2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/pci.h>
36 #include <linux/if_vlan.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/debugfs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/mii.h>
45 #include <linux/slab.h>
46 #include <linux/dmi.h>
47 #include <linux/prefetch.h>
52 #define DRV_NAME "skge"
53 #define DRV_VERSION "1.13"
55 #define DEFAULT_TX_RING_SIZE 128
56 #define DEFAULT_RX_RING_SIZE 512
57 #define MAX_TX_RING_SIZE 1024
58 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
59 #define MAX_RX_RING_SIZE 4096
60 #define RX_COPY_THRESHOLD 128
61 #define RX_BUF_SIZE 1536
62 #define PHY_RETRIES 1000
63 #define ETH_JUMBO_MTU 9000
64 #define TX_WATCHDOG (5 * HZ)
65 #define NAPI_WEIGHT 64
69 #define SKGE_EEPROM_MAGIC 0x9933aabb
72 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
73 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
74 MODULE_LICENSE("GPL");
75 MODULE_VERSION(DRV_VERSION
);
77 static const u32 default_msg
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
78 NETIF_MSG_LINK
| NETIF_MSG_IFUP
|
81 static int debug
= -1; /* defaults above */
82 module_param(debug
, int, 0);
83 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
85 static DEFINE_PCI_DEVICE_TABLE(skge_id_table
) = {
86 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940
) },
87 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940B
) },
88 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_GE
) },
89 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_YU
) },
90 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, PCI_DEVICE_ID_DLINK_DGE510T
) },
91 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* DGE-530T */
92 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) },
93 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
94 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, PCI_DEVICE_ID_CNET_GIGACARD
) },
95 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, PCI_DEVICE_ID_LINKSYS_EG1064
) },
96 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015 },
99 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
101 static int skge_up(struct net_device
*dev
);
102 static int skge_down(struct net_device
*dev
);
103 static void skge_phy_reset(struct skge_port
*skge
);
104 static void skge_tx_clean(struct net_device
*dev
);
105 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
106 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
107 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
108 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
109 static void yukon_init(struct skge_hw
*hw
, int port
);
110 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
111 static void genesis_link_up(struct skge_port
*skge
);
112 static void skge_set_multicast(struct net_device
*dev
);
114 /* Avoid conditionals by using array */
115 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
116 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
117 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
118 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
119 static const u32 napimask
[] = { IS_R1_F
|IS_XA1_F
, IS_R2_F
|IS_XA2_F
};
120 static const u32 portmask
[] = { IS_PORT_1
, IS_PORT_2
};
122 static int skge_get_regs_len(struct net_device
*dev
)
128 * Returns copy of whole control register region
129 * Note: skip RAM address register because accessing it will
132 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
135 const struct skge_port
*skge
= netdev_priv(dev
);
136 const void __iomem
*io
= skge
->hw
->regs
;
139 memset(p
, 0, regs
->len
);
140 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
142 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
143 regs
->len
- B3_RI_WTO_R1
);
146 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
147 static u32
wol_supported(const struct skge_hw
*hw
)
149 if (hw
->chip_id
== CHIP_ID_GENESIS
)
152 if (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
155 return WAKE_MAGIC
| WAKE_PHY
;
158 static void skge_wol_init(struct skge_port
*skge
)
160 struct skge_hw
*hw
= skge
->hw
;
161 int port
= skge
->port
;
164 skge_write16(hw
, B0_CTST
, CS_RST_CLR
);
165 skge_write16(hw
, SK_REG(port
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
168 skge_write8(hw
, B0_POWER_CTRL
,
169 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_ON
| PC_VCC_OFF
);
171 /* WA code for COMA mode -- clear PHY reset */
172 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
173 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
174 u32 reg
= skge_read32(hw
, B2_GP_IO
);
177 skge_write32(hw
, B2_GP_IO
, reg
);
180 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
182 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
183 GPC_ANEG_1
| GPC_RST_SET
);
185 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
187 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
188 GPC_ANEG_1
| GPC_RST_CLR
);
190 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_CLR
);
192 /* Force to 10/100 skge_reset will re-enable on resume */
193 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
194 (PHY_AN_100FULL
| PHY_AN_100HALF
|
195 PHY_AN_10FULL
| PHY_AN_10HALF
| PHY_AN_CSMA
));
197 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, 0);
198 gm_phy_write(hw
, port
, PHY_MARV_CTRL
,
199 PHY_CT_RESET
| PHY_CT_SPS_LSB
| PHY_CT_ANE
|
200 PHY_CT_RE_CFG
| PHY_CT_DUP_MD
);
203 /* Set GMAC to no flow control and auto update for speed/duplex */
204 gma_write16(hw
, port
, GM_GP_CTRL
,
205 GM_GPCR_FC_TX_DIS
|GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
|
206 GM_GPCR_DUP_FULL
|GM_GPCR_FC_RX_DIS
|GM_GPCR_AU_FCT_DIS
);
208 /* Set WOL address */
209 memcpy_toio(hw
->regs
+ WOL_REGS(port
, WOL_MAC_ADDR
),
210 skge
->netdev
->dev_addr
, ETH_ALEN
);
212 /* Turn on appropriate WOL control bits */
213 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), WOL_CTL_CLEAR_RESULT
);
215 if (skge
->wol
& WAKE_PHY
)
216 ctrl
|= WOL_CTL_ENA_PME_ON_LINK_CHG
|WOL_CTL_ENA_LINK_CHG_UNIT
;
218 ctrl
|= WOL_CTL_DIS_PME_ON_LINK_CHG
|WOL_CTL_DIS_LINK_CHG_UNIT
;
220 if (skge
->wol
& WAKE_MAGIC
)
221 ctrl
|= WOL_CTL_ENA_PME_ON_MAGIC_PKT
|WOL_CTL_ENA_MAGIC_PKT_UNIT
;
223 ctrl
|= WOL_CTL_DIS_PME_ON_MAGIC_PKT
|WOL_CTL_DIS_MAGIC_PKT_UNIT
;
225 ctrl
|= WOL_CTL_DIS_PME_ON_PATTERN
|WOL_CTL_DIS_PATTERN_UNIT
;
226 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), ctrl
);
229 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
232 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
234 struct skge_port
*skge
= netdev_priv(dev
);
236 wol
->supported
= wol_supported(skge
->hw
);
237 wol
->wolopts
= skge
->wol
;
240 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
242 struct skge_port
*skge
= netdev_priv(dev
);
243 struct skge_hw
*hw
= skge
->hw
;
245 if ((wol
->wolopts
& ~wol_supported(hw
)) ||
246 !device_can_wakeup(&hw
->pdev
->dev
))
249 skge
->wol
= wol
->wolopts
;
251 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
256 /* Determine supported/advertised modes based on hardware.
257 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
259 static u32
skge_supported_modes(const struct skge_hw
*hw
)
264 supported
= (SUPPORTED_10baseT_Half
|
265 SUPPORTED_10baseT_Full
|
266 SUPPORTED_100baseT_Half
|
267 SUPPORTED_100baseT_Full
|
268 SUPPORTED_1000baseT_Half
|
269 SUPPORTED_1000baseT_Full
|
273 if (hw
->chip_id
== CHIP_ID_GENESIS
)
274 supported
&= ~(SUPPORTED_10baseT_Half
|
275 SUPPORTED_10baseT_Full
|
276 SUPPORTED_100baseT_Half
|
277 SUPPORTED_100baseT_Full
);
279 else if (hw
->chip_id
== CHIP_ID_YUKON
)
280 supported
&= ~SUPPORTED_1000baseT_Half
;
282 supported
= (SUPPORTED_1000baseT_Full
|
283 SUPPORTED_1000baseT_Half
|
290 static int skge_get_settings(struct net_device
*dev
,
291 struct ethtool_cmd
*ecmd
)
293 struct skge_port
*skge
= netdev_priv(dev
);
294 struct skge_hw
*hw
= skge
->hw
;
296 ecmd
->transceiver
= XCVR_INTERNAL
;
297 ecmd
->supported
= skge_supported_modes(hw
);
300 ecmd
->port
= PORT_TP
;
301 ecmd
->phy_address
= hw
->phy_addr
;
303 ecmd
->port
= PORT_FIBRE
;
305 ecmd
->advertising
= skge
->advertising
;
306 ecmd
->autoneg
= skge
->autoneg
;
307 ethtool_cmd_speed_set(ecmd
, skge
->speed
);
308 ecmd
->duplex
= skge
->duplex
;
312 static int skge_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
314 struct skge_port
*skge
= netdev_priv(dev
);
315 const struct skge_hw
*hw
= skge
->hw
;
316 u32 supported
= skge_supported_modes(hw
);
319 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
320 ecmd
->advertising
= supported
;
325 u32 speed
= ethtool_cmd_speed(ecmd
);
329 if (ecmd
->duplex
== DUPLEX_FULL
)
330 setting
= SUPPORTED_1000baseT_Full
;
331 else if (ecmd
->duplex
== DUPLEX_HALF
)
332 setting
= SUPPORTED_1000baseT_Half
;
337 if (ecmd
->duplex
== DUPLEX_FULL
)
338 setting
= SUPPORTED_100baseT_Full
;
339 else if (ecmd
->duplex
== DUPLEX_HALF
)
340 setting
= SUPPORTED_100baseT_Half
;
346 if (ecmd
->duplex
== DUPLEX_FULL
)
347 setting
= SUPPORTED_10baseT_Full
;
348 else if (ecmd
->duplex
== DUPLEX_HALF
)
349 setting
= SUPPORTED_10baseT_Half
;
357 if ((setting
& supported
) == 0)
361 skge
->duplex
= ecmd
->duplex
;
364 skge
->autoneg
= ecmd
->autoneg
;
365 skge
->advertising
= ecmd
->advertising
;
367 if (netif_running(dev
)) {
379 static void skge_get_drvinfo(struct net_device
*dev
,
380 struct ethtool_drvinfo
*info
)
382 struct skge_port
*skge
= netdev_priv(dev
);
384 strcpy(info
->driver
, DRV_NAME
);
385 strcpy(info
->version
, DRV_VERSION
);
386 strcpy(info
->fw_version
, "N/A");
387 strcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
));
390 static const struct skge_stat
{
391 char name
[ETH_GSTRING_LEN
];
395 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
396 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
398 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
399 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
400 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
401 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
402 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
403 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
404 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
405 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
407 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
408 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
409 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
410 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
411 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
412 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
414 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
415 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
416 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
417 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
418 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
421 static int skge_get_sset_count(struct net_device
*dev
, int sset
)
425 return ARRAY_SIZE(skge_stats
);
431 static void skge_get_ethtool_stats(struct net_device
*dev
,
432 struct ethtool_stats
*stats
, u64
*data
)
434 struct skge_port
*skge
= netdev_priv(dev
);
436 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
437 genesis_get_stats(skge
, data
);
439 yukon_get_stats(skge
, data
);
442 /* Use hardware MIB variables for critical path statistics and
443 * transmit feedback not reported at interrupt.
444 * Other errors are accounted for in interrupt handler.
446 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
448 struct skge_port
*skge
= netdev_priv(dev
);
449 u64 data
[ARRAY_SIZE(skge_stats
)];
451 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
452 genesis_get_stats(skge
, data
);
454 yukon_get_stats(skge
, data
);
456 dev
->stats
.tx_bytes
= data
[0];
457 dev
->stats
.rx_bytes
= data
[1];
458 dev
->stats
.tx_packets
= data
[2] + data
[4] + data
[6];
459 dev
->stats
.rx_packets
= data
[3] + data
[5] + data
[7];
460 dev
->stats
.multicast
= data
[3] + data
[5];
461 dev
->stats
.collisions
= data
[10];
462 dev
->stats
.tx_aborted_errors
= data
[12];
467 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
473 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
474 memcpy(data
+ i
* ETH_GSTRING_LEN
,
475 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
480 static void skge_get_ring_param(struct net_device
*dev
,
481 struct ethtool_ringparam
*p
)
483 struct skge_port
*skge
= netdev_priv(dev
);
485 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
486 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
487 p
->rx_mini_max_pending
= 0;
488 p
->rx_jumbo_max_pending
= 0;
490 p
->rx_pending
= skge
->rx_ring
.count
;
491 p
->tx_pending
= skge
->tx_ring
.count
;
492 p
->rx_mini_pending
= 0;
493 p
->rx_jumbo_pending
= 0;
496 static int skge_set_ring_param(struct net_device
*dev
,
497 struct ethtool_ringparam
*p
)
499 struct skge_port
*skge
= netdev_priv(dev
);
502 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
503 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
506 skge
->rx_ring
.count
= p
->rx_pending
;
507 skge
->tx_ring
.count
= p
->tx_pending
;
509 if (netif_running(dev
)) {
519 static u32
skge_get_msglevel(struct net_device
*netdev
)
521 struct skge_port
*skge
= netdev_priv(netdev
);
522 return skge
->msg_enable
;
525 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
527 struct skge_port
*skge
= netdev_priv(netdev
);
528 skge
->msg_enable
= value
;
531 static int skge_nway_reset(struct net_device
*dev
)
533 struct skge_port
*skge
= netdev_priv(dev
);
535 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
538 skge_phy_reset(skge
);
542 static void skge_get_pauseparam(struct net_device
*dev
,
543 struct ethtool_pauseparam
*ecmd
)
545 struct skge_port
*skge
= netdev_priv(dev
);
547 ecmd
->rx_pause
= ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
) ||
548 (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
));
549 ecmd
->tx_pause
= (ecmd
->rx_pause
||
550 (skge
->flow_control
== FLOW_MODE_LOC_SEND
));
552 ecmd
->autoneg
= ecmd
->rx_pause
|| ecmd
->tx_pause
;
555 static int skge_set_pauseparam(struct net_device
*dev
,
556 struct ethtool_pauseparam
*ecmd
)
558 struct skge_port
*skge
= netdev_priv(dev
);
559 struct ethtool_pauseparam old
;
562 skge_get_pauseparam(dev
, &old
);
564 if (ecmd
->autoneg
!= old
.autoneg
)
565 skge
->flow_control
= ecmd
->autoneg
? FLOW_MODE_NONE
: FLOW_MODE_SYMMETRIC
;
567 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
568 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
569 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
570 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
571 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
572 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
574 skge
->flow_control
= FLOW_MODE_NONE
;
577 if (netif_running(dev
)) {
589 /* Chip internal frequency for clock calculations */
590 static inline u32
hwkhz(const struct skge_hw
*hw
)
592 return (hw
->chip_id
== CHIP_ID_GENESIS
) ? 53125 : 78125;
595 /* Chip HZ to microseconds */
596 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
598 return (ticks
* 1000) / hwkhz(hw
);
601 /* Microseconds to chip HZ */
602 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
604 return hwkhz(hw
) * usec
/ 1000;
607 static int skge_get_coalesce(struct net_device
*dev
,
608 struct ethtool_coalesce
*ecmd
)
610 struct skge_port
*skge
= netdev_priv(dev
);
611 struct skge_hw
*hw
= skge
->hw
;
612 int port
= skge
->port
;
614 ecmd
->rx_coalesce_usecs
= 0;
615 ecmd
->tx_coalesce_usecs
= 0;
617 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
618 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
619 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
621 if (msk
& rxirqmask
[port
])
622 ecmd
->rx_coalesce_usecs
= delay
;
623 if (msk
& txirqmask
[port
])
624 ecmd
->tx_coalesce_usecs
= delay
;
630 /* Note: interrupt timer is per board, but can turn on/off per port */
631 static int skge_set_coalesce(struct net_device
*dev
,
632 struct ethtool_coalesce
*ecmd
)
634 struct skge_port
*skge
= netdev_priv(dev
);
635 struct skge_hw
*hw
= skge
->hw
;
636 int port
= skge
->port
;
637 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
640 if (ecmd
->rx_coalesce_usecs
== 0)
641 msk
&= ~rxirqmask
[port
];
642 else if (ecmd
->rx_coalesce_usecs
< 25 ||
643 ecmd
->rx_coalesce_usecs
> 33333)
646 msk
|= rxirqmask
[port
];
647 delay
= ecmd
->rx_coalesce_usecs
;
650 if (ecmd
->tx_coalesce_usecs
== 0)
651 msk
&= ~txirqmask
[port
];
652 else if (ecmd
->tx_coalesce_usecs
< 25 ||
653 ecmd
->tx_coalesce_usecs
> 33333)
656 msk
|= txirqmask
[port
];
657 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
660 skge_write32(hw
, B2_IRQM_MSK
, msk
);
662 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
664 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
665 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
670 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
671 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
673 struct skge_hw
*hw
= skge
->hw
;
674 int port
= skge
->port
;
676 spin_lock_bh(&hw
->phy_lock
);
677 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
680 if (hw
->phy_type
== SK_PHY_BCOM
)
681 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
683 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 0);
684 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_T_OFF
);
686 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
687 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
688 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
692 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
693 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
695 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
696 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
701 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
702 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
703 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
705 if (hw
->phy_type
== SK_PHY_BCOM
)
706 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
708 skge_write8(hw
, SK_REG(port
, TX_LED_TST
), LED_T_ON
);
709 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 100);
710 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
717 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
718 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
719 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
720 PHY_M_LED_MO_10(MO_LED_OFF
) |
721 PHY_M_LED_MO_100(MO_LED_OFF
) |
722 PHY_M_LED_MO_1000(MO_LED_OFF
) |
723 PHY_M_LED_MO_RX(MO_LED_OFF
));
726 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
727 PHY_M_LED_PULS_DUR(PULS_170MS
) |
728 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
732 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
733 PHY_M_LED_MO_RX(MO_LED_OFF
) |
734 (skge
->speed
== SPEED_100
?
735 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
738 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
739 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
740 PHY_M_LED_MO_DUP(MO_LED_ON
) |
741 PHY_M_LED_MO_10(MO_LED_ON
) |
742 PHY_M_LED_MO_100(MO_LED_ON
) |
743 PHY_M_LED_MO_1000(MO_LED_ON
) |
744 PHY_M_LED_MO_RX(MO_LED_ON
));
747 spin_unlock_bh(&hw
->phy_lock
);
750 /* blink LED's for finding board */
751 static int skge_set_phys_id(struct net_device
*dev
,
752 enum ethtool_phys_id_state state
)
754 struct skge_port
*skge
= netdev_priv(dev
);
757 case ETHTOOL_ID_ACTIVE
:
758 return 2; /* cycle on/off twice per second */
761 skge_led(skge
, LED_MODE_TST
);
765 skge_led(skge
, LED_MODE_OFF
);
768 case ETHTOOL_ID_INACTIVE
:
769 /* back to regular LED state */
770 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
776 static int skge_get_eeprom_len(struct net_device
*dev
)
778 struct skge_port
*skge
= netdev_priv(dev
);
781 pci_read_config_dword(skge
->hw
->pdev
, PCI_DEV_REG2
, ®2
);
782 return 1 << (((reg2
& PCI_VPD_ROM_SZ
) >> 14) + 8);
785 static u32
skge_vpd_read(struct pci_dev
*pdev
, int cap
, u16 offset
)
789 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
, offset
);
792 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
793 } while (!(offset
& PCI_VPD_ADDR_F
));
795 pci_read_config_dword(pdev
, cap
+ PCI_VPD_DATA
, &val
);
799 static void skge_vpd_write(struct pci_dev
*pdev
, int cap
, u16 offset
, u32 val
)
801 pci_write_config_dword(pdev
, cap
+ PCI_VPD_DATA
, val
);
802 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
,
803 offset
| PCI_VPD_ADDR_F
);
806 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
807 } while (offset
& PCI_VPD_ADDR_F
);
810 static int skge_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
813 struct skge_port
*skge
= netdev_priv(dev
);
814 struct pci_dev
*pdev
= skge
->hw
->pdev
;
815 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
816 int length
= eeprom
->len
;
817 u16 offset
= eeprom
->offset
;
822 eeprom
->magic
= SKGE_EEPROM_MAGIC
;
825 u32 val
= skge_vpd_read(pdev
, cap
, offset
);
826 int n
= min_t(int, length
, sizeof(val
));
828 memcpy(data
, &val
, n
);
836 static int skge_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
839 struct skge_port
*skge
= netdev_priv(dev
);
840 struct pci_dev
*pdev
= skge
->hw
->pdev
;
841 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
842 int length
= eeprom
->len
;
843 u16 offset
= eeprom
->offset
;
848 if (eeprom
->magic
!= SKGE_EEPROM_MAGIC
)
853 int n
= min_t(int, length
, sizeof(val
));
856 val
= skge_vpd_read(pdev
, cap
, offset
);
857 memcpy(&val
, data
, n
);
859 skge_vpd_write(pdev
, cap
, offset
, val
);
868 static const struct ethtool_ops skge_ethtool_ops
= {
869 .get_settings
= skge_get_settings
,
870 .set_settings
= skge_set_settings
,
871 .get_drvinfo
= skge_get_drvinfo
,
872 .get_regs_len
= skge_get_regs_len
,
873 .get_regs
= skge_get_regs
,
874 .get_wol
= skge_get_wol
,
875 .set_wol
= skge_set_wol
,
876 .get_msglevel
= skge_get_msglevel
,
877 .set_msglevel
= skge_set_msglevel
,
878 .nway_reset
= skge_nway_reset
,
879 .get_link
= ethtool_op_get_link
,
880 .get_eeprom_len
= skge_get_eeprom_len
,
881 .get_eeprom
= skge_get_eeprom
,
882 .set_eeprom
= skge_set_eeprom
,
883 .get_ringparam
= skge_get_ring_param
,
884 .set_ringparam
= skge_set_ring_param
,
885 .get_pauseparam
= skge_get_pauseparam
,
886 .set_pauseparam
= skge_set_pauseparam
,
887 .get_coalesce
= skge_get_coalesce
,
888 .set_coalesce
= skge_set_coalesce
,
889 .get_strings
= skge_get_strings
,
890 .set_phys_id
= skge_set_phys_id
,
891 .get_sset_count
= skge_get_sset_count
,
892 .get_ethtool_stats
= skge_get_ethtool_stats
,
896 * Allocate ring elements and chain them together
897 * One-to-one association of board descriptors with ring elements
899 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
901 struct skge_tx_desc
*d
;
902 struct skge_element
*e
;
905 ring
->start
= kcalloc(ring
->count
, sizeof(*e
), GFP_KERNEL
);
909 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
911 if (i
== ring
->count
- 1) {
912 e
->next
= ring
->start
;
913 d
->next_offset
= base
;
916 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
919 ring
->to_use
= ring
->to_clean
= ring
->start
;
924 /* Allocate and setup a new buffer for receiving */
925 static void skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
926 struct sk_buff
*skb
, unsigned int bufsize
)
928 struct skge_rx_desc
*rd
= e
->desc
;
931 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
935 rd
->dma_hi
= map
>> 32;
937 rd
->csum1_start
= ETH_HLEN
;
938 rd
->csum2_start
= ETH_HLEN
;
944 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
945 dma_unmap_addr_set(e
, mapaddr
, map
);
946 dma_unmap_len_set(e
, maplen
, bufsize
);
949 /* Resume receiving using existing skb,
950 * Note: DMA address is not changed by chip.
951 * MTU not changed while receiver active.
953 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
955 struct skge_rx_desc
*rd
= e
->desc
;
958 rd
->csum2_start
= ETH_HLEN
;
962 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
966 /* Free all buffers in receive ring, assumes receiver stopped */
967 static void skge_rx_clean(struct skge_port
*skge
)
969 struct skge_hw
*hw
= skge
->hw
;
970 struct skge_ring
*ring
= &skge
->rx_ring
;
971 struct skge_element
*e
;
975 struct skge_rx_desc
*rd
= e
->desc
;
978 pci_unmap_single(hw
->pdev
,
979 dma_unmap_addr(e
, mapaddr
),
980 dma_unmap_len(e
, maplen
),
982 dev_kfree_skb(e
->skb
);
985 } while ((e
= e
->next
) != ring
->start
);
989 /* Allocate buffers for receive ring
990 * For receive: to_clean is next received frame.
992 static int skge_rx_fill(struct net_device
*dev
)
994 struct skge_port
*skge
= netdev_priv(dev
);
995 struct skge_ring
*ring
= &skge
->rx_ring
;
996 struct skge_element
*e
;
1000 struct sk_buff
*skb
;
1002 skb
= __netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
,
1007 skb_reserve(skb
, NET_IP_ALIGN
);
1008 skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
);
1009 } while ((e
= e
->next
) != ring
->start
);
1011 ring
->to_clean
= ring
->start
;
1015 static const char *skge_pause(enum pause_status status
)
1018 case FLOW_STAT_NONE
:
1020 case FLOW_STAT_REM_SEND
:
1022 case FLOW_STAT_LOC_SEND
:
1024 case FLOW_STAT_SYMMETRIC
: /* Both station may send PAUSE */
1027 return "indeterminated";
1032 static void skge_link_up(struct skge_port
*skge
)
1034 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
1035 LED_BLK_OFF
|LED_SYNC_OFF
|LED_ON
);
1037 netif_carrier_on(skge
->netdev
);
1038 netif_wake_queue(skge
->netdev
);
1040 netif_info(skge
, link
, skge
->netdev
,
1041 "Link is up at %d Mbps, %s duplex, flow control %s\n",
1043 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
1044 skge_pause(skge
->flow_status
));
1047 static void skge_link_down(struct skge_port
*skge
)
1049 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
1050 netif_carrier_off(skge
->netdev
);
1051 netif_stop_queue(skge
->netdev
);
1053 netif_info(skge
, link
, skge
->netdev
, "Link is down\n");
1057 static void xm_link_down(struct skge_hw
*hw
, int port
)
1059 struct net_device
*dev
= hw
->dev
[port
];
1060 struct skge_port
*skge
= netdev_priv(dev
);
1062 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1064 if (netif_carrier_ok(dev
))
1065 skge_link_down(skge
);
1068 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1072 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1073 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1075 if (hw
->phy_type
== SK_PHY_XMAC
)
1078 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1079 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
1086 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1091 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1094 if (__xm_phy_read(hw
, port
, reg
, &v
))
1095 pr_warning("%s: phy read timed out\n", hw
->dev
[port
]->name
);
1099 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1103 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1104 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1105 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1112 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
1113 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1114 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1121 static void genesis_init(struct skge_hw
*hw
)
1123 /* set blink source counter */
1124 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
1125 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
1127 /* configure mac arbiter */
1128 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1130 /* configure mac arbiter timeout values */
1131 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
1132 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
1133 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
1134 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
1136 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1137 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1138 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1139 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1141 /* configure packet arbiter timeout */
1142 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
1143 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
1144 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
1145 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
1146 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
1149 static void genesis_reset(struct skge_hw
*hw
, int port
)
1151 static const u8 zero
[8] = { 0 };
1154 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1156 /* reset the statistics module */
1157 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
1158 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1159 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
1160 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
1161 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
1163 /* disable Broadcom PHY IRQ */
1164 if (hw
->phy_type
== SK_PHY_BCOM
)
1165 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
1167 xm_outhash(hw
, port
, XM_HSM
, zero
);
1169 /* Flush TX and RX fifo */
1170 reg
= xm_read32(hw
, port
, XM_MODE
);
1171 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FTF
);
1172 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FRF
);
1176 /* Convert mode to MII values */
1177 static const u16 phy_pause_map
[] = {
1178 [FLOW_MODE_NONE
] = 0,
1179 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
1180 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
1181 [FLOW_MODE_SYM_OR_REM
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
1184 /* special defines for FIBER (88E1011S only) */
1185 static const u16 fiber_pause_map
[] = {
1186 [FLOW_MODE_NONE
] = PHY_X_P_NO_PAUSE
,
1187 [FLOW_MODE_LOC_SEND
] = PHY_X_P_ASYM_MD
,
1188 [FLOW_MODE_SYMMETRIC
] = PHY_X_P_SYM_MD
,
1189 [FLOW_MODE_SYM_OR_REM
] = PHY_X_P_BOTH_MD
,
1193 /* Check status of Broadcom phy link */
1194 static void bcom_check_link(struct skge_hw
*hw
, int port
)
1196 struct net_device
*dev
= hw
->dev
[port
];
1197 struct skge_port
*skge
= netdev_priv(dev
);
1200 /* read twice because of latch */
1201 xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1202 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1204 if ((status
& PHY_ST_LSYNC
) == 0) {
1205 xm_link_down(hw
, port
);
1209 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1212 if (!(status
& PHY_ST_AN_OVER
))
1215 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1216 if (lpa
& PHY_B_AN_RF
) {
1217 netdev_notice(dev
, "remote fault\n");
1221 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1223 /* Check Duplex mismatch */
1224 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1225 case PHY_B_RES_1000FD
:
1226 skge
->duplex
= DUPLEX_FULL
;
1228 case PHY_B_RES_1000HD
:
1229 skge
->duplex
= DUPLEX_HALF
;
1232 netdev_notice(dev
, "duplex mismatch\n");
1236 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1237 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1238 case PHY_B_AS_PAUSE_MSK
:
1239 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1242 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1245 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1248 skge
->flow_status
= FLOW_STAT_NONE
;
1250 skge
->speed
= SPEED_1000
;
1253 if (!netif_carrier_ok(dev
))
1254 genesis_link_up(skge
);
1257 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1258 * Phy on for 100 or 10Mbit operation
1260 static void bcom_phy_init(struct skge_port
*skge
)
1262 struct skge_hw
*hw
= skge
->hw
;
1263 int port
= skge
->port
;
1265 u16 id1
, r
, ext
, ctl
;
1267 /* magic workaround patterns for Broadcom */
1268 static const struct {
1272 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1273 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1274 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1275 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1277 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1278 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1281 /* read Id from external PHY (all have the same address) */
1282 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1284 /* Optimize MDIO transfer by suppressing preamble. */
1285 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1287 xm_write16(hw
, port
, XM_MMU_CMD
, r
);
1290 case PHY_BCOM_ID1_C0
:
1292 * Workaround BCOM Errata for the C0 type.
1293 * Write magic patterns to reserved registers.
1295 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1296 xm_phy_write(hw
, port
,
1297 C0hack
[i
].reg
, C0hack
[i
].val
);
1300 case PHY_BCOM_ID1_A1
:
1302 * Workaround BCOM Errata for the A1 type.
1303 * Write magic patterns to reserved registers.
1305 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1306 xm_phy_write(hw
, port
,
1307 A1hack
[i
].reg
, A1hack
[i
].val
);
1312 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1313 * Disable Power Management after reset.
1315 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1316 r
|= PHY_B_AC_DIS_PM
;
1317 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1320 xm_read16(hw
, port
, XM_ISRC
);
1322 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1323 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1325 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1327 * Workaround BCOM Errata #1 for the C5 type.
1328 * 1000Base-T Link Acquisition Failure in Slave Mode
1329 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1331 u16 adv
= PHY_B_1000C_RD
;
1332 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1333 adv
|= PHY_B_1000C_AHD
;
1334 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1335 adv
|= PHY_B_1000C_AFD
;
1336 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1338 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1340 if (skge
->duplex
== DUPLEX_FULL
)
1341 ctl
|= PHY_CT_DUP_MD
;
1342 /* Force to slave */
1343 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1346 /* Set autonegotiation pause parameters */
1347 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1348 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1350 /* Handle Jumbo frames */
1351 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
) {
1352 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1353 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1355 ext
|= PHY_B_PEC_HIGH_LA
;
1359 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1360 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1362 /* Use link status change interrupt */
1363 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1366 static void xm_phy_init(struct skge_port
*skge
)
1368 struct skge_hw
*hw
= skge
->hw
;
1369 int port
= skge
->port
;
1372 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1373 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1374 ctrl
|= PHY_X_AN_HD
;
1375 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1376 ctrl
|= PHY_X_AN_FD
;
1378 ctrl
|= fiber_pause_map
[skge
->flow_control
];
1380 xm_phy_write(hw
, port
, PHY_XMAC_AUNE_ADV
, ctrl
);
1382 /* Restart Auto-negotiation */
1383 ctrl
= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1385 /* Set DuplexMode in Config register */
1386 if (skge
->duplex
== DUPLEX_FULL
)
1387 ctrl
|= PHY_CT_DUP_MD
;
1389 * Do NOT enable Auto-negotiation here. This would hold
1390 * the link down because no IDLEs are transmitted
1394 xm_phy_write(hw
, port
, PHY_XMAC_CTRL
, ctrl
);
1396 /* Poll PHY for status changes */
1397 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1400 static int xm_check_link(struct net_device
*dev
)
1402 struct skge_port
*skge
= netdev_priv(dev
);
1403 struct skge_hw
*hw
= skge
->hw
;
1404 int port
= skge
->port
;
1407 /* read twice because of latch */
1408 xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1409 status
= xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1411 if ((status
& PHY_ST_LSYNC
) == 0) {
1412 xm_link_down(hw
, port
);
1416 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1419 if (!(status
& PHY_ST_AN_OVER
))
1422 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1423 if (lpa
& PHY_B_AN_RF
) {
1424 netdev_notice(dev
, "remote fault\n");
1428 res
= xm_phy_read(hw
, port
, PHY_XMAC_RES_ABI
);
1430 /* Check Duplex mismatch */
1431 switch (res
& (PHY_X_RS_HD
| PHY_X_RS_FD
)) {
1433 skge
->duplex
= DUPLEX_FULL
;
1436 skge
->duplex
= DUPLEX_HALF
;
1439 netdev_notice(dev
, "duplex mismatch\n");
1443 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1444 if ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1445 skge
->flow_control
== FLOW_MODE_SYM_OR_REM
) &&
1446 (lpa
& PHY_X_P_SYM_MD
))
1447 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1448 else if (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
&&
1449 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_ASYM_MD
)
1450 /* Enable PAUSE receive, disable PAUSE transmit */
1451 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1452 else if (skge
->flow_control
== FLOW_MODE_LOC_SEND
&&
1453 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_BOTH_MD
)
1454 /* Disable PAUSE receive, enable PAUSE transmit */
1455 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1457 skge
->flow_status
= FLOW_STAT_NONE
;
1459 skge
->speed
= SPEED_1000
;
1462 if (!netif_carrier_ok(dev
))
1463 genesis_link_up(skge
);
1467 /* Poll to check for link coming up.
1469 * Since internal PHY is wired to a level triggered pin, can't
1470 * get an interrupt when carrier is detected, need to poll for
1473 static void xm_link_timer(unsigned long arg
)
1475 struct skge_port
*skge
= (struct skge_port
*) arg
;
1476 struct net_device
*dev
= skge
->netdev
;
1477 struct skge_hw
*hw
= skge
->hw
;
1478 int port
= skge
->port
;
1480 unsigned long flags
;
1482 if (!netif_running(dev
))
1485 spin_lock_irqsave(&hw
->phy_lock
, flags
);
1488 * Verify that the link by checking GPIO register three times.
1489 * This pin has the signal from the link_sync pin connected to it.
1491 for (i
= 0; i
< 3; i
++) {
1492 if (xm_read16(hw
, port
, XM_GP_PORT
) & XM_GP_INP_ASS
)
1496 /* Re-enable interrupt to detect link down */
1497 if (xm_check_link(dev
)) {
1498 u16 msk
= xm_read16(hw
, port
, XM_IMSK
);
1499 msk
&= ~XM_IS_INP_ASS
;
1500 xm_write16(hw
, port
, XM_IMSK
, msk
);
1501 xm_read16(hw
, port
, XM_ISRC
);
1504 mod_timer(&skge
->link_timer
,
1505 round_jiffies(jiffies
+ LINK_HZ
));
1507 spin_unlock_irqrestore(&hw
->phy_lock
, flags
);
1510 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1512 struct net_device
*dev
= hw
->dev
[port
];
1513 struct skge_port
*skge
= netdev_priv(dev
);
1514 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1517 static const u8 zero
[6] = { 0 };
1519 for (i
= 0; i
< 10; i
++) {
1520 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1522 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1527 netdev_warn(dev
, "genesis reset failed\n");
1530 /* Unreset the XMAC. */
1531 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1534 * Perform additional initialization for external PHYs,
1535 * namely for the 1000baseTX cards that use the XMAC's
1538 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1539 /* Take external Phy out of reset */
1540 r
= skge_read32(hw
, B2_GP_IO
);
1542 r
|= GP_DIR_0
|GP_IO_0
;
1544 r
|= GP_DIR_2
|GP_IO_2
;
1546 skge_write32(hw
, B2_GP_IO
, r
);
1548 /* Enable GMII interface */
1549 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1553 switch (hw
->phy_type
) {
1558 bcom_phy_init(skge
);
1559 bcom_check_link(hw
, port
);
1562 /* Set Station Address */
1563 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1565 /* We don't use match addresses so clear */
1566 for (i
= 1; i
< 16; i
++)
1567 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1569 /* Clear MIB counters */
1570 xm_write16(hw
, port
, XM_STAT_CMD
,
1571 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1572 /* Clear two times according to Errata #3 */
1573 xm_write16(hw
, port
, XM_STAT_CMD
,
1574 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1576 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1577 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1579 /* We don't need the FCS appended to the packet. */
1580 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1582 r
|= XM_RX_BIG_PK_OK
;
1584 if (skge
->duplex
== DUPLEX_HALF
) {
1586 * If in manual half duplex mode the other side might be in
1587 * full duplex mode, so ignore if a carrier extension is not seen
1588 * on frames received
1590 r
|= XM_RX_DIS_CEXT
;
1592 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1594 /* We want short frames padded to 60 bytes. */
1595 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1597 /* Increase threshold for jumbo frames on dual port */
1598 if (hw
->ports
> 1 && jumbo
)
1599 xm_write16(hw
, port
, XM_TX_THR
, 1020);
1601 xm_write16(hw
, port
, XM_TX_THR
, 512);
1604 * Enable the reception of all error frames. This is is
1605 * a necessary evil due to the design of the XMAC. The
1606 * XMAC's receive FIFO is only 8K in size, however jumbo
1607 * frames can be up to 9000 bytes in length. When bad
1608 * frame filtering is enabled, the XMAC's RX FIFO operates
1609 * in 'store and forward' mode. For this to work, the
1610 * entire frame has to fit into the FIFO, but that means
1611 * that jumbo frames larger than 8192 bytes will be
1612 * truncated. Disabling all bad frame filtering causes
1613 * the RX FIFO to operate in streaming mode, in which
1614 * case the XMAC will start transferring frames out of the
1615 * RX FIFO as soon as the FIFO threshold is reached.
1617 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1621 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1622 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1623 * and 'Octets Rx OK Hi Cnt Ov'.
1625 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1628 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1629 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1630 * and 'Octets Tx OK Hi Cnt Ov'.
1632 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1634 /* Configure MAC arbiter */
1635 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1637 /* configure timeout values */
1638 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1639 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1640 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1641 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1643 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1644 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1645 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1646 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1648 /* Configure Rx MAC FIFO */
1649 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1650 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1651 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1653 /* Configure Tx MAC FIFO */
1654 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1655 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1656 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1659 /* Enable frame flushing if jumbo frames used */
1660 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1662 /* enable timeout timers if normal frames */
1663 skge_write16(hw
, B3_PA_CTRL
,
1664 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1668 static void genesis_stop(struct skge_port
*skge
)
1670 struct skge_hw
*hw
= skge
->hw
;
1671 int port
= skge
->port
;
1672 unsigned retries
= 1000;
1675 /* Disable Tx and Rx */
1676 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1677 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1678 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1680 genesis_reset(hw
, port
);
1682 /* Clear Tx packet arbiter timeout IRQ */
1683 skge_write16(hw
, B3_PA_CTRL
,
1684 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1687 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1689 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1690 if (!(skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
))
1692 } while (--retries
> 0);
1694 /* For external PHYs there must be special handling */
1695 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1696 u32 reg
= skge_read32(hw
, B2_GP_IO
);
1704 skge_write32(hw
, B2_GP_IO
, reg
);
1705 skge_read32(hw
, B2_GP_IO
);
1708 xm_write16(hw
, port
, XM_MMU_CMD
,
1709 xm_read16(hw
, port
, XM_MMU_CMD
)
1710 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1712 xm_read16(hw
, port
, XM_MMU_CMD
);
1716 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1718 struct skge_hw
*hw
= skge
->hw
;
1719 int port
= skge
->port
;
1721 unsigned long timeout
= jiffies
+ HZ
;
1723 xm_write16(hw
, port
,
1724 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1726 /* wait for update to complete */
1727 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1728 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1729 if (time_after(jiffies
, timeout
))
1734 /* special case for 64 bit octet counter */
1735 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1736 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1737 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1738 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1740 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1741 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1744 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1746 struct net_device
*dev
= hw
->dev
[port
];
1747 struct skge_port
*skge
= netdev_priv(dev
);
1748 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1750 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1751 "mac interrupt status 0x%x\n", status
);
1753 if (hw
->phy_type
== SK_PHY_XMAC
&& (status
& XM_IS_INP_ASS
)) {
1754 xm_link_down(hw
, port
);
1755 mod_timer(&skge
->link_timer
, jiffies
+ 1);
1758 if (status
& XM_IS_TXF_UR
) {
1759 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1760 ++dev
->stats
.tx_fifo_errors
;
1764 static void genesis_link_up(struct skge_port
*skge
)
1766 struct skge_hw
*hw
= skge
->hw
;
1767 int port
= skge
->port
;
1771 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1774 * enabling pause frame reception is required for 1000BT
1775 * because the XMAC is not reset if the link is going down
1777 if (skge
->flow_status
== FLOW_STAT_NONE
||
1778 skge
->flow_status
== FLOW_STAT_LOC_SEND
)
1779 /* Disable Pause Frame Reception */
1780 cmd
|= XM_MMU_IGN_PF
;
1782 /* Enable Pause Frame Reception */
1783 cmd
&= ~XM_MMU_IGN_PF
;
1785 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1787 mode
= xm_read32(hw
, port
, XM_MODE
);
1788 if (skge
->flow_status
== FLOW_STAT_SYMMETRIC
||
1789 skge
->flow_status
== FLOW_STAT_LOC_SEND
) {
1791 * Configure Pause Frame Generation
1792 * Use internal and external Pause Frame Generation.
1793 * Sending pause frames is edge triggered.
1794 * Send a Pause frame with the maximum pause time if
1795 * internal oder external FIFO full condition occurs.
1796 * Send a zero pause time frame to re-start transmission.
1798 /* XM_PAUSE_DA = '010000C28001' (default) */
1799 /* XM_MAC_PTIME = 0xffff (maximum) */
1800 /* remember this value is defined in big endian (!) */
1801 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1803 mode
|= XM_PAUSE_MODE
;
1804 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1807 * disable pause frame generation is required for 1000BT
1808 * because the XMAC is not reset if the link is going down
1810 /* Disable Pause Mode in Mode Register */
1811 mode
&= ~XM_PAUSE_MODE
;
1813 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1816 xm_write32(hw
, port
, XM_MODE
, mode
);
1818 /* Turn on detection of Tx underrun */
1819 msk
= xm_read16(hw
, port
, XM_IMSK
);
1820 msk
&= ~XM_IS_TXF_UR
;
1821 xm_write16(hw
, port
, XM_IMSK
, msk
);
1823 xm_read16(hw
, port
, XM_ISRC
);
1825 /* get MMU Command Reg. */
1826 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1827 if (hw
->phy_type
!= SK_PHY_XMAC
&& skge
->duplex
== DUPLEX_FULL
)
1828 cmd
|= XM_MMU_GMII_FD
;
1831 * Workaround BCOM Errata (#10523) for all BCom Phys
1832 * Enable Power Management after link up
1834 if (hw
->phy_type
== SK_PHY_BCOM
) {
1835 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1836 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1837 & ~PHY_B_AC_DIS_PM
);
1838 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1842 xm_write16(hw
, port
, XM_MMU_CMD
,
1843 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1848 static inline void bcom_phy_intr(struct skge_port
*skge
)
1850 struct skge_hw
*hw
= skge
->hw
;
1851 int port
= skge
->port
;
1854 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1855 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1856 "phy interrupt status 0x%x\n", isrc
);
1858 if (isrc
& PHY_B_IS_PSE
)
1859 pr_err("%s: uncorrectable pair swap error\n",
1860 hw
->dev
[port
]->name
);
1862 /* Workaround BCom Errata:
1863 * enable and disable loopback mode if "NO HCD" occurs.
1865 if (isrc
& PHY_B_IS_NO_HDCL
) {
1866 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1867 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1868 ctrl
| PHY_CT_LOOP
);
1869 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1870 ctrl
& ~PHY_CT_LOOP
);
1873 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1874 bcom_check_link(hw
, port
);
1878 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1882 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1883 gma_write16(hw
, port
, GM_SMI_CTRL
,
1884 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1885 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1888 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1892 pr_warning("%s: phy write timeout\n", hw
->dev
[port
]->name
);
1896 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1900 gma_write16(hw
, port
, GM_SMI_CTRL
,
1901 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1902 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1904 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1906 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1912 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1916 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1919 if (__gm_phy_read(hw
, port
, reg
, &v
))
1920 pr_warning("%s: phy read timeout\n", hw
->dev
[port
]->name
);
1924 /* Marvell Phy Initialization */
1925 static void yukon_init(struct skge_hw
*hw
, int port
)
1927 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1928 u16 ctrl
, ct1000
, adv
;
1930 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1931 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1933 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1934 PHY_M_EC_MAC_S_MSK
);
1935 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1937 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1939 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1942 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1943 if (skge
->autoneg
== AUTONEG_DISABLE
)
1944 ctrl
&= ~PHY_CT_ANE
;
1946 ctrl
|= PHY_CT_RESET
;
1947 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1953 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1955 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1956 ct1000
|= PHY_M_1000C_AFD
;
1957 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1958 ct1000
|= PHY_M_1000C_AHD
;
1959 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
1960 adv
|= PHY_M_AN_100_FD
;
1961 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
1962 adv
|= PHY_M_AN_100_HD
;
1963 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
1964 adv
|= PHY_M_AN_10_FD
;
1965 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
1966 adv
|= PHY_M_AN_10_HD
;
1968 /* Set Flow-control capabilities */
1969 adv
|= phy_pause_map
[skge
->flow_control
];
1971 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1972 adv
|= PHY_M_AN_1000X_AFD
;
1973 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1974 adv
|= PHY_M_AN_1000X_AHD
;
1976 adv
|= fiber_pause_map
[skge
->flow_control
];
1979 /* Restart Auto-negotiation */
1980 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1982 /* forced speed/duplex settings */
1983 ct1000
= PHY_M_1000C_MSE
;
1985 if (skge
->duplex
== DUPLEX_FULL
)
1986 ctrl
|= PHY_CT_DUP_MD
;
1988 switch (skge
->speed
) {
1990 ctrl
|= PHY_CT_SP1000
;
1993 ctrl
|= PHY_CT_SP100
;
1997 ctrl
|= PHY_CT_RESET
;
2000 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
2002 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
2003 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2005 /* Enable phy interrupt on autonegotiation complete (or link up) */
2006 if (skge
->autoneg
== AUTONEG_ENABLE
)
2007 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
2009 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2012 static void yukon_reset(struct skge_hw
*hw
, int port
)
2014 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
2015 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
2016 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
2017 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
2018 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
2020 gma_write16(hw
, port
, GM_RX_CTRL
,
2021 gma_read16(hw
, port
, GM_RX_CTRL
)
2022 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2025 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2026 static int is_yukon_lite_a0(struct skge_hw
*hw
)
2031 if (hw
->chip_id
!= CHIP_ID_YUKON
)
2034 reg
= skge_read32(hw
, B2_FAR
);
2035 skge_write8(hw
, B2_FAR
+ 3, 0xff);
2036 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
2037 skge_write32(hw
, B2_FAR
, reg
);
2041 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
2043 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
2046 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
2048 /* WA code for COMA mode -- set PHY reset */
2049 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2050 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2051 reg
= skge_read32(hw
, B2_GP_IO
);
2052 reg
|= GP_DIR_9
| GP_IO_9
;
2053 skge_write32(hw
, B2_GP_IO
, reg
);
2057 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2058 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2060 /* WA code for COMA mode -- clear PHY reset */
2061 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2062 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2063 reg
= skge_read32(hw
, B2_GP_IO
);
2066 skge_write32(hw
, B2_GP_IO
, reg
);
2069 /* Set hardware config mode */
2070 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
2071 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
2072 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
2074 /* Clear GMC reset */
2075 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
2076 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
2077 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
2079 if (skge
->autoneg
== AUTONEG_DISABLE
) {
2080 reg
= GM_GPCR_AU_ALL_DIS
;
2081 gma_write16(hw
, port
, GM_GP_CTRL
,
2082 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
2084 switch (skge
->speed
) {
2086 reg
&= ~GM_GPCR_SPEED_100
;
2087 reg
|= GM_GPCR_SPEED_1000
;
2090 reg
&= ~GM_GPCR_SPEED_1000
;
2091 reg
|= GM_GPCR_SPEED_100
;
2094 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
2098 if (skge
->duplex
== DUPLEX_FULL
)
2099 reg
|= GM_GPCR_DUP_FULL
;
2101 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
2103 switch (skge
->flow_control
) {
2104 case FLOW_MODE_NONE
:
2105 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2106 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2108 case FLOW_MODE_LOC_SEND
:
2109 /* disable Rx flow-control */
2110 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2112 case FLOW_MODE_SYMMETRIC
:
2113 case FLOW_MODE_SYM_OR_REM
:
2114 /* enable Tx & Rx flow-control */
2118 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2119 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2121 yukon_init(hw
, port
);
2124 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
2125 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
2127 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
2128 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
2129 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
2131 /* transmit control */
2132 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
2134 /* receive control reg: unicast + multicast + no FCS */
2135 gma_write16(hw
, port
, GM_RX_CTRL
,
2136 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
2138 /* transmit flow control */
2139 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
2141 /* transmit parameter */
2142 gma_write16(hw
, port
, GM_TX_PARAM
,
2143 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
2144 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
2145 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
2147 /* configure the Serial Mode Register */
2148 reg
= DATA_BLIND_VAL(DATA_BLIND_DEF
)
2150 | IPG_DATA_VAL(IPG_DATA_DEF
);
2152 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
)
2153 reg
|= GM_SMOD_JUMBO_ENA
;
2155 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2157 /* physical address: used for pause frames */
2158 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
2159 /* virtual address for data */
2160 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
2162 /* enable interrupt mask for counter overflows */
2163 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
2164 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
2165 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
2167 /* Initialize Mac Fifo */
2169 /* Configure Rx MAC FIFO */
2170 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
2171 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
2173 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2174 if (is_yukon_lite_a0(hw
))
2175 reg
&= ~GMF_RX_F_FL_ON
;
2177 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
2178 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
2180 * because Pause Packet Truncation in GMAC is not working
2181 * we have to increase the Flush Threshold to 64 bytes
2182 * in order to flush pause packets in Rx FIFO on Yukon-1
2184 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
2186 /* Configure Tx MAC FIFO */
2187 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
2188 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
2191 /* Go into power down mode */
2192 static void yukon_suspend(struct skge_hw
*hw
, int port
)
2196 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
2197 ctrl
|= PHY_M_PC_POL_R_DIS
;
2198 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
2200 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2201 ctrl
|= PHY_CT_RESET
;
2202 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2204 /* switch IEEE compatible power down mode on */
2205 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2206 ctrl
|= PHY_CT_PDOWN
;
2207 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2210 static void yukon_stop(struct skge_port
*skge
)
2212 struct skge_hw
*hw
= skge
->hw
;
2213 int port
= skge
->port
;
2215 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
2216 yukon_reset(hw
, port
);
2218 gma_write16(hw
, port
, GM_GP_CTRL
,
2219 gma_read16(hw
, port
, GM_GP_CTRL
)
2220 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
2221 gma_read16(hw
, port
, GM_GP_CTRL
);
2223 yukon_suspend(hw
, port
);
2225 /* set GPHY Control reset */
2226 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2227 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2230 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
2232 struct skge_hw
*hw
= skge
->hw
;
2233 int port
= skge
->port
;
2236 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
2237 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
2238 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
2239 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
2241 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
2242 data
[i
] = gma_read32(hw
, port
,
2243 skge_stats
[i
].gma_offset
);
2246 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
2248 struct net_device
*dev
= hw
->dev
[port
];
2249 struct skge_port
*skge
= netdev_priv(dev
);
2250 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2252 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2253 "mac interrupt status 0x%x\n", status
);
2255 if (status
& GM_IS_RX_FF_OR
) {
2256 ++dev
->stats
.rx_fifo_errors
;
2257 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
2260 if (status
& GM_IS_TX_FF_UR
) {
2261 ++dev
->stats
.tx_fifo_errors
;
2262 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
2267 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
2269 switch (aux
& PHY_M_PS_SPEED_MSK
) {
2270 case PHY_M_PS_SPEED_1000
:
2272 case PHY_M_PS_SPEED_100
:
2279 static void yukon_link_up(struct skge_port
*skge
)
2281 struct skge_hw
*hw
= skge
->hw
;
2282 int port
= skge
->port
;
2285 /* Enable Transmit FIFO Underrun */
2286 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
2288 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
2289 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
2290 reg
|= GM_GPCR_DUP_FULL
;
2293 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
2294 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2296 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2300 static void yukon_link_down(struct skge_port
*skge
)
2302 struct skge_hw
*hw
= skge
->hw
;
2303 int port
= skge
->port
;
2306 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2307 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
2308 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
2310 if (skge
->flow_status
== FLOW_STAT_REM_SEND
) {
2311 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_AUNE_ADV
);
2312 ctrl
|= PHY_M_AN_ASP
;
2313 /* restore Asymmetric Pause bit */
2314 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, ctrl
);
2317 skge_link_down(skge
);
2319 yukon_init(hw
, port
);
2322 static void yukon_phy_intr(struct skge_port
*skge
)
2324 struct skge_hw
*hw
= skge
->hw
;
2325 int port
= skge
->port
;
2326 const char *reason
= NULL
;
2327 u16 istatus
, phystat
;
2329 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
2330 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
2332 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2333 "phy interrupt status 0x%x 0x%x\n", istatus
, phystat
);
2335 if (istatus
& PHY_M_IS_AN_COMPL
) {
2336 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
2338 reason
= "remote fault";
2342 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
2343 reason
= "master/slave fault";
2347 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
2348 reason
= "speed/duplex";
2352 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
2353 ? DUPLEX_FULL
: DUPLEX_HALF
;
2354 skge
->speed
= yukon_speed(hw
, phystat
);
2356 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2357 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
2358 case PHY_M_PS_PAUSE_MSK
:
2359 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
2361 case PHY_M_PS_RX_P_EN
:
2362 skge
->flow_status
= FLOW_STAT_REM_SEND
;
2364 case PHY_M_PS_TX_P_EN
:
2365 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
2368 skge
->flow_status
= FLOW_STAT_NONE
;
2371 if (skge
->flow_status
== FLOW_STAT_NONE
||
2372 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2373 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2375 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2376 yukon_link_up(skge
);
2380 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2381 skge
->speed
= yukon_speed(hw
, phystat
);
2383 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2384 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2385 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2386 if (phystat
& PHY_M_PS_LINK_UP
)
2387 yukon_link_up(skge
);
2389 yukon_link_down(skge
);
2393 pr_err("%s: autonegotiation failed (%s)\n", skge
->netdev
->name
, reason
);
2395 /* XXX restart autonegotiation? */
2398 static void skge_phy_reset(struct skge_port
*skge
)
2400 struct skge_hw
*hw
= skge
->hw
;
2401 int port
= skge
->port
;
2402 struct net_device
*dev
= hw
->dev
[port
];
2404 netif_stop_queue(skge
->netdev
);
2405 netif_carrier_off(skge
->netdev
);
2407 spin_lock_bh(&hw
->phy_lock
);
2408 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2409 genesis_reset(hw
, port
);
2410 genesis_mac_init(hw
, port
);
2412 yukon_reset(hw
, port
);
2413 yukon_init(hw
, port
);
2415 spin_unlock_bh(&hw
->phy_lock
);
2417 skge_set_multicast(dev
);
2420 /* Basic MII support */
2421 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2423 struct mii_ioctl_data
*data
= if_mii(ifr
);
2424 struct skge_port
*skge
= netdev_priv(dev
);
2425 struct skge_hw
*hw
= skge
->hw
;
2426 int err
= -EOPNOTSUPP
;
2428 if (!netif_running(dev
))
2429 return -ENODEV
; /* Phy still in reset */
2433 data
->phy_id
= hw
->phy_addr
;
2438 spin_lock_bh(&hw
->phy_lock
);
2439 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2440 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2442 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2443 spin_unlock_bh(&hw
->phy_lock
);
2444 data
->val_out
= val
;
2449 spin_lock_bh(&hw
->phy_lock
);
2450 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2451 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2454 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2456 spin_unlock_bh(&hw
->phy_lock
);
2462 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2468 end
= start
+ len
- 1;
2470 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2471 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2472 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2473 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2474 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2476 if (q
== Q_R1
|| q
== Q_R2
) {
2477 /* Set thresholds on receive queue's */
2478 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2480 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2483 /* Enable store & forward on Tx queue's because
2484 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2486 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2489 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2492 /* Setup Bus Memory Interface */
2493 static void skge_qset(struct skge_port
*skge
, u16 q
,
2494 const struct skge_element
*e
)
2496 struct skge_hw
*hw
= skge
->hw
;
2497 u32 watermark
= 0x600;
2498 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2500 /* optimization to reduce window on 32bit/33mhz */
2501 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2504 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2505 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2506 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2507 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2510 static int skge_up(struct net_device
*dev
)
2512 struct skge_port
*skge
= netdev_priv(dev
);
2513 struct skge_hw
*hw
= skge
->hw
;
2514 int port
= skge
->port
;
2515 u32 chunk
, ram_addr
;
2516 size_t rx_size
, tx_size
;
2519 if (!is_valid_ether_addr(dev
->dev_addr
))
2522 netif_info(skge
, ifup
, skge
->netdev
, "enabling interface\n");
2524 if (dev
->mtu
> RX_BUF_SIZE
)
2525 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2527 skge
->rx_buf_size
= RX_BUF_SIZE
;
2530 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2531 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2532 skge
->mem_size
= tx_size
+ rx_size
;
2533 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2537 BUG_ON(skge
->dma
& 7);
2539 if ((u64
)skge
->dma
>> 32 != ((u64
) skge
->dma
+ skge
->mem_size
) >> 32) {
2540 dev_err(&hw
->pdev
->dev
, "pci_alloc_consistent region crosses 4G boundary\n");
2545 memset(skge
->mem
, 0, skge
->mem_size
);
2547 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2551 err
= skge_rx_fill(dev
);
2555 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2556 skge
->dma
+ rx_size
);
2560 /* Initialize MAC */
2561 spin_lock_bh(&hw
->phy_lock
);
2562 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2563 genesis_mac_init(hw
, port
);
2565 yukon_mac_init(hw
, port
);
2566 spin_unlock_bh(&hw
->phy_lock
);
2568 /* Configure RAMbuffers - equally between ports and tx/rx */
2569 chunk
= (hw
->ram_size
- hw
->ram_offset
) / (hw
->ports
* 2);
2570 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2572 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2573 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2575 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2576 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2577 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2579 /* Start receiver BMU */
2581 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2582 skge_led(skge
, LED_MODE_ON
);
2584 spin_lock_irq(&hw
->hw_lock
);
2585 hw
->intr_mask
|= portmask
[port
];
2586 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2587 spin_unlock_irq(&hw
->hw_lock
);
2589 napi_enable(&skge
->napi
);
2593 skge_rx_clean(skge
);
2594 kfree(skge
->rx_ring
.start
);
2596 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2603 static void skge_rx_stop(struct skge_hw
*hw
, int port
)
2605 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2606 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2607 RB_RST_SET
|RB_DIS_OP_MD
);
2608 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2611 static int skge_down(struct net_device
*dev
)
2613 struct skge_port
*skge
= netdev_priv(dev
);
2614 struct skge_hw
*hw
= skge
->hw
;
2615 int port
= skge
->port
;
2617 if (skge
->mem
== NULL
)
2620 netif_info(skge
, ifdown
, skge
->netdev
, "disabling interface\n");
2622 netif_tx_disable(dev
);
2624 if (hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
)
2625 del_timer_sync(&skge
->link_timer
);
2627 napi_disable(&skge
->napi
);
2628 netif_carrier_off(dev
);
2630 spin_lock_irq(&hw
->hw_lock
);
2631 hw
->intr_mask
&= ~portmask
[port
];
2632 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2633 spin_unlock_irq(&hw
->hw_lock
);
2635 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
2636 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2641 /* Stop transmitter */
2642 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2643 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2644 RB_RST_SET
|RB_DIS_OP_MD
);
2647 /* Disable Force Sync bit and Enable Alloc bit */
2648 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2649 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2651 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2652 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2653 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2655 /* Reset PCI FIFO */
2656 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2657 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2659 /* Reset the RAM Buffer async Tx queue */
2660 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2662 skge_rx_stop(hw
, port
);
2664 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2665 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2666 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2668 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2669 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2672 skge_led(skge
, LED_MODE_OFF
);
2674 netif_tx_lock_bh(dev
);
2676 netif_tx_unlock_bh(dev
);
2678 skge_rx_clean(skge
);
2680 kfree(skge
->rx_ring
.start
);
2681 kfree(skge
->tx_ring
.start
);
2682 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2687 static inline int skge_avail(const struct skge_ring
*ring
)
2690 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2691 + (ring
->to_clean
- ring
->to_use
) - 1;
2694 static netdev_tx_t
skge_xmit_frame(struct sk_buff
*skb
,
2695 struct net_device
*dev
)
2697 struct skge_port
*skge
= netdev_priv(dev
);
2698 struct skge_hw
*hw
= skge
->hw
;
2699 struct skge_element
*e
;
2700 struct skge_tx_desc
*td
;
2705 if (skb_padto(skb
, ETH_ZLEN
))
2706 return NETDEV_TX_OK
;
2708 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1))
2709 return NETDEV_TX_BUSY
;
2711 e
= skge
->tx_ring
.to_use
;
2713 BUG_ON(td
->control
& BMU_OWN
);
2715 len
= skb_headlen(skb
);
2716 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2717 dma_unmap_addr_set(e
, mapaddr
, map
);
2718 dma_unmap_len_set(e
, maplen
, len
);
2721 td
->dma_hi
= map
>> 32;
2723 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2724 const int offset
= skb_checksum_start_offset(skb
);
2726 /* This seems backwards, but it is what the sk98lin
2727 * does. Looks like hardware is wrong?
2729 if (ipip_hdr(skb
)->protocol
== IPPROTO_UDP
&&
2730 hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2731 control
= BMU_TCP_CHECK
;
2733 control
= BMU_UDP_CHECK
;
2736 td
->csum_start
= offset
;
2737 td
->csum_write
= offset
+ skb
->csum_offset
;
2739 control
= BMU_CHECK
;
2741 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2742 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2744 struct skge_tx_desc
*tf
= td
;
2746 control
|= BMU_STFWD
;
2747 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2748 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2750 map
= pci_map_page(hw
->pdev
, frag
->page
, frag
->page_offset
,
2751 frag
->size
, PCI_DMA_TODEVICE
);
2756 BUG_ON(tf
->control
& BMU_OWN
);
2759 tf
->dma_hi
= (u64
) map
>> 32;
2760 dma_unmap_addr_set(e
, mapaddr
, map
);
2761 dma_unmap_len_set(e
, maplen
, frag
->size
);
2763 tf
->control
= BMU_OWN
| BMU_SW
| control
| frag
->size
;
2765 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2767 /* Make sure all the descriptors written */
2769 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2772 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2774 netif_printk(skge
, tx_queued
, KERN_DEBUG
, skge
->netdev
,
2775 "tx queued, slot %td, len %d\n",
2776 e
- skge
->tx_ring
.start
, skb
->len
);
2778 skge
->tx_ring
.to_use
= e
->next
;
2781 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2782 netdev_dbg(dev
, "transmit queue full\n");
2783 netif_stop_queue(dev
);
2786 return NETDEV_TX_OK
;
2790 /* Free resources associated with this reing element */
2791 static void skge_tx_free(struct skge_port
*skge
, struct skge_element
*e
,
2794 struct pci_dev
*pdev
= skge
->hw
->pdev
;
2796 /* skb header vs. fragment */
2797 if (control
& BMU_STF
)
2798 pci_unmap_single(pdev
, dma_unmap_addr(e
, mapaddr
),
2799 dma_unmap_len(e
, maplen
),
2802 pci_unmap_page(pdev
, dma_unmap_addr(e
, mapaddr
),
2803 dma_unmap_len(e
, maplen
),
2806 if (control
& BMU_EOF
) {
2807 netif_printk(skge
, tx_done
, KERN_DEBUG
, skge
->netdev
,
2808 "tx done slot %td\n", e
- skge
->tx_ring
.start
);
2810 dev_kfree_skb(e
->skb
);
2814 /* Free all buffers in transmit ring */
2815 static void skge_tx_clean(struct net_device
*dev
)
2817 struct skge_port
*skge
= netdev_priv(dev
);
2818 struct skge_element
*e
;
2820 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2821 struct skge_tx_desc
*td
= e
->desc
;
2822 skge_tx_free(skge
, e
, td
->control
);
2826 skge
->tx_ring
.to_clean
= e
;
2829 static void skge_tx_timeout(struct net_device
*dev
)
2831 struct skge_port
*skge
= netdev_priv(dev
);
2833 netif_printk(skge
, timer
, KERN_DEBUG
, skge
->netdev
, "tx timeout\n");
2835 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2837 netif_wake_queue(dev
);
2840 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2844 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_JUMBO_MTU
)
2847 if (!netif_running(dev
)) {
2863 static const u8 pause_mc_addr
[ETH_ALEN
] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2865 static void genesis_add_filter(u8 filter
[8], const u8
*addr
)
2869 crc
= ether_crc_le(ETH_ALEN
, addr
);
2871 filter
[bit
/8] |= 1 << (bit
%8);
2874 static void genesis_set_multicast(struct net_device
*dev
)
2876 struct skge_port
*skge
= netdev_priv(dev
);
2877 struct skge_hw
*hw
= skge
->hw
;
2878 int port
= skge
->port
;
2879 struct netdev_hw_addr
*ha
;
2883 mode
= xm_read32(hw
, port
, XM_MODE
);
2884 mode
|= XM_MD_ENA_HASH
;
2885 if (dev
->flags
& IFF_PROMISC
)
2886 mode
|= XM_MD_ENA_PROM
;
2888 mode
&= ~XM_MD_ENA_PROM
;
2890 if (dev
->flags
& IFF_ALLMULTI
)
2891 memset(filter
, 0xff, sizeof(filter
));
2893 memset(filter
, 0, sizeof(filter
));
2895 if (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2896 skge
->flow_status
== FLOW_STAT_SYMMETRIC
)
2897 genesis_add_filter(filter
, pause_mc_addr
);
2899 netdev_for_each_mc_addr(ha
, dev
)
2900 genesis_add_filter(filter
, ha
->addr
);
2903 xm_write32(hw
, port
, XM_MODE
, mode
);
2904 xm_outhash(hw
, port
, XM_HSM
, filter
);
2907 static void yukon_add_filter(u8 filter
[8], const u8
*addr
)
2909 u32 bit
= ether_crc(ETH_ALEN
, addr
) & 0x3f;
2910 filter
[bit
/8] |= 1 << (bit
%8);
2913 static void yukon_set_multicast(struct net_device
*dev
)
2915 struct skge_port
*skge
= netdev_priv(dev
);
2916 struct skge_hw
*hw
= skge
->hw
;
2917 int port
= skge
->port
;
2918 struct netdev_hw_addr
*ha
;
2919 int rx_pause
= (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2920 skge
->flow_status
== FLOW_STAT_SYMMETRIC
);
2924 memset(filter
, 0, sizeof(filter
));
2926 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2927 reg
|= GM_RXCR_UCF_ENA
;
2929 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2930 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2931 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2932 memset(filter
, 0xff, sizeof(filter
));
2933 else if (netdev_mc_empty(dev
) && !rx_pause
)/* no multicast */
2934 reg
&= ~GM_RXCR_MCF_ENA
;
2936 reg
|= GM_RXCR_MCF_ENA
;
2939 yukon_add_filter(filter
, pause_mc_addr
);
2941 netdev_for_each_mc_addr(ha
, dev
)
2942 yukon_add_filter(filter
, ha
->addr
);
2946 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
2947 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
2948 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
2949 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
2950 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
2951 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
2952 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
2953 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
2955 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
2958 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
2960 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2961 return status
>> XMR_FS_LEN_SHIFT
;
2963 return status
>> GMR_FS_LEN_SHIFT
;
2966 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
2968 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2969 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
2971 return (status
& GMR_FS_ANY_ERR
) ||
2972 (status
& GMR_FS_RX_OK
) == 0;
2975 static void skge_set_multicast(struct net_device
*dev
)
2977 struct skge_port
*skge
= netdev_priv(dev
);
2978 struct skge_hw
*hw
= skge
->hw
;
2980 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2981 genesis_set_multicast(dev
);
2983 yukon_set_multicast(dev
);
2988 /* Get receive buffer from descriptor.
2989 * Handles copy of small buffers and reallocation failures
2991 static struct sk_buff
*skge_rx_get(struct net_device
*dev
,
2992 struct skge_element
*e
,
2993 u32 control
, u32 status
, u16 csum
)
2995 struct skge_port
*skge
= netdev_priv(dev
);
2996 struct sk_buff
*skb
;
2997 u16 len
= control
& BMU_BBC
;
2999 netif_printk(skge
, rx_status
, KERN_DEBUG
, skge
->netdev
,
3000 "rx slot %td status 0x%x len %d\n",
3001 e
- skge
->rx_ring
.start
, status
, len
);
3003 if (len
> skge
->rx_buf_size
)
3006 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
3009 if (bad_phy_status(skge
->hw
, status
))
3012 if (phy_length(skge
->hw
, status
) != len
)
3015 if (len
< RX_COPY_THRESHOLD
) {
3016 skb
= netdev_alloc_skb_ip_align(dev
, len
);
3020 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
3021 dma_unmap_addr(e
, mapaddr
),
3022 len
, PCI_DMA_FROMDEVICE
);
3023 skb_copy_from_linear_data(e
->skb
, skb
->data
, len
);
3024 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
3025 dma_unmap_addr(e
, mapaddr
),
3026 len
, PCI_DMA_FROMDEVICE
);
3027 skge_rx_reuse(e
, skge
->rx_buf_size
);
3029 struct sk_buff
*nskb
;
3031 nskb
= netdev_alloc_skb_ip_align(dev
, skge
->rx_buf_size
);
3035 pci_unmap_single(skge
->hw
->pdev
,
3036 dma_unmap_addr(e
, mapaddr
),
3037 dma_unmap_len(e
, maplen
),
3038 PCI_DMA_FROMDEVICE
);
3040 prefetch(skb
->data
);
3041 skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
);
3046 if (dev
->features
& NETIF_F_RXCSUM
) {
3048 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3051 skb
->protocol
= eth_type_trans(skb
, dev
);
3056 netif_printk(skge
, rx_err
, KERN_DEBUG
, skge
->netdev
,
3057 "rx err, slot %td control 0x%x status 0x%x\n",
3058 e
- skge
->rx_ring
.start
, control
, status
);
3060 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
) {
3061 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
3062 dev
->stats
.rx_length_errors
++;
3063 if (status
& XMR_FS_FRA_ERR
)
3064 dev
->stats
.rx_frame_errors
++;
3065 if (status
& XMR_FS_FCS_ERR
)
3066 dev
->stats
.rx_crc_errors
++;
3068 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
3069 dev
->stats
.rx_length_errors
++;
3070 if (status
& GMR_FS_FRAGMENT
)
3071 dev
->stats
.rx_frame_errors
++;
3072 if (status
& GMR_FS_CRC_ERR
)
3073 dev
->stats
.rx_crc_errors
++;
3077 skge_rx_reuse(e
, skge
->rx_buf_size
);
3081 /* Free all buffers in Tx ring which are no longer owned by device */
3082 static void skge_tx_done(struct net_device
*dev
)
3084 struct skge_port
*skge
= netdev_priv(dev
);
3085 struct skge_ring
*ring
= &skge
->tx_ring
;
3086 struct skge_element
*e
;
3088 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3090 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
3091 u32 control
= ((const struct skge_tx_desc
*) e
->desc
)->control
;
3093 if (control
& BMU_OWN
)
3096 skge_tx_free(skge
, e
, control
);
3098 skge
->tx_ring
.to_clean
= e
;
3100 /* Can run lockless until we need to synchronize to restart queue. */
3103 if (unlikely(netif_queue_stopped(dev
) &&
3104 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3106 if (unlikely(netif_queue_stopped(dev
) &&
3107 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3108 netif_wake_queue(dev
);
3111 netif_tx_unlock(dev
);
3115 static int skge_poll(struct napi_struct
*napi
, int to_do
)
3117 struct skge_port
*skge
= container_of(napi
, struct skge_port
, napi
);
3118 struct net_device
*dev
= skge
->netdev
;
3119 struct skge_hw
*hw
= skge
->hw
;
3120 struct skge_ring
*ring
= &skge
->rx_ring
;
3121 struct skge_element
*e
;
3126 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3128 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< to_do
; e
= e
->next
) {
3129 struct skge_rx_desc
*rd
= e
->desc
;
3130 struct sk_buff
*skb
;
3134 control
= rd
->control
;
3135 if (control
& BMU_OWN
)
3138 skb
= skge_rx_get(dev
, e
, control
, rd
->status
, rd
->csum2
);
3140 napi_gro_receive(napi
, skb
);
3146 /* restart receiver */
3148 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
3150 if (work_done
< to_do
) {
3151 unsigned long flags
;
3153 napi_gro_flush(napi
);
3154 spin_lock_irqsave(&hw
->hw_lock
, flags
);
3155 __napi_complete(napi
);
3156 hw
->intr_mask
|= napimask
[skge
->port
];
3157 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3158 skge_read32(hw
, B0_IMSK
);
3159 spin_unlock_irqrestore(&hw
->hw_lock
, flags
);
3165 /* Parity errors seem to happen when Genesis is connected to a switch
3166 * with no other ports present. Heartbeat error??
3168 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
3170 struct net_device
*dev
= hw
->dev
[port
];
3172 ++dev
->stats
.tx_heartbeat_errors
;
3174 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3175 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
3178 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3179 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
3180 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
3181 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
3184 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
3186 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3187 genesis_mac_intr(hw
, port
);
3189 yukon_mac_intr(hw
, port
);
3192 /* Handle device specific framing and timeout interrupts */
3193 static void skge_error_irq(struct skge_hw
*hw
)
3195 struct pci_dev
*pdev
= hw
->pdev
;
3196 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3198 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3199 /* clear xmac errors */
3200 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
3201 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
3202 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
3203 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
3205 /* Timestamp (unused) overflow */
3206 if (hwstatus
& IS_IRQ_TIST_OV
)
3207 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
3210 if (hwstatus
& IS_RAM_RD_PAR
) {
3211 dev_err(&pdev
->dev
, "Ram read data parity error\n");
3212 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
3215 if (hwstatus
& IS_RAM_WR_PAR
) {
3216 dev_err(&pdev
->dev
, "Ram write data parity error\n");
3217 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
3220 if (hwstatus
& IS_M1_PAR_ERR
)
3221 skge_mac_parity(hw
, 0);
3223 if (hwstatus
& IS_M2_PAR_ERR
)
3224 skge_mac_parity(hw
, 1);
3226 if (hwstatus
& IS_R1_PAR_ERR
) {
3227 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3229 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
3232 if (hwstatus
& IS_R2_PAR_ERR
) {
3233 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3235 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
3238 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
3239 u16 pci_status
, pci_cmd
;
3241 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
3242 pci_read_config_word(pdev
, PCI_STATUS
, &pci_status
);
3244 dev_err(&pdev
->dev
, "PCI error cmd=%#x status=%#x\n",
3245 pci_cmd
, pci_status
);
3247 /* Write the error bits back to clear them. */
3248 pci_status
&= PCI_STATUS_ERROR_BITS
;
3249 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3250 pci_write_config_word(pdev
, PCI_COMMAND
,
3251 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
3252 pci_write_config_word(pdev
, PCI_STATUS
, pci_status
);
3253 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3255 /* if error still set then just ignore it */
3256 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3257 if (hwstatus
& IS_IRQ_STAT
) {
3258 dev_warn(&hw
->pdev
->dev
, "unable to clear error (so ignoring them)\n");
3259 hw
->intr_mask
&= ~IS_HW_ERR
;
3265 * Interrupt from PHY are handled in tasklet (softirq)
3266 * because accessing phy registers requires spin wait which might
3267 * cause excess interrupt latency.
3269 static void skge_extirq(unsigned long arg
)
3271 struct skge_hw
*hw
= (struct skge_hw
*) arg
;
3274 for (port
= 0; port
< hw
->ports
; port
++) {
3275 struct net_device
*dev
= hw
->dev
[port
];
3277 if (netif_running(dev
)) {
3278 struct skge_port
*skge
= netdev_priv(dev
);
3280 spin_lock(&hw
->phy_lock
);
3281 if (hw
->chip_id
!= CHIP_ID_GENESIS
)
3282 yukon_phy_intr(skge
);
3283 else if (hw
->phy_type
== SK_PHY_BCOM
)
3284 bcom_phy_intr(skge
);
3285 spin_unlock(&hw
->phy_lock
);
3289 spin_lock_irq(&hw
->hw_lock
);
3290 hw
->intr_mask
|= IS_EXT_REG
;
3291 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3292 skge_read32(hw
, B0_IMSK
);
3293 spin_unlock_irq(&hw
->hw_lock
);
3296 static irqreturn_t
skge_intr(int irq
, void *dev_id
)
3298 struct skge_hw
*hw
= dev_id
;
3302 spin_lock(&hw
->hw_lock
);
3303 /* Reading this register masks IRQ */
3304 status
= skge_read32(hw
, B0_SP_ISRC
);
3305 if (status
== 0 || status
== ~0)
3309 status
&= hw
->intr_mask
;
3310 if (status
& IS_EXT_REG
) {
3311 hw
->intr_mask
&= ~IS_EXT_REG
;
3312 tasklet_schedule(&hw
->phy_task
);
3315 if (status
& (IS_XA1_F
|IS_R1_F
)) {
3316 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
3317 hw
->intr_mask
&= ~(IS_XA1_F
|IS_R1_F
);
3318 napi_schedule(&skge
->napi
);
3321 if (status
& IS_PA_TO_TX1
)
3322 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
3324 if (status
& IS_PA_TO_RX1
) {
3325 ++hw
->dev
[0]->stats
.rx_over_errors
;
3326 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
3330 if (status
& IS_MAC1
)
3331 skge_mac_intr(hw
, 0);
3334 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
3336 if (status
& (IS_XA2_F
|IS_R2_F
)) {
3337 hw
->intr_mask
&= ~(IS_XA2_F
|IS_R2_F
);
3338 napi_schedule(&skge
->napi
);
3341 if (status
& IS_PA_TO_RX2
) {
3342 ++hw
->dev
[1]->stats
.rx_over_errors
;
3343 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
3346 if (status
& IS_PA_TO_TX2
)
3347 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
3349 if (status
& IS_MAC2
)
3350 skge_mac_intr(hw
, 1);
3353 if (status
& IS_HW_ERR
)
3356 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3357 skge_read32(hw
, B0_IMSK
);
3359 spin_unlock(&hw
->hw_lock
);
3361 return IRQ_RETVAL(handled
);
3364 #ifdef CONFIG_NET_POLL_CONTROLLER
3365 static void skge_netpoll(struct net_device
*dev
)
3367 struct skge_port
*skge
= netdev_priv(dev
);
3369 disable_irq(dev
->irq
);
3370 skge_intr(dev
->irq
, skge
->hw
);
3371 enable_irq(dev
->irq
);
3375 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
3377 struct skge_port
*skge
= netdev_priv(dev
);
3378 struct skge_hw
*hw
= skge
->hw
;
3379 unsigned port
= skge
->port
;
3380 const struct sockaddr
*addr
= p
;
3383 if (!is_valid_ether_addr(addr
->sa_data
))
3384 return -EADDRNOTAVAIL
;
3386 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
3388 if (!netif_running(dev
)) {
3389 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3390 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3393 spin_lock_bh(&hw
->phy_lock
);
3394 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
3395 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
& ~GM_GPCR_RX_ENA
);
3397 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3398 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3400 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3401 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
3403 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
3404 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
3407 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
3408 spin_unlock_bh(&hw
->phy_lock
);
3414 static const struct {
3418 { CHIP_ID_GENESIS
, "Genesis" },
3419 { CHIP_ID_YUKON
, "Yukon" },
3420 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3421 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3424 static const char *skge_board_name(const struct skge_hw
*hw
)
3427 static char buf
[16];
3429 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3430 if (skge_chips
[i
].id
== hw
->chip_id
)
3431 return skge_chips
[i
].name
;
3433 snprintf(buf
, sizeof buf
, "chipid 0x%x", hw
->chip_id
);
3439 * Setup the board data structure, but don't bring up
3442 static int skge_reset(struct skge_hw
*hw
)
3445 u16 ctst
, pci_status
;
3446 u8 t8
, mac_cfg
, pmd_type
;
3449 ctst
= skge_read16(hw
, B0_CTST
);
3452 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3453 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3455 /* clear PCI errors, if any */
3456 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3457 skge_write8(hw
, B2_TST_CTRL2
, 0);
3459 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3460 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3461 pci_status
| PCI_STATUS_ERROR_BITS
);
3462 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3463 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3465 /* restore CLK_RUN bits (for Yukon-Lite) */
3466 skge_write16(hw
, B0_CTST
,
3467 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3469 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3470 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3471 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3472 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3474 switch (hw
->chip_id
) {
3475 case CHIP_ID_GENESIS
:
3476 switch (hw
->phy_type
) {
3478 hw
->phy_addr
= PHY_ADDR_XMAC
;
3481 hw
->phy_addr
= PHY_ADDR_BCOM
;
3484 dev_err(&hw
->pdev
->dev
, "unsupported phy type 0x%x\n",
3491 case CHIP_ID_YUKON_LITE
:
3492 case CHIP_ID_YUKON_LP
:
3493 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3496 hw
->phy_addr
= PHY_ADDR_MARV
;
3500 dev_err(&hw
->pdev
->dev
, "unsupported chip type 0x%x\n",
3505 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3506 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3507 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3509 /* read the adapters RAM size */
3510 t8
= skge_read8(hw
, B2_E_0
);
3511 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3513 /* special case: 4 x 64k x 36, offset = 0x80000 */
3514 hw
->ram_size
= 0x100000;
3515 hw
->ram_offset
= 0x80000;
3517 hw
->ram_size
= t8
* 512;
3519 hw
->ram_size
= 0x20000;
3521 hw
->ram_size
= t8
* 4096;
3523 hw
->intr_mask
= IS_HW_ERR
;
3525 /* Use PHY IRQ for all but fiber based Genesis board */
3526 if (!(hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
))
3527 hw
->intr_mask
|= IS_EXT_REG
;
3529 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3532 /* switch power to VCC (WA for VAUX problem) */
3533 skge_write8(hw
, B0_POWER_CTRL
,
3534 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3536 /* avoid boards with stuck Hardware error bits */
3537 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3538 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3539 dev_warn(&hw
->pdev
->dev
, "stuck hardware sensor bit\n");
3540 hw
->intr_mask
&= ~IS_HW_ERR
;
3543 /* Clear PHY COMA */
3544 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3545 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3546 reg
&= ~PCI_PHY_COMA
;
3547 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3548 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3551 for (i
= 0; i
< hw
->ports
; i
++) {
3552 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3553 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3557 /* turn off hardware timer (unused) */
3558 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3559 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3560 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3562 /* enable the Tx Arbiters */
3563 for (i
= 0; i
< hw
->ports
; i
++)
3564 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3566 /* Initialize ram interface */
3567 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3569 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3570 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3571 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3572 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3573 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3574 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3575 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3576 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3577 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3578 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3579 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3580 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3582 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3584 /* Set interrupt moderation for Transmit only
3585 * Receive interrupts avoided by NAPI
3587 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3588 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3589 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3591 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3593 for (i
= 0; i
< hw
->ports
; i
++) {
3594 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3595 genesis_reset(hw
, i
);
3604 #ifdef CONFIG_SKGE_DEBUG
3606 static struct dentry
*skge_debug
;
3608 static int skge_debug_show(struct seq_file
*seq
, void *v
)
3610 struct net_device
*dev
= seq
->private;
3611 const struct skge_port
*skge
= netdev_priv(dev
);
3612 const struct skge_hw
*hw
= skge
->hw
;
3613 const struct skge_element
*e
;
3615 if (!netif_running(dev
))
3618 seq_printf(seq
, "IRQ src=%x mask=%x\n", skge_read32(hw
, B0_ISRC
),
3619 skge_read32(hw
, B0_IMSK
));
3621 seq_printf(seq
, "Tx Ring: (%d)\n", skge_avail(&skge
->tx_ring
));
3622 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
3623 const struct skge_tx_desc
*t
= e
->desc
;
3624 seq_printf(seq
, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3625 t
->control
, t
->dma_hi
, t
->dma_lo
, t
->status
,
3626 t
->csum_offs
, t
->csum_write
, t
->csum_start
);
3629 seq_printf(seq
, "\nRx Ring:\n");
3630 for (e
= skge
->rx_ring
.to_clean
; ; e
= e
->next
) {
3631 const struct skge_rx_desc
*r
= e
->desc
;
3633 if (r
->control
& BMU_OWN
)
3636 seq_printf(seq
, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3637 r
->control
, r
->dma_hi
, r
->dma_lo
, r
->status
,
3638 r
->timestamp
, r
->csum1
, r
->csum1_start
);
3644 static int skge_debug_open(struct inode
*inode
, struct file
*file
)
3646 return single_open(file
, skge_debug_show
, inode
->i_private
);
3649 static const struct file_operations skge_debug_fops
= {
3650 .owner
= THIS_MODULE
,
3651 .open
= skge_debug_open
,
3653 .llseek
= seq_lseek
,
3654 .release
= single_release
,
3658 * Use network device events to create/remove/rename
3659 * debugfs file entries
3661 static int skge_device_event(struct notifier_block
*unused
,
3662 unsigned long event
, void *ptr
)
3664 struct net_device
*dev
= ptr
;
3665 struct skge_port
*skge
;
3668 if (dev
->netdev_ops
->ndo_open
!= &skge_up
|| !skge_debug
)
3671 skge
= netdev_priv(dev
);
3673 case NETDEV_CHANGENAME
:
3674 if (skge
->debugfs
) {
3675 d
= debugfs_rename(skge_debug
, skge
->debugfs
,
3676 skge_debug
, dev
->name
);
3680 netdev_info(dev
, "rename failed\n");
3681 debugfs_remove(skge
->debugfs
);
3686 case NETDEV_GOING_DOWN
:
3687 if (skge
->debugfs
) {
3688 debugfs_remove(skge
->debugfs
);
3689 skge
->debugfs
= NULL
;
3694 d
= debugfs_create_file(dev
->name
, S_IRUGO
,
3697 if (!d
|| IS_ERR(d
))
3698 netdev_info(dev
, "debugfs create failed\n");
3708 static struct notifier_block skge_notifier
= {
3709 .notifier_call
= skge_device_event
,
3713 static __init
void skge_debug_init(void)
3717 ent
= debugfs_create_dir("skge", NULL
);
3718 if (!ent
|| IS_ERR(ent
)) {
3719 pr_info("debugfs create directory failed\n");
3724 register_netdevice_notifier(&skge_notifier
);
3727 static __exit
void skge_debug_cleanup(void)
3730 unregister_netdevice_notifier(&skge_notifier
);
3731 debugfs_remove(skge_debug
);
3737 #define skge_debug_init()
3738 #define skge_debug_cleanup()
3741 static const struct net_device_ops skge_netdev_ops
= {
3742 .ndo_open
= skge_up
,
3743 .ndo_stop
= skge_down
,
3744 .ndo_start_xmit
= skge_xmit_frame
,
3745 .ndo_do_ioctl
= skge_ioctl
,
3746 .ndo_get_stats
= skge_get_stats
,
3747 .ndo_tx_timeout
= skge_tx_timeout
,
3748 .ndo_change_mtu
= skge_change_mtu
,
3749 .ndo_validate_addr
= eth_validate_addr
,
3750 .ndo_set_multicast_list
= skge_set_multicast
,
3751 .ndo_set_mac_address
= skge_set_mac_address
,
3752 #ifdef CONFIG_NET_POLL_CONTROLLER
3753 .ndo_poll_controller
= skge_netpoll
,
3758 /* Initialize network device */
3759 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3762 struct skge_port
*skge
;
3763 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3766 dev_err(&hw
->pdev
->dev
, "etherdev alloc failed\n");
3770 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3771 dev
->netdev_ops
= &skge_netdev_ops
;
3772 dev
->ethtool_ops
= &skge_ethtool_ops
;
3773 dev
->watchdog_timeo
= TX_WATCHDOG
;
3774 dev
->irq
= hw
->pdev
->irq
;
3777 dev
->features
|= NETIF_F_HIGHDMA
;
3779 skge
= netdev_priv(dev
);
3780 netif_napi_add(dev
, &skge
->napi
, skge_poll
, NAPI_WEIGHT
);
3783 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3785 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3786 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3788 /* Auto speed and flow control */
3789 skge
->autoneg
= AUTONEG_ENABLE
;
3790 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
3793 skge
->advertising
= skge_supported_modes(hw
);
3795 if (device_can_wakeup(&hw
->pdev
->dev
)) {
3796 skge
->wol
= wol_supported(hw
) & WAKE_MAGIC
;
3797 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
3800 hw
->dev
[port
] = dev
;
3804 /* Only used for Genesis XMAC */
3805 setup_timer(&skge
->link_timer
, xm_link_timer
, (unsigned long) skge
);
3807 if (hw
->chip_id
!= CHIP_ID_GENESIS
) {
3808 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
3810 dev
->features
|= dev
->hw_features
;
3813 /* read the mac address */
3814 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3815 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
3820 static void __devinit
skge_show_addr(struct net_device
*dev
)
3822 const struct skge_port
*skge
= netdev_priv(dev
);
3824 netif_info(skge
, probe
, skge
->netdev
, "addr %pM\n", dev
->dev_addr
);
3827 static int only_32bit_dma
;
3829 static int __devinit
skge_probe(struct pci_dev
*pdev
,
3830 const struct pci_device_id
*ent
)
3832 struct net_device
*dev
, *dev1
;
3834 int err
, using_dac
= 0;
3836 err
= pci_enable_device(pdev
);
3838 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
3842 err
= pci_request_regions(pdev
, DRV_NAME
);
3844 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
3845 goto err_out_disable_pdev
;
3848 pci_set_master(pdev
);
3850 if (!only_32bit_dma
&& !pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
3852 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
3853 } else if (!(err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))) {
3855 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3859 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
3860 goto err_out_free_regions
;
3864 /* byte swap descriptors in hardware */
3868 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3869 reg
|= PCI_REV_DESC
;
3870 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3875 /* space for skge@pci:0000:04:00.0 */
3876 hw
= kzalloc(sizeof(*hw
) + strlen(DRV_NAME
"@pci:")
3877 + strlen(pci_name(pdev
)) + 1, GFP_KERNEL
);
3879 dev_err(&pdev
->dev
, "cannot allocate hardware struct\n");
3880 goto err_out_free_regions
;
3882 sprintf(hw
->irq_name
, DRV_NAME
"@pci:%s", pci_name(pdev
));
3885 spin_lock_init(&hw
->hw_lock
);
3886 spin_lock_init(&hw
->phy_lock
);
3887 tasklet_init(&hw
->phy_task
, skge_extirq
, (unsigned long) hw
);
3889 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3891 dev_err(&pdev
->dev
, "cannot map device registers\n");
3892 goto err_out_free_hw
;
3895 err
= skge_reset(hw
);
3897 goto err_out_iounmap
;
3899 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3901 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3902 skge_board_name(hw
), hw
->chip_rev
);
3904 dev
= skge_devinit(hw
, 0, using_dac
);
3906 goto err_out_led_off
;
3908 /* Some motherboards are broken and has zero in ROM. */
3909 if (!is_valid_ether_addr(dev
->dev_addr
))
3910 dev_warn(&pdev
->dev
, "bad (zero?) ethernet address in rom\n");
3912 err
= register_netdev(dev
);
3914 dev_err(&pdev
->dev
, "cannot register net device\n");
3915 goto err_out_free_netdev
;
3918 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
, hw
->irq_name
, hw
);
3920 dev_err(&pdev
->dev
, "%s: cannot assign irq %d\n",
3921 dev
->name
, pdev
->irq
);
3922 goto err_out_unregister
;
3924 skge_show_addr(dev
);
3926 if (hw
->ports
> 1) {
3927 dev1
= skge_devinit(hw
, 1, using_dac
);
3928 if (dev1
&& register_netdev(dev1
) == 0)
3929 skge_show_addr(dev1
);
3931 /* Failure to register second port need not be fatal */
3932 dev_warn(&pdev
->dev
, "register of second port failed\n");
3939 pci_set_drvdata(pdev
, hw
);
3944 unregister_netdev(dev
);
3945 err_out_free_netdev
:
3948 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3953 err_out_free_regions
:
3954 pci_release_regions(pdev
);
3955 err_out_disable_pdev
:
3956 pci_disable_device(pdev
);
3957 pci_set_drvdata(pdev
, NULL
);
3962 static void __devexit
skge_remove(struct pci_dev
*pdev
)
3964 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3965 struct net_device
*dev0
, *dev1
;
3972 unregister_netdev(dev1
);
3974 unregister_netdev(dev0
);
3976 tasklet_disable(&hw
->phy_task
);
3978 spin_lock_irq(&hw
->hw_lock
);
3980 skge_write32(hw
, B0_IMSK
, 0);
3981 skge_read32(hw
, B0_IMSK
);
3982 spin_unlock_irq(&hw
->hw_lock
);
3984 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3985 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3987 free_irq(pdev
->irq
, hw
);
3988 pci_release_regions(pdev
);
3989 pci_disable_device(pdev
);
3996 pci_set_drvdata(pdev
, NULL
);
4000 static int skge_suspend(struct device
*dev
)
4002 struct pci_dev
*pdev
= to_pci_dev(dev
);
4003 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4009 for (i
= 0; i
< hw
->ports
; i
++) {
4010 struct net_device
*dev
= hw
->dev
[i
];
4011 struct skge_port
*skge
= netdev_priv(dev
);
4013 if (netif_running(dev
))
4017 skge_wol_init(skge
);
4020 skge_write32(hw
, B0_IMSK
, 0);
4025 static int skge_resume(struct device
*dev
)
4027 struct pci_dev
*pdev
= to_pci_dev(dev
);
4028 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4034 err
= skge_reset(hw
);
4038 for (i
= 0; i
< hw
->ports
; i
++) {
4039 struct net_device
*dev
= hw
->dev
[i
];
4041 if (netif_running(dev
)) {
4045 netdev_err(dev
, "could not up: %d\n", err
);
4055 static SIMPLE_DEV_PM_OPS(skge_pm_ops
, skge_suspend
, skge_resume
);
4056 #define SKGE_PM_OPS (&skge_pm_ops)
4060 #define SKGE_PM_OPS NULL
4063 static void skge_shutdown(struct pci_dev
*pdev
)
4065 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4071 for (i
= 0; i
< hw
->ports
; i
++) {
4072 struct net_device
*dev
= hw
->dev
[i
];
4073 struct skge_port
*skge
= netdev_priv(dev
);
4076 skge_wol_init(skge
);
4079 pci_wake_from_d3(pdev
, device_may_wakeup(&pdev
->dev
));
4080 pci_set_power_state(pdev
, PCI_D3hot
);
4083 static struct pci_driver skge_driver
= {
4085 .id_table
= skge_id_table
,
4086 .probe
= skge_probe
,
4087 .remove
= __devexit_p(skge_remove
),
4088 .shutdown
= skge_shutdown
,
4089 .driver
.pm
= SKGE_PM_OPS
,
4092 static struct dmi_system_id skge_32bit_dma_boards
[] = {
4094 .ident
= "Gigabyte nForce boards",
4096 DMI_MATCH(DMI_BOARD_VENDOR
, "Gigabyte Technology Co"),
4097 DMI_MATCH(DMI_BOARD_NAME
, "nForce"),
4103 static int __init
skge_init_module(void)
4105 if (dmi_check_system(skge_32bit_dma_boards
))
4108 return pci_register_driver(&skge_driver
);
4111 static void __exit
skge_cleanup_module(void)
4113 pci_unregister_driver(&skge_driver
);
4114 skge_debug_cleanup();
4117 module_init(skge_init_module
);
4118 module_exit(skge_cleanup_module
);