3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/kmemtrace.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
118 #include <asm/cacheflush.h>
119 #include <asm/tlbflush.h>
120 #include <asm/page.h>
123 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
124 * 0 for faster, smaller code (especially in the critical paths).
126 * STATS - 1 to collect stats for /proc/slabinfo.
127 * 0 for faster, smaller code (especially in the critical paths).
129 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
132 #ifdef CONFIG_DEBUG_SLAB
135 #define FORCED_DEBUG 1
139 #define FORCED_DEBUG 0
142 /* Shouldn't this be in a header file somewhere? */
143 #define BYTES_PER_WORD sizeof(void *)
144 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
146 #ifndef ARCH_KMALLOC_MINALIGN
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
156 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
159 #ifndef ARCH_SLAB_MINALIGN
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
167 #define ARCH_SLAB_MINALIGN 0
170 #ifndef ARCH_KMALLOC_FLAGS
171 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
174 /* Legal flag mask for kmem_cache_create(). */
176 # define CREATE_MASK (SLAB_RED_ZONE | \
177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
182 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
184 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
186 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
187 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
188 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
194 * Bufctl's are used for linking objs within a slab
197 * This implementation relies on "struct page" for locating the cache &
198 * slab an object belongs to.
199 * This allows the bufctl structure to be small (one int), but limits
200 * the number of objects a slab (not a cache) can contain when off-slab
201 * bufctls are used. The limit is the size of the largest general cache
202 * that does not use off-slab slabs.
203 * For 32bit archs with 4 kB pages, is this 56.
204 * This is not serious, as it is only for large objects, when it is unwise
205 * to have too many per slab.
206 * Note: This limit can be raised by introducing a general cache whose size
207 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
210 typedef unsigned int kmem_bufctl_t
;
211 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
212 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
213 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
214 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
219 * Manages the objs in a slab. Placed either at the beginning of mem allocated
220 * for a slab, or allocated from an general cache.
221 * Slabs are chained into three list: fully used, partial, fully free slabs.
224 struct list_head list
;
225 unsigned long colouroff
;
226 void *s_mem
; /* including colour offset */
227 unsigned int inuse
; /* num of objs active in slab */
229 unsigned short nodeid
;
235 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
236 * arrange for kmem_freepages to be called via RCU. This is useful if
237 * we need to approach a kernel structure obliquely, from its address
238 * obtained without the usual locking. We can lock the structure to
239 * stabilize it and check it's still at the given address, only if we
240 * can be sure that the memory has not been meanwhile reused for some
241 * other kind of object (which our subsystem's lock might corrupt).
243 * rcu_read_lock before reading the address, then rcu_read_unlock after
244 * taking the spinlock within the structure expected at that address.
246 * We assume struct slab_rcu can overlay struct slab when destroying.
249 struct rcu_head head
;
250 struct kmem_cache
*cachep
;
258 * - LIFO ordering, to hand out cache-warm objects from _alloc
259 * - reduce the number of linked list operations
260 * - reduce spinlock operations
262 * The limit is stored in the per-cpu structure to reduce the data cache
269 unsigned int batchcount
;
270 unsigned int touched
;
273 * Must have this definition in here for the proper
274 * alignment of array_cache. Also simplifies accessing
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
283 #define BOOT_CPUCACHE_ENTRIES 1
284 struct arraycache_init
{
285 struct array_cache cache
;
286 void *entries
[BOOT_CPUCACHE_ENTRIES
];
290 * The slab lists for all objects.
293 struct list_head slabs_partial
; /* partial list first, better asm code */
294 struct list_head slabs_full
;
295 struct list_head slabs_free
;
296 unsigned long free_objects
;
297 unsigned int free_limit
;
298 unsigned int colour_next
; /* Per-node cache coloring */
299 spinlock_t list_lock
;
300 struct array_cache
*shared
; /* shared per node */
301 struct array_cache
**alien
; /* on other nodes */
302 unsigned long next_reap
; /* updated without locking */
303 int free_touched
; /* updated without locking */
307 * The slab allocator is initialized with interrupts disabled. Therefore, make
308 * sure early boot allocations don't accidentally enable interrupts.
310 static gfp_t slab_gfp_mask __read_mostly
= SLAB_GFP_BOOT_MASK
;
313 * Need this for bootstrapping a per node allocator.
315 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
316 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
317 #define CACHE_CACHE 0
318 #define SIZE_AC MAX_NUMNODES
319 #define SIZE_L3 (2 * MAX_NUMNODES)
321 static int drain_freelist(struct kmem_cache
*cache
,
322 struct kmem_list3
*l3
, int tofree
);
323 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
325 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
326 static void cache_reap(struct work_struct
*unused
);
329 * This function must be completely optimized away if a constant is passed to
330 * it. Mostly the same as what is in linux/slab.h except it returns an index.
332 static __always_inline
int index_of(const size_t size
)
334 extern void __bad_size(void);
336 if (__builtin_constant_p(size
)) {
344 #include <linux/kmalloc_sizes.h>
352 static int slab_early_init
= 1;
354 #define INDEX_AC index_of(sizeof(struct arraycache_init))
355 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
357 static void kmem_list3_init(struct kmem_list3
*parent
)
359 INIT_LIST_HEAD(&parent
->slabs_full
);
360 INIT_LIST_HEAD(&parent
->slabs_partial
);
361 INIT_LIST_HEAD(&parent
->slabs_free
);
362 parent
->shared
= NULL
;
363 parent
->alien
= NULL
;
364 parent
->colour_next
= 0;
365 spin_lock_init(&parent
->list_lock
);
366 parent
->free_objects
= 0;
367 parent
->free_touched
= 0;
370 #define MAKE_LIST(cachep, listp, slab, nodeid) \
372 INIT_LIST_HEAD(listp); \
373 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
376 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
378 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
379 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
380 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
390 /* 1) per-cpu data, touched during every alloc/free */
391 struct array_cache
*array
[NR_CPUS
];
392 /* 2) Cache tunables. Protected by cache_chain_mutex */
393 unsigned int batchcount
;
397 unsigned int buffer_size
;
398 u32 reciprocal_buffer_size
;
399 /* 3) touched by every alloc & free from the backend */
401 unsigned int flags
; /* constant flags */
402 unsigned int num
; /* # of objs per slab */
404 /* 4) cache_grow/shrink */
405 /* order of pgs per slab (2^n) */
406 unsigned int gfporder
;
408 /* force GFP flags, e.g. GFP_DMA */
411 size_t colour
; /* cache colouring range */
412 unsigned int colour_off
; /* colour offset */
413 struct kmem_cache
*slabp_cache
;
414 unsigned int slab_size
;
415 unsigned int dflags
; /* dynamic flags */
417 /* constructor func */
418 void (*ctor
)(void *obj
);
420 /* 5) cache creation/removal */
422 struct list_head next
;
426 unsigned long num_active
;
427 unsigned long num_allocations
;
428 unsigned long high_mark
;
430 unsigned long reaped
;
431 unsigned long errors
;
432 unsigned long max_freeable
;
433 unsigned long node_allocs
;
434 unsigned long node_frees
;
435 unsigned long node_overflow
;
443 * If debugging is enabled, then the allocator can add additional
444 * fields and/or padding to every object. buffer_size contains the total
445 * object size including these internal fields, the following two
446 * variables contain the offset to the user object and its size.
452 * We put nodelists[] at the end of kmem_cache, because we want to size
453 * this array to nr_node_ids slots instead of MAX_NUMNODES
454 * (see kmem_cache_init())
455 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
456 * is statically defined, so we reserve the max number of nodes.
458 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
460 * Do not add fields after nodelists[]
464 #define CFLGS_OFF_SLAB (0x80000000UL)
465 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
467 #define BATCHREFILL_LIMIT 16
469 * Optimization question: fewer reaps means less probability for unnessary
470 * cpucache drain/refill cycles.
472 * OTOH the cpuarrays can contain lots of objects,
473 * which could lock up otherwise freeable slabs.
475 #define REAPTIMEOUT_CPUC (2*HZ)
476 #define REAPTIMEOUT_LIST3 (4*HZ)
479 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
480 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
481 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
482 #define STATS_INC_GROWN(x) ((x)->grown++)
483 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
484 #define STATS_SET_HIGH(x) \
486 if ((x)->num_active > (x)->high_mark) \
487 (x)->high_mark = (x)->num_active; \
489 #define STATS_INC_ERR(x) ((x)->errors++)
490 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
491 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
492 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
493 #define STATS_SET_FREEABLE(x, i) \
495 if ((x)->max_freeable < i) \
496 (x)->max_freeable = i; \
498 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
499 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
500 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
501 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
503 #define STATS_INC_ACTIVE(x) do { } while (0)
504 #define STATS_DEC_ACTIVE(x) do { } while (0)
505 #define STATS_INC_ALLOCED(x) do { } while (0)
506 #define STATS_INC_GROWN(x) do { } while (0)
507 #define STATS_ADD_REAPED(x,y) do { } while (0)
508 #define STATS_SET_HIGH(x) do { } while (0)
509 #define STATS_INC_ERR(x) do { } while (0)
510 #define STATS_INC_NODEALLOCS(x) do { } while (0)
511 #define STATS_INC_NODEFREES(x) do { } while (0)
512 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
513 #define STATS_SET_FREEABLE(x, i) do { } while (0)
514 #define STATS_INC_ALLOCHIT(x) do { } while (0)
515 #define STATS_INC_ALLOCMISS(x) do { } while (0)
516 #define STATS_INC_FREEHIT(x) do { } while (0)
517 #define STATS_INC_FREEMISS(x) do { } while (0)
523 * memory layout of objects:
525 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
526 * the end of an object is aligned with the end of the real
527 * allocation. Catches writes behind the end of the allocation.
528 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
530 * cachep->obj_offset: The real object.
531 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
532 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
533 * [BYTES_PER_WORD long]
535 static int obj_offset(struct kmem_cache
*cachep
)
537 return cachep
->obj_offset
;
540 static int obj_size(struct kmem_cache
*cachep
)
542 return cachep
->obj_size
;
545 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
547 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
548 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
549 sizeof(unsigned long long));
552 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
554 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
555 if (cachep
->flags
& SLAB_STORE_USER
)
556 return (unsigned long long *)(objp
+ cachep
->buffer_size
-
557 sizeof(unsigned long long) -
559 return (unsigned long long *) (objp
+ cachep
->buffer_size
-
560 sizeof(unsigned long long));
563 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
565 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
566 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
571 #define obj_offset(x) 0
572 #define obj_size(cachep) (cachep->buffer_size)
573 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
574 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
575 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
579 #ifdef CONFIG_KMEMTRACE
580 size_t slab_buffer_size(struct kmem_cache
*cachep
)
582 return cachep
->buffer_size
;
584 EXPORT_SYMBOL(slab_buffer_size
);
588 * Do not go above this order unless 0 objects fit into the slab.
590 #define BREAK_GFP_ORDER_HI 1
591 #define BREAK_GFP_ORDER_LO 0
592 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
595 * Functions for storing/retrieving the cachep and or slab from the page
596 * allocator. These are used to find the slab an obj belongs to. With kfree(),
597 * these are used to find the cache which an obj belongs to.
599 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
601 page
->lru
.next
= (struct list_head
*)cache
;
604 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
606 page
= compound_head(page
);
607 BUG_ON(!PageSlab(page
));
608 return (struct kmem_cache
*)page
->lru
.next
;
611 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
613 page
->lru
.prev
= (struct list_head
*)slab
;
616 static inline struct slab
*page_get_slab(struct page
*page
)
618 BUG_ON(!PageSlab(page
));
619 return (struct slab
*)page
->lru
.prev
;
622 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
624 struct page
*page
= virt_to_head_page(obj
);
625 return page_get_cache(page
);
628 static inline struct slab
*virt_to_slab(const void *obj
)
630 struct page
*page
= virt_to_head_page(obj
);
631 return page_get_slab(page
);
634 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
637 return slab
->s_mem
+ cache
->buffer_size
* idx
;
641 * We want to avoid an expensive divide : (offset / cache->buffer_size)
642 * Using the fact that buffer_size is a constant for a particular cache,
643 * we can replace (offset / cache->buffer_size) by
644 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
646 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
647 const struct slab
*slab
, void *obj
)
649 u32 offset
= (obj
- slab
->s_mem
);
650 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
654 * These are the default caches for kmalloc. Custom caches can have other sizes.
656 struct cache_sizes malloc_sizes
[] = {
657 #define CACHE(x) { .cs_size = (x) },
658 #include <linux/kmalloc_sizes.h>
662 EXPORT_SYMBOL(malloc_sizes
);
664 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
670 static struct cache_names __initdata cache_names
[] = {
671 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
672 #include <linux/kmalloc_sizes.h>
677 static struct arraycache_init initarray_cache __initdata
=
678 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
679 static struct arraycache_init initarray_generic
=
680 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
682 /* internal cache of cache description objs */
683 static struct kmem_cache cache_cache
= {
685 .limit
= BOOT_CPUCACHE_ENTRIES
,
687 .buffer_size
= sizeof(struct kmem_cache
),
688 .name
= "kmem_cache",
691 #define BAD_ALIEN_MAGIC 0x01020304ul
693 #ifdef CONFIG_LOCKDEP
696 * Slab sometimes uses the kmalloc slabs to store the slab headers
697 * for other slabs "off slab".
698 * The locking for this is tricky in that it nests within the locks
699 * of all other slabs in a few places; to deal with this special
700 * locking we put on-slab caches into a separate lock-class.
702 * We set lock class for alien array caches which are up during init.
703 * The lock annotation will be lost if all cpus of a node goes down and
704 * then comes back up during hotplug
706 static struct lock_class_key on_slab_l3_key
;
707 static struct lock_class_key on_slab_alc_key
;
709 static inline void init_lock_keys(void)
713 struct cache_sizes
*s
= malloc_sizes
;
715 while (s
->cs_size
!= ULONG_MAX
) {
717 struct array_cache
**alc
;
719 struct kmem_list3
*l3
= s
->cs_cachep
->nodelists
[q
];
720 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
722 lockdep_set_class(&l3
->list_lock
, &on_slab_l3_key
);
725 * FIXME: This check for BAD_ALIEN_MAGIC
726 * should go away when common slab code is taught to
727 * work even without alien caches.
728 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
729 * for alloc_alien_cache,
731 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
735 lockdep_set_class(&alc
[r
]->lock
,
743 static inline void init_lock_keys(void)
749 * Guard access to the cache-chain.
751 static DEFINE_MUTEX(cache_chain_mutex
);
752 static struct list_head cache_chain
;
755 * chicken and egg problem: delay the per-cpu array allocation
756 * until the general caches are up.
767 * used by boot code to determine if it can use slab based allocator
769 int slab_is_available(void)
771 return g_cpucache_up
>= EARLY
;
774 static DEFINE_PER_CPU(struct delayed_work
, reap_work
);
776 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
778 return cachep
->array
[smp_processor_id()];
781 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
784 struct cache_sizes
*csizep
= malloc_sizes
;
787 /* This happens if someone tries to call
788 * kmem_cache_create(), or __kmalloc(), before
789 * the generic caches are initialized.
791 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
794 return ZERO_SIZE_PTR
;
796 while (size
> csizep
->cs_size
)
800 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
801 * has cs_{dma,}cachep==NULL. Thus no special case
802 * for large kmalloc calls required.
804 #ifdef CONFIG_ZONE_DMA
805 if (unlikely(gfpflags
& GFP_DMA
))
806 return csizep
->cs_dmacachep
;
808 return csizep
->cs_cachep
;
811 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
813 return __find_general_cachep(size
, gfpflags
);
816 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
818 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
822 * Calculate the number of objects and left-over bytes for a given buffer size.
824 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
825 size_t align
, int flags
, size_t *left_over
,
830 size_t slab_size
= PAGE_SIZE
<< gfporder
;
833 * The slab management structure can be either off the slab or
834 * on it. For the latter case, the memory allocated for a
838 * - One kmem_bufctl_t for each object
839 * - Padding to respect alignment of @align
840 * - @buffer_size bytes for each object
842 * If the slab management structure is off the slab, then the
843 * alignment will already be calculated into the size. Because
844 * the slabs are all pages aligned, the objects will be at the
845 * correct alignment when allocated.
847 if (flags
& CFLGS_OFF_SLAB
) {
849 nr_objs
= slab_size
/ buffer_size
;
851 if (nr_objs
> SLAB_LIMIT
)
852 nr_objs
= SLAB_LIMIT
;
855 * Ignore padding for the initial guess. The padding
856 * is at most @align-1 bytes, and @buffer_size is at
857 * least @align. In the worst case, this result will
858 * be one greater than the number of objects that fit
859 * into the memory allocation when taking the padding
862 nr_objs
= (slab_size
- sizeof(struct slab
)) /
863 (buffer_size
+ sizeof(kmem_bufctl_t
));
866 * This calculated number will be either the right
867 * amount, or one greater than what we want.
869 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
873 if (nr_objs
> SLAB_LIMIT
)
874 nr_objs
= SLAB_LIMIT
;
876 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
879 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
882 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
884 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
887 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
888 function
, cachep
->name
, msg
);
893 * By default on NUMA we use alien caches to stage the freeing of
894 * objects allocated from other nodes. This causes massive memory
895 * inefficiencies when using fake NUMA setup to split memory into a
896 * large number of small nodes, so it can be disabled on the command
900 static int use_alien_caches __read_mostly
= 1;
901 static int numa_platform __read_mostly
= 1;
902 static int __init
noaliencache_setup(char *s
)
904 use_alien_caches
= 0;
907 __setup("noaliencache", noaliencache_setup
);
911 * Special reaping functions for NUMA systems called from cache_reap().
912 * These take care of doing round robin flushing of alien caches (containing
913 * objects freed on different nodes from which they were allocated) and the
914 * flushing of remote pcps by calling drain_node_pages.
916 static DEFINE_PER_CPU(unsigned long, reap_node
);
918 static void init_reap_node(int cpu
)
922 node
= next_node(cpu_to_node(cpu
), node_online_map
);
923 if (node
== MAX_NUMNODES
)
924 node
= first_node(node_online_map
);
926 per_cpu(reap_node
, cpu
) = node
;
929 static void next_reap_node(void)
931 int node
= __get_cpu_var(reap_node
);
933 node
= next_node(node
, node_online_map
);
934 if (unlikely(node
>= MAX_NUMNODES
))
935 node
= first_node(node_online_map
);
936 __get_cpu_var(reap_node
) = node
;
940 #define init_reap_node(cpu) do { } while (0)
941 #define next_reap_node(void) do { } while (0)
945 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
946 * via the workqueue/eventd.
947 * Add the CPU number into the expiration time to minimize the possibility of
948 * the CPUs getting into lockstep and contending for the global cache chain
951 static void __cpuinit
start_cpu_timer(int cpu
)
953 struct delayed_work
*reap_work
= &per_cpu(reap_work
, cpu
);
956 * When this gets called from do_initcalls via cpucache_init(),
957 * init_workqueues() has already run, so keventd will be setup
960 if (keventd_up() && reap_work
->work
.func
== NULL
) {
962 INIT_DELAYED_WORK(reap_work
, cache_reap
);
963 schedule_delayed_work_on(cpu
, reap_work
,
964 __round_jiffies_relative(HZ
, cpu
));
968 static struct array_cache
*alloc_arraycache(int node
, int entries
,
969 int batchcount
, gfp_t gfp
)
971 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
972 struct array_cache
*nc
= NULL
;
974 nc
= kmalloc_node(memsize
, gfp
, node
);
976 * The array_cache structures contain pointers to free object.
977 * However, when such objects are allocated or transfered to another
978 * cache the pointers are not cleared and they could be counted as
979 * valid references during a kmemleak scan. Therefore, kmemleak must
980 * not scan such objects.
982 kmemleak_no_scan(nc
);
986 nc
->batchcount
= batchcount
;
988 spin_lock_init(&nc
->lock
);
994 * Transfer objects in one arraycache to another.
995 * Locking must be handled by the caller.
997 * Return the number of entries transferred.
999 static int transfer_objects(struct array_cache
*to
,
1000 struct array_cache
*from
, unsigned int max
)
1002 /* Figure out how many entries to transfer */
1003 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
1008 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
1009 sizeof(void *) *nr
);
1019 #define drain_alien_cache(cachep, alien) do { } while (0)
1020 #define reap_alien(cachep, l3) do { } while (0)
1022 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
1024 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
1027 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1031 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1036 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
1042 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
1043 gfp_t flags
, int nodeid
)
1048 #else /* CONFIG_NUMA */
1050 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1051 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1053 static struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
1055 struct array_cache
**ac_ptr
;
1056 int memsize
= sizeof(void *) * nr_node_ids
;
1061 ac_ptr
= kmalloc_node(memsize
, gfp
, node
);
1064 if (i
== node
|| !node_online(i
)) {
1068 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d, gfp
);
1070 for (i
--; i
>= 0; i
--)
1080 static void free_alien_cache(struct array_cache
**ac_ptr
)
1091 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1092 struct array_cache
*ac
, int node
)
1094 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1097 spin_lock(&rl3
->list_lock
);
1099 * Stuff objects into the remote nodes shared array first.
1100 * That way we could avoid the overhead of putting the objects
1101 * into the free lists and getting them back later.
1104 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1106 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1108 spin_unlock(&rl3
->list_lock
);
1113 * Called from cache_reap() to regularly drain alien caches round robin.
1115 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1117 int node
= __get_cpu_var(reap_node
);
1120 struct array_cache
*ac
= l3
->alien
[node
];
1122 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1123 __drain_alien_cache(cachep
, ac
, node
);
1124 spin_unlock_irq(&ac
->lock
);
1129 static void drain_alien_cache(struct kmem_cache
*cachep
,
1130 struct array_cache
**alien
)
1133 struct array_cache
*ac
;
1134 unsigned long flags
;
1136 for_each_online_node(i
) {
1139 spin_lock_irqsave(&ac
->lock
, flags
);
1140 __drain_alien_cache(cachep
, ac
, i
);
1141 spin_unlock_irqrestore(&ac
->lock
, flags
);
1146 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1148 struct slab
*slabp
= virt_to_slab(objp
);
1149 int nodeid
= slabp
->nodeid
;
1150 struct kmem_list3
*l3
;
1151 struct array_cache
*alien
= NULL
;
1154 node
= numa_node_id();
1157 * Make sure we are not freeing a object from another node to the array
1158 * cache on this cpu.
1160 if (likely(slabp
->nodeid
== node
))
1163 l3
= cachep
->nodelists
[node
];
1164 STATS_INC_NODEFREES(cachep
);
1165 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1166 alien
= l3
->alien
[nodeid
];
1167 spin_lock(&alien
->lock
);
1168 if (unlikely(alien
->avail
== alien
->limit
)) {
1169 STATS_INC_ACOVERFLOW(cachep
);
1170 __drain_alien_cache(cachep
, alien
, nodeid
);
1172 alien
->entry
[alien
->avail
++] = objp
;
1173 spin_unlock(&alien
->lock
);
1175 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1176 free_block(cachep
, &objp
, 1, nodeid
);
1177 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1183 static void __cpuinit
cpuup_canceled(long cpu
)
1185 struct kmem_cache
*cachep
;
1186 struct kmem_list3
*l3
= NULL
;
1187 int node
= cpu_to_node(cpu
);
1188 const struct cpumask
*mask
= cpumask_of_node(node
);
1190 list_for_each_entry(cachep
, &cache_chain
, next
) {
1191 struct array_cache
*nc
;
1192 struct array_cache
*shared
;
1193 struct array_cache
**alien
;
1195 /* cpu is dead; no one can alloc from it. */
1196 nc
= cachep
->array
[cpu
];
1197 cachep
->array
[cpu
] = NULL
;
1198 l3
= cachep
->nodelists
[node
];
1201 goto free_array_cache
;
1203 spin_lock_irq(&l3
->list_lock
);
1205 /* Free limit for this kmem_list3 */
1206 l3
->free_limit
-= cachep
->batchcount
;
1208 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1210 if (!cpus_empty(*mask
)) {
1211 spin_unlock_irq(&l3
->list_lock
);
1212 goto free_array_cache
;
1215 shared
= l3
->shared
;
1217 free_block(cachep
, shared
->entry
,
1218 shared
->avail
, node
);
1225 spin_unlock_irq(&l3
->list_lock
);
1229 drain_alien_cache(cachep
, alien
);
1230 free_alien_cache(alien
);
1236 * In the previous loop, all the objects were freed to
1237 * the respective cache's slabs, now we can go ahead and
1238 * shrink each nodelist to its limit.
1240 list_for_each_entry(cachep
, &cache_chain
, next
) {
1241 l3
= cachep
->nodelists
[node
];
1244 drain_freelist(cachep
, l3
, l3
->free_objects
);
1248 static int __cpuinit
cpuup_prepare(long cpu
)
1250 struct kmem_cache
*cachep
;
1251 struct kmem_list3
*l3
= NULL
;
1252 int node
= cpu_to_node(cpu
);
1253 const int memsize
= sizeof(struct kmem_list3
);
1256 * We need to do this right in the beginning since
1257 * alloc_arraycache's are going to use this list.
1258 * kmalloc_node allows us to add the slab to the right
1259 * kmem_list3 and not this cpu's kmem_list3
1262 list_for_each_entry(cachep
, &cache_chain
, next
) {
1264 * Set up the size64 kmemlist for cpu before we can
1265 * begin anything. Make sure some other cpu on this
1266 * node has not already allocated this
1268 if (!cachep
->nodelists
[node
]) {
1269 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1272 kmem_list3_init(l3
);
1273 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1274 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1277 * The l3s don't come and go as CPUs come and
1278 * go. cache_chain_mutex is sufficient
1281 cachep
->nodelists
[node
] = l3
;
1284 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1285 cachep
->nodelists
[node
]->free_limit
=
1286 (1 + nr_cpus_node(node
)) *
1287 cachep
->batchcount
+ cachep
->num
;
1288 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1292 * Now we can go ahead with allocating the shared arrays and
1295 list_for_each_entry(cachep
, &cache_chain
, next
) {
1296 struct array_cache
*nc
;
1297 struct array_cache
*shared
= NULL
;
1298 struct array_cache
**alien
= NULL
;
1300 nc
= alloc_arraycache(node
, cachep
->limit
,
1301 cachep
->batchcount
, GFP_KERNEL
);
1304 if (cachep
->shared
) {
1305 shared
= alloc_arraycache(node
,
1306 cachep
->shared
* cachep
->batchcount
,
1307 0xbaadf00d, GFP_KERNEL
);
1313 if (use_alien_caches
) {
1314 alien
= alloc_alien_cache(node
, cachep
->limit
, GFP_KERNEL
);
1321 cachep
->array
[cpu
] = nc
;
1322 l3
= cachep
->nodelists
[node
];
1325 spin_lock_irq(&l3
->list_lock
);
1328 * We are serialised from CPU_DEAD or
1329 * CPU_UP_CANCELLED by the cpucontrol lock
1331 l3
->shared
= shared
;
1340 spin_unlock_irq(&l3
->list_lock
);
1342 free_alien_cache(alien
);
1346 cpuup_canceled(cpu
);
1350 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1351 unsigned long action
, void *hcpu
)
1353 long cpu
= (long)hcpu
;
1357 case CPU_UP_PREPARE
:
1358 case CPU_UP_PREPARE_FROZEN
:
1359 mutex_lock(&cache_chain_mutex
);
1360 err
= cpuup_prepare(cpu
);
1361 mutex_unlock(&cache_chain_mutex
);
1364 case CPU_ONLINE_FROZEN
:
1365 start_cpu_timer(cpu
);
1367 #ifdef CONFIG_HOTPLUG_CPU
1368 case CPU_DOWN_PREPARE
:
1369 case CPU_DOWN_PREPARE_FROZEN
:
1371 * Shutdown cache reaper. Note that the cache_chain_mutex is
1372 * held so that if cache_reap() is invoked it cannot do
1373 * anything expensive but will only modify reap_work
1374 * and reschedule the timer.
1376 cancel_rearming_delayed_work(&per_cpu(reap_work
, cpu
));
1377 /* Now the cache_reaper is guaranteed to be not running. */
1378 per_cpu(reap_work
, cpu
).work
.func
= NULL
;
1380 case CPU_DOWN_FAILED
:
1381 case CPU_DOWN_FAILED_FROZEN
:
1382 start_cpu_timer(cpu
);
1385 case CPU_DEAD_FROZEN
:
1387 * Even if all the cpus of a node are down, we don't free the
1388 * kmem_list3 of any cache. This to avoid a race between
1389 * cpu_down, and a kmalloc allocation from another cpu for
1390 * memory from the node of the cpu going down. The list3
1391 * structure is usually allocated from kmem_cache_create() and
1392 * gets destroyed at kmem_cache_destroy().
1396 case CPU_UP_CANCELED
:
1397 case CPU_UP_CANCELED_FROZEN
:
1398 mutex_lock(&cache_chain_mutex
);
1399 cpuup_canceled(cpu
);
1400 mutex_unlock(&cache_chain_mutex
);
1403 return err
? NOTIFY_BAD
: NOTIFY_OK
;
1406 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1407 &cpuup_callback
, NULL
, 0
1411 * swap the static kmem_list3 with kmalloced memory
1413 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1416 struct kmem_list3
*ptr
;
1418 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_NOWAIT
, nodeid
);
1421 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1423 * Do not assume that spinlocks can be initialized via memcpy:
1425 spin_lock_init(&ptr
->list_lock
);
1427 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1428 cachep
->nodelists
[nodeid
] = ptr
;
1432 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1433 * size of kmem_list3.
1435 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1439 for_each_online_node(node
) {
1440 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1441 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1443 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1448 * Initialisation. Called after the page allocator have been initialised and
1449 * before smp_init().
1451 void __init
kmem_cache_init(void)
1454 struct cache_sizes
*sizes
;
1455 struct cache_names
*names
;
1460 if (num_possible_nodes() == 1) {
1461 use_alien_caches
= 0;
1465 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1466 kmem_list3_init(&initkmem_list3
[i
]);
1467 if (i
< MAX_NUMNODES
)
1468 cache_cache
.nodelists
[i
] = NULL
;
1470 set_up_list3s(&cache_cache
, CACHE_CACHE
);
1473 * Fragmentation resistance on low memory - only use bigger
1474 * page orders on machines with more than 32MB of memory.
1476 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1477 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1479 /* Bootstrap is tricky, because several objects are allocated
1480 * from caches that do not exist yet:
1481 * 1) initialize the cache_cache cache: it contains the struct
1482 * kmem_cache structures of all caches, except cache_cache itself:
1483 * cache_cache is statically allocated.
1484 * Initially an __init data area is used for the head array and the
1485 * kmem_list3 structures, it's replaced with a kmalloc allocated
1486 * array at the end of the bootstrap.
1487 * 2) Create the first kmalloc cache.
1488 * The struct kmem_cache for the new cache is allocated normally.
1489 * An __init data area is used for the head array.
1490 * 3) Create the remaining kmalloc caches, with minimally sized
1492 * 4) Replace the __init data head arrays for cache_cache and the first
1493 * kmalloc cache with kmalloc allocated arrays.
1494 * 5) Replace the __init data for kmem_list3 for cache_cache and
1495 * the other cache's with kmalloc allocated memory.
1496 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1499 node
= numa_node_id();
1501 /* 1) create the cache_cache */
1502 INIT_LIST_HEAD(&cache_chain
);
1503 list_add(&cache_cache
.next
, &cache_chain
);
1504 cache_cache
.colour_off
= cache_line_size();
1505 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1506 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
+ node
];
1509 * struct kmem_cache size depends on nr_node_ids, which
1510 * can be less than MAX_NUMNODES.
1512 cache_cache
.buffer_size
= offsetof(struct kmem_cache
, nodelists
) +
1513 nr_node_ids
* sizeof(struct kmem_list3
*);
1515 cache_cache
.obj_size
= cache_cache
.buffer_size
;
1517 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1519 cache_cache
.reciprocal_buffer_size
=
1520 reciprocal_value(cache_cache
.buffer_size
);
1522 for (order
= 0; order
< MAX_ORDER
; order
++) {
1523 cache_estimate(order
, cache_cache
.buffer_size
,
1524 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1525 if (cache_cache
.num
)
1528 BUG_ON(!cache_cache
.num
);
1529 cache_cache
.gfporder
= order
;
1530 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1531 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1532 sizeof(struct slab
), cache_line_size());
1534 /* 2+3) create the kmalloc caches */
1535 sizes
= malloc_sizes
;
1536 names
= cache_names
;
1539 * Initialize the caches that provide memory for the array cache and the
1540 * kmem_list3 structures first. Without this, further allocations will
1544 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1545 sizes
[INDEX_AC
].cs_size
,
1546 ARCH_KMALLOC_MINALIGN
,
1547 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1550 if (INDEX_AC
!= INDEX_L3
) {
1551 sizes
[INDEX_L3
].cs_cachep
=
1552 kmem_cache_create(names
[INDEX_L3
].name
,
1553 sizes
[INDEX_L3
].cs_size
,
1554 ARCH_KMALLOC_MINALIGN
,
1555 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1559 slab_early_init
= 0;
1561 while (sizes
->cs_size
!= ULONG_MAX
) {
1563 * For performance, all the general caches are L1 aligned.
1564 * This should be particularly beneficial on SMP boxes, as it
1565 * eliminates "false sharing".
1566 * Note for systems short on memory removing the alignment will
1567 * allow tighter packing of the smaller caches.
1569 if (!sizes
->cs_cachep
) {
1570 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1572 ARCH_KMALLOC_MINALIGN
,
1573 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1576 #ifdef CONFIG_ZONE_DMA
1577 sizes
->cs_dmacachep
= kmem_cache_create(
1580 ARCH_KMALLOC_MINALIGN
,
1581 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1588 /* 4) Replace the bootstrap head arrays */
1590 struct array_cache
*ptr
;
1592 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1594 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1595 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1596 sizeof(struct arraycache_init
));
1598 * Do not assume that spinlocks can be initialized via memcpy:
1600 spin_lock_init(&ptr
->lock
);
1602 cache_cache
.array
[smp_processor_id()] = ptr
;
1604 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1606 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1607 != &initarray_generic
.cache
);
1608 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1609 sizeof(struct arraycache_init
));
1611 * Do not assume that spinlocks can be initialized via memcpy:
1613 spin_lock_init(&ptr
->lock
);
1615 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1618 /* 5) Replace the bootstrap kmem_list3's */
1622 for_each_online_node(nid
) {
1623 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
+ nid
], nid
);
1625 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1626 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1628 if (INDEX_AC
!= INDEX_L3
) {
1629 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1630 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1635 g_cpucache_up
= EARLY
;
1637 /* Annotate slab for lockdep -- annotate the malloc caches */
1641 void __init
kmem_cache_init_late(void)
1643 struct kmem_cache
*cachep
;
1646 * Interrupts are enabled now so all GFP allocations are safe.
1648 slab_gfp_mask
= __GFP_BITS_MASK
;
1650 /* 6) resize the head arrays to their final sizes */
1651 mutex_lock(&cache_chain_mutex
);
1652 list_for_each_entry(cachep
, &cache_chain
, next
)
1653 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1655 mutex_unlock(&cache_chain_mutex
);
1658 g_cpucache_up
= FULL
;
1661 * Register a cpu startup notifier callback that initializes
1662 * cpu_cache_get for all new cpus
1664 register_cpu_notifier(&cpucache_notifier
);
1667 * The reap timers are started later, with a module init call: That part
1668 * of the kernel is not yet operational.
1672 static int __init
cpucache_init(void)
1677 * Register the timers that return unneeded pages to the page allocator
1679 for_each_online_cpu(cpu
)
1680 start_cpu_timer(cpu
);
1683 __initcall(cpucache_init
);
1686 * Interface to system's page allocator. No need to hold the cache-lock.
1688 * If we requested dmaable memory, we will get it. Even if we
1689 * did not request dmaable memory, we might get it, but that
1690 * would be relatively rare and ignorable.
1692 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1700 * Nommu uses slab's for process anonymous memory allocations, and thus
1701 * requires __GFP_COMP to properly refcount higher order allocations
1703 flags
|= __GFP_COMP
;
1706 flags
|= cachep
->gfpflags
;
1707 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1708 flags
|= __GFP_RECLAIMABLE
;
1710 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1714 nr_pages
= (1 << cachep
->gfporder
);
1715 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1716 add_zone_page_state(page_zone(page
),
1717 NR_SLAB_RECLAIMABLE
, nr_pages
);
1719 add_zone_page_state(page_zone(page
),
1720 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1721 for (i
= 0; i
< nr_pages
; i
++)
1722 __SetPageSlab(page
+ i
);
1723 return page_address(page
);
1727 * Interface to system's page release.
1729 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1731 unsigned long i
= (1 << cachep
->gfporder
);
1732 struct page
*page
= virt_to_page(addr
);
1733 const unsigned long nr_freed
= i
;
1735 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1736 sub_zone_page_state(page_zone(page
),
1737 NR_SLAB_RECLAIMABLE
, nr_freed
);
1739 sub_zone_page_state(page_zone(page
),
1740 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1742 BUG_ON(!PageSlab(page
));
1743 __ClearPageSlab(page
);
1746 if (current
->reclaim_state
)
1747 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1748 free_pages((unsigned long)addr
, cachep
->gfporder
);
1751 static void kmem_rcu_free(struct rcu_head
*head
)
1753 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1754 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1756 kmem_freepages(cachep
, slab_rcu
->addr
);
1757 if (OFF_SLAB(cachep
))
1758 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1763 #ifdef CONFIG_DEBUG_PAGEALLOC
1764 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1765 unsigned long caller
)
1767 int size
= obj_size(cachep
);
1769 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1771 if (size
< 5 * sizeof(unsigned long))
1774 *addr
++ = 0x12345678;
1776 *addr
++ = smp_processor_id();
1777 size
-= 3 * sizeof(unsigned long);
1779 unsigned long *sptr
= &caller
;
1780 unsigned long svalue
;
1782 while (!kstack_end(sptr
)) {
1784 if (kernel_text_address(svalue
)) {
1786 size
-= sizeof(unsigned long);
1787 if (size
<= sizeof(unsigned long))
1793 *addr
++ = 0x87654321;
1797 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1799 int size
= obj_size(cachep
);
1800 addr
= &((char *)addr
)[obj_offset(cachep
)];
1802 memset(addr
, val
, size
);
1803 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1806 static void dump_line(char *data
, int offset
, int limit
)
1809 unsigned char error
= 0;
1812 printk(KERN_ERR
"%03x:", offset
);
1813 for (i
= 0; i
< limit
; i
++) {
1814 if (data
[offset
+ i
] != POISON_FREE
) {
1815 error
= data
[offset
+ i
];
1818 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1822 if (bad_count
== 1) {
1823 error
^= POISON_FREE
;
1824 if (!(error
& (error
- 1))) {
1825 printk(KERN_ERR
"Single bit error detected. Probably "
1828 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1831 printk(KERN_ERR
"Run a memory test tool.\n");
1840 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1845 if (cachep
->flags
& SLAB_RED_ZONE
) {
1846 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1847 *dbg_redzone1(cachep
, objp
),
1848 *dbg_redzone2(cachep
, objp
));
1851 if (cachep
->flags
& SLAB_STORE_USER
) {
1852 printk(KERN_ERR
"Last user: [<%p>]",
1853 *dbg_userword(cachep
, objp
));
1854 print_symbol("(%s)",
1855 (unsigned long)*dbg_userword(cachep
, objp
));
1858 realobj
= (char *)objp
+ obj_offset(cachep
);
1859 size
= obj_size(cachep
);
1860 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1863 if (i
+ limit
> size
)
1865 dump_line(realobj
, i
, limit
);
1869 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1875 realobj
= (char *)objp
+ obj_offset(cachep
);
1876 size
= obj_size(cachep
);
1878 for (i
= 0; i
< size
; i
++) {
1879 char exp
= POISON_FREE
;
1882 if (realobj
[i
] != exp
) {
1888 "Slab corruption: %s start=%p, len=%d\n",
1889 cachep
->name
, realobj
, size
);
1890 print_objinfo(cachep
, objp
, 0);
1892 /* Hexdump the affected line */
1895 if (i
+ limit
> size
)
1897 dump_line(realobj
, i
, limit
);
1900 /* Limit to 5 lines */
1906 /* Print some data about the neighboring objects, if they
1909 struct slab
*slabp
= virt_to_slab(objp
);
1912 objnr
= obj_to_index(cachep
, slabp
, objp
);
1914 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1915 realobj
= (char *)objp
+ obj_offset(cachep
);
1916 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1918 print_objinfo(cachep
, objp
, 2);
1920 if (objnr
+ 1 < cachep
->num
) {
1921 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1922 realobj
= (char *)objp
+ obj_offset(cachep
);
1923 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1925 print_objinfo(cachep
, objp
, 2);
1932 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1935 for (i
= 0; i
< cachep
->num
; i
++) {
1936 void *objp
= index_to_obj(cachep
, slabp
, i
);
1938 if (cachep
->flags
& SLAB_POISON
) {
1939 #ifdef CONFIG_DEBUG_PAGEALLOC
1940 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1942 kernel_map_pages(virt_to_page(objp
),
1943 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1945 check_poison_obj(cachep
, objp
);
1947 check_poison_obj(cachep
, objp
);
1950 if (cachep
->flags
& SLAB_RED_ZONE
) {
1951 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1952 slab_error(cachep
, "start of a freed object "
1954 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1955 slab_error(cachep
, "end of a freed object "
1961 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1967 * slab_destroy - destroy and release all objects in a slab
1968 * @cachep: cache pointer being destroyed
1969 * @slabp: slab pointer being destroyed
1971 * Destroy all the objs in a slab, and release the mem back to the system.
1972 * Before calling the slab must have been unlinked from the cache. The
1973 * cache-lock is not held/needed.
1975 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1977 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1979 slab_destroy_debugcheck(cachep
, slabp
);
1980 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1981 struct slab_rcu
*slab_rcu
;
1983 slab_rcu
= (struct slab_rcu
*)slabp
;
1984 slab_rcu
->cachep
= cachep
;
1985 slab_rcu
->addr
= addr
;
1986 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1988 kmem_freepages(cachep
, addr
);
1989 if (OFF_SLAB(cachep
))
1990 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1994 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
1997 struct kmem_list3
*l3
;
1999 for_each_online_cpu(i
)
2000 kfree(cachep
->array
[i
]);
2002 /* NUMA: free the list3 structures */
2003 for_each_online_node(i
) {
2004 l3
= cachep
->nodelists
[i
];
2007 free_alien_cache(l3
->alien
);
2011 kmem_cache_free(&cache_cache
, cachep
);
2016 * calculate_slab_order - calculate size (page order) of slabs
2017 * @cachep: pointer to the cache that is being created
2018 * @size: size of objects to be created in this cache.
2019 * @align: required alignment for the objects.
2020 * @flags: slab allocation flags
2022 * Also calculates the number of objects per slab.
2024 * This could be made much more intelligent. For now, try to avoid using
2025 * high order pages for slabs. When the gfp() functions are more friendly
2026 * towards high-order requests, this should be changed.
2028 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2029 size_t size
, size_t align
, unsigned long flags
)
2031 unsigned long offslab_limit
;
2032 size_t left_over
= 0;
2035 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2039 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2043 if (flags
& CFLGS_OFF_SLAB
) {
2045 * Max number of objs-per-slab for caches which
2046 * use off-slab slabs. Needed to avoid a possible
2047 * looping condition in cache_grow().
2049 offslab_limit
= size
- sizeof(struct slab
);
2050 offslab_limit
/= sizeof(kmem_bufctl_t
);
2052 if (num
> offslab_limit
)
2056 /* Found something acceptable - save it away */
2058 cachep
->gfporder
= gfporder
;
2059 left_over
= remainder
;
2062 * A VFS-reclaimable slab tends to have most allocations
2063 * as GFP_NOFS and we really don't want to have to be allocating
2064 * higher-order pages when we are unable to shrink dcache.
2066 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2070 * Large number of objects is good, but very large slabs are
2071 * currently bad for the gfp()s.
2073 if (gfporder
>= slab_break_gfp_order
)
2077 * Acceptable internal fragmentation?
2079 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2085 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2087 if (g_cpucache_up
== FULL
)
2088 return enable_cpucache(cachep
, gfp
);
2090 if (g_cpucache_up
== NONE
) {
2092 * Note: the first kmem_cache_create must create the cache
2093 * that's used by kmalloc(24), otherwise the creation of
2094 * further caches will BUG().
2096 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2099 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2100 * the first cache, then we need to set up all its list3s,
2101 * otherwise the creation of further caches will BUG().
2103 set_up_list3s(cachep
, SIZE_AC
);
2104 if (INDEX_AC
== INDEX_L3
)
2105 g_cpucache_up
= PARTIAL_L3
;
2107 g_cpucache_up
= PARTIAL_AC
;
2109 cachep
->array
[smp_processor_id()] =
2110 kmalloc(sizeof(struct arraycache_init
), gfp
);
2112 if (g_cpucache_up
== PARTIAL_AC
) {
2113 set_up_list3s(cachep
, SIZE_L3
);
2114 g_cpucache_up
= PARTIAL_L3
;
2117 for_each_online_node(node
) {
2118 cachep
->nodelists
[node
] =
2119 kmalloc_node(sizeof(struct kmem_list3
),
2121 BUG_ON(!cachep
->nodelists
[node
]);
2122 kmem_list3_init(cachep
->nodelists
[node
]);
2126 cachep
->nodelists
[numa_node_id()]->next_reap
=
2127 jiffies
+ REAPTIMEOUT_LIST3
+
2128 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2130 cpu_cache_get(cachep
)->avail
= 0;
2131 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2132 cpu_cache_get(cachep
)->batchcount
= 1;
2133 cpu_cache_get(cachep
)->touched
= 0;
2134 cachep
->batchcount
= 1;
2135 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2140 * kmem_cache_create - Create a cache.
2141 * @name: A string which is used in /proc/slabinfo to identify this cache.
2142 * @size: The size of objects to be created in this cache.
2143 * @align: The required alignment for the objects.
2144 * @flags: SLAB flags
2145 * @ctor: A constructor for the objects.
2147 * Returns a ptr to the cache on success, NULL on failure.
2148 * Cannot be called within a int, but can be interrupted.
2149 * The @ctor is run when new pages are allocated by the cache.
2151 * @name must be valid until the cache is destroyed. This implies that
2152 * the module calling this has to destroy the cache before getting unloaded.
2153 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2154 * therefore applications must manage it themselves.
2158 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2159 * to catch references to uninitialised memory.
2161 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2162 * for buffer overruns.
2164 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2165 * cacheline. This can be beneficial if you're counting cycles as closely
2169 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2170 unsigned long flags
, void (*ctor
)(void *))
2172 size_t left_over
, slab_size
, ralign
;
2173 struct kmem_cache
*cachep
= NULL
, *pc
;
2177 * Sanity checks... these are all serious usage bugs.
2179 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2180 size
> KMALLOC_MAX_SIZE
) {
2181 printk(KERN_ERR
"%s: Early error in slab %s\n", __func__
,
2187 * We use cache_chain_mutex to ensure a consistent view of
2188 * cpu_online_mask as well. Please see cpuup_callback
2190 if (slab_is_available()) {
2192 mutex_lock(&cache_chain_mutex
);
2195 list_for_each_entry(pc
, &cache_chain
, next
) {
2200 * This happens when the module gets unloaded and doesn't
2201 * destroy its slab cache and no-one else reuses the vmalloc
2202 * area of the module. Print a warning.
2204 res
= probe_kernel_address(pc
->name
, tmp
);
2207 "SLAB: cache with size %d has lost its name\n",
2212 if (!strcmp(pc
->name
, name
)) {
2214 "kmem_cache_create: duplicate cache %s\n", name
);
2221 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2224 * Enable redzoning and last user accounting, except for caches with
2225 * large objects, if the increased size would increase the object size
2226 * above the next power of two: caches with object sizes just above a
2227 * power of two have a significant amount of internal fragmentation.
2229 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2230 2 * sizeof(unsigned long long)))
2231 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2232 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2233 flags
|= SLAB_POISON
;
2235 if (flags
& SLAB_DESTROY_BY_RCU
)
2236 BUG_ON(flags
& SLAB_POISON
);
2239 * Always checks flags, a caller might be expecting debug support which
2242 BUG_ON(flags
& ~CREATE_MASK
);
2245 * Check that size is in terms of words. This is needed to avoid
2246 * unaligned accesses for some archs when redzoning is used, and makes
2247 * sure any on-slab bufctl's are also correctly aligned.
2249 if (size
& (BYTES_PER_WORD
- 1)) {
2250 size
+= (BYTES_PER_WORD
- 1);
2251 size
&= ~(BYTES_PER_WORD
- 1);
2254 /* calculate the final buffer alignment: */
2256 /* 1) arch recommendation: can be overridden for debug */
2257 if (flags
& SLAB_HWCACHE_ALIGN
) {
2259 * Default alignment: as specified by the arch code. Except if
2260 * an object is really small, then squeeze multiple objects into
2263 ralign
= cache_line_size();
2264 while (size
<= ralign
/ 2)
2267 ralign
= BYTES_PER_WORD
;
2271 * Redzoning and user store require word alignment or possibly larger.
2272 * Note this will be overridden by architecture or caller mandated
2273 * alignment if either is greater than BYTES_PER_WORD.
2275 if (flags
& SLAB_STORE_USER
)
2276 ralign
= BYTES_PER_WORD
;
2278 if (flags
& SLAB_RED_ZONE
) {
2279 ralign
= REDZONE_ALIGN
;
2280 /* If redzoning, ensure that the second redzone is suitably
2281 * aligned, by adjusting the object size accordingly. */
2282 size
+= REDZONE_ALIGN
- 1;
2283 size
&= ~(REDZONE_ALIGN
- 1);
2286 /* 2) arch mandated alignment */
2287 if (ralign
< ARCH_SLAB_MINALIGN
) {
2288 ralign
= ARCH_SLAB_MINALIGN
;
2290 /* 3) caller mandated alignment */
2291 if (ralign
< align
) {
2294 /* disable debug if necessary */
2295 if (ralign
> __alignof__(unsigned long long))
2296 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2302 if (slab_is_available())
2307 /* Get cache's description obj. */
2308 cachep
= kmem_cache_zalloc(&cache_cache
, gfp
);
2313 cachep
->obj_size
= size
;
2316 * Both debugging options require word-alignment which is calculated
2319 if (flags
& SLAB_RED_ZONE
) {
2320 /* add space for red zone words */
2321 cachep
->obj_offset
+= sizeof(unsigned long long);
2322 size
+= 2 * sizeof(unsigned long long);
2324 if (flags
& SLAB_STORE_USER
) {
2325 /* user store requires one word storage behind the end of
2326 * the real object. But if the second red zone needs to be
2327 * aligned to 64 bits, we must allow that much space.
2329 if (flags
& SLAB_RED_ZONE
)
2330 size
+= REDZONE_ALIGN
;
2332 size
+= BYTES_PER_WORD
;
2334 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2335 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2336 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2337 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2344 * Determine if the slab management is 'on' or 'off' slab.
2345 * (bootstrapping cannot cope with offslab caches so don't do
2348 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
)
2350 * Size is large, assume best to place the slab management obj
2351 * off-slab (should allow better packing of objs).
2353 flags
|= CFLGS_OFF_SLAB
;
2355 size
= ALIGN(size
, align
);
2357 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2361 "kmem_cache_create: couldn't create cache %s.\n", name
);
2362 kmem_cache_free(&cache_cache
, cachep
);
2366 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2367 + sizeof(struct slab
), align
);
2370 * If the slab has been placed off-slab, and we have enough space then
2371 * move it on-slab. This is at the expense of any extra colouring.
2373 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2374 flags
&= ~CFLGS_OFF_SLAB
;
2375 left_over
-= slab_size
;
2378 if (flags
& CFLGS_OFF_SLAB
) {
2379 /* really off slab. No need for manual alignment */
2381 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2384 cachep
->colour_off
= cache_line_size();
2385 /* Offset must be a multiple of the alignment. */
2386 if (cachep
->colour_off
< align
)
2387 cachep
->colour_off
= align
;
2388 cachep
->colour
= left_over
/ cachep
->colour_off
;
2389 cachep
->slab_size
= slab_size
;
2390 cachep
->flags
= flags
;
2391 cachep
->gfpflags
= 0;
2392 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2393 cachep
->gfpflags
|= GFP_DMA
;
2394 cachep
->buffer_size
= size
;
2395 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2397 if (flags
& CFLGS_OFF_SLAB
) {
2398 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2400 * This is a possibility for one of the malloc_sizes caches.
2401 * But since we go off slab only for object size greater than
2402 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2403 * this should not happen at all.
2404 * But leave a BUG_ON for some lucky dude.
2406 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2408 cachep
->ctor
= ctor
;
2409 cachep
->name
= name
;
2411 if (setup_cpu_cache(cachep
, gfp
)) {
2412 __kmem_cache_destroy(cachep
);
2417 /* cache setup completed, link it into the list */
2418 list_add(&cachep
->next
, &cache_chain
);
2420 if (!cachep
&& (flags
& SLAB_PANIC
))
2421 panic("kmem_cache_create(): failed to create slab `%s'\n",
2423 if (slab_is_available()) {
2424 mutex_unlock(&cache_chain_mutex
);
2429 EXPORT_SYMBOL(kmem_cache_create
);
2432 static void check_irq_off(void)
2434 BUG_ON(!irqs_disabled());
2437 static void check_irq_on(void)
2439 BUG_ON(irqs_disabled());
2442 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2446 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2450 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2454 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2459 #define check_irq_off() do { } while(0)
2460 #define check_irq_on() do { } while(0)
2461 #define check_spinlock_acquired(x) do { } while(0)
2462 #define check_spinlock_acquired_node(x, y) do { } while(0)
2465 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2466 struct array_cache
*ac
,
2467 int force
, int node
);
2469 static void do_drain(void *arg
)
2471 struct kmem_cache
*cachep
= arg
;
2472 struct array_cache
*ac
;
2473 int node
= numa_node_id();
2476 ac
= cpu_cache_get(cachep
);
2477 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2478 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2479 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2483 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2485 struct kmem_list3
*l3
;
2488 on_each_cpu(do_drain
, cachep
, 1);
2490 for_each_online_node(node
) {
2491 l3
= cachep
->nodelists
[node
];
2492 if (l3
&& l3
->alien
)
2493 drain_alien_cache(cachep
, l3
->alien
);
2496 for_each_online_node(node
) {
2497 l3
= cachep
->nodelists
[node
];
2499 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2504 * Remove slabs from the list of free slabs.
2505 * Specify the number of slabs to drain in tofree.
2507 * Returns the actual number of slabs released.
2509 static int drain_freelist(struct kmem_cache
*cache
,
2510 struct kmem_list3
*l3
, int tofree
)
2512 struct list_head
*p
;
2517 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2519 spin_lock_irq(&l3
->list_lock
);
2520 p
= l3
->slabs_free
.prev
;
2521 if (p
== &l3
->slabs_free
) {
2522 spin_unlock_irq(&l3
->list_lock
);
2526 slabp
= list_entry(p
, struct slab
, list
);
2528 BUG_ON(slabp
->inuse
);
2530 list_del(&slabp
->list
);
2532 * Safe to drop the lock. The slab is no longer linked
2535 l3
->free_objects
-= cache
->num
;
2536 spin_unlock_irq(&l3
->list_lock
);
2537 slab_destroy(cache
, slabp
);
2544 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2545 static int __cache_shrink(struct kmem_cache
*cachep
)
2548 struct kmem_list3
*l3
;
2550 drain_cpu_caches(cachep
);
2553 for_each_online_node(i
) {
2554 l3
= cachep
->nodelists
[i
];
2558 drain_freelist(cachep
, l3
, l3
->free_objects
);
2560 ret
+= !list_empty(&l3
->slabs_full
) ||
2561 !list_empty(&l3
->slabs_partial
);
2563 return (ret
? 1 : 0);
2567 * kmem_cache_shrink - Shrink a cache.
2568 * @cachep: The cache to shrink.
2570 * Releases as many slabs as possible for a cache.
2571 * To help debugging, a zero exit status indicates all slabs were released.
2573 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2576 BUG_ON(!cachep
|| in_interrupt());
2579 mutex_lock(&cache_chain_mutex
);
2580 ret
= __cache_shrink(cachep
);
2581 mutex_unlock(&cache_chain_mutex
);
2585 EXPORT_SYMBOL(kmem_cache_shrink
);
2588 * kmem_cache_destroy - delete a cache
2589 * @cachep: the cache to destroy
2591 * Remove a &struct kmem_cache object from the slab cache.
2593 * It is expected this function will be called by a module when it is
2594 * unloaded. This will remove the cache completely, and avoid a duplicate
2595 * cache being allocated each time a module is loaded and unloaded, if the
2596 * module doesn't have persistent in-kernel storage across loads and unloads.
2598 * The cache must be empty before calling this function.
2600 * The caller must guarantee that noone will allocate memory from the cache
2601 * during the kmem_cache_destroy().
2603 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2605 BUG_ON(!cachep
|| in_interrupt());
2607 /* Find the cache in the chain of caches. */
2609 mutex_lock(&cache_chain_mutex
);
2611 * the chain is never empty, cache_cache is never destroyed
2613 list_del(&cachep
->next
);
2614 if (__cache_shrink(cachep
)) {
2615 slab_error(cachep
, "Can't free all objects");
2616 list_add(&cachep
->next
, &cache_chain
);
2617 mutex_unlock(&cache_chain_mutex
);
2622 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2625 __kmem_cache_destroy(cachep
);
2626 mutex_unlock(&cache_chain_mutex
);
2629 EXPORT_SYMBOL(kmem_cache_destroy
);
2632 * Get the memory for a slab management obj.
2633 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2634 * always come from malloc_sizes caches. The slab descriptor cannot
2635 * come from the same cache which is getting created because,
2636 * when we are searching for an appropriate cache for these
2637 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2638 * If we are creating a malloc_sizes cache here it would not be visible to
2639 * kmem_find_general_cachep till the initialization is complete.
2640 * Hence we cannot have slabp_cache same as the original cache.
2642 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2643 int colour_off
, gfp_t local_flags
,
2648 if (OFF_SLAB(cachep
)) {
2649 /* Slab management obj is off-slab. */
2650 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2651 local_flags
, nodeid
);
2653 * If the first object in the slab is leaked (it's allocated
2654 * but no one has a reference to it), we want to make sure
2655 * kmemleak does not treat the ->s_mem pointer as a reference
2656 * to the object. Otherwise we will not report the leak.
2658 kmemleak_scan_area(slabp
, offsetof(struct slab
, list
),
2659 sizeof(struct list_head
), local_flags
);
2663 slabp
= objp
+ colour_off
;
2664 colour_off
+= cachep
->slab_size
;
2667 slabp
->colouroff
= colour_off
;
2668 slabp
->s_mem
= objp
+ colour_off
;
2669 slabp
->nodeid
= nodeid
;
2674 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2676 return (kmem_bufctl_t
*) (slabp
+ 1);
2679 static void cache_init_objs(struct kmem_cache
*cachep
,
2684 for (i
= 0; i
< cachep
->num
; i
++) {
2685 void *objp
= index_to_obj(cachep
, slabp
, i
);
2687 /* need to poison the objs? */
2688 if (cachep
->flags
& SLAB_POISON
)
2689 poison_obj(cachep
, objp
, POISON_FREE
);
2690 if (cachep
->flags
& SLAB_STORE_USER
)
2691 *dbg_userword(cachep
, objp
) = NULL
;
2693 if (cachep
->flags
& SLAB_RED_ZONE
) {
2694 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2695 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2698 * Constructors are not allowed to allocate memory from the same
2699 * cache which they are a constructor for. Otherwise, deadlock.
2700 * They must also be threaded.
2702 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2703 cachep
->ctor(objp
+ obj_offset(cachep
));
2705 if (cachep
->flags
& SLAB_RED_ZONE
) {
2706 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2707 slab_error(cachep
, "constructor overwrote the"
2708 " end of an object");
2709 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2710 slab_error(cachep
, "constructor overwrote the"
2711 " start of an object");
2713 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2714 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2715 kernel_map_pages(virt_to_page(objp
),
2716 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2721 slab_bufctl(slabp
)[i
] = i
+ 1;
2723 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2726 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2728 if (CONFIG_ZONE_DMA_FLAG
) {
2729 if (flags
& GFP_DMA
)
2730 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2732 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2736 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2739 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2743 next
= slab_bufctl(slabp
)[slabp
->free
];
2745 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2746 WARN_ON(slabp
->nodeid
!= nodeid
);
2753 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2754 void *objp
, int nodeid
)
2756 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2759 /* Verify that the slab belongs to the intended node */
2760 WARN_ON(slabp
->nodeid
!= nodeid
);
2762 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2763 printk(KERN_ERR
"slab: double free detected in cache "
2764 "'%s', objp %p\n", cachep
->name
, objp
);
2768 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2769 slabp
->free
= objnr
;
2774 * Map pages beginning at addr to the given cache and slab. This is required
2775 * for the slab allocator to be able to lookup the cache and slab of a
2776 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2778 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2784 page
= virt_to_page(addr
);
2787 if (likely(!PageCompound(page
)))
2788 nr_pages
<<= cache
->gfporder
;
2791 page_set_cache(page
, cache
);
2792 page_set_slab(page
, slab
);
2794 } while (--nr_pages
);
2798 * Grow (by 1) the number of slabs within a cache. This is called by
2799 * kmem_cache_alloc() when there are no active objs left in a cache.
2801 static int cache_grow(struct kmem_cache
*cachep
,
2802 gfp_t flags
, int nodeid
, void *objp
)
2807 struct kmem_list3
*l3
;
2810 * Be lazy and only check for valid flags here, keeping it out of the
2811 * critical path in kmem_cache_alloc().
2813 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2814 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2816 /* Take the l3 list lock to change the colour_next on this node */
2818 l3
= cachep
->nodelists
[nodeid
];
2819 spin_lock(&l3
->list_lock
);
2821 /* Get colour for the slab, and cal the next value. */
2822 offset
= l3
->colour_next
;
2824 if (l3
->colour_next
>= cachep
->colour
)
2825 l3
->colour_next
= 0;
2826 spin_unlock(&l3
->list_lock
);
2828 offset
*= cachep
->colour_off
;
2830 if (local_flags
& __GFP_WAIT
)
2834 * The test for missing atomic flag is performed here, rather than
2835 * the more obvious place, simply to reduce the critical path length
2836 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2837 * will eventually be caught here (where it matters).
2839 kmem_flagcheck(cachep
, flags
);
2842 * Get mem for the objs. Attempt to allocate a physical page from
2846 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2850 /* Get slab management. */
2851 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2852 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2856 slab_map_pages(cachep
, slabp
, objp
);
2858 cache_init_objs(cachep
, slabp
);
2860 if (local_flags
& __GFP_WAIT
)
2861 local_irq_disable();
2863 spin_lock(&l3
->list_lock
);
2865 /* Make slab active. */
2866 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2867 STATS_INC_GROWN(cachep
);
2868 l3
->free_objects
+= cachep
->num
;
2869 spin_unlock(&l3
->list_lock
);
2872 kmem_freepages(cachep
, objp
);
2874 if (local_flags
& __GFP_WAIT
)
2875 local_irq_disable();
2882 * Perform extra freeing checks:
2883 * - detect bad pointers.
2884 * - POISON/RED_ZONE checking
2886 static void kfree_debugcheck(const void *objp
)
2888 if (!virt_addr_valid(objp
)) {
2889 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2890 (unsigned long)objp
);
2895 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2897 unsigned long long redzone1
, redzone2
;
2899 redzone1
= *dbg_redzone1(cache
, obj
);
2900 redzone2
= *dbg_redzone2(cache
, obj
);
2905 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2908 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2909 slab_error(cache
, "double free detected");
2911 slab_error(cache
, "memory outside object was overwritten");
2913 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2914 obj
, redzone1
, redzone2
);
2917 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2924 BUG_ON(virt_to_cache(objp
) != cachep
);
2926 objp
-= obj_offset(cachep
);
2927 kfree_debugcheck(objp
);
2928 page
= virt_to_head_page(objp
);
2930 slabp
= page_get_slab(page
);
2932 if (cachep
->flags
& SLAB_RED_ZONE
) {
2933 verify_redzone_free(cachep
, objp
);
2934 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2935 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2937 if (cachep
->flags
& SLAB_STORE_USER
)
2938 *dbg_userword(cachep
, objp
) = caller
;
2940 objnr
= obj_to_index(cachep
, slabp
, objp
);
2942 BUG_ON(objnr
>= cachep
->num
);
2943 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2945 #ifdef CONFIG_DEBUG_SLAB_LEAK
2946 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2948 if (cachep
->flags
& SLAB_POISON
) {
2949 #ifdef CONFIG_DEBUG_PAGEALLOC
2950 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2951 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2952 kernel_map_pages(virt_to_page(objp
),
2953 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2955 poison_obj(cachep
, objp
, POISON_FREE
);
2958 poison_obj(cachep
, objp
, POISON_FREE
);
2964 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2969 /* Check slab's freelist to see if this obj is there. */
2970 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2972 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2975 if (entries
!= cachep
->num
- slabp
->inuse
) {
2977 printk(KERN_ERR
"slab: Internal list corruption detected in "
2978 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2979 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2981 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2984 printk("\n%03x:", i
);
2985 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2992 #define kfree_debugcheck(x) do { } while(0)
2993 #define cache_free_debugcheck(x,objp,z) (objp)
2994 #define check_slabp(x,y) do { } while(0)
2997 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
3000 struct kmem_list3
*l3
;
3001 struct array_cache
*ac
;
3006 node
= numa_node_id();
3007 ac
= cpu_cache_get(cachep
);
3008 batchcount
= ac
->batchcount
;
3009 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
3011 * If there was little recent activity on this cache, then
3012 * perform only a partial refill. Otherwise we could generate
3015 batchcount
= BATCHREFILL_LIMIT
;
3017 l3
= cachep
->nodelists
[node
];
3019 BUG_ON(ac
->avail
> 0 || !l3
);
3020 spin_lock(&l3
->list_lock
);
3022 /* See if we can refill from the shared array */
3023 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
))
3026 while (batchcount
> 0) {
3027 struct list_head
*entry
;
3029 /* Get slab alloc is to come from. */
3030 entry
= l3
->slabs_partial
.next
;
3031 if (entry
== &l3
->slabs_partial
) {
3032 l3
->free_touched
= 1;
3033 entry
= l3
->slabs_free
.next
;
3034 if (entry
== &l3
->slabs_free
)
3038 slabp
= list_entry(entry
, struct slab
, list
);
3039 check_slabp(cachep
, slabp
);
3040 check_spinlock_acquired(cachep
);
3043 * The slab was either on partial or free list so
3044 * there must be at least one object available for
3047 BUG_ON(slabp
->inuse
>= cachep
->num
);
3049 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
3050 STATS_INC_ALLOCED(cachep
);
3051 STATS_INC_ACTIVE(cachep
);
3052 STATS_SET_HIGH(cachep
);
3054 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
3057 check_slabp(cachep
, slabp
);
3059 /* move slabp to correct slabp list: */
3060 list_del(&slabp
->list
);
3061 if (slabp
->free
== BUFCTL_END
)
3062 list_add(&slabp
->list
, &l3
->slabs_full
);
3064 list_add(&slabp
->list
, &l3
->slabs_partial
);
3068 l3
->free_objects
-= ac
->avail
;
3070 spin_unlock(&l3
->list_lock
);
3072 if (unlikely(!ac
->avail
)) {
3074 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3076 /* cache_grow can reenable interrupts, then ac could change. */
3077 ac
= cpu_cache_get(cachep
);
3078 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3081 if (!ac
->avail
) /* objects refilled by interrupt? */
3085 return ac
->entry
[--ac
->avail
];
3088 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3091 might_sleep_if(flags
& __GFP_WAIT
);
3093 kmem_flagcheck(cachep
, flags
);
3098 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3099 gfp_t flags
, void *objp
, void *caller
)
3103 if (cachep
->flags
& SLAB_POISON
) {
3104 #ifdef CONFIG_DEBUG_PAGEALLOC
3105 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3106 kernel_map_pages(virt_to_page(objp
),
3107 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3109 check_poison_obj(cachep
, objp
);
3111 check_poison_obj(cachep
, objp
);
3113 poison_obj(cachep
, objp
, POISON_INUSE
);
3115 if (cachep
->flags
& SLAB_STORE_USER
)
3116 *dbg_userword(cachep
, objp
) = caller
;
3118 if (cachep
->flags
& SLAB_RED_ZONE
) {
3119 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3120 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3121 slab_error(cachep
, "double free, or memory outside"
3122 " object was overwritten");
3124 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3125 objp
, *dbg_redzone1(cachep
, objp
),
3126 *dbg_redzone2(cachep
, objp
));
3128 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3129 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3131 #ifdef CONFIG_DEBUG_SLAB_LEAK
3136 slabp
= page_get_slab(virt_to_head_page(objp
));
3137 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3138 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3141 objp
+= obj_offset(cachep
);
3142 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3144 #if ARCH_SLAB_MINALIGN
3145 if ((u32
)objp
& (ARCH_SLAB_MINALIGN
-1)) {
3146 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3147 objp
, ARCH_SLAB_MINALIGN
);
3153 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3156 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3158 if (cachep
== &cache_cache
)
3161 return should_failslab(obj_size(cachep
), flags
);
3164 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3167 struct array_cache
*ac
;
3171 ac
= cpu_cache_get(cachep
);
3172 if (likely(ac
->avail
)) {
3173 STATS_INC_ALLOCHIT(cachep
);
3175 objp
= ac
->entry
[--ac
->avail
];
3177 STATS_INC_ALLOCMISS(cachep
);
3178 objp
= cache_alloc_refill(cachep
, flags
);
3181 * To avoid a false negative, if an object that is in one of the
3182 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3183 * treat the array pointers as a reference to the object.
3185 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3191 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3193 * If we are in_interrupt, then process context, including cpusets and
3194 * mempolicy, may not apply and should not be used for allocation policy.
3196 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3198 int nid_alloc
, nid_here
;
3200 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3202 nid_alloc
= nid_here
= numa_node_id();
3203 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3204 nid_alloc
= cpuset_mem_spread_node();
3205 else if (current
->mempolicy
)
3206 nid_alloc
= slab_node(current
->mempolicy
);
3207 if (nid_alloc
!= nid_here
)
3208 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3213 * Fallback function if there was no memory available and no objects on a
3214 * certain node and fall back is permitted. First we scan all the
3215 * available nodelists for available objects. If that fails then we
3216 * perform an allocation without specifying a node. This allows the page
3217 * allocator to do its reclaim / fallback magic. We then insert the
3218 * slab into the proper nodelist and then allocate from it.
3220 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3222 struct zonelist
*zonelist
;
3226 enum zone_type high_zoneidx
= gfp_zone(flags
);
3230 if (flags
& __GFP_THISNODE
)
3233 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
3234 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3238 * Look through allowed nodes for objects available
3239 * from existing per node queues.
3241 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3242 nid
= zone_to_nid(zone
);
3244 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3245 cache
->nodelists
[nid
] &&
3246 cache
->nodelists
[nid
]->free_objects
) {
3247 obj
= ____cache_alloc_node(cache
,
3248 flags
| GFP_THISNODE
, nid
);
3256 * This allocation will be performed within the constraints
3257 * of the current cpuset / memory policy requirements.
3258 * We may trigger various forms of reclaim on the allowed
3259 * set and go into memory reserves if necessary.
3261 if (local_flags
& __GFP_WAIT
)
3263 kmem_flagcheck(cache
, flags
);
3264 obj
= kmem_getpages(cache
, local_flags
, -1);
3265 if (local_flags
& __GFP_WAIT
)
3266 local_irq_disable();
3269 * Insert into the appropriate per node queues
3271 nid
= page_to_nid(virt_to_page(obj
));
3272 if (cache_grow(cache
, flags
, nid
, obj
)) {
3273 obj
= ____cache_alloc_node(cache
,
3274 flags
| GFP_THISNODE
, nid
);
3277 * Another processor may allocate the
3278 * objects in the slab since we are
3279 * not holding any locks.
3283 /* cache_grow already freed obj */
3292 * A interface to enable slab creation on nodeid
3294 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3297 struct list_head
*entry
;
3299 struct kmem_list3
*l3
;
3303 l3
= cachep
->nodelists
[nodeid
];
3308 spin_lock(&l3
->list_lock
);
3309 entry
= l3
->slabs_partial
.next
;
3310 if (entry
== &l3
->slabs_partial
) {
3311 l3
->free_touched
= 1;
3312 entry
= l3
->slabs_free
.next
;
3313 if (entry
== &l3
->slabs_free
)
3317 slabp
= list_entry(entry
, struct slab
, list
);
3318 check_spinlock_acquired_node(cachep
, nodeid
);
3319 check_slabp(cachep
, slabp
);
3321 STATS_INC_NODEALLOCS(cachep
);
3322 STATS_INC_ACTIVE(cachep
);
3323 STATS_SET_HIGH(cachep
);
3325 BUG_ON(slabp
->inuse
== cachep
->num
);
3327 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3328 check_slabp(cachep
, slabp
);
3330 /* move slabp to correct slabp list: */
3331 list_del(&slabp
->list
);
3333 if (slabp
->free
== BUFCTL_END
)
3334 list_add(&slabp
->list
, &l3
->slabs_full
);
3336 list_add(&slabp
->list
, &l3
->slabs_partial
);
3338 spin_unlock(&l3
->list_lock
);
3342 spin_unlock(&l3
->list_lock
);
3343 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3347 return fallback_alloc(cachep
, flags
);
3354 * kmem_cache_alloc_node - Allocate an object on the specified node
3355 * @cachep: The cache to allocate from.
3356 * @flags: See kmalloc().
3357 * @nodeid: node number of the target node.
3358 * @caller: return address of caller, used for debug information
3360 * Identical to kmem_cache_alloc but it will allocate memory on the given
3361 * node, which can improve the performance for cpu bound structures.
3363 * Fallback to other node is possible if __GFP_THISNODE is not set.
3365 static __always_inline
void *
3366 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3369 unsigned long save_flags
;
3372 flags
&= slab_gfp_mask
;
3374 lockdep_trace_alloc(flags
);
3376 if (slab_should_failslab(cachep
, flags
))
3379 cache_alloc_debugcheck_before(cachep
, flags
);
3380 local_irq_save(save_flags
);
3382 if (unlikely(nodeid
== -1))
3383 nodeid
= numa_node_id();
3385 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3386 /* Node not bootstrapped yet */
3387 ptr
= fallback_alloc(cachep
, flags
);
3391 if (nodeid
== numa_node_id()) {
3393 * Use the locally cached objects if possible.
3394 * However ____cache_alloc does not allow fallback
3395 * to other nodes. It may fail while we still have
3396 * objects on other nodes available.
3398 ptr
= ____cache_alloc(cachep
, flags
);
3402 /* ___cache_alloc_node can fall back to other nodes */
3403 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3405 local_irq_restore(save_flags
);
3406 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3407 kmemleak_alloc_recursive(ptr
, obj_size(cachep
), 1, cachep
->flags
,
3410 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3411 memset(ptr
, 0, obj_size(cachep
));
3416 static __always_inline
void *
3417 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3421 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3422 objp
= alternate_node_alloc(cache
, flags
);
3426 objp
= ____cache_alloc(cache
, flags
);
3429 * We may just have run out of memory on the local node.
3430 * ____cache_alloc_node() knows how to locate memory on other nodes
3433 objp
= ____cache_alloc_node(cache
, flags
, numa_node_id());
3440 static __always_inline
void *
3441 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3443 return ____cache_alloc(cachep
, flags
);
3446 #endif /* CONFIG_NUMA */
3448 static __always_inline
void *
3449 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3451 unsigned long save_flags
;
3454 flags
&= slab_gfp_mask
;
3456 lockdep_trace_alloc(flags
);
3458 if (slab_should_failslab(cachep
, flags
))
3461 cache_alloc_debugcheck_before(cachep
, flags
);
3462 local_irq_save(save_flags
);
3463 objp
= __do_cache_alloc(cachep
, flags
);
3464 local_irq_restore(save_flags
);
3465 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3466 kmemleak_alloc_recursive(objp
, obj_size(cachep
), 1, cachep
->flags
,
3470 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3471 memset(objp
, 0, obj_size(cachep
));
3477 * Caller needs to acquire correct kmem_list's list_lock
3479 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3483 struct kmem_list3
*l3
;
3485 for (i
= 0; i
< nr_objects
; i
++) {
3486 void *objp
= objpp
[i
];
3489 slabp
= virt_to_slab(objp
);
3490 l3
= cachep
->nodelists
[node
];
3491 list_del(&slabp
->list
);
3492 check_spinlock_acquired_node(cachep
, node
);
3493 check_slabp(cachep
, slabp
);
3494 slab_put_obj(cachep
, slabp
, objp
, node
);
3495 STATS_DEC_ACTIVE(cachep
);
3497 check_slabp(cachep
, slabp
);
3499 /* fixup slab chains */
3500 if (slabp
->inuse
== 0) {
3501 if (l3
->free_objects
> l3
->free_limit
) {
3502 l3
->free_objects
-= cachep
->num
;
3503 /* No need to drop any previously held
3504 * lock here, even if we have a off-slab slab
3505 * descriptor it is guaranteed to come from
3506 * a different cache, refer to comments before
3509 slab_destroy(cachep
, slabp
);
3511 list_add(&slabp
->list
, &l3
->slabs_free
);
3514 /* Unconditionally move a slab to the end of the
3515 * partial list on free - maximum time for the
3516 * other objects to be freed, too.
3518 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3523 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3526 struct kmem_list3
*l3
;
3527 int node
= numa_node_id();
3529 batchcount
= ac
->batchcount
;
3531 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3534 l3
= cachep
->nodelists
[node
];
3535 spin_lock(&l3
->list_lock
);
3537 struct array_cache
*shared_array
= l3
->shared
;
3538 int max
= shared_array
->limit
- shared_array
->avail
;
3540 if (batchcount
> max
)
3542 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3543 ac
->entry
, sizeof(void *) * batchcount
);
3544 shared_array
->avail
+= batchcount
;
3549 free_block(cachep
, ac
->entry
, batchcount
, node
);
3554 struct list_head
*p
;
3556 p
= l3
->slabs_free
.next
;
3557 while (p
!= &(l3
->slabs_free
)) {
3560 slabp
= list_entry(p
, struct slab
, list
);
3561 BUG_ON(slabp
->inuse
);
3566 STATS_SET_FREEABLE(cachep
, i
);
3569 spin_unlock(&l3
->list_lock
);
3570 ac
->avail
-= batchcount
;
3571 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3575 * Release an obj back to its cache. If the obj has a constructed state, it must
3576 * be in this state _before_ it is released. Called with disabled ints.
3578 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3580 struct array_cache
*ac
= cpu_cache_get(cachep
);
3583 kmemleak_free_recursive(objp
, cachep
->flags
);
3584 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3587 * Skip calling cache_free_alien() when the platform is not numa.
3588 * This will avoid cache misses that happen while accessing slabp (which
3589 * is per page memory reference) to get nodeid. Instead use a global
3590 * variable to skip the call, which is mostly likely to be present in
3593 if (numa_platform
&& cache_free_alien(cachep
, objp
))
3596 if (likely(ac
->avail
< ac
->limit
)) {
3597 STATS_INC_FREEHIT(cachep
);
3598 ac
->entry
[ac
->avail
++] = objp
;
3601 STATS_INC_FREEMISS(cachep
);
3602 cache_flusharray(cachep
, ac
);
3603 ac
->entry
[ac
->avail
++] = objp
;
3608 * kmem_cache_alloc - Allocate an object
3609 * @cachep: The cache to allocate from.
3610 * @flags: See kmalloc().
3612 * Allocate an object from this cache. The flags are only relevant
3613 * if the cache has no available objects.
3615 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3617 void *ret
= __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3619 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3620 obj_size(cachep
), cachep
->buffer_size
, flags
);
3624 EXPORT_SYMBOL(kmem_cache_alloc
);
3626 #ifdef CONFIG_KMEMTRACE
3627 void *kmem_cache_alloc_notrace(struct kmem_cache
*cachep
, gfp_t flags
)
3629 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3631 EXPORT_SYMBOL(kmem_cache_alloc_notrace
);
3635 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3636 * @cachep: the cache we're checking against
3637 * @ptr: pointer to validate
3639 * This verifies that the untrusted pointer looks sane;
3640 * it is _not_ a guarantee that the pointer is actually
3641 * part of the slab cache in question, but it at least
3642 * validates that the pointer can be dereferenced and
3643 * looks half-way sane.
3645 * Currently only used for dentry validation.
3647 int kmem_ptr_validate(struct kmem_cache
*cachep
, const void *ptr
)
3649 unsigned long addr
= (unsigned long)ptr
;
3650 unsigned long min_addr
= PAGE_OFFSET
;
3651 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3652 unsigned long size
= cachep
->buffer_size
;
3655 if (unlikely(addr
< min_addr
))
3657 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3659 if (unlikely(addr
& align_mask
))
3661 if (unlikely(!kern_addr_valid(addr
)))
3663 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3665 page
= virt_to_page(ptr
);
3666 if (unlikely(!PageSlab(page
)))
3668 if (unlikely(page_get_cache(page
) != cachep
))
3676 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3678 void *ret
= __cache_alloc_node(cachep
, flags
, nodeid
,
3679 __builtin_return_address(0));
3681 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3682 obj_size(cachep
), cachep
->buffer_size
,
3687 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3689 #ifdef CONFIG_KMEMTRACE
3690 void *kmem_cache_alloc_node_notrace(struct kmem_cache
*cachep
,
3694 return __cache_alloc_node(cachep
, flags
, nodeid
,
3695 __builtin_return_address(0));
3697 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace
);
3700 static __always_inline
void *
3701 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3703 struct kmem_cache
*cachep
;
3706 cachep
= kmem_find_general_cachep(size
, flags
);
3707 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3709 ret
= kmem_cache_alloc_node_notrace(cachep
, flags
, node
);
3711 trace_kmalloc_node((unsigned long) caller
, ret
,
3712 size
, cachep
->buffer_size
, flags
, node
);
3717 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3718 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3720 return __do_kmalloc_node(size
, flags
, node
,
3721 __builtin_return_address(0));
3723 EXPORT_SYMBOL(__kmalloc_node
);
3725 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3726 int node
, unsigned long caller
)
3728 return __do_kmalloc_node(size
, flags
, node
, (void *)caller
);
3730 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3732 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3734 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3736 EXPORT_SYMBOL(__kmalloc_node
);
3737 #endif /* CONFIG_DEBUG_SLAB */
3738 #endif /* CONFIG_NUMA */
3741 * __do_kmalloc - allocate memory
3742 * @size: how many bytes of memory are required.
3743 * @flags: the type of memory to allocate (see kmalloc).
3744 * @caller: function caller for debug tracking of the caller
3746 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3749 struct kmem_cache
*cachep
;
3752 /* If you want to save a few bytes .text space: replace
3754 * Then kmalloc uses the uninlined functions instead of the inline
3757 cachep
= __find_general_cachep(size
, flags
);
3758 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3760 ret
= __cache_alloc(cachep
, flags
, caller
);
3762 trace_kmalloc((unsigned long) caller
, ret
,
3763 size
, cachep
->buffer_size
, flags
);
3769 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3770 void *__kmalloc(size_t size
, gfp_t flags
)
3772 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3774 EXPORT_SYMBOL(__kmalloc
);
3776 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3778 return __do_kmalloc(size
, flags
, (void *)caller
);
3780 EXPORT_SYMBOL(__kmalloc_track_caller
);
3783 void *__kmalloc(size_t size
, gfp_t flags
)
3785 return __do_kmalloc(size
, flags
, NULL
);
3787 EXPORT_SYMBOL(__kmalloc
);
3791 * kmem_cache_free - Deallocate an object
3792 * @cachep: The cache the allocation was from.
3793 * @objp: The previously allocated object.
3795 * Free an object which was previously allocated from this
3798 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3800 unsigned long flags
;
3802 local_irq_save(flags
);
3803 debug_check_no_locks_freed(objp
, obj_size(cachep
));
3804 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3805 debug_check_no_obj_freed(objp
, obj_size(cachep
));
3806 __cache_free(cachep
, objp
);
3807 local_irq_restore(flags
);
3809 trace_kmem_cache_free(_RET_IP_
, objp
);
3811 EXPORT_SYMBOL(kmem_cache_free
);
3814 * kfree - free previously allocated memory
3815 * @objp: pointer returned by kmalloc.
3817 * If @objp is NULL, no operation is performed.
3819 * Don't free memory not originally allocated by kmalloc()
3820 * or you will run into trouble.
3822 void kfree(const void *objp
)
3824 struct kmem_cache
*c
;
3825 unsigned long flags
;
3827 trace_kfree(_RET_IP_
, objp
);
3829 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3831 local_irq_save(flags
);
3832 kfree_debugcheck(objp
);
3833 c
= virt_to_cache(objp
);
3834 debug_check_no_locks_freed(objp
, obj_size(c
));
3835 debug_check_no_obj_freed(objp
, obj_size(c
));
3836 __cache_free(c
, (void *)objp
);
3837 local_irq_restore(flags
);
3839 EXPORT_SYMBOL(kfree
);
3841 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3843 return obj_size(cachep
);
3845 EXPORT_SYMBOL(kmem_cache_size
);
3847 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3849 return cachep
->name
;
3851 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3854 * This initializes kmem_list3 or resizes various caches for all nodes.
3856 static int alloc_kmemlist(struct kmem_cache
*cachep
, gfp_t gfp
)
3859 struct kmem_list3
*l3
;
3860 struct array_cache
*new_shared
;
3861 struct array_cache
**new_alien
= NULL
;
3863 for_each_online_node(node
) {
3865 if (use_alien_caches
) {
3866 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
3872 if (cachep
->shared
) {
3873 new_shared
= alloc_arraycache(node
,
3874 cachep
->shared
*cachep
->batchcount
,
3877 free_alien_cache(new_alien
);
3882 l3
= cachep
->nodelists
[node
];
3884 struct array_cache
*shared
= l3
->shared
;
3886 spin_lock_irq(&l3
->list_lock
);
3889 free_block(cachep
, shared
->entry
,
3890 shared
->avail
, node
);
3892 l3
->shared
= new_shared
;
3894 l3
->alien
= new_alien
;
3897 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3898 cachep
->batchcount
+ cachep
->num
;
3899 spin_unlock_irq(&l3
->list_lock
);
3901 free_alien_cache(new_alien
);
3904 l3
= kmalloc_node(sizeof(struct kmem_list3
), gfp
, node
);
3906 free_alien_cache(new_alien
);
3911 kmem_list3_init(l3
);
3912 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3913 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3914 l3
->shared
= new_shared
;
3915 l3
->alien
= new_alien
;
3916 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3917 cachep
->batchcount
+ cachep
->num
;
3918 cachep
->nodelists
[node
] = l3
;
3923 if (!cachep
->next
.next
) {
3924 /* Cache is not active yet. Roll back what we did */
3927 if (cachep
->nodelists
[node
]) {
3928 l3
= cachep
->nodelists
[node
];
3931 free_alien_cache(l3
->alien
);
3933 cachep
->nodelists
[node
] = NULL
;
3941 struct ccupdate_struct
{
3942 struct kmem_cache
*cachep
;
3943 struct array_cache
*new[NR_CPUS
];
3946 static void do_ccupdate_local(void *info
)
3948 struct ccupdate_struct
*new = info
;
3949 struct array_cache
*old
;
3952 old
= cpu_cache_get(new->cachep
);
3954 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3955 new->new[smp_processor_id()] = old
;
3958 /* Always called with the cache_chain_mutex held */
3959 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3960 int batchcount
, int shared
, gfp_t gfp
)
3962 struct ccupdate_struct
*new;
3965 new = kzalloc(sizeof(*new), gfp
);
3969 for_each_online_cpu(i
) {
3970 new->new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3973 for (i
--; i
>= 0; i
--)
3979 new->cachep
= cachep
;
3981 on_each_cpu(do_ccupdate_local
, (void *)new, 1);
3984 cachep
->batchcount
= batchcount
;
3985 cachep
->limit
= limit
;
3986 cachep
->shared
= shared
;
3988 for_each_online_cpu(i
) {
3989 struct array_cache
*ccold
= new->new[i
];
3992 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3993 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3994 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3998 return alloc_kmemlist(cachep
, gfp
);
4001 /* Called with cache_chain_mutex held always */
4002 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
4008 * The head array serves three purposes:
4009 * - create a LIFO ordering, i.e. return objects that are cache-warm
4010 * - reduce the number of spinlock operations.
4011 * - reduce the number of linked list operations on the slab and
4012 * bufctl chains: array operations are cheaper.
4013 * The numbers are guessed, we should auto-tune as described by
4016 if (cachep
->buffer_size
> 131072)
4018 else if (cachep
->buffer_size
> PAGE_SIZE
)
4020 else if (cachep
->buffer_size
> 1024)
4022 else if (cachep
->buffer_size
> 256)
4028 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4029 * allocation behaviour: Most allocs on one cpu, most free operations
4030 * on another cpu. For these cases, an efficient object passing between
4031 * cpus is necessary. This is provided by a shared array. The array
4032 * replaces Bonwick's magazine layer.
4033 * On uniprocessor, it's functionally equivalent (but less efficient)
4034 * to a larger limit. Thus disabled by default.
4037 if (cachep
->buffer_size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
4042 * With debugging enabled, large batchcount lead to excessively long
4043 * periods with disabled local interrupts. Limit the batchcount
4048 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
, gfp
);
4050 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4051 cachep
->name
, -err
);
4056 * Drain an array if it contains any elements taking the l3 lock only if
4057 * necessary. Note that the l3 listlock also protects the array_cache
4058 * if drain_array() is used on the shared array.
4060 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4061 struct array_cache
*ac
, int force
, int node
)
4065 if (!ac
|| !ac
->avail
)
4067 if (ac
->touched
&& !force
) {
4070 spin_lock_irq(&l3
->list_lock
);
4072 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4073 if (tofree
> ac
->avail
)
4074 tofree
= (ac
->avail
+ 1) / 2;
4075 free_block(cachep
, ac
->entry
, tofree
, node
);
4076 ac
->avail
-= tofree
;
4077 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4078 sizeof(void *) * ac
->avail
);
4080 spin_unlock_irq(&l3
->list_lock
);
4085 * cache_reap - Reclaim memory from caches.
4086 * @w: work descriptor
4088 * Called from workqueue/eventd every few seconds.
4090 * - clear the per-cpu caches for this CPU.
4091 * - return freeable pages to the main free memory pool.
4093 * If we cannot acquire the cache chain mutex then just give up - we'll try
4094 * again on the next iteration.
4096 static void cache_reap(struct work_struct
*w
)
4098 struct kmem_cache
*searchp
;
4099 struct kmem_list3
*l3
;
4100 int node
= numa_node_id();
4101 struct delayed_work
*work
= to_delayed_work(w
);
4103 if (!mutex_trylock(&cache_chain_mutex
))
4104 /* Give up. Setup the next iteration. */
4107 list_for_each_entry(searchp
, &cache_chain
, next
) {
4111 * We only take the l3 lock if absolutely necessary and we
4112 * have established with reasonable certainty that
4113 * we can do some work if the lock was obtained.
4115 l3
= searchp
->nodelists
[node
];
4117 reap_alien(searchp
, l3
);
4119 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4122 * These are racy checks but it does not matter
4123 * if we skip one check or scan twice.
4125 if (time_after(l3
->next_reap
, jiffies
))
4128 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4130 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4132 if (l3
->free_touched
)
4133 l3
->free_touched
= 0;
4137 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4138 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4139 STATS_ADD_REAPED(searchp
, freed
);
4145 mutex_unlock(&cache_chain_mutex
);
4148 /* Set up the next iteration */
4149 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4152 #ifdef CONFIG_SLABINFO
4154 static void print_slabinfo_header(struct seq_file
*m
)
4157 * Output format version, so at least we can change it
4158 * without _too_ many complaints.
4161 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4163 seq_puts(m
, "slabinfo - version: 2.1\n");
4165 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4166 "<objperslab> <pagesperslab>");
4167 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4168 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4170 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4171 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4172 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4177 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4181 mutex_lock(&cache_chain_mutex
);
4183 print_slabinfo_header(m
);
4185 return seq_list_start(&cache_chain
, *pos
);
4188 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4190 return seq_list_next(p
, &cache_chain
, pos
);
4193 static void s_stop(struct seq_file
*m
, void *p
)
4195 mutex_unlock(&cache_chain_mutex
);
4198 static int s_show(struct seq_file
*m
, void *p
)
4200 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4202 unsigned long active_objs
;
4203 unsigned long num_objs
;
4204 unsigned long active_slabs
= 0;
4205 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4209 struct kmem_list3
*l3
;
4213 for_each_online_node(node
) {
4214 l3
= cachep
->nodelists
[node
];
4219 spin_lock_irq(&l3
->list_lock
);
4221 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4222 if (slabp
->inuse
!= cachep
->num
&& !error
)
4223 error
= "slabs_full accounting error";
4224 active_objs
+= cachep
->num
;
4227 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4228 if (slabp
->inuse
== cachep
->num
&& !error
)
4229 error
= "slabs_partial inuse accounting error";
4230 if (!slabp
->inuse
&& !error
)
4231 error
= "slabs_partial/inuse accounting error";
4232 active_objs
+= slabp
->inuse
;
4235 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4236 if (slabp
->inuse
&& !error
)
4237 error
= "slabs_free/inuse accounting error";
4240 free_objects
+= l3
->free_objects
;
4242 shared_avail
+= l3
->shared
->avail
;
4244 spin_unlock_irq(&l3
->list_lock
);
4246 num_slabs
+= active_slabs
;
4247 num_objs
= num_slabs
* cachep
->num
;
4248 if (num_objs
- active_objs
!= free_objects
&& !error
)
4249 error
= "free_objects accounting error";
4251 name
= cachep
->name
;
4253 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4255 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4256 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4257 cachep
->num
, (1 << cachep
->gfporder
));
4258 seq_printf(m
, " : tunables %4u %4u %4u",
4259 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4260 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4261 active_slabs
, num_slabs
, shared_avail
);
4264 unsigned long high
= cachep
->high_mark
;
4265 unsigned long allocs
= cachep
->num_allocations
;
4266 unsigned long grown
= cachep
->grown
;
4267 unsigned long reaped
= cachep
->reaped
;
4268 unsigned long errors
= cachep
->errors
;
4269 unsigned long max_freeable
= cachep
->max_freeable
;
4270 unsigned long node_allocs
= cachep
->node_allocs
;
4271 unsigned long node_frees
= cachep
->node_frees
;
4272 unsigned long overflows
= cachep
->node_overflow
;
4274 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
4275 %4lu %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
4276 reaped
, errors
, max_freeable
, node_allocs
,
4277 node_frees
, overflows
);
4281 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4282 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4283 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4284 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4286 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4287 allochit
, allocmiss
, freehit
, freemiss
);
4295 * slabinfo_op - iterator that generates /proc/slabinfo
4304 * num-pages-per-slab
4305 * + further values on SMP and with statistics enabled
4308 static const struct seq_operations slabinfo_op
= {
4315 #define MAX_SLABINFO_WRITE 128
4317 * slabinfo_write - Tuning for the slab allocator
4319 * @buffer: user buffer
4320 * @count: data length
4323 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4324 size_t count
, loff_t
*ppos
)
4326 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4327 int limit
, batchcount
, shared
, res
;
4328 struct kmem_cache
*cachep
;
4330 if (count
> MAX_SLABINFO_WRITE
)
4332 if (copy_from_user(&kbuf
, buffer
, count
))
4334 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4336 tmp
= strchr(kbuf
, ' ');
4341 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4344 /* Find the cache in the chain of caches. */
4345 mutex_lock(&cache_chain_mutex
);
4347 list_for_each_entry(cachep
, &cache_chain
, next
) {
4348 if (!strcmp(cachep
->name
, kbuf
)) {
4349 if (limit
< 1 || batchcount
< 1 ||
4350 batchcount
> limit
|| shared
< 0) {
4353 res
= do_tune_cpucache(cachep
, limit
,
4360 mutex_unlock(&cache_chain_mutex
);
4366 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4368 return seq_open(file
, &slabinfo_op
);
4371 static const struct file_operations proc_slabinfo_operations
= {
4372 .open
= slabinfo_open
,
4374 .write
= slabinfo_write
,
4375 .llseek
= seq_lseek
,
4376 .release
= seq_release
,
4379 #ifdef CONFIG_DEBUG_SLAB_LEAK
4381 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4383 mutex_lock(&cache_chain_mutex
);
4384 return seq_list_start(&cache_chain
, *pos
);
4387 static inline int add_caller(unsigned long *n
, unsigned long v
)
4397 unsigned long *q
= p
+ 2 * i
;
4411 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4417 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4423 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4424 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4426 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4431 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4433 #ifdef CONFIG_KALLSYMS
4434 unsigned long offset
, size
;
4435 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4437 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4438 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4440 seq_printf(m
, " [%s]", modname
);
4444 seq_printf(m
, "%p", (void *)address
);
4447 static int leaks_show(struct seq_file
*m
, void *p
)
4449 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4451 struct kmem_list3
*l3
;
4453 unsigned long *n
= m
->private;
4457 if (!(cachep
->flags
& SLAB_STORE_USER
))
4459 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4462 /* OK, we can do it */
4466 for_each_online_node(node
) {
4467 l3
= cachep
->nodelists
[node
];
4472 spin_lock_irq(&l3
->list_lock
);
4474 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4475 handle_slab(n
, cachep
, slabp
);
4476 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4477 handle_slab(n
, cachep
, slabp
);
4478 spin_unlock_irq(&l3
->list_lock
);
4480 name
= cachep
->name
;
4482 /* Increase the buffer size */
4483 mutex_unlock(&cache_chain_mutex
);
4484 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4486 /* Too bad, we are really out */
4488 mutex_lock(&cache_chain_mutex
);
4491 *(unsigned long *)m
->private = n
[0] * 2;
4493 mutex_lock(&cache_chain_mutex
);
4494 /* Now make sure this entry will be retried */
4498 for (i
= 0; i
< n
[1]; i
++) {
4499 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4500 show_symbol(m
, n
[2*i
+2]);
4507 static const struct seq_operations slabstats_op
= {
4508 .start
= leaks_start
,
4514 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4516 unsigned long *n
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
4519 ret
= seq_open(file
, &slabstats_op
);
4521 struct seq_file
*m
= file
->private_data
;
4522 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4531 static const struct file_operations proc_slabstats_operations
= {
4532 .open
= slabstats_open
,
4534 .llseek
= seq_lseek
,
4535 .release
= seq_release_private
,
4539 static int __init
slab_proc_init(void)
4541 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4542 #ifdef CONFIG_DEBUG_SLAB_LEAK
4543 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4547 module_init(slab_proc_init
);
4551 * ksize - get the actual amount of memory allocated for a given object
4552 * @objp: Pointer to the object
4554 * kmalloc may internally round up allocations and return more memory
4555 * than requested. ksize() can be used to determine the actual amount of
4556 * memory allocated. The caller may use this additional memory, even though
4557 * a smaller amount of memory was initially specified with the kmalloc call.
4558 * The caller must guarantee that objp points to a valid object previously
4559 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4560 * must not be freed during the duration of the call.
4562 size_t ksize(const void *objp
)
4565 if (unlikely(objp
== ZERO_SIZE_PTR
))
4568 return obj_size(virt_to_cache(objp
));
4570 EXPORT_SYMBOL(ksize
);