2 * Initialize MMU support.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
7 #include <linux/kernel.h>
8 #include <linux/init.h>
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/memblock.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/personality.h>
18 #include <linux/reboot.h>
19 #include <linux/slab.h>
20 #include <linux/swap.h>
21 #include <linux/proc_fs.h>
22 #include <linux/bitops.h>
23 #include <linux/kexec.h>
27 #include <asm/machvec.h>
29 #include <asm/patch.h>
30 #include <asm/pgalloc.h>
32 #include <asm/sections.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
37 #include <asm/paravirt.h>
39 extern void ia64_tlb_init (void);
41 unsigned long MAX_DMA_ADDRESS
= PAGE_OFFSET
+ 0x100000000UL
;
43 #ifdef CONFIG_VIRTUAL_MEM_MAP
44 unsigned long VMALLOC_END
= VMALLOC_END_INIT
;
45 EXPORT_SYMBOL(VMALLOC_END
);
46 struct page
*vmem_map
;
47 EXPORT_SYMBOL(vmem_map
);
50 struct page
*zero_page_memmap_ptr
; /* map entry for zero page */
51 EXPORT_SYMBOL(zero_page_memmap_ptr
);
54 __ia64_sync_icache_dcache (pte_t pte
)
60 addr
= (unsigned long) page_address(page
);
62 if (test_bit(PG_arch_1
, &page
->flags
))
63 return; /* i-cache is already coherent with d-cache */
65 flush_icache_range(addr
, addr
+ (PAGE_SIZE
<< compound_order(page
)));
66 set_bit(PG_arch_1
, &page
->flags
); /* mark page as clean */
70 * Since DMA is i-cache coherent, any (complete) pages that were written via
71 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
72 * flush them when they get mapped into an executable vm-area.
75 dma_mark_clean(void *addr
, size_t size
)
77 unsigned long pg_addr
, end
;
79 pg_addr
= PAGE_ALIGN((unsigned long) addr
);
80 end
= (unsigned long) addr
+ size
;
81 while (pg_addr
+ PAGE_SIZE
<= end
) {
82 struct page
*page
= virt_to_page(pg_addr
);
83 set_bit(PG_arch_1
, &page
->flags
);
89 ia64_set_rbs_bot (void)
91 unsigned long stack_size
= rlimit_max(RLIMIT_STACK
) & -16;
93 if (stack_size
> MAX_USER_STACK_SIZE
)
94 stack_size
= MAX_USER_STACK_SIZE
;
95 current
->thread
.rbs_bot
= PAGE_ALIGN(current
->mm
->start_stack
- stack_size
);
99 * This performs some platform-dependent address space initialization.
100 * On IA-64, we want to setup the VM area for the register backing
101 * store (which grows upwards) and install the gateway page which is
102 * used for signal trampolines, etc.
105 ia64_init_addr_space (void)
107 struct vm_area_struct
*vma
;
112 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
113 * the problem. When the process attempts to write to the register backing store
114 * for the first time, it will get a SEGFAULT in this case.
116 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
118 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
119 vma
->vm_mm
= current
->mm
;
120 vma
->vm_start
= current
->thread
.rbs_bot
& PAGE_MASK
;
121 vma
->vm_end
= vma
->vm_start
+ PAGE_SIZE
;
122 vma
->vm_flags
= VM_DATA_DEFAULT_FLAGS
|VM_GROWSUP
|VM_ACCOUNT
;
123 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
124 down_write(¤t
->mm
->mmap_sem
);
125 if (insert_vm_struct(current
->mm
, vma
)) {
126 up_write(¤t
->mm
->mmap_sem
);
127 kmem_cache_free(vm_area_cachep
, vma
);
130 up_write(¤t
->mm
->mmap_sem
);
133 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
134 if (!(current
->personality
& MMAP_PAGE_ZERO
)) {
135 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
137 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
138 vma
->vm_mm
= current
->mm
;
139 vma
->vm_end
= PAGE_SIZE
;
140 vma
->vm_page_prot
= __pgprot(pgprot_val(PAGE_READONLY
) | _PAGE_MA_NAT
);
141 vma
->vm_flags
= VM_READ
| VM_MAYREAD
| VM_IO
|
142 VM_DONTEXPAND
| VM_DONTDUMP
;
143 down_write(¤t
->mm
->mmap_sem
);
144 if (insert_vm_struct(current
->mm
, vma
)) {
145 up_write(¤t
->mm
->mmap_sem
);
146 kmem_cache_free(vm_area_cachep
, vma
);
149 up_write(¤t
->mm
->mmap_sem
);
157 unsigned long addr
, eaddr
;
159 addr
= (unsigned long) ia64_imva(__init_begin
);
160 eaddr
= (unsigned long) ia64_imva(__init_end
);
161 while (addr
< eaddr
) {
162 ClearPageReserved(virt_to_page(addr
));
163 init_page_count(virt_to_page(addr
));
168 printk(KERN_INFO
"Freeing unused kernel memory: %ldkB freed\n",
169 (__init_end
- __init_begin
) >> 10);
173 free_initrd_mem (unsigned long start
, unsigned long end
)
177 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
178 * Thus EFI and the kernel may have different page sizes. It is
179 * therefore possible to have the initrd share the same page as
180 * the end of the kernel (given current setup).
182 * To avoid freeing/using the wrong page (kernel sized) we:
183 * - align up the beginning of initrd
184 * - align down the end of initrd
187 * |=============| a000
193 * |=============| 8000
196 * |/////////////| 7000
199 * |=============| 6000
202 * K=kernel using 8KB pages
204 * In this example, we must free page 8000 ONLY. So we must align up
205 * initrd_start and keep initrd_end as is.
207 start
= PAGE_ALIGN(start
);
208 end
= end
& PAGE_MASK
;
211 printk(KERN_INFO
"Freeing initrd memory: %ldkB freed\n", (end
- start
) >> 10);
213 for (; start
< end
; start
+= PAGE_SIZE
) {
214 if (!virt_addr_valid(start
))
216 page
= virt_to_page(start
);
217 ClearPageReserved(page
);
218 init_page_count(page
);
225 * This installs a clean page in the kernel's page table.
227 static struct page
* __init
228 put_kernel_page (struct page
*page
, unsigned long address
, pgprot_t pgprot
)
235 if (!PageReserved(page
))
236 printk(KERN_ERR
"put_kernel_page: page at 0x%p not in reserved memory\n",
239 pgd
= pgd_offset_k(address
); /* note: this is NOT pgd_offset()! */
242 pud
= pud_alloc(&init_mm
, pgd
, address
);
245 pmd
= pmd_alloc(&init_mm
, pud
, address
);
248 pte
= pte_alloc_kernel(pmd
, address
);
253 set_pte(pte
, mk_pte(page
, pgprot
));
256 /* no need for flush_tlb */
267 * Map the gate page twice: once read-only to export the ELF
268 * headers etc. and once execute-only page to enable
269 * privilege-promotion via "epc":
271 gate_section
= paravirt_get_gate_section();
272 page
= virt_to_page(ia64_imva(gate_section
));
273 put_kernel_page(page
, GATE_ADDR
, PAGE_READONLY
);
274 #ifdef HAVE_BUGGY_SEGREL
275 page
= virt_to_page(ia64_imva(gate_section
+ PAGE_SIZE
));
276 put_kernel_page(page
, GATE_ADDR
+ PAGE_SIZE
, PAGE_GATE
);
278 put_kernel_page(page
, GATE_ADDR
+ PERCPU_PAGE_SIZE
, PAGE_GATE
);
279 /* Fill in the holes (if any) with read-only zero pages: */
283 for (addr
= GATE_ADDR
+ PAGE_SIZE
;
284 addr
< GATE_ADDR
+ PERCPU_PAGE_SIZE
;
287 put_kernel_page(ZERO_PAGE(0), addr
,
289 put_kernel_page(ZERO_PAGE(0), addr
+ PERCPU_PAGE_SIZE
,
297 void ia64_mmu_init(void *my_cpu_data
)
299 unsigned long pta
, impl_va_bits
;
300 extern void tlb_init(void);
302 #ifdef CONFIG_DISABLE_VHPT
303 # define VHPT_ENABLE_BIT 0
305 # define VHPT_ENABLE_BIT 1
309 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
310 * address space. The IA-64 architecture guarantees that at least 50 bits of
311 * virtual address space are implemented but if we pick a large enough page size
312 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
313 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
314 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
315 * problem in practice. Alternatively, we could truncate the top of the mapped
316 * address space to not permit mappings that would overlap with the VMLPT.
320 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
322 * The virtual page table has to cover the entire implemented address space within
323 * a region even though not all of this space may be mappable. The reason for
324 * this is that the Access bit and Dirty bit fault handlers perform
325 * non-speculative accesses to the virtual page table, so the address range of the
326 * virtual page table itself needs to be covered by virtual page table.
328 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
329 # define POW2(n) (1ULL << (n))
331 impl_va_bits
= ffz(~(local_cpu_data
->unimpl_va_mask
| (7UL << 61)));
333 if (impl_va_bits
< 51 || impl_va_bits
> 61)
334 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits
- 1);
336 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
337 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
338 * the test makes sure that our mapped space doesn't overlap the
339 * unimplemented hole in the middle of the region.
341 if ((mapped_space_bits
- PAGE_SHIFT
> vmlpt_bits
- pte_bits
) ||
342 (mapped_space_bits
> impl_va_bits
- 1))
343 panic("Cannot build a big enough virtual-linear page table"
344 " to cover mapped address space.\n"
345 " Try using a smaller page size.\n");
348 /* place the VMLPT at the end of each page-table mapped region: */
349 pta
= POW2(61) - POW2(vmlpt_bits
);
352 * Set the (virtually mapped linear) page table address. Bit
353 * 8 selects between the short and long format, bits 2-7 the
354 * size of the table, and bit 0 whether the VHPT walker is
357 ia64_set_pta(pta
| (0 << 8) | (vmlpt_bits
<< 2) | VHPT_ENABLE_BIT
);
361 #ifdef CONFIG_HUGETLB_PAGE
362 ia64_set_rr(HPAGE_REGION_BASE
, HPAGE_SHIFT
<< 2);
367 #ifdef CONFIG_VIRTUAL_MEM_MAP
368 int vmemmap_find_next_valid_pfn(int node
, int i
)
370 unsigned long end_address
, hole_next_pfn
;
371 unsigned long stop_address
;
372 pg_data_t
*pgdat
= NODE_DATA(node
);
374 end_address
= (unsigned long) &vmem_map
[pgdat
->node_start_pfn
+ i
];
375 end_address
= PAGE_ALIGN(end_address
);
377 stop_address
= (unsigned long) &vmem_map
[
378 pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
];
386 pgd
= pgd_offset_k(end_address
);
387 if (pgd_none(*pgd
)) {
388 end_address
+= PGDIR_SIZE
;
392 pud
= pud_offset(pgd
, end_address
);
393 if (pud_none(*pud
)) {
394 end_address
+= PUD_SIZE
;
398 pmd
= pmd_offset(pud
, end_address
);
399 if (pmd_none(*pmd
)) {
400 end_address
+= PMD_SIZE
;
404 pte
= pte_offset_kernel(pmd
, end_address
);
406 if (pte_none(*pte
)) {
407 end_address
+= PAGE_SIZE
;
409 if ((end_address
< stop_address
) &&
410 (end_address
!= ALIGN(end_address
, 1UL << PMD_SHIFT
)))
414 /* Found next valid vmem_map page */
416 } while (end_address
< stop_address
);
418 end_address
= min(end_address
, stop_address
);
419 end_address
= end_address
- (unsigned long) vmem_map
+ sizeof(struct page
) - 1;
420 hole_next_pfn
= end_address
/ sizeof(struct page
);
421 return hole_next_pfn
- pgdat
->node_start_pfn
;
424 int __init
create_mem_map_page_table(u64 start
, u64 end
, void *arg
)
426 unsigned long address
, start_page
, end_page
;
427 struct page
*map_start
, *map_end
;
434 map_start
= vmem_map
+ (__pa(start
) >> PAGE_SHIFT
);
435 map_end
= vmem_map
+ (__pa(end
) >> PAGE_SHIFT
);
437 start_page
= (unsigned long) map_start
& PAGE_MASK
;
438 end_page
= PAGE_ALIGN((unsigned long) map_end
);
439 node
= paddr_to_nid(__pa(start
));
441 for (address
= start_page
; address
< end_page
; address
+= PAGE_SIZE
) {
442 pgd
= pgd_offset_k(address
);
444 pgd_populate(&init_mm
, pgd
, alloc_bootmem_pages_node(NODE_DATA(node
), PAGE_SIZE
));
445 pud
= pud_offset(pgd
, address
);
448 pud_populate(&init_mm
, pud
, alloc_bootmem_pages_node(NODE_DATA(node
), PAGE_SIZE
));
449 pmd
= pmd_offset(pud
, address
);
452 pmd_populate_kernel(&init_mm
, pmd
, alloc_bootmem_pages_node(NODE_DATA(node
), PAGE_SIZE
));
453 pte
= pte_offset_kernel(pmd
, address
);
456 set_pte(pte
, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node
), PAGE_SIZE
)) >> PAGE_SHIFT
,
462 struct memmap_init_callback_data
{
470 virtual_memmap_init(u64 start
, u64 end
, void *arg
)
472 struct memmap_init_callback_data
*args
;
473 struct page
*map_start
, *map_end
;
475 args
= (struct memmap_init_callback_data
*) arg
;
476 map_start
= vmem_map
+ (__pa(start
) >> PAGE_SHIFT
);
477 map_end
= vmem_map
+ (__pa(end
) >> PAGE_SHIFT
);
479 if (map_start
< args
->start
)
480 map_start
= args
->start
;
481 if (map_end
> args
->end
)
485 * We have to initialize "out of bounds" struct page elements that fit completely
486 * on the same pages that were allocated for the "in bounds" elements because they
487 * may be referenced later (and found to be "reserved").
489 map_start
-= ((unsigned long) map_start
& (PAGE_SIZE
- 1)) / sizeof(struct page
);
490 map_end
+= ((PAGE_ALIGN((unsigned long) map_end
) - (unsigned long) map_end
)
491 / sizeof(struct page
));
493 if (map_start
< map_end
)
494 memmap_init_zone((unsigned long)(map_end
- map_start
),
495 args
->nid
, args
->zone
, page_to_pfn(map_start
),
501 memmap_init (unsigned long size
, int nid
, unsigned long zone
,
502 unsigned long start_pfn
)
505 memmap_init_zone(size
, nid
, zone
, start_pfn
, MEMMAP_EARLY
);
508 struct memmap_init_callback_data args
;
510 start
= pfn_to_page(start_pfn
);
512 args
.end
= start
+ size
;
516 efi_memmap_walk(virtual_memmap_init
, &args
);
521 ia64_pfn_valid (unsigned long pfn
)
524 struct page
*pg
= pfn_to_page(pfn
);
526 return (__get_user(byte
, (char __user
*) pg
) == 0)
527 && ((((u64
)pg
& PAGE_MASK
) == (((u64
)(pg
+ 1) - 1) & PAGE_MASK
))
528 || (__get_user(byte
, (char __user
*) (pg
+ 1) - 1) == 0));
530 EXPORT_SYMBOL(ia64_pfn_valid
);
532 int __init
find_largest_hole(u64 start
, u64 end
, void *arg
)
536 static u64 last_end
= PAGE_OFFSET
;
538 /* NOTE: this algorithm assumes efi memmap table is ordered */
540 if (*max_gap
< (start
- last_end
))
541 *max_gap
= start
- last_end
;
546 #endif /* CONFIG_VIRTUAL_MEM_MAP */
548 int __init
register_active_ranges(u64 start
, u64 len
, int nid
)
550 u64 end
= start
+ len
;
553 if (start
> crashk_res
.start
&& start
< crashk_res
.end
)
554 start
= crashk_res
.end
;
555 if (end
> crashk_res
.start
&& end
< crashk_res
.end
)
556 end
= crashk_res
.start
;
560 memblock_add_node(__pa(start
), end
- start
, nid
);
565 count_reserved_pages(u64 start
, u64 end
, void *arg
)
567 unsigned long num_reserved
= 0;
568 unsigned long *count
= arg
;
570 for (; start
< end
; start
+= PAGE_SIZE
)
571 if (PageReserved(virt_to_page(start
)))
573 *count
+= num_reserved
;
578 find_max_min_low_pfn (u64 start
, u64 end
, void *arg
)
580 unsigned long pfn_start
, pfn_end
;
581 #ifdef CONFIG_FLATMEM
582 pfn_start
= (PAGE_ALIGN(__pa(start
))) >> PAGE_SHIFT
;
583 pfn_end
= (PAGE_ALIGN(__pa(end
- 1))) >> PAGE_SHIFT
;
585 pfn_start
= GRANULEROUNDDOWN(__pa(start
)) >> PAGE_SHIFT
;
586 pfn_end
= GRANULEROUNDUP(__pa(end
- 1)) >> PAGE_SHIFT
;
588 min_low_pfn
= min(min_low_pfn
, pfn_start
);
589 max_low_pfn
= max(max_low_pfn
, pfn_end
);
594 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
595 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
596 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
597 * useful for performance testing, but conceivably could also come in handy for debugging
601 static int nolwsys __initdata
;
604 nolwsys_setup (char *s
)
610 __setup("nolwsys", nolwsys_setup
);
615 long reserved_pages
, codesize
, datasize
, initsize
;
619 BUG_ON(PTRS_PER_PGD
* sizeof(pgd_t
) != PAGE_SIZE
);
620 BUG_ON(PTRS_PER_PMD
* sizeof(pmd_t
) != PAGE_SIZE
);
621 BUG_ON(PTRS_PER_PTE
* sizeof(pte_t
) != PAGE_SIZE
);
625 * This needs to be called _after_ the command line has been parsed but _before_
626 * any drivers that may need the PCI DMA interface are initialized or bootmem has
632 #ifdef CONFIG_FLATMEM
634 max_mapnr
= max_low_pfn
;
637 high_memory
= __va(max_low_pfn
* PAGE_SIZE
);
639 for_each_online_pgdat(pgdat
)
640 if (pgdat
->bdata
->node_bootmem_map
)
641 totalram_pages
+= free_all_bootmem_node(pgdat
);
644 efi_memmap_walk(count_reserved_pages
, &reserved_pages
);
646 codesize
= (unsigned long) _etext
- (unsigned long) _stext
;
647 datasize
= (unsigned long) _edata
- (unsigned long) _etext
;
648 initsize
= (unsigned long) __init_end
- (unsigned long) __init_begin
;
650 printk(KERN_INFO
"Memory: %luk/%luk available (%luk code, %luk reserved, "
651 "%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT
- 10),
652 num_physpages
<< (PAGE_SHIFT
- 10), codesize
>> 10,
653 reserved_pages
<< (PAGE_SHIFT
- 10), datasize
>> 10, initsize
>> 10);
657 * For fsyscall entrpoints with no light-weight handler, use the ordinary
658 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
659 * code can tell them apart.
661 for (i
= 0; i
< NR_syscalls
; ++i
) {
662 extern unsigned long sys_call_table
[NR_syscalls
];
663 unsigned long *fsyscall_table
= paravirt_get_fsyscall_table();
665 if (!fsyscall_table
[i
] || nolwsys
)
666 fsyscall_table
[i
] = sys_call_table
[i
] | 1;
671 #ifdef CONFIG_MEMORY_HOTPLUG
672 int arch_add_memory(int nid
, u64 start
, u64 size
)
676 unsigned long start_pfn
= start
>> PAGE_SHIFT
;
677 unsigned long nr_pages
= size
>> PAGE_SHIFT
;
680 pgdat
= NODE_DATA(nid
);
682 zone
= pgdat
->node_zones
+ ZONE_NORMAL
;
683 ret
= __add_pages(nid
, zone
, start_pfn
, nr_pages
);
686 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
694 * Even when CONFIG_IA32_SUPPORT is not enabled it is
695 * useful to have the Linux/x86 domain registered to
696 * avoid an attempted module load when emulators call
697 * personality(PER_LINUX32). This saves several milliseconds
700 static struct exec_domain ia32_exec_domain
;
703 per_linux32_init(void)
705 ia32_exec_domain
.name
= "Linux/x86";
706 ia32_exec_domain
.handler
= NULL
;
707 ia32_exec_domain
.pers_low
= PER_LINUX32
;
708 ia32_exec_domain
.pers_high
= PER_LINUX32
;
709 ia32_exec_domain
.signal_map
= default_exec_domain
.signal_map
;
710 ia32_exec_domain
.signal_invmap
= default_exec_domain
.signal_invmap
;
711 register_exec_domain(&ia32_exec_domain
);
716 __initcall(per_linux32_init
);