqcount_end(&anon->d_seq);
2335 dentry_unlock_parents_for_move(anon, dentry);
2336 spin_unlock(&dentry->d_lock);
2338 /* anon->d_lock still locked, returns locked */
2339 anon->d_flags &= ~DCACHE_DISCONNECTED;
2343 * d_materialise_unique - introduce an inode into the tree
2344 * @dentry: candidate dentry
2345 * @inode: inode to bind to the dentry, to which aliases may be attached
2347 * Introduces an dentry into the tree, substituting an extant disconnected
2348 * root directory alias in its place if there is one. Caller must hold the
2349 * i_mutex of the parent directory.
2351 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2353 struct dentry *actual;
2355 BUG_ON(!d_unhashed(dentry));
2357 if (!inode) {
2358 actual = dentry;
2359 __d_instantiate(dentry, NULL);
2360 d_rehash(actual);
2361 goto out_nolock;
2364 spin_lock(&inode->i_lock);
2366 if (S_ISDIR(inode->i_mode)) {
2367 struct dentry *alias;
2369 /* Does an aliased dentry already exist? */
2370 alias = __d_find_alias(inode, 0);
2371 if (alias) {
2372 actual = alias;
2373 write_seqlock(&rename_lock);
2375 if (d_ancestor(alias, dentry)) {
2376 /* Check for loops */
2377 actual = ERR_PTR(-ELOOP);
2378 } else if (IS_ROOT(alias)) {
2379 /* Is this an anonymous mountpoint that we
2380 * could splice into our tree? */
2381 __d_materialise_dentry(dentry, alias);
2382 write_sequnlock(&rename_lock);
2383 __d_drop(alias);
2384 goto found;
2385 } else {
2386 /* Nope, but we must(!) avoid directory
2387 * aliasing */
2388 actual = __d_unalias(inode, dentry, alias);
2390 write_sequnlock(&rename_lock);
2391 if (IS_ERR(actual)) {
2392 if (PTR_ERR(actual) == -ELOOP)
2393 pr_warn_ratelimited(
2394 "VFS: Lookup of '%s' in %s %s"
2395 " would have caused loop\n",
2396 dentry->d_name.name,
2397 inode->i_sb->s_type->name,
2398 inode->i_sb->s_id);
2399 dput(alias);
2401 goto out_nolock;
2405 /* Add a unique reference */
2406 actual = __d_instantiate_unique(dentry, inode);
2407 if (!actual)
2408 actual = dentry;
2409 else
2410 BUG_ON(!d_unhashed(actual));
2412 spin_lock(&actual->d_lock);
2413 found:
2414 _d_rehash(actual);
2415 spin_unlock(&actual->d_lock);
2416 spin_unlock(&inode->i_lock);
2417 out_nolock:
2418 if (actual == dentry) {
2419 security_d_instantiate(dentry, inode);
2420 return NULL;
2423 iput(inode);
2424 return actual;
2426 EXPORT_SYMBOL_GPL(d_materialise_unique);
2428 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2430 *buflen -= namelen;
2431 if (*buflen < 0)
2432 return -ENAMETOOLONG;
2433 *buffer -= namelen;
2434 memcpy(*buffer, str, namelen);
2435 return 0;
2438 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2440 return prepend(buffer, buflen, name->name, name->len);
2444 * prepend_path - Prepend path string to a buffer
2445 * @path: the dentry/vfsmount to report
2446 * @root: root vfsmnt/dentry
2447 * @buffer: pointer to the end of the buffer
2448 * @buflen: pointer to buffer length
2450 * Caller holds the rename_lock.
2452 static int prepend_path(const struct path *path,
2453 const struct path *root,
2454 char **buffer, int *buflen)
2456 struct dentry *dentry = path->dentry;
2457 struct vfsmount *vfsmnt = path->mnt;
2458 struct mount *mnt = real_mount(vfsmnt);
2459 bool slash = false;
2460 int error = 0;
2462 br_read_lock(vfsmount_lock);
2463 while (dentry != root->dentry || vfsmnt != root->mnt) {
2464 struct dentry * parent;
2466 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2467 /* Global root? */
2468 if (!mnt_has_parent(mnt))
2469 goto global_root;
2470 dentry = mnt->mnt_mountpoint;
2471 mnt = mnt->mnt_parent;
2472 vfsmnt = &mnt->mnt;
2473 continue;
2475 parent = dentry->d_parent;
2476 prefetch(parent);
2477 spin_lock(&dentry->d_lock);
2478 error = prepend_name(buffer, buflen, &dentry->d_name);
2479 spin_unlock(&dentry->d_lock);
2480 if (!error)
2481 error = prepend(buffer, buflen, "/", 1);
2482 if (error)
2483 break;
2485 slash = true;
2486 dentry = parent;
2489 if (!error && !slash)
2490 error = prepend(buffer, buflen, "/", 1);
2492 out:
2493 br_read_unlock(vfsmount_lock);
2494 return error;
2496 global_root:
2498 * Filesystems needing to implement special "root names"
2499 * should do so with ->d_dname()
2501 if (IS_ROOT(dentry) &&
2502 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2503 WARN(1, "Root dentry has weird name <%.*s>\n",
2504 (int) dentry->d_name.len, dentry->d_name.name);
2506 if (!slash)
2507 error = prepend(buffer, buflen, "/", 1);
2508 if (!error)
2509 error = real_mount(vfsmnt)->mnt_ns ? 1 : 2;
2510 goto out;
2514 * __d_path - return the path of a dentry
2515 * @path: the dentry/vfsmount to report
2516 * @root: root vfsmnt/dentry
2517 * @buf: buffer to return value in
2518 * @buflen: buffer length
2520 * Convert a dentry into an ASCII path name.
2522 * Returns a pointer into the buffer or an error code if the
2523 * path was too long.
2525 * "buflen" should be positive.
2527 * If the path is not reachable from the supplied root, return %NULL.
2529 char *__d_path(const struct path *path,
2530 const struct path *root,
2531 char *buf, int buflen)
2533 char *res = buf + buflen;
2534 int error;
2536 prepend(&res, &buflen, "\0", 1);
2537 write_seqlock(&rename_lock);
2538 error = prepend_path(path, root, &res, &buflen);
2539 write_sequnlock(&rename_lock);
2541 if (error < 0)
2542 return ERR_PTR(error);
2543 if (error > 0)
2544 return NULL;
2545 return res;
2548 char *d_absolute_path(const struct path *path,
2549 char *buf, int buflen)
2551 struct path root = {};
2552 char *res = buf + buflen;
2553 int error;
2555 prepend(&res, &buflen, "\0", 1);
2556 write_seqlock(&rename_lock);
2557 error = prepend_path(path, &root, &res, &buflen);
2558 write_sequnlock(&rename_lock);
2560 if (error > 1)
2561 error = -EINVAL;
2562 if (error < 0)
2563 return ERR_PTR(error);
2564 return res;
2568 * same as __d_path but appends "(deleted)" for unlinked files.
2570 static int path_with_deleted(const struct path *path,
2571 const struct path *root,
2572 char **buf, int *buflen)
2574 prepend(buf, buflen, "\0", 1);
2575 if (d_unlinked(path->dentry)) {
2576 int error = prepend(buf, buflen, " (deleted)", 10);
2577 if (error)
2578 return error;
2581 return prepend_path(path, root, buf, buflen);
2584 static int prepend_unreachable(char **buffer, int *buflen)
2586 return prepend(buffer, buflen, "(unreachable)", 13);
2590 * d_path - return the path of a dentry
2591 * @path: path to report
2592 * @buf: buffer to return value in
2593 * @buflen: buffer length
2595 * Convert a dentry into an ASCII path name. If the entry has been deleted
2596 * the string " (deleted)" is appended. Note that this is ambiguous.
2598 * Returns a pointer into the buffer or an error code if the path was
2599 * too long. Note: Callers should use the returned pointer, not the passed
2600 * in buffer, to use the name! The implementation often starts at an offset
2601 * into the buffer, and may leave 0 bytes at the start.
2603 * "buflen" should be positive.
2605 char *d_path(const struct path *path, char *buf, int buflen)
2607 char *res = buf + buflen;
2608 struct path root;
2609 int error;
2612 * We have various synthetic filesystems that never get mounted. On
2613 * these filesystems dentries are never used for lookup purposes, and
2614 * thus don't need to be hashed. They also don't need a name until a
2615 * user wants to identify the object in /proc/pid/fd/. The little hack
2616 * below allows us to generate a name for these objects on demand:
2618 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2619 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2621 get_fs_root(current->fs, &root);
2622 write_seqlock(&rename_lock);
2623 error = path_with_deleted(path, &root, &res, &buflen);
2624 if (error < 0)
2625 res = ERR_PTR(error);
2626 write_sequnlock(&rename_lock);
2627 path_put(&root);
2628 return res;
2630 EXPORT_SYMBOL(d_path);
2633 * d_path_with_unreachable - return the path of a dentry
2634 * @path: path to report
2635 * @buf: buffer to return value in
2636 * @buflen: buffer length
2638 * The difference from d_path() is that this prepends "(unreachable)"
2639 * to paths which are unreachable from the current process' root.
2641 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2643 char *res = buf + buflen;
2644 struct path root;
2645 int error;
2647 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2648 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2650 get_fs_root(current->fs, &root);
2651 write_seqlock(&rename_lock);
2652 error = path_with_deleted(path, &root, &res, &buflen);
2653 if (error > 0)
2654 error = prepend_unreachable(&res, &buflen);
2655 write_sequnlock(&rename_lock);
2656 path_put(&root);
2657 if (error)
2658 res = ERR_PTR(error);
2660 return res;
2664 * Helper function for dentry_operations.d_dname() members
2666 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2667 const char *fmt, ...)
2669 va_list args;
2670 char temp[64];
2671 int sz;
2673 va_start(args, fmt);
2674 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2675 va_end(args);
2677 if (sz > sizeof(temp) || sz > buflen)
2678 return ERR_PTR(-ENAMETOOLONG);
2680 buffer += buflen - sz;
2681 return memcpy(buffer, temp, sz);
2685 * Write full pathname from the root of the filesystem into the buffer.
2687 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2689 char *end = buf + buflen;
2690 char *retval;
2692 prepend(&end, &buflen, "\0", 1);
2693 if (buflen < 1)
2694 goto Elong;
2695 /* Get '/' right */
2696 retval = end-1;
2697 *retval = '/';
2699 while (!IS_ROOT(dentry)) {
2700 struct dentry *parent = dentry->d_parent;
2701 int error;
2703 prefetch(parent);
2704 spin_lock(&dentry->d_lock);
2705 error = prepend_name(&end, &buflen, &dentry->d_name);
2706 spin_unlock(&dentry->d_lock);
2707 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2708 goto Elong;
2710 retval = end;
2711 dentry = parent;
2713 return retval;
2714 Elong:
2715 return ERR_PTR(-ENAMETOOLONG);
2718 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2720 char *retval;
2722 write_seqlock(&rename_lock);
2723 retval = __dentry_path(dentry, buf, buflen);
2724 write_sequnlock(&rename_lock);
2726 return retval;
2728 EXPORT_SYMBOL(dentry_path_raw);
2730 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2732 char *p = NULL;
2733 char *retval;
2735 write_seqlock(&rename_lock);
2736 if (d_unlinked(dentry)) {
2737 p = buf + buflen;
2738 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2739 goto Elong;
2740 buflen++;
2742 retval = __dentry_path(dentry, buf, buflen);
2743 write_sequnlock(&rename_lock);
2744 if (!IS_ERR(retval) && p)
2745 *p = '/'; /* restore '/' overriden with '\0' */
2746 return retval;
2747 Elong:
2748 return ERR_PTR(-ENAMETOOLONG);
2752 * NOTE! The user-level library version returns a
2753 * character pointer. The kernel system call just
2754 * returns the length of the buffer filled (which
2755 * includes the ending '\0' character), or a negative
2756 * error value. So libc would do something like
2758 * char *getcwd(char * buf, size_t size)
2760 * int retval;
2762 * retval = sys_getcwd(buf, size);
2763 * if (retval >= 0)
2764 * return buf;
2765 * errno = -retval;
2766 * return NULL;
2769 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2771 int error;
2772 struct path pwd, root;
2773 char *page = (char *) __get_free_page(GFP_USER);
2775 if (!page)
2776 return -ENOMEM;
2778 get_fs_root_and_pwd(current->fs, &root, &pwd);
2780 error = -ENOENT;
2781 write_seqlock(&rename_lock);
2782 if (!d_unlinked(pwd.dentry)) {
2783 unsigned long len;
2784 char *cwd = page + PAGE_SIZE;
2785 int buflen = PAGE_SIZE;
2787 prepend(&cwd, &buflen, "\0", 1);
2788 error = prepend_path(&pwd, &root, &cwd, &buflen);
2789 write_sequnlock(&rename_lock);
2791 if (error < 0)
2792 goto out;
2794 /* Unreachable from current root */
2795 if (error > 0) {
2796 error = prepend_unreachable(&cwd, &buflen);
2797 if (error)
2798 goto out;
2801 error = -ERANGE;
2802 len = PAGE_SIZE + page - cwd;
2803 if (len <= size) {
2804 error = len;
2805 if (copy_to_user(buf, cwd, len))
2806 error = -EFAULT;
2808 } else {
2809 write_sequnlock(&rename_lock);
2812 out:
2813 path_put(&pwd);
2814 path_put(&root);
2815 free_page((unsigned long) page);
2816 return error;
2820 * Test whether new_dentry is a subdirectory of old_dentry.
2822 * Trivially implemented using the dcache structure
2826 * is_subdir - is new dentry a subdirectory of old_dentry
2827 * @new_dentry: new dentry
2828 * @old_dentry: old dentry
2830 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2831 * Returns 0 otherwise.
2832 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2835 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2837 int result;
2838 unsigned seq;
2840 if (new_dentry == old_dentry)
2841 return 1;
2843 do {
2844 /* for restarting inner loop in case of seq retry */
2845 seq = read_seqbegin(&rename_lock);
2847 * Need rcu_readlock to protect against the d_parent trashing
2848 * due to d_move
2850 rcu_read_lock();
2851 if (d_ancestor(old_dentry, new_dentry))
2852 result = 1;
2853 else
2854 result = 0;
2855 rcu_read_unlock();
2856 } while (read_seqretry(&rename_lock, seq));
2858 return result;
2861 void d_genocide(struct dentry *root)
2863 struct dentry *this_parent;
2864 struct list_head *next;
2865 unsigned seq;
2866 int locked = 0;
2868 seq = read_seqbegin(&rename_lock);
2869 again:
2870 this_parent = root;
2871 spin_lock(&this_parent->d_lock);
2872 repeat:
2873 next = this_parent->d_subdirs.next;
2874 resume:
2875 while (next != &this_parent->d_subdirs) {
2876 struct list_head *tmp = next;
2877 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2878 next = tmp->next;
2880 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2881 if (d_unhashed(dentry) || !dentry->d_inode) {
2882 spin_unlock(&dentry->d_lock);
2883 continue;
2885 if (!list_empty(&dentry->d_subdirs)) {
2886 spin_unlock(&this_parent->d_lock);
2887 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2888 this_parent = dentry;
2889 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2890 goto repeat;
2892 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2893 dentry->d_flags |= DCACHE_GENOCIDE;
2894 dentry->d_count--;
2896 spin_unlock(&dentry->d_lock);
2898 if (this_parent != root) {
2899 struct dentry *child = this_parent;
2900 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2901 this_parent->d_flags |= DCACHE_GENOCIDE;
2902 this_parent->d_count--;
2904 this_parent = try_to_ascend(this_parent, locked, seq);
2905 if (!this_parent)
2906 goto rename_retry;
2907 next = child->d_u.d_child.next;
2908 goto resume;
2910 spin_unlock(&this_parent->d_lock);
2911 if (!locked && read_seqretry(&rename_lock, seq))
2912 goto rename_retry;
2913 if (locked)
2914 write_sequnlock(&rename_lock);
2915 return;
2917 rename_retry:
2918 locked = 1;
2919 write_seqlock(&rename_lock);
2920 goto again;
2924 * find_inode_number - check for dentry with name
2925 * @dir: directory to check
2926 * @name: Name to find.
2928 * Check whether a dentry already exists for the given name,
2929 * and return the inode number if it has an inode. Otherwise
2930 * 0 is returned.
2932 * This routine is used to post-process directory listings for
2933 * filesystems using synthetic inode numbers, and is necessary
2934 * to keep getcwd() working.
2937 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2939 struct dentry * dentry;
2940 ino_t ino = 0;
2942 dentry = d_hash_and_lookup(dir, name);
2943 if (dentry) {
2944 if (dentry->d_inode)
2945 ino = dentry->d_inode->i_ino;
2946 dput(dentry);
2948 return ino;
2950 EXPORT_SYMBOL(find_inode_number);
2952 static __initdata unsigned long dhash_entries;
2953 static int __init set_dhash_entries(char *str)
2955 if (!str)
2956 return 0;
2957 dhash_entries = simple_strtoul(str, &str, 0);
2958 return 1;
2960 __setup("dhash_entries=", set_dhash_entries);
2962 static void __init dcache_init_early(void)
2964 int loop;
2966 /* If hashes are distributed across NUMA nodes, defer
2967 * hash allocation until vmalloc space is available.
2969 if (hashdist)
2970 return;
2972 dentry_hashtable =
2973 alloc_large_system_hash("Dentry cache",
2974 sizeof(struct hlist_bl_head),
2975 dhash_entries,
2977 HASH_EARLY,
2978 &d_hash_shift,
2979 &d_hash_mask,
2982 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2983 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
2986 static void __init dcache_init(void)
2988 int loop;
2991 * A constructor could be added for stable state like the lists,
2992 * but it is probably not worth it because of the cache nature
2993 * of the dcache.
2995 dentry_cache = KMEM_CACHE(dentry,
2996 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2998 /* Hash may have been set up in dcache_init_early */
2999 if (!hashdist)
3000 return;
3002 dentry_hashtable =
3003 alloc_large_system_hash("Dentry cache",
3004 sizeof(struct hlist_bl_head),
3005 dhash_entries,
3008 &d_hash_shift,
3009 &d_hash_mask,
3012 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3013 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3016 /* SLAB cache for __getname() consumers */
3017 struct kmem_cache *names_cachep __read_mostly;
3018 EXPORT_SYMBOL(names_cachep);
3020 EXPORT_SYMBOL(d_genocide);
3022 void __init vfs_caches_init_early(void)
3024 dcache_init_early();
3025 inode_init_early();
3028 void __init vfs_caches_init(unsigned long mempages)
3030 unsigned long reserve;
3032 /* Base hash sizes on available memory, with a reserve equal to
3033 150% of current kernel size */
3035 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3036 mempages -= reserve;
3038 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3039 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3041 dcache_init();
3042 inode_init();
3043 files_init(mempages);
3044 mnt_init();
3045 bdev_cache_init();
3046 chrdev_init();