2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
45 static kmem_zone_t
*xfs_buf_zone
;
46 STATIC
int xfsbufd(void *);
47 STATIC
void xfs_buf_delwri_queue(xfs_buf_t
*, int);
49 static struct workqueue_struct
*xfslogd_workqueue
;
50 struct workqueue_struct
*xfsdatad_workqueue
;
51 struct workqueue_struct
*xfsconvertd_workqueue
;
53 #ifdef XFS_BUF_LOCK_TRACKING
54 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
55 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
56 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
58 # define XB_SET_OWNER(bp) do { } while (0)
59 # define XB_CLEAR_OWNER(bp) do { } while (0)
60 # define XB_GET_OWNER(bp) do { } while (0)
63 #define xb_to_gfp(flags) \
64 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
65 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
67 #define xb_to_km(flags) \
68 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
70 #define xfs_buf_allocate(flags) \
71 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
72 #define xfs_buf_deallocate(bp) \
73 kmem_zone_free(xfs_buf_zone, (bp));
80 * Return true if the buffer is vmapped.
82 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
83 * code is clever enough to know it doesn't have to map a single page,
84 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
86 return (bp
->b_flags
& XBF_MAPPED
) && bp
->b_page_count
> 1;
93 return (bp
->b_page_count
* PAGE_SIZE
) - bp
->b_offset
;
97 * Page Region interfaces.
99 * For pages in filesystems where the blocksize is smaller than the
100 * pagesize, we use the page->private field (long) to hold a bitmap
101 * of uptodate regions within the page.
103 * Each such region is "bytes per page / bits per long" bytes long.
105 * NBPPR == number-of-bytes-per-page-region
106 * BTOPR == bytes-to-page-region (rounded up)
107 * BTOPRT == bytes-to-page-region-truncated (rounded down)
109 #if (BITS_PER_LONG == 32)
110 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
111 #elif (BITS_PER_LONG == 64)
112 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
114 #error BITS_PER_LONG must be 32 or 64
116 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
117 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
118 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
128 first
= BTOPR(offset
);
129 final
= BTOPRT(offset
+ length
- 1);
130 first
= min(first
, final
);
133 mask
<<= BITS_PER_LONG
- (final
- first
);
134 mask
>>= BITS_PER_LONG
- (final
);
136 ASSERT(offset
+ length
<= PAGE_CACHE_SIZE
);
137 ASSERT((final
- first
) < BITS_PER_LONG
&& (final
- first
) >= 0);
148 set_page_private(page
,
149 page_private(page
) | page_region_mask(offset
, length
));
150 if (page_private(page
) == ~0UL)
151 SetPageUptodate(page
);
160 unsigned long mask
= page_region_mask(offset
, length
);
162 return (mask
&& (page_private(page
) & mask
) == mask
);
166 * xfs_buf_lru_add - add a buffer to the LRU.
168 * The LRU takes a new reference to the buffer so that it will only be freed
169 * once the shrinker takes the buffer off the LRU.
175 struct xfs_buftarg
*btp
= bp
->b_target
;
177 spin_lock(&btp
->bt_lru_lock
);
178 if (list_empty(&bp
->b_lru
)) {
179 atomic_inc(&bp
->b_hold
);
180 list_add_tail(&bp
->b_lru
, &btp
->bt_lru
);
183 spin_unlock(&btp
->bt_lru_lock
);
187 * xfs_buf_lru_del - remove a buffer from the LRU
189 * The unlocked check is safe here because it only occurs when there are not
190 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
191 * to optimise the shrinker removing the buffer from the LRU and calling
192 * xfs_buf_free(). i.e. it removes an unneccessary round trip on the
199 struct xfs_buftarg
*btp
= bp
->b_target
;
201 if (list_empty(&bp
->b_lru
))
204 spin_lock(&btp
->bt_lru_lock
);
205 if (!list_empty(&bp
->b_lru
)) {
206 list_del_init(&bp
->b_lru
);
209 spin_unlock(&btp
->bt_lru_lock
);
213 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
214 * b_lru_ref count so that the buffer is freed immediately when the buffer
215 * reference count falls to zero. If the buffer is already on the LRU, we need
216 * to remove the reference that LRU holds on the buffer.
218 * This prevents build-up of stale buffers on the LRU.
224 bp
->b_flags
|= XBF_STALE
;
225 atomic_set(&(bp
)->b_lru_ref
, 0);
226 if (!list_empty(&bp
->b_lru
)) {
227 struct xfs_buftarg
*btp
= bp
->b_target
;
229 spin_lock(&btp
->bt_lru_lock
);
230 if (!list_empty(&bp
->b_lru
)) {
231 list_del_init(&bp
->b_lru
);
233 atomic_dec(&bp
->b_hold
);
235 spin_unlock(&btp
->bt_lru_lock
);
237 ASSERT(atomic_read(&bp
->b_hold
) >= 1);
243 xfs_buftarg_t
*target
,
244 xfs_off_t range_base
,
246 xfs_buf_flags_t flags
)
249 * We don't want certain flags to appear in b_flags.
251 flags
&= ~(XBF_LOCK
|XBF_MAPPED
|XBF_DONT_BLOCK
|XBF_READ_AHEAD
);
253 memset(bp
, 0, sizeof(xfs_buf_t
));
254 atomic_set(&bp
->b_hold
, 1);
255 atomic_set(&bp
->b_lru_ref
, 1);
256 init_completion(&bp
->b_iowait
);
257 INIT_LIST_HEAD(&bp
->b_lru
);
258 INIT_LIST_HEAD(&bp
->b_list
);
259 RB_CLEAR_NODE(&bp
->b_rbnode
);
260 sema_init(&bp
->b_sema
, 0); /* held, no waiters */
262 bp
->b_target
= target
;
263 bp
->b_file_offset
= range_base
;
265 * Set buffer_length and count_desired to the same value initially.
266 * I/O routines should use count_desired, which will be the same in
267 * most cases but may be reset (e.g. XFS recovery).
269 bp
->b_buffer_length
= bp
->b_count_desired
= range_length
;
271 bp
->b_bn
= XFS_BUF_DADDR_NULL
;
272 atomic_set(&bp
->b_pin_count
, 0);
273 init_waitqueue_head(&bp
->b_waiters
);
275 XFS_STATS_INC(xb_create
);
277 trace_xfs_buf_init(bp
, _RET_IP_
);
281 * Allocate a page array capable of holding a specified number
282 * of pages, and point the page buf at it.
288 xfs_buf_flags_t flags
)
290 /* Make sure that we have a page list */
291 if (bp
->b_pages
== NULL
) {
292 bp
->b_offset
= xfs_buf_poff(bp
->b_file_offset
);
293 bp
->b_page_count
= page_count
;
294 if (page_count
<= XB_PAGES
) {
295 bp
->b_pages
= bp
->b_page_array
;
297 bp
->b_pages
= kmem_alloc(sizeof(struct page
*) *
298 page_count
, xb_to_km(flags
));
299 if (bp
->b_pages
== NULL
)
302 memset(bp
->b_pages
, 0, sizeof(struct page
*) * page_count
);
308 * Frees b_pages if it was allocated.
314 if (bp
->b_pages
!= bp
->b_page_array
) {
315 kmem_free(bp
->b_pages
);
321 * Releases the specified buffer.
323 * The modification state of any associated pages is left unchanged.
324 * The buffer most not be on any hash - use xfs_buf_rele instead for
325 * hashed and refcounted buffers
331 trace_xfs_buf_free(bp
, _RET_IP_
);
333 ASSERT(list_empty(&bp
->b_lru
));
335 if (bp
->b_flags
& (_XBF_PAGE_CACHE
|_XBF_PAGES
)) {
338 if (xfs_buf_is_vmapped(bp
))
339 vm_unmap_ram(bp
->b_addr
- bp
->b_offset
,
342 for (i
= 0; i
< bp
->b_page_count
; i
++) {
343 struct page
*page
= bp
->b_pages
[i
];
345 if (bp
->b_flags
& _XBF_PAGE_CACHE
)
346 ASSERT(!PagePrivate(page
));
347 page_cache_release(page
);
350 _xfs_buf_free_pages(bp
);
351 xfs_buf_deallocate(bp
);
355 * Finds all pages for buffer in question and builds it's page list.
358 _xfs_buf_lookup_pages(
362 struct address_space
*mapping
= bp
->b_target
->bt_mapping
;
363 size_t blocksize
= bp
->b_target
->bt_bsize
;
364 size_t size
= bp
->b_count_desired
;
365 size_t nbytes
, offset
;
366 gfp_t gfp_mask
= xb_to_gfp(flags
);
367 unsigned short page_count
, i
;
372 end
= bp
->b_file_offset
+ bp
->b_buffer_length
;
373 page_count
= xfs_buf_btoc(end
) - xfs_buf_btoct(bp
->b_file_offset
);
375 error
= _xfs_buf_get_pages(bp
, page_count
, flags
);
378 bp
->b_flags
|= _XBF_PAGE_CACHE
;
380 offset
= bp
->b_offset
;
381 first
= bp
->b_file_offset
>> PAGE_CACHE_SHIFT
;
383 for (i
= 0; i
< bp
->b_page_count
; i
++) {
388 page
= find_or_create_page(mapping
, first
+ i
, gfp_mask
);
389 if (unlikely(page
== NULL
)) {
390 if (flags
& XBF_READ_AHEAD
) {
391 bp
->b_page_count
= i
;
392 for (i
= 0; i
< bp
->b_page_count
; i
++)
393 unlock_page(bp
->b_pages
[i
]);
398 * This could deadlock.
400 * But until all the XFS lowlevel code is revamped to
401 * handle buffer allocation failures we can't do much.
403 if (!(++retries
% 100))
405 "possible memory allocation deadlock in %s (mode:0x%x)",
408 XFS_STATS_INC(xb_page_retries
);
409 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
413 XFS_STATS_INC(xb_page_found
);
415 nbytes
= min_t(size_t, size
, PAGE_CACHE_SIZE
- offset
);
418 ASSERT(!PagePrivate(page
));
419 if (!PageUptodate(page
)) {
421 if (blocksize
>= PAGE_CACHE_SIZE
) {
422 if (flags
& XBF_READ
)
423 bp
->b_flags
|= _XBF_PAGE_LOCKED
;
424 } else if (!PagePrivate(page
)) {
425 if (test_page_region(page
, offset
, nbytes
))
430 bp
->b_pages
[i
] = page
;
434 if (!(bp
->b_flags
& _XBF_PAGE_LOCKED
)) {
435 for (i
= 0; i
< bp
->b_page_count
; i
++)
436 unlock_page(bp
->b_pages
[i
]);
439 if (page_count
== bp
->b_page_count
)
440 bp
->b_flags
|= XBF_DONE
;
446 * Map buffer into kernel address-space if nessecary.
453 /* A single page buffer is always mappable */
454 if (bp
->b_page_count
== 1) {
455 bp
->b_addr
= page_address(bp
->b_pages
[0]) + bp
->b_offset
;
456 bp
->b_flags
|= XBF_MAPPED
;
457 } else if (flags
& XBF_MAPPED
) {
458 bp
->b_addr
= vm_map_ram(bp
->b_pages
, bp
->b_page_count
,
460 if (unlikely(bp
->b_addr
== NULL
))
462 bp
->b_addr
+= bp
->b_offset
;
463 bp
->b_flags
|= XBF_MAPPED
;
470 * Finding and Reading Buffers
474 * Look up, and creates if absent, a lockable buffer for
475 * a given range of an inode. The buffer is returned
476 * locked. If other overlapping buffers exist, they are
477 * released before the new buffer is created and locked,
478 * which may imply that this call will block until those buffers
479 * are unlocked. No I/O is implied by this call.
483 xfs_buftarg_t
*btp
, /* block device target */
484 xfs_off_t ioff
, /* starting offset of range */
485 size_t isize
, /* length of range */
486 xfs_buf_flags_t flags
,
489 xfs_off_t range_base
;
491 struct xfs_perag
*pag
;
492 struct rb_node
**rbp
;
493 struct rb_node
*parent
;
496 range_base
= (ioff
<< BBSHIFT
);
497 range_length
= (isize
<< BBSHIFT
);
499 /* Check for IOs smaller than the sector size / not sector aligned */
500 ASSERT(!(range_length
< (1 << btp
->bt_sshift
)));
501 ASSERT(!(range_base
& (xfs_off_t
)btp
->bt_smask
));
504 pag
= xfs_perag_get(btp
->bt_mount
,
505 xfs_daddr_to_agno(btp
->bt_mount
, ioff
));
508 spin_lock(&pag
->pag_buf_lock
);
509 rbp
= &pag
->pag_buf_tree
.rb_node
;
514 bp
= rb_entry(parent
, struct xfs_buf
, b_rbnode
);
516 if (range_base
< bp
->b_file_offset
)
517 rbp
= &(*rbp
)->rb_left
;
518 else if (range_base
> bp
->b_file_offset
)
519 rbp
= &(*rbp
)->rb_right
;
522 * found a block offset match. If the range doesn't
523 * match, the only way this is allowed is if the buffer
524 * in the cache is stale and the transaction that made
525 * it stale has not yet committed. i.e. we are
526 * reallocating a busy extent. Skip this buffer and
527 * continue searching to the right for an exact match.
529 if (bp
->b_buffer_length
!= range_length
) {
530 ASSERT(bp
->b_flags
& XBF_STALE
);
531 rbp
= &(*rbp
)->rb_right
;
534 atomic_inc(&bp
->b_hold
);
541 _xfs_buf_initialize(new_bp
, btp
, range_base
,
542 range_length
, flags
);
543 rb_link_node(&new_bp
->b_rbnode
, parent
, rbp
);
544 rb_insert_color(&new_bp
->b_rbnode
, &pag
->pag_buf_tree
);
545 /* the buffer keeps the perag reference until it is freed */
547 spin_unlock(&pag
->pag_buf_lock
);
549 XFS_STATS_INC(xb_miss_locked
);
550 spin_unlock(&pag
->pag_buf_lock
);
556 spin_unlock(&pag
->pag_buf_lock
);
559 if (xfs_buf_cond_lock(bp
)) {
560 /* failed, so wait for the lock if requested. */
561 if (!(flags
& XBF_TRYLOCK
)) {
563 XFS_STATS_INC(xb_get_locked_waited
);
566 XFS_STATS_INC(xb_busy_locked
);
571 if (bp
->b_flags
& XBF_STALE
) {
572 ASSERT((bp
->b_flags
& _XBF_DELWRI_Q
) == 0);
573 bp
->b_flags
&= XBF_MAPPED
;
576 trace_xfs_buf_find(bp
, flags
, _RET_IP_
);
577 XFS_STATS_INC(xb_get_locked
);
582 * Assembles a buffer covering the specified range.
583 * Storage in memory for all portions of the buffer will be allocated,
584 * although backing storage may not be.
588 xfs_buftarg_t
*target
,/* target for buffer */
589 xfs_off_t ioff
, /* starting offset of range */
590 size_t isize
, /* length of range */
591 xfs_buf_flags_t flags
)
593 xfs_buf_t
*bp
, *new_bp
;
596 new_bp
= xfs_buf_allocate(flags
);
597 if (unlikely(!new_bp
))
600 bp
= _xfs_buf_find(target
, ioff
, isize
, flags
, new_bp
);
602 error
= _xfs_buf_lookup_pages(bp
, flags
);
606 xfs_buf_deallocate(new_bp
);
607 if (unlikely(bp
== NULL
))
611 for (i
= 0; i
< bp
->b_page_count
; i
++)
612 mark_page_accessed(bp
->b_pages
[i
]);
614 if (!(bp
->b_flags
& XBF_MAPPED
)) {
615 error
= _xfs_buf_map_pages(bp
, flags
);
616 if (unlikely(error
)) {
617 xfs_warn(target
->bt_mount
,
618 "%s: failed to map pages\n", __func__
);
623 XFS_STATS_INC(xb_get
);
626 * Always fill in the block number now, the mapped cases can do
627 * their own overlay of this later.
630 bp
->b_count_desired
= bp
->b_buffer_length
;
632 trace_xfs_buf_get(bp
, flags
, _RET_IP_
);
636 if (flags
& (XBF_LOCK
| XBF_TRYLOCK
))
645 xfs_buf_flags_t flags
)
649 ASSERT(!(flags
& (XBF_DELWRI
|XBF_WRITE
)));
650 ASSERT(bp
->b_bn
!= XFS_BUF_DADDR_NULL
);
652 bp
->b_flags
&= ~(XBF_WRITE
| XBF_ASYNC
| XBF_DELWRI
| \
653 XBF_READ_AHEAD
| _XBF_RUN_QUEUES
);
654 bp
->b_flags
|= flags
& (XBF_READ
| XBF_ASYNC
| \
655 XBF_READ_AHEAD
| _XBF_RUN_QUEUES
);
657 status
= xfs_buf_iorequest(bp
);
658 if (status
|| XFS_BUF_ISERROR(bp
) || (flags
& XBF_ASYNC
))
660 return xfs_buf_iowait(bp
);
665 xfs_buftarg_t
*target
,
668 xfs_buf_flags_t flags
)
674 bp
= xfs_buf_get(target
, ioff
, isize
, flags
);
676 trace_xfs_buf_read(bp
, flags
, _RET_IP_
);
678 if (!XFS_BUF_ISDONE(bp
)) {
679 XFS_STATS_INC(xb_get_read
);
680 _xfs_buf_read(bp
, flags
);
681 } else if (flags
& XBF_ASYNC
) {
683 * Read ahead call which is already satisfied,
688 /* We do not want read in the flags */
689 bp
->b_flags
&= ~XBF_READ
;
696 if (flags
& (XBF_LOCK
| XBF_TRYLOCK
))
703 * If we are not low on memory then do the readahead in a deadlock
708 xfs_buftarg_t
*target
,
712 struct backing_dev_info
*bdi
;
714 bdi
= target
->bt_mapping
->backing_dev_info
;
715 if (bdi_read_congested(bdi
))
718 xfs_buf_read(target
, ioff
, isize
,
719 XBF_TRYLOCK
|XBF_ASYNC
|XBF_READ_AHEAD
|XBF_DONT_BLOCK
);
723 * Read an uncached buffer from disk. Allocates and returns a locked
724 * buffer containing the disk contents or nothing.
727 xfs_buf_read_uncached(
728 struct xfs_mount
*mp
,
729 struct xfs_buftarg
*target
,
737 bp
= xfs_buf_get_uncached(target
, length
, flags
);
741 /* set up the buffer for a read IO */
743 XFS_BUF_SET_ADDR(bp
, daddr
);
748 error
= xfs_buf_iowait(bp
);
749 if (error
|| bp
->b_error
) {
759 xfs_buftarg_t
*target
)
763 bp
= xfs_buf_allocate(0);
765 _xfs_buf_initialize(bp
, target
, 0, len
, 0);
769 static inline struct page
*
773 if ((!is_vmalloc_addr(addr
))) {
774 return virt_to_page(addr
);
776 return vmalloc_to_page(addr
);
781 xfs_buf_associate_memory(
788 unsigned long pageaddr
;
789 unsigned long offset
;
793 pageaddr
= (unsigned long)mem
& PAGE_CACHE_MASK
;
794 offset
= (unsigned long)mem
- pageaddr
;
795 buflen
= PAGE_CACHE_ALIGN(len
+ offset
);
796 page_count
= buflen
>> PAGE_CACHE_SHIFT
;
798 /* Free any previous set of page pointers */
800 _xfs_buf_free_pages(bp
);
805 rval
= _xfs_buf_get_pages(bp
, page_count
, XBF_DONT_BLOCK
);
809 bp
->b_offset
= offset
;
811 for (i
= 0; i
< bp
->b_page_count
; i
++) {
812 bp
->b_pages
[i
] = mem_to_page((void *)pageaddr
);
813 pageaddr
+= PAGE_CACHE_SIZE
;
816 bp
->b_count_desired
= len
;
817 bp
->b_buffer_length
= buflen
;
818 bp
->b_flags
|= XBF_MAPPED
;
819 bp
->b_flags
&= ~_XBF_PAGE_LOCKED
;
825 xfs_buf_get_uncached(
826 struct xfs_buftarg
*target
,
830 unsigned long page_count
= PAGE_ALIGN(len
) >> PAGE_SHIFT
;
834 bp
= xfs_buf_allocate(0);
835 if (unlikely(bp
== NULL
))
837 _xfs_buf_initialize(bp
, target
, 0, len
, 0);
839 error
= _xfs_buf_get_pages(bp
, page_count
, 0);
843 for (i
= 0; i
< page_count
; i
++) {
844 bp
->b_pages
[i
] = alloc_page(xb_to_gfp(flags
));
848 bp
->b_flags
|= _XBF_PAGES
;
850 error
= _xfs_buf_map_pages(bp
, XBF_MAPPED
);
851 if (unlikely(error
)) {
852 xfs_warn(target
->bt_mount
,
853 "%s: failed to map pages\n", __func__
);
859 trace_xfs_buf_get_uncached(bp
, _RET_IP_
);
864 __free_page(bp
->b_pages
[i
]);
865 _xfs_buf_free_pages(bp
);
867 xfs_buf_deallocate(bp
);
873 * Increment reference count on buffer, to hold the buffer concurrently
874 * with another thread which may release (free) the buffer asynchronously.
875 * Must hold the buffer already to call this function.
881 trace_xfs_buf_hold(bp
, _RET_IP_
);
882 atomic_inc(&bp
->b_hold
);
886 * Releases a hold on the specified buffer. If the
887 * the hold count is 1, calls xfs_buf_free.
893 struct xfs_perag
*pag
= bp
->b_pag
;
895 trace_xfs_buf_rele(bp
, _RET_IP_
);
898 ASSERT(list_empty(&bp
->b_lru
));
899 ASSERT(RB_EMPTY_NODE(&bp
->b_rbnode
));
900 if (atomic_dec_and_test(&bp
->b_hold
))
905 ASSERT(!RB_EMPTY_NODE(&bp
->b_rbnode
));
907 ASSERT(atomic_read(&bp
->b_hold
) > 0);
908 if (atomic_dec_and_lock(&bp
->b_hold
, &pag
->pag_buf_lock
)) {
909 if (!(bp
->b_flags
& XBF_STALE
) &&
910 atomic_read(&bp
->b_lru_ref
)) {
912 spin_unlock(&pag
->pag_buf_lock
);
915 ASSERT(!(bp
->b_flags
& (XBF_DELWRI
|_XBF_DELWRI_Q
)));
916 rb_erase(&bp
->b_rbnode
, &pag
->pag_buf_tree
);
917 spin_unlock(&pag
->pag_buf_lock
);
926 * Mutual exclusion on buffers. Locking model:
928 * Buffers associated with inodes for which buffer locking
929 * is not enabled are not protected by semaphores, and are
930 * assumed to be exclusively owned by the caller. There is a
931 * spinlock in the buffer, used by the caller when concurrent
932 * access is possible.
936 * Locks a buffer object, if it is not already locked. Note that this in
937 * no way locks the underlying pages, so it is only useful for
938 * synchronizing concurrent use of buffer objects, not for synchronizing
939 * independent access to the underlying pages.
941 * If we come across a stale, pinned, locked buffer, we know that we are
942 * being asked to lock a buffer that has been reallocated. Because it is
943 * pinned, we know that the log has not been pushed to disk and hence it
944 * will still be locked. Rather than continuing to have trylock attempts
945 * fail until someone else pushes the log, push it ourselves before
946 * returning. This means that the xfsaild will not get stuck trying
947 * to push on stale inode buffers.
955 locked
= down_trylock(&bp
->b_sema
) == 0;
958 else if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
959 xfs_log_force(bp
->b_target
->bt_mount
, 0);
961 trace_xfs_buf_cond_lock(bp
, _RET_IP_
);
962 return locked
? 0 : -EBUSY
;
969 return bp
->b_sema
.count
;
973 * Locks a buffer object.
974 * Note that this in no way locks the underlying pages, so it is only
975 * useful for synchronizing concurrent use of buffer objects, not for
976 * synchronizing independent access to the underlying pages.
978 * If we come across a stale, pinned, locked buffer, we know that we
979 * are being asked to lock a buffer that has been reallocated. Because
980 * it is pinned, we know that the log has not been pushed to disk and
981 * hence it will still be locked. Rather than sleeping until someone
982 * else pushes the log, push it ourselves before trying to get the lock.
988 trace_xfs_buf_lock(bp
, _RET_IP_
);
990 if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
991 xfs_log_force(bp
->b_target
->bt_mount
, 0);
992 if (atomic_read(&bp
->b_io_remaining
))
993 blk_run_address_space(bp
->b_target
->bt_mapping
);
997 trace_xfs_buf_lock_done(bp
, _RET_IP_
);
1001 * Releases the lock on the buffer object.
1002 * If the buffer is marked delwri but is not queued, do so before we
1003 * unlock the buffer as we need to set flags correctly. We also need to
1004 * take a reference for the delwri queue because the unlocker is going to
1005 * drop their's and they don't know we just queued it.
1011 if ((bp
->b_flags
& (XBF_DELWRI
|_XBF_DELWRI_Q
)) == XBF_DELWRI
) {
1012 atomic_inc(&bp
->b_hold
);
1013 bp
->b_flags
|= XBF_ASYNC
;
1014 xfs_buf_delwri_queue(bp
, 0);
1020 trace_xfs_buf_unlock(bp
, _RET_IP_
);
1027 DECLARE_WAITQUEUE (wait
, current
);
1029 if (atomic_read(&bp
->b_pin_count
) == 0)
1032 add_wait_queue(&bp
->b_waiters
, &wait
);
1034 set_current_state(TASK_UNINTERRUPTIBLE
);
1035 if (atomic_read(&bp
->b_pin_count
) == 0)
1037 if (atomic_read(&bp
->b_io_remaining
))
1038 blk_run_address_space(bp
->b_target
->bt_mapping
);
1041 remove_wait_queue(&bp
->b_waiters
, &wait
);
1042 set_current_state(TASK_RUNNING
);
1046 * Buffer Utility Routines
1050 xfs_buf_iodone_work(
1051 struct work_struct
*work
)
1054 container_of(work
, xfs_buf_t
, b_iodone_work
);
1057 (*(bp
->b_iodone
))(bp
);
1058 else if (bp
->b_flags
& XBF_ASYNC
)
1067 trace_xfs_buf_iodone(bp
, _RET_IP_
);
1069 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
);
1070 if (bp
->b_error
== 0)
1071 bp
->b_flags
|= XBF_DONE
;
1073 if ((bp
->b_iodone
) || (bp
->b_flags
& XBF_ASYNC
)) {
1075 INIT_WORK(&bp
->b_iodone_work
, xfs_buf_iodone_work
);
1076 queue_work(xfslogd_workqueue
, &bp
->b_iodone_work
);
1078 xfs_buf_iodone_work(&bp
->b_iodone_work
);
1081 complete(&bp
->b_iowait
);
1090 ASSERT(error
>= 0 && error
<= 0xffff);
1091 bp
->b_error
= (unsigned short)error
;
1092 trace_xfs_buf_ioerror(bp
, error
, _RET_IP_
);
1097 struct xfs_mount
*mp
,
1102 bp
->b_flags
|= XBF_WRITE
;
1103 bp
->b_flags
&= ~(XBF_ASYNC
| XBF_READ
);
1105 xfs_buf_delwri_dequeue(bp
);
1108 error
= xfs_buf_iowait(bp
);
1110 xfs_force_shutdown(mp
, SHUTDOWN_META_IO_ERROR
);
1120 trace_xfs_buf_bdwrite(bp
, _RET_IP_
);
1122 bp
->b_flags
&= ~XBF_READ
;
1123 bp
->b_flags
|= (XBF_DELWRI
| XBF_ASYNC
);
1125 xfs_buf_delwri_queue(bp
, 1);
1129 * Called when we want to stop a buffer from getting written or read.
1130 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1131 * so that the proper iodone callbacks get called.
1137 #ifdef XFSERRORDEBUG
1138 ASSERT(XFS_BUF_ISREAD(bp
) || bp
->b_iodone
);
1142 * No need to wait until the buffer is unpinned, we aren't flushing it.
1144 XFS_BUF_ERROR(bp
, EIO
);
1147 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1150 XFS_BUF_UNDELAYWRITE(bp
);
1154 xfs_buf_ioend(bp
, 0);
1160 * Same as xfs_bioerror, except that we are releasing the buffer
1161 * here ourselves, and avoiding the xfs_buf_ioend call.
1162 * This is meant for userdata errors; metadata bufs come with
1163 * iodone functions attached, so that we can track down errors.
1169 int64_t fl
= XFS_BUF_BFLAGS(bp
);
1171 * No need to wait until the buffer is unpinned.
1172 * We aren't flushing it.
1174 * chunkhold expects B_DONE to be set, whether
1175 * we actually finish the I/O or not. We don't want to
1176 * change that interface.
1179 XFS_BUF_UNDELAYWRITE(bp
);
1182 XFS_BUF_CLR_IODONE_FUNC(bp
);
1183 if (!(fl
& XBF_ASYNC
)) {
1185 * Mark b_error and B_ERROR _both_.
1186 * Lot's of chunkcache code assumes that.
1187 * There's no reason to mark error for
1190 XFS_BUF_ERROR(bp
, EIO
);
1191 XFS_BUF_FINISH_IOWAIT(bp
);
1201 * All xfs metadata buffers except log state machine buffers
1202 * get this attached as their b_bdstrat callback function.
1203 * This is so that we can catch a buffer
1204 * after prematurely unpinning it to forcibly shutdown the filesystem.
1210 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1211 trace_xfs_bdstrat_shut(bp
, _RET_IP_
);
1213 * Metadata write that didn't get logged but
1214 * written delayed anyway. These aren't associated
1215 * with a transaction, and can be ignored.
1217 if (!bp
->b_iodone
&& !XFS_BUF_ISREAD(bp
))
1218 return xfs_bioerror_relse(bp
);
1220 return xfs_bioerror(bp
);
1223 xfs_buf_iorequest(bp
);
1228 * Wrapper around bdstrat so that we can stop data from going to disk in case
1229 * we are shutting down the filesystem. Typically user data goes thru this
1230 * path; one of the exceptions is the superblock.
1234 struct xfs_mount
*mp
,
1237 if (XFS_FORCED_SHUTDOWN(mp
)) {
1238 trace_xfs_bdstrat_shut(bp
, _RET_IP_
);
1239 xfs_bioerror_relse(bp
);
1243 xfs_buf_iorequest(bp
);
1251 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1) {
1252 bp
->b_flags
&= ~_XBF_PAGE_LOCKED
;
1253 xfs_buf_ioend(bp
, schedule
);
1262 xfs_buf_t
*bp
= (xfs_buf_t
*)bio
->bi_private
;
1263 unsigned int blocksize
= bp
->b_target
->bt_bsize
;
1264 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1266 xfs_buf_ioerror(bp
, -error
);
1268 if (!error
&& xfs_buf_is_vmapped(bp
) && (bp
->b_flags
& XBF_READ
))
1269 invalidate_kernel_vmap_range(bp
->b_addr
, xfs_buf_vmap_len(bp
));
1272 struct page
*page
= bvec
->bv_page
;
1274 ASSERT(!PagePrivate(page
));
1275 if (unlikely(bp
->b_error
)) {
1276 if (bp
->b_flags
& XBF_READ
)
1277 ClearPageUptodate(page
);
1278 } else if (blocksize
>= PAGE_CACHE_SIZE
) {
1279 SetPageUptodate(page
);
1280 } else if (!PagePrivate(page
) &&
1281 (bp
->b_flags
& _XBF_PAGE_CACHE
)) {
1282 set_page_region(page
, bvec
->bv_offset
, bvec
->bv_len
);
1285 if (--bvec
>= bio
->bi_io_vec
)
1286 prefetchw(&bvec
->bv_page
->flags
);
1288 if (bp
->b_flags
& _XBF_PAGE_LOCKED
)
1290 } while (bvec
>= bio
->bi_io_vec
);
1292 _xfs_buf_ioend(bp
, 1);
1300 int rw
, map_i
, total_nr_pages
, nr_pages
;
1302 int offset
= bp
->b_offset
;
1303 int size
= bp
->b_count_desired
;
1304 sector_t sector
= bp
->b_bn
;
1305 unsigned int blocksize
= bp
->b_target
->bt_bsize
;
1307 total_nr_pages
= bp
->b_page_count
;
1310 if (bp
->b_flags
& XBF_ORDERED
) {
1311 ASSERT(!(bp
->b_flags
& XBF_READ
));
1312 rw
= WRITE_FLUSH_FUA
;
1313 } else if (bp
->b_flags
& XBF_LOG_BUFFER
) {
1314 ASSERT(!(bp
->b_flags
& XBF_READ_AHEAD
));
1315 bp
->b_flags
&= ~_XBF_RUN_QUEUES
;
1316 rw
= (bp
->b_flags
& XBF_WRITE
) ? WRITE_SYNC
: READ_SYNC
;
1317 } else if (bp
->b_flags
& _XBF_RUN_QUEUES
) {
1318 ASSERT(!(bp
->b_flags
& XBF_READ_AHEAD
));
1319 bp
->b_flags
&= ~_XBF_RUN_QUEUES
;
1320 rw
= (bp
->b_flags
& XBF_WRITE
) ? WRITE_META
: READ_META
;
1322 rw
= (bp
->b_flags
& XBF_WRITE
) ? WRITE
:
1323 (bp
->b_flags
& XBF_READ_AHEAD
) ? READA
: READ
;
1326 /* Special code path for reading a sub page size buffer in --
1327 * we populate up the whole page, and hence the other metadata
1328 * in the same page. This optimization is only valid when the
1329 * filesystem block size is not smaller than the page size.
1331 if ((bp
->b_buffer_length
< PAGE_CACHE_SIZE
) &&
1332 ((bp
->b_flags
& (XBF_READ
|_XBF_PAGE_LOCKED
)) ==
1333 (XBF_READ
|_XBF_PAGE_LOCKED
)) &&
1334 (blocksize
>= PAGE_CACHE_SIZE
)) {
1335 bio
= bio_alloc(GFP_NOIO
, 1);
1337 bio
->bi_bdev
= bp
->b_target
->bt_bdev
;
1338 bio
->bi_sector
= sector
- (offset
>> BBSHIFT
);
1339 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1340 bio
->bi_private
= bp
;
1342 bio_add_page(bio
, bp
->b_pages
[0], PAGE_CACHE_SIZE
, 0);
1345 atomic_inc(&bp
->b_io_remaining
);
1351 atomic_inc(&bp
->b_io_remaining
);
1352 nr_pages
= BIO_MAX_SECTORS
>> (PAGE_SHIFT
- BBSHIFT
);
1353 if (nr_pages
> total_nr_pages
)
1354 nr_pages
= total_nr_pages
;
1356 bio
= bio_alloc(GFP_NOIO
, nr_pages
);
1357 bio
->bi_bdev
= bp
->b_target
->bt_bdev
;
1358 bio
->bi_sector
= sector
;
1359 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1360 bio
->bi_private
= bp
;
1362 for (; size
&& nr_pages
; nr_pages
--, map_i
++) {
1363 int rbytes
, nbytes
= PAGE_CACHE_SIZE
- offset
;
1368 rbytes
= bio_add_page(bio
, bp
->b_pages
[map_i
], nbytes
, offset
);
1369 if (rbytes
< nbytes
)
1373 sector
+= nbytes
>> BBSHIFT
;
1379 if (likely(bio
->bi_size
)) {
1380 if (xfs_buf_is_vmapped(bp
)) {
1381 flush_kernel_vmap_range(bp
->b_addr
,
1382 xfs_buf_vmap_len(bp
));
1384 submit_bio(rw
, bio
);
1389 * if we get here, no pages were added to the bio. However,
1390 * we can't just error out here - if the pages are locked then
1391 * we have to unlock them otherwise we can hang on a later
1392 * access to the page.
1394 xfs_buf_ioerror(bp
, EIO
);
1395 if (bp
->b_flags
& _XBF_PAGE_LOCKED
) {
1397 for (i
= 0; i
< bp
->b_page_count
; i
++)
1398 unlock_page(bp
->b_pages
[i
]);
1408 trace_xfs_buf_iorequest(bp
, _RET_IP_
);
1410 if (bp
->b_flags
& XBF_DELWRI
) {
1411 xfs_buf_delwri_queue(bp
, 1);
1415 if (bp
->b_flags
& XBF_WRITE
) {
1416 xfs_buf_wait_unpin(bp
);
1421 /* Set the count to 1 initially, this will stop an I/O
1422 * completion callout which happens before we have started
1423 * all the I/O from calling xfs_buf_ioend too early.
1425 atomic_set(&bp
->b_io_remaining
, 1);
1426 _xfs_buf_ioapply(bp
);
1427 _xfs_buf_ioend(bp
, 0);
1434 * Waits for I/O to complete on the buffer supplied.
1435 * It returns immediately if no I/O is pending.
1436 * It returns the I/O error code, if any, or 0 if there was no error.
1442 trace_xfs_buf_iowait(bp
, _RET_IP_
);
1444 if (atomic_read(&bp
->b_io_remaining
))
1445 blk_run_address_space(bp
->b_target
->bt_mapping
);
1446 wait_for_completion(&bp
->b_iowait
);
1448 trace_xfs_buf_iowait_done(bp
, _RET_IP_
);
1459 if (bp
->b_flags
& XBF_MAPPED
)
1460 return XFS_BUF_PTR(bp
) + offset
;
1462 offset
+= bp
->b_offset
;
1463 page
= bp
->b_pages
[offset
>> PAGE_CACHE_SHIFT
];
1464 return (xfs_caddr_t
)page_address(page
) + (offset
& (PAGE_CACHE_SIZE
-1));
1468 * Move data into or out of a buffer.
1472 xfs_buf_t
*bp
, /* buffer to process */
1473 size_t boff
, /* starting buffer offset */
1474 size_t bsize
, /* length to copy */
1475 void *data
, /* data address */
1476 xfs_buf_rw_t mode
) /* read/write/zero flag */
1478 size_t bend
, cpoff
, csize
;
1481 bend
= boff
+ bsize
;
1482 while (boff
< bend
) {
1483 page
= bp
->b_pages
[xfs_buf_btoct(boff
+ bp
->b_offset
)];
1484 cpoff
= xfs_buf_poff(boff
+ bp
->b_offset
);
1485 csize
= min_t(size_t,
1486 PAGE_CACHE_SIZE
-cpoff
, bp
->b_count_desired
-boff
);
1488 ASSERT(((csize
+ cpoff
) <= PAGE_CACHE_SIZE
));
1492 memset(page_address(page
) + cpoff
, 0, csize
);
1495 memcpy(data
, page_address(page
) + cpoff
, csize
);
1498 memcpy(page_address(page
) + cpoff
, data
, csize
);
1507 * Handling of buffer targets (buftargs).
1511 * Wait for any bufs with callbacks that have been submitted but have not yet
1512 * returned. These buffers will have an elevated hold count, so wait on those
1513 * while freeing all the buffers only held by the LRU.
1517 struct xfs_buftarg
*btp
)
1522 spin_lock(&btp
->bt_lru_lock
);
1523 while (!list_empty(&btp
->bt_lru
)) {
1524 bp
= list_first_entry(&btp
->bt_lru
, struct xfs_buf
, b_lru
);
1525 if (atomic_read(&bp
->b_hold
) > 1) {
1526 spin_unlock(&btp
->bt_lru_lock
);
1531 * clear the LRU reference count so the bufer doesn't get
1532 * ignored in xfs_buf_rele().
1534 atomic_set(&bp
->b_lru_ref
, 0);
1535 spin_unlock(&btp
->bt_lru_lock
);
1537 spin_lock(&btp
->bt_lru_lock
);
1539 spin_unlock(&btp
->bt_lru_lock
);
1544 struct shrinker
*shrink
,
1548 struct xfs_buftarg
*btp
= container_of(shrink
,
1549 struct xfs_buftarg
, bt_shrinker
);
1554 return btp
->bt_lru_nr
;
1556 spin_lock(&btp
->bt_lru_lock
);
1557 while (!list_empty(&btp
->bt_lru
)) {
1558 if (nr_to_scan
-- <= 0)
1561 bp
= list_first_entry(&btp
->bt_lru
, struct xfs_buf
, b_lru
);
1564 * Decrement the b_lru_ref count unless the value is already
1565 * zero. If the value is already zero, we need to reclaim the
1566 * buffer, otherwise it gets another trip through the LRU.
1568 if (!atomic_add_unless(&bp
->b_lru_ref
, -1, 0)) {
1569 list_move_tail(&bp
->b_lru
, &btp
->bt_lru
);
1574 * remove the buffer from the LRU now to avoid needing another
1575 * lock round trip inside xfs_buf_rele().
1577 list_move(&bp
->b_lru
, &dispose
);
1580 spin_unlock(&btp
->bt_lru_lock
);
1582 while (!list_empty(&dispose
)) {
1583 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1584 list_del_init(&bp
->b_lru
);
1588 return btp
->bt_lru_nr
;
1593 struct xfs_mount
*mp
,
1594 struct xfs_buftarg
*btp
)
1596 unregister_shrinker(&btp
->bt_shrinker
);
1598 xfs_flush_buftarg(btp
, 1);
1599 if (mp
->m_flags
& XFS_MOUNT_BARRIER
)
1600 xfs_blkdev_issue_flush(btp
);
1601 iput(btp
->bt_mapping
->host
);
1603 kthread_stop(btp
->bt_task
);
1608 xfs_setsize_buftarg_flags(
1610 unsigned int blocksize
,
1611 unsigned int sectorsize
,
1614 btp
->bt_bsize
= blocksize
;
1615 btp
->bt_sshift
= ffs(sectorsize
) - 1;
1616 btp
->bt_smask
= sectorsize
- 1;
1618 if (set_blocksize(btp
->bt_bdev
, sectorsize
)) {
1619 xfs_warn(btp
->bt_mount
,
1620 "Cannot set_blocksize to %u on device %s\n",
1621 sectorsize
, XFS_BUFTARG_NAME(btp
));
1626 (PAGE_CACHE_SIZE
/ BITS_PER_LONG
) > sectorsize
) {
1628 "XFS: %u byte sectors in use on device %s. "
1629 "This is suboptimal; %u or greater is ideal.\n",
1630 sectorsize
, XFS_BUFTARG_NAME(btp
),
1631 (unsigned int)PAGE_CACHE_SIZE
/ BITS_PER_LONG
);
1638 * When allocating the initial buffer target we have not yet
1639 * read in the superblock, so don't know what sized sectors
1640 * are being used is at this early stage. Play safe.
1643 xfs_setsize_buftarg_early(
1645 struct block_device
*bdev
)
1647 return xfs_setsize_buftarg_flags(btp
,
1648 PAGE_CACHE_SIZE
, bdev_logical_block_size(bdev
), 0);
1652 xfs_setsize_buftarg(
1654 unsigned int blocksize
,
1655 unsigned int sectorsize
)
1657 return xfs_setsize_buftarg_flags(btp
, blocksize
, sectorsize
, 1);
1661 xfs_mapping_buftarg(
1663 struct block_device
*bdev
)
1665 struct backing_dev_info
*bdi
;
1666 struct inode
*inode
;
1667 struct address_space
*mapping
;
1668 static const struct address_space_operations mapping_aops
= {
1669 .sync_page
= block_sync_page
,
1670 .migratepage
= fail_migrate_page
,
1673 inode
= new_inode(bdev
->bd_inode
->i_sb
);
1676 "XFS: Cannot allocate mapping inode for device %s\n",
1677 XFS_BUFTARG_NAME(btp
));
1680 inode
->i_ino
= get_next_ino();
1681 inode
->i_mode
= S_IFBLK
;
1682 inode
->i_bdev
= bdev
;
1683 inode
->i_rdev
= bdev
->bd_dev
;
1684 bdi
= blk_get_backing_dev_info(bdev
);
1686 bdi
= &default_backing_dev_info
;
1687 mapping
= &inode
->i_data
;
1688 mapping
->a_ops
= &mapping_aops
;
1689 mapping
->backing_dev_info
= bdi
;
1690 mapping_set_gfp_mask(mapping
, GFP_NOFS
);
1691 btp
->bt_mapping
= mapping
;
1696 xfs_alloc_delwrite_queue(
1700 INIT_LIST_HEAD(&btp
->bt_delwrite_queue
);
1701 spin_lock_init(&btp
->bt_delwrite_lock
);
1703 btp
->bt_task
= kthread_run(xfsbufd
, btp
, "xfsbufd/%s", fsname
);
1704 if (IS_ERR(btp
->bt_task
))
1705 return PTR_ERR(btp
->bt_task
);
1711 struct xfs_mount
*mp
,
1712 struct block_device
*bdev
,
1718 btp
= kmem_zalloc(sizeof(*btp
), KM_SLEEP
);
1721 btp
->bt_dev
= bdev
->bd_dev
;
1722 btp
->bt_bdev
= bdev
;
1723 INIT_LIST_HEAD(&btp
->bt_lru
);
1724 spin_lock_init(&btp
->bt_lru_lock
);
1725 if (xfs_setsize_buftarg_early(btp
, bdev
))
1727 if (xfs_mapping_buftarg(btp
, bdev
))
1729 if (xfs_alloc_delwrite_queue(btp
, fsname
))
1731 btp
->bt_shrinker
.shrink
= xfs_buftarg_shrink
;
1732 btp
->bt_shrinker
.seeks
= DEFAULT_SEEKS
;
1733 register_shrinker(&btp
->bt_shrinker
);
1743 * Delayed write buffer handling
1746 xfs_buf_delwri_queue(
1750 struct list_head
*dwq
= &bp
->b_target
->bt_delwrite_queue
;
1751 spinlock_t
*dwlk
= &bp
->b_target
->bt_delwrite_lock
;
1753 trace_xfs_buf_delwri_queue(bp
, _RET_IP_
);
1755 ASSERT((bp
->b_flags
&(XBF_DELWRI
|XBF_ASYNC
)) == (XBF_DELWRI
|XBF_ASYNC
));
1758 /* If already in the queue, dequeue and place at tail */
1759 if (!list_empty(&bp
->b_list
)) {
1760 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
1762 atomic_dec(&bp
->b_hold
);
1763 list_del(&bp
->b_list
);
1766 if (list_empty(dwq
)) {
1767 /* start xfsbufd as it is about to have something to do */
1768 wake_up_process(bp
->b_target
->bt_task
);
1771 bp
->b_flags
|= _XBF_DELWRI_Q
;
1772 list_add_tail(&bp
->b_list
, dwq
);
1773 bp
->b_queuetime
= jiffies
;
1781 xfs_buf_delwri_dequeue(
1784 spinlock_t
*dwlk
= &bp
->b_target
->bt_delwrite_lock
;
1788 if ((bp
->b_flags
& XBF_DELWRI
) && !list_empty(&bp
->b_list
)) {
1789 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
1790 list_del_init(&bp
->b_list
);
1793 bp
->b_flags
&= ~(XBF_DELWRI
|_XBF_DELWRI_Q
);
1799 trace_xfs_buf_delwri_dequeue(bp
, _RET_IP_
);
1803 * If a delwri buffer needs to be pushed before it has aged out, then promote
1804 * it to the head of the delwri queue so that it will be flushed on the next
1805 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1806 * than the age currently needed to flush the buffer. Hence the next time the
1807 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1810 xfs_buf_delwri_promote(
1813 struct xfs_buftarg
*btp
= bp
->b_target
;
1814 long age
= xfs_buf_age_centisecs
* msecs_to_jiffies(10) + 1;
1816 ASSERT(bp
->b_flags
& XBF_DELWRI
);
1817 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
1820 * Check the buffer age before locking the delayed write queue as we
1821 * don't need to promote buffers that are already past the flush age.
1823 if (bp
->b_queuetime
< jiffies
- age
)
1825 bp
->b_queuetime
= jiffies
- age
;
1826 spin_lock(&btp
->bt_delwrite_lock
);
1827 list_move(&bp
->b_list
, &btp
->bt_delwrite_queue
);
1828 spin_unlock(&btp
->bt_delwrite_lock
);
1832 xfs_buf_runall_queues(
1833 struct workqueue_struct
*queue
)
1835 flush_workqueue(queue
);
1839 * Move as many buffers as specified to the supplied list
1840 * idicating if we skipped any buffers to prevent deadlocks.
1843 xfs_buf_delwri_split(
1844 xfs_buftarg_t
*target
,
1845 struct list_head
*list
,
1849 struct list_head
*dwq
= &target
->bt_delwrite_queue
;
1850 spinlock_t
*dwlk
= &target
->bt_delwrite_lock
;
1854 force
= test_and_clear_bit(XBT_FORCE_FLUSH
, &target
->bt_flags
);
1855 INIT_LIST_HEAD(list
);
1857 list_for_each_entry_safe(bp
, n
, dwq
, b_list
) {
1858 ASSERT(bp
->b_flags
& XBF_DELWRI
);
1860 if (!XFS_BUF_ISPINNED(bp
) && !xfs_buf_cond_lock(bp
)) {
1862 time_before(jiffies
, bp
->b_queuetime
+ age
)) {
1867 bp
->b_flags
&= ~(XBF_DELWRI
|_XBF_DELWRI_Q
|
1869 bp
->b_flags
|= XBF_WRITE
;
1870 list_move_tail(&bp
->b_list
, list
);
1871 trace_xfs_buf_delwri_split(bp
, _RET_IP_
);
1882 * Compare function is more complex than it needs to be because
1883 * the return value is only 32 bits and we are doing comparisons
1889 struct list_head
*a
,
1890 struct list_head
*b
)
1892 struct xfs_buf
*ap
= container_of(a
, struct xfs_buf
, b_list
);
1893 struct xfs_buf
*bp
= container_of(b
, struct xfs_buf
, b_list
);
1896 diff
= ap
->b_bn
- bp
->b_bn
;
1905 xfs_buf_delwri_sort(
1906 xfs_buftarg_t
*target
,
1907 struct list_head
*list
)
1909 list_sort(NULL
, list
, xfs_buf_cmp
);
1916 xfs_buftarg_t
*target
= (xfs_buftarg_t
*)data
;
1918 current
->flags
|= PF_MEMALLOC
;
1923 long age
= xfs_buf_age_centisecs
* msecs_to_jiffies(10);
1924 long tout
= xfs_buf_timer_centisecs
* msecs_to_jiffies(10);
1926 struct list_head tmp
;
1928 if (unlikely(freezing(current
))) {
1929 set_bit(XBT_FORCE_SLEEP
, &target
->bt_flags
);
1932 clear_bit(XBT_FORCE_SLEEP
, &target
->bt_flags
);
1935 /* sleep for a long time if there is nothing to do. */
1936 if (list_empty(&target
->bt_delwrite_queue
))
1937 tout
= MAX_SCHEDULE_TIMEOUT
;
1938 schedule_timeout_interruptible(tout
);
1940 xfs_buf_delwri_split(target
, &tmp
, age
);
1941 list_sort(NULL
, &tmp
, xfs_buf_cmp
);
1942 while (!list_empty(&tmp
)) {
1944 bp
= list_first_entry(&tmp
, struct xfs_buf
, b_list
);
1945 list_del_init(&bp
->b_list
);
1950 blk_run_address_space(target
->bt_mapping
);
1952 } while (!kthread_should_stop());
1958 * Go through all incore buffers, and release buffers if they belong to
1959 * the given device. This is used in filesystem error handling to
1960 * preserve the consistency of its metadata.
1964 xfs_buftarg_t
*target
,
1969 LIST_HEAD(tmp_list
);
1970 LIST_HEAD(wait_list
);
1972 xfs_buf_runall_queues(xfsconvertd_workqueue
);
1973 xfs_buf_runall_queues(xfsdatad_workqueue
);
1974 xfs_buf_runall_queues(xfslogd_workqueue
);
1976 set_bit(XBT_FORCE_FLUSH
, &target
->bt_flags
);
1977 pincount
= xfs_buf_delwri_split(target
, &tmp_list
, 0);
1980 * Dropped the delayed write list lock, now walk the temporary list.
1981 * All I/O is issued async and then if we need to wait for completion
1982 * we do that after issuing all the IO.
1984 list_sort(NULL
, &tmp_list
, xfs_buf_cmp
);
1985 while (!list_empty(&tmp_list
)) {
1986 bp
= list_first_entry(&tmp_list
, struct xfs_buf
, b_list
);
1987 ASSERT(target
== bp
->b_target
);
1988 list_del_init(&bp
->b_list
);
1990 bp
->b_flags
&= ~XBF_ASYNC
;
1991 list_add(&bp
->b_list
, &wait_list
);
1997 /* Expedite and wait for IO to complete. */
1998 blk_run_address_space(target
->bt_mapping
);
1999 while (!list_empty(&wait_list
)) {
2000 bp
= list_first_entry(&wait_list
, struct xfs_buf
, b_list
);
2002 list_del_init(&bp
->b_list
);
2014 xfs_buf_zone
= kmem_zone_init_flags(sizeof(xfs_buf_t
), "xfs_buf",
2015 KM_ZONE_HWALIGN
, NULL
);
2019 xfslogd_workqueue
= alloc_workqueue("xfslogd",
2020 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 1);
2021 if (!xfslogd_workqueue
)
2022 goto out_free_buf_zone
;
2024 xfsdatad_workqueue
= alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM
, 1);
2025 if (!xfsdatad_workqueue
)
2026 goto out_destroy_xfslogd_workqueue
;
2028 xfsconvertd_workqueue
= alloc_workqueue("xfsconvertd",
2030 if (!xfsconvertd_workqueue
)
2031 goto out_destroy_xfsdatad_workqueue
;
2035 out_destroy_xfsdatad_workqueue
:
2036 destroy_workqueue(xfsdatad_workqueue
);
2037 out_destroy_xfslogd_workqueue
:
2038 destroy_workqueue(xfslogd_workqueue
);
2040 kmem_zone_destroy(xfs_buf_zone
);
2046 xfs_buf_terminate(void)
2048 destroy_workqueue(xfsconvertd_workqueue
);
2049 destroy_workqueue(xfsdatad_workqueue
);
2050 destroy_workqueue(xfslogd_workqueue
);
2051 kmem_zone_destroy(xfs_buf_zone
);
2054 #ifdef CONFIG_KDB_MODULES
2056 xfs_get_buftarg_list(void)
2058 return &xfs_buftarg_list
;