coredump: use task comm instead of (unknown)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / dma / ste_dma40.c
blob29d1addbe0cf039ce9beb0bf7660022cbbda1e4e
1 /*
2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
7 */
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/dmaengine.h>
13 #include <linux/platform_device.h>
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
18 #include <plat/ste_dma40.h>
20 #include "ste_dma40_ll.h"
22 #define D40_NAME "dma40"
24 #define D40_PHY_CHAN -1
26 /* For masking out/in 2 bit channel positions */
27 #define D40_CHAN_POS(chan) (2 * (chan / 2))
28 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
30 /* Maximum iterations taken before giving up suspending a channel */
31 #define D40_SUSPEND_MAX_IT 500
33 /* Hardware requirement on LCLA alignment */
34 #define LCLA_ALIGNMENT 0x40000
36 /* Max number of links per event group */
37 #define D40_LCLA_LINK_PER_EVENT_GRP 128
38 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
40 /* Attempts before giving up to trying to get pages that are aligned */
41 #define MAX_LCLA_ALLOC_ATTEMPTS 256
43 /* Bit markings for allocation map */
44 #define D40_ALLOC_FREE (1 << 31)
45 #define D40_ALLOC_PHY (1 << 30)
46 #define D40_ALLOC_LOG_FREE 0
48 /* Hardware designer of the block */
49 #define D40_HW_DESIGNER 0x8
51 /**
52 * enum 40_command - The different commands and/or statuses.
54 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
55 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
56 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
57 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
59 enum d40_command {
60 D40_DMA_STOP = 0,
61 D40_DMA_RUN = 1,
62 D40_DMA_SUSPEND_REQ = 2,
63 D40_DMA_SUSPENDED = 3
66 /**
67 * struct d40_lli_pool - Structure for keeping LLIs in memory
69 * @base: Pointer to memory area when the pre_alloc_lli's are not large
70 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
71 * pre_alloc_lli is used.
72 * @dma_addr: DMA address, if mapped
73 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
74 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
75 * one buffer to one buffer.
77 struct d40_lli_pool {
78 void *base;
79 int size;
80 dma_addr_t dma_addr;
81 /* Space for dst and src, plus an extra for padding */
82 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
85 /**
86 * struct d40_desc - A descriptor is one DMA job.
88 * @lli_phy: LLI settings for physical channel. Both src and dst=
89 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
90 * lli_len equals one.
91 * @lli_log: Same as above but for logical channels.
92 * @lli_pool: The pool with two entries pre-allocated.
93 * @lli_len: Number of llis of current descriptor.
94 * @lli_current: Number of transferred llis.
95 * @lcla_alloc: Number of LCLA entries allocated.
96 * @txd: DMA engine struct. Used for among other things for communication
97 * during a transfer.
98 * @node: List entry.
99 * @is_in_client_list: true if the client owns this descriptor.
100 * the previous one.
102 * This descriptor is used for both logical and physical transfers.
104 struct d40_desc {
105 /* LLI physical */
106 struct d40_phy_lli_bidir lli_phy;
107 /* LLI logical */
108 struct d40_log_lli_bidir lli_log;
110 struct d40_lli_pool lli_pool;
111 int lli_len;
112 int lli_current;
113 int lcla_alloc;
115 struct dma_async_tx_descriptor txd;
116 struct list_head node;
118 bool is_in_client_list;
119 bool cyclic;
123 * struct d40_lcla_pool - LCLA pool settings and data.
125 * @base: The virtual address of LCLA. 18 bit aligned.
126 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
127 * This pointer is only there for clean-up on error.
128 * @pages: The number of pages needed for all physical channels.
129 * Only used later for clean-up on error
130 * @lock: Lock to protect the content in this struct.
131 * @alloc_map: big map over which LCLA entry is own by which job.
133 struct d40_lcla_pool {
134 void *base;
135 dma_addr_t dma_addr;
136 void *base_unaligned;
137 int pages;
138 spinlock_t lock;
139 struct d40_desc **alloc_map;
143 * struct d40_phy_res - struct for handling eventlines mapped to physical
144 * channels.
146 * @lock: A lock protection this entity.
147 * @num: The physical channel number of this entity.
148 * @allocated_src: Bit mapped to show which src event line's are mapped to
149 * this physical channel. Can also be free or physically allocated.
150 * @allocated_dst: Same as for src but is dst.
151 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
152 * event line number.
154 struct d40_phy_res {
155 spinlock_t lock;
156 int num;
157 u32 allocated_src;
158 u32 allocated_dst;
161 struct d40_base;
164 * struct d40_chan - Struct that describes a channel.
166 * @lock: A spinlock to protect this struct.
167 * @log_num: The logical number, if any of this channel.
168 * @completed: Starts with 1, after first interrupt it is set to dma engine's
169 * current cookie.
170 * @pending_tx: The number of pending transfers. Used between interrupt handler
171 * and tasklet.
172 * @busy: Set to true when transfer is ongoing on this channel.
173 * @phy_chan: Pointer to physical channel which this instance runs on. If this
174 * point is NULL, then the channel is not allocated.
175 * @chan: DMA engine handle.
176 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
177 * transfer and call client callback.
178 * @client: Cliented owned descriptor list.
179 * @active: Active descriptor.
180 * @queue: Queued jobs.
181 * @dma_cfg: The client configuration of this dma channel.
182 * @configured: whether the dma_cfg configuration is valid
183 * @base: Pointer to the device instance struct.
184 * @src_def_cfg: Default cfg register setting for src.
185 * @dst_def_cfg: Default cfg register setting for dst.
186 * @log_def: Default logical channel settings.
187 * @lcla: Space for one dst src pair for logical channel transfers.
188 * @lcpa: Pointer to dst and src lcpa settings.
190 * This struct can either "be" a logical or a physical channel.
192 struct d40_chan {
193 spinlock_t lock;
194 int log_num;
195 /* ID of the most recent completed transfer */
196 int completed;
197 int pending_tx;
198 bool busy;
199 struct d40_phy_res *phy_chan;
200 struct dma_chan chan;
201 struct tasklet_struct tasklet;
202 struct list_head client;
203 struct list_head active;
204 struct list_head queue;
205 struct stedma40_chan_cfg dma_cfg;
206 bool configured;
207 struct d40_base *base;
208 /* Default register configurations */
209 u32 src_def_cfg;
210 u32 dst_def_cfg;
211 struct d40_def_lcsp log_def;
212 struct d40_log_lli_full *lcpa;
213 /* Runtime reconfiguration */
214 dma_addr_t runtime_addr;
215 enum dma_data_direction runtime_direction;
219 * struct d40_base - The big global struct, one for each probe'd instance.
221 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
222 * @execmd_lock: Lock for execute command usage since several channels share
223 * the same physical register.
224 * @dev: The device structure.
225 * @virtbase: The virtual base address of the DMA's register.
226 * @rev: silicon revision detected.
227 * @clk: Pointer to the DMA clock structure.
228 * @phy_start: Physical memory start of the DMA registers.
229 * @phy_size: Size of the DMA register map.
230 * @irq: The IRQ number.
231 * @num_phy_chans: The number of physical channels. Read from HW. This
232 * is the number of available channels for this driver, not counting "Secure
233 * mode" allocated physical channels.
234 * @num_log_chans: The number of logical channels. Calculated from
235 * num_phy_chans.
236 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
237 * @dma_slave: dma_device channels that can do only do slave transfers.
238 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
239 * @log_chans: Room for all possible logical channels in system.
240 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
241 * to log_chans entries.
242 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
243 * to phy_chans entries.
244 * @plat_data: Pointer to provided platform_data which is the driver
245 * configuration.
246 * @phy_res: Vector containing all physical channels.
247 * @lcla_pool: lcla pool settings and data.
248 * @lcpa_base: The virtual mapped address of LCPA.
249 * @phy_lcpa: The physical address of the LCPA.
250 * @lcpa_size: The size of the LCPA area.
251 * @desc_slab: cache for descriptors.
253 struct d40_base {
254 spinlock_t interrupt_lock;
255 spinlock_t execmd_lock;
256 struct device *dev;
257 void __iomem *virtbase;
258 u8 rev:4;
259 struct clk *clk;
260 phys_addr_t phy_start;
261 resource_size_t phy_size;
262 int irq;
263 int num_phy_chans;
264 int num_log_chans;
265 struct dma_device dma_both;
266 struct dma_device dma_slave;
267 struct dma_device dma_memcpy;
268 struct d40_chan *phy_chans;
269 struct d40_chan *log_chans;
270 struct d40_chan **lookup_log_chans;
271 struct d40_chan **lookup_phy_chans;
272 struct stedma40_platform_data *plat_data;
273 /* Physical half channels */
274 struct d40_phy_res *phy_res;
275 struct d40_lcla_pool lcla_pool;
276 void *lcpa_base;
277 dma_addr_t phy_lcpa;
278 resource_size_t lcpa_size;
279 struct kmem_cache *desc_slab;
283 * struct d40_interrupt_lookup - lookup table for interrupt handler
285 * @src: Interrupt mask register.
286 * @clr: Interrupt clear register.
287 * @is_error: true if this is an error interrupt.
288 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
289 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
291 struct d40_interrupt_lookup {
292 u32 src;
293 u32 clr;
294 bool is_error;
295 int offset;
299 * struct d40_reg_val - simple lookup struct
301 * @reg: The register.
302 * @val: The value that belongs to the register in reg.
304 struct d40_reg_val {
305 unsigned int reg;
306 unsigned int val;
309 static struct device *chan2dev(struct d40_chan *d40c)
311 return &d40c->chan.dev->device;
314 static bool chan_is_physical(struct d40_chan *chan)
316 return chan->log_num == D40_PHY_CHAN;
319 static bool chan_is_logical(struct d40_chan *chan)
321 return !chan_is_physical(chan);
324 static void __iomem *chan_base(struct d40_chan *chan)
326 return chan->base->virtbase + D40_DREG_PCBASE +
327 chan->phy_chan->num * D40_DREG_PCDELTA;
330 #define d40_err(dev, format, arg...) \
331 dev_err(dev, "[%s] " format, __func__, ## arg)
333 #define chan_err(d40c, format, arg...) \
334 d40_err(chan2dev(d40c), format, ## arg)
336 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
337 int lli_len)
339 bool is_log = chan_is_logical(d40c);
340 u32 align;
341 void *base;
343 if (is_log)
344 align = sizeof(struct d40_log_lli);
345 else
346 align = sizeof(struct d40_phy_lli);
348 if (lli_len == 1) {
349 base = d40d->lli_pool.pre_alloc_lli;
350 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
351 d40d->lli_pool.base = NULL;
352 } else {
353 d40d->lli_pool.size = lli_len * 2 * align;
355 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
356 d40d->lli_pool.base = base;
358 if (d40d->lli_pool.base == NULL)
359 return -ENOMEM;
362 if (is_log) {
363 d40d->lli_log.src = PTR_ALIGN(base, align);
364 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
366 d40d->lli_pool.dma_addr = 0;
367 } else {
368 d40d->lli_phy.src = PTR_ALIGN(base, align);
369 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
371 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
372 d40d->lli_phy.src,
373 d40d->lli_pool.size,
374 DMA_TO_DEVICE);
376 if (dma_mapping_error(d40c->base->dev,
377 d40d->lli_pool.dma_addr)) {
378 kfree(d40d->lli_pool.base);
379 d40d->lli_pool.base = NULL;
380 d40d->lli_pool.dma_addr = 0;
381 return -ENOMEM;
385 return 0;
388 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
390 if (d40d->lli_pool.dma_addr)
391 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
392 d40d->lli_pool.size, DMA_TO_DEVICE);
394 kfree(d40d->lli_pool.base);
395 d40d->lli_pool.base = NULL;
396 d40d->lli_pool.size = 0;
397 d40d->lli_log.src = NULL;
398 d40d->lli_log.dst = NULL;
399 d40d->lli_phy.src = NULL;
400 d40d->lli_phy.dst = NULL;
403 static int d40_lcla_alloc_one(struct d40_chan *d40c,
404 struct d40_desc *d40d)
406 unsigned long flags;
407 int i;
408 int ret = -EINVAL;
409 int p;
411 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
413 p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
416 * Allocate both src and dst at the same time, therefore the half
417 * start on 1 since 0 can't be used since zero is used as end marker.
419 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
420 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
421 d40c->base->lcla_pool.alloc_map[p + i] = d40d;
422 d40d->lcla_alloc++;
423 ret = i;
424 break;
428 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
430 return ret;
433 static int d40_lcla_free_all(struct d40_chan *d40c,
434 struct d40_desc *d40d)
436 unsigned long flags;
437 int i;
438 int ret = -EINVAL;
440 if (chan_is_physical(d40c))
441 return 0;
443 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
445 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
446 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
447 D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
448 d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
449 D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
450 d40d->lcla_alloc--;
451 if (d40d->lcla_alloc == 0) {
452 ret = 0;
453 break;
458 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
460 return ret;
464 static void d40_desc_remove(struct d40_desc *d40d)
466 list_del(&d40d->node);
469 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
471 struct d40_desc *desc = NULL;
473 if (!list_empty(&d40c->client)) {
474 struct d40_desc *d;
475 struct d40_desc *_d;
477 list_for_each_entry_safe(d, _d, &d40c->client, node)
478 if (async_tx_test_ack(&d->txd)) {
479 d40_pool_lli_free(d40c, d);
480 d40_desc_remove(d);
481 desc = d;
482 memset(desc, 0, sizeof(*desc));
483 break;
487 if (!desc)
488 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
490 if (desc)
491 INIT_LIST_HEAD(&desc->node);
493 return desc;
496 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
499 d40_pool_lli_free(d40c, d40d);
500 d40_lcla_free_all(d40c, d40d);
501 kmem_cache_free(d40c->base->desc_slab, d40d);
504 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
506 list_add_tail(&desc->node, &d40c->active);
509 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
511 struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
512 struct d40_phy_lli *lli_src = desc->lli_phy.src;
513 void __iomem *base = chan_base(chan);
515 writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
516 writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
517 writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
518 writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
520 writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
521 writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
522 writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
523 writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
526 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
528 struct d40_lcla_pool *pool = &chan->base->lcla_pool;
529 struct d40_log_lli_bidir *lli = &desc->lli_log;
530 int lli_current = desc->lli_current;
531 int lli_len = desc->lli_len;
532 bool cyclic = desc->cyclic;
533 int curr_lcla = -EINVAL;
534 int first_lcla = 0;
535 bool linkback;
538 * We may have partially running cyclic transfers, in case we did't get
539 * enough LCLA entries.
541 linkback = cyclic && lli_current == 0;
544 * For linkback, we need one LCLA even with only one link, because we
545 * can't link back to the one in LCPA space
547 if (linkback || (lli_len - lli_current > 1)) {
548 curr_lcla = d40_lcla_alloc_one(chan, desc);
549 first_lcla = curr_lcla;
553 * For linkback, we normally load the LCPA in the loop since we need to
554 * link it to the second LCLA and not the first. However, if we
555 * couldn't even get a first LCLA, then we have to run in LCPA and
556 * reload manually.
558 if (!linkback || curr_lcla == -EINVAL) {
559 unsigned int flags = 0;
561 if (curr_lcla == -EINVAL)
562 flags |= LLI_TERM_INT;
564 d40_log_lli_lcpa_write(chan->lcpa,
565 &lli->dst[lli_current],
566 &lli->src[lli_current],
567 curr_lcla,
568 flags);
569 lli_current++;
572 if (curr_lcla < 0)
573 goto out;
575 for (; lli_current < lli_len; lli_current++) {
576 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
577 8 * curr_lcla * 2;
578 struct d40_log_lli *lcla = pool->base + lcla_offset;
579 unsigned int flags = 0;
580 int next_lcla;
582 if (lli_current + 1 < lli_len)
583 next_lcla = d40_lcla_alloc_one(chan, desc);
584 else
585 next_lcla = linkback ? first_lcla : -EINVAL;
587 if (cyclic || next_lcla == -EINVAL)
588 flags |= LLI_TERM_INT;
590 if (linkback && curr_lcla == first_lcla) {
591 /* First link goes in both LCPA and LCLA */
592 d40_log_lli_lcpa_write(chan->lcpa,
593 &lli->dst[lli_current],
594 &lli->src[lli_current],
595 next_lcla, flags);
599 * One unused LCLA in the cyclic case if the very first
600 * next_lcla fails...
602 d40_log_lli_lcla_write(lcla,
603 &lli->dst[lli_current],
604 &lli->src[lli_current],
605 next_lcla, flags);
607 dma_sync_single_range_for_device(chan->base->dev,
608 pool->dma_addr, lcla_offset,
609 2 * sizeof(struct d40_log_lli),
610 DMA_TO_DEVICE);
612 curr_lcla = next_lcla;
614 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
615 lli_current++;
616 break;
620 out:
621 desc->lli_current = lli_current;
624 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
626 if (chan_is_physical(d40c)) {
627 d40_phy_lli_load(d40c, d40d);
628 d40d->lli_current = d40d->lli_len;
629 } else
630 d40_log_lli_to_lcxa(d40c, d40d);
633 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
635 struct d40_desc *d;
637 if (list_empty(&d40c->active))
638 return NULL;
640 d = list_first_entry(&d40c->active,
641 struct d40_desc,
642 node);
643 return d;
646 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
648 list_add_tail(&desc->node, &d40c->queue);
651 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
653 struct d40_desc *d;
655 if (list_empty(&d40c->queue))
656 return NULL;
658 d = list_first_entry(&d40c->queue,
659 struct d40_desc,
660 node);
661 return d;
664 static int d40_psize_2_burst_size(bool is_log, int psize)
666 if (is_log) {
667 if (psize == STEDMA40_PSIZE_LOG_1)
668 return 1;
669 } else {
670 if (psize == STEDMA40_PSIZE_PHY_1)
671 return 1;
674 return 2 << psize;
678 * The dma only supports transmitting packages up to
679 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
680 * dma elements required to send the entire sg list
682 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
684 int dmalen;
685 u32 max_w = max(data_width1, data_width2);
686 u32 min_w = min(data_width1, data_width2);
687 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
689 if (seg_max > STEDMA40_MAX_SEG_SIZE)
690 seg_max -= (1 << max_w);
692 if (!IS_ALIGNED(size, 1 << max_w))
693 return -EINVAL;
695 if (size <= seg_max)
696 dmalen = 1;
697 else {
698 dmalen = size / seg_max;
699 if (dmalen * seg_max < size)
700 dmalen++;
702 return dmalen;
705 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
706 u32 data_width1, u32 data_width2)
708 struct scatterlist *sg;
709 int i;
710 int len = 0;
711 int ret;
713 for_each_sg(sgl, sg, sg_len, i) {
714 ret = d40_size_2_dmalen(sg_dma_len(sg),
715 data_width1, data_width2);
716 if (ret < 0)
717 return ret;
718 len += ret;
720 return len;
723 /* Support functions for logical channels */
725 static int d40_channel_execute_command(struct d40_chan *d40c,
726 enum d40_command command)
728 u32 status;
729 int i;
730 void __iomem *active_reg;
731 int ret = 0;
732 unsigned long flags;
733 u32 wmask;
735 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
737 if (d40c->phy_chan->num % 2 == 0)
738 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
739 else
740 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
742 if (command == D40_DMA_SUSPEND_REQ) {
743 status = (readl(active_reg) &
744 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
745 D40_CHAN_POS(d40c->phy_chan->num);
747 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
748 goto done;
751 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
752 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
753 active_reg);
755 if (command == D40_DMA_SUSPEND_REQ) {
757 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
758 status = (readl(active_reg) &
759 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
760 D40_CHAN_POS(d40c->phy_chan->num);
762 cpu_relax();
764 * Reduce the number of bus accesses while
765 * waiting for the DMA to suspend.
767 udelay(3);
769 if (status == D40_DMA_STOP ||
770 status == D40_DMA_SUSPENDED)
771 break;
774 if (i == D40_SUSPEND_MAX_IT) {
775 chan_err(d40c,
776 "unable to suspend the chl %d (log: %d) status %x\n",
777 d40c->phy_chan->num, d40c->log_num,
778 status);
779 dump_stack();
780 ret = -EBUSY;
784 done:
785 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
786 return ret;
789 static void d40_term_all(struct d40_chan *d40c)
791 struct d40_desc *d40d;
793 /* Release active descriptors */
794 while ((d40d = d40_first_active_get(d40c))) {
795 d40_desc_remove(d40d);
796 d40_desc_free(d40c, d40d);
799 /* Release queued descriptors waiting for transfer */
800 while ((d40d = d40_first_queued(d40c))) {
801 d40_desc_remove(d40d);
802 d40_desc_free(d40c, d40d);
806 d40c->pending_tx = 0;
807 d40c->busy = false;
810 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
811 u32 event, int reg)
813 void __iomem *addr = chan_base(d40c) + reg;
814 int tries;
816 if (!enable) {
817 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
818 | ~D40_EVENTLINE_MASK(event), addr);
819 return;
823 * The hardware sometimes doesn't register the enable when src and dst
824 * event lines are active on the same logical channel. Retry to ensure
825 * it does. Usually only one retry is sufficient.
827 tries = 100;
828 while (--tries) {
829 writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
830 | ~D40_EVENTLINE_MASK(event), addr);
832 if (readl(addr) & D40_EVENTLINE_MASK(event))
833 break;
836 if (tries != 99)
837 dev_dbg(chan2dev(d40c),
838 "[%s] workaround enable S%cLNK (%d tries)\n",
839 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
840 100 - tries);
842 WARN_ON(!tries);
845 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
847 unsigned long flags;
849 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
851 /* Enable event line connected to device (or memcpy) */
852 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
853 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
854 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
856 __d40_config_set_event(d40c, do_enable, event,
857 D40_CHAN_REG_SSLNK);
860 if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
861 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
863 __d40_config_set_event(d40c, do_enable, event,
864 D40_CHAN_REG_SDLNK);
867 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
870 static u32 d40_chan_has_events(struct d40_chan *d40c)
872 void __iomem *chanbase = chan_base(d40c);
873 u32 val;
875 val = readl(chanbase + D40_CHAN_REG_SSLNK);
876 val |= readl(chanbase + D40_CHAN_REG_SDLNK);
878 return val;
881 static u32 d40_get_prmo(struct d40_chan *d40c)
883 static const unsigned int phy_map[] = {
884 [STEDMA40_PCHAN_BASIC_MODE]
885 = D40_DREG_PRMO_PCHAN_BASIC,
886 [STEDMA40_PCHAN_MODULO_MODE]
887 = D40_DREG_PRMO_PCHAN_MODULO,
888 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
889 = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
891 static const unsigned int log_map[] = {
892 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
893 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
894 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
895 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
896 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
897 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
900 if (chan_is_physical(d40c))
901 return phy_map[d40c->dma_cfg.mode_opt];
902 else
903 return log_map[d40c->dma_cfg.mode_opt];
906 static void d40_config_write(struct d40_chan *d40c)
908 u32 addr_base;
909 u32 var;
911 /* Odd addresses are even addresses + 4 */
912 addr_base = (d40c->phy_chan->num % 2) * 4;
913 /* Setup channel mode to logical or physical */
914 var = ((u32)(chan_is_logical(d40c)) + 1) <<
915 D40_CHAN_POS(d40c->phy_chan->num);
916 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
918 /* Setup operational mode option register */
919 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
921 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
923 if (chan_is_logical(d40c)) {
924 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
925 & D40_SREG_ELEM_LOG_LIDX_MASK;
926 void __iomem *chanbase = chan_base(d40c);
928 /* Set default config for CFG reg */
929 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
930 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
932 /* Set LIDX for lcla */
933 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
934 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
938 static u32 d40_residue(struct d40_chan *d40c)
940 u32 num_elt;
942 if (chan_is_logical(d40c))
943 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
944 >> D40_MEM_LCSP2_ECNT_POS;
945 else {
946 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
947 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
948 >> D40_SREG_ELEM_PHY_ECNT_POS;
951 return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
954 static bool d40_tx_is_linked(struct d40_chan *d40c)
956 bool is_link;
958 if (chan_is_logical(d40c))
959 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
960 else
961 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
962 & D40_SREG_LNK_PHYS_LNK_MASK;
964 return is_link;
967 static int d40_pause(struct d40_chan *d40c)
969 int res = 0;
970 unsigned long flags;
972 if (!d40c->busy)
973 return 0;
975 spin_lock_irqsave(&d40c->lock, flags);
977 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
978 if (res == 0) {
979 if (chan_is_logical(d40c)) {
980 d40_config_set_event(d40c, false);
981 /* Resume the other logical channels if any */
982 if (d40_chan_has_events(d40c))
983 res = d40_channel_execute_command(d40c,
984 D40_DMA_RUN);
988 spin_unlock_irqrestore(&d40c->lock, flags);
989 return res;
992 static int d40_resume(struct d40_chan *d40c)
994 int res = 0;
995 unsigned long flags;
997 if (!d40c->busy)
998 return 0;
1000 spin_lock_irqsave(&d40c->lock, flags);
1002 if (d40c->base->rev == 0)
1003 if (chan_is_logical(d40c)) {
1004 res = d40_channel_execute_command(d40c,
1005 D40_DMA_SUSPEND_REQ);
1006 goto no_suspend;
1009 /* If bytes left to transfer or linked tx resume job */
1010 if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1012 if (chan_is_logical(d40c))
1013 d40_config_set_event(d40c, true);
1015 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1018 no_suspend:
1019 spin_unlock_irqrestore(&d40c->lock, flags);
1020 return res;
1023 static int d40_terminate_all(struct d40_chan *chan)
1025 unsigned long flags;
1026 int ret = 0;
1028 ret = d40_pause(chan);
1029 if (!ret && chan_is_physical(chan))
1030 ret = d40_channel_execute_command(chan, D40_DMA_STOP);
1032 spin_lock_irqsave(&chan->lock, flags);
1033 d40_term_all(chan);
1034 spin_unlock_irqrestore(&chan->lock, flags);
1036 return ret;
1039 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1041 struct d40_chan *d40c = container_of(tx->chan,
1042 struct d40_chan,
1043 chan);
1044 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1045 unsigned long flags;
1047 spin_lock_irqsave(&d40c->lock, flags);
1049 d40c->chan.cookie++;
1051 if (d40c->chan.cookie < 0)
1052 d40c->chan.cookie = 1;
1054 d40d->txd.cookie = d40c->chan.cookie;
1056 d40_desc_queue(d40c, d40d);
1058 spin_unlock_irqrestore(&d40c->lock, flags);
1060 return tx->cookie;
1063 static int d40_start(struct d40_chan *d40c)
1065 if (d40c->base->rev == 0) {
1066 int err;
1068 if (chan_is_logical(d40c)) {
1069 err = d40_channel_execute_command(d40c,
1070 D40_DMA_SUSPEND_REQ);
1071 if (err)
1072 return err;
1076 if (chan_is_logical(d40c))
1077 d40_config_set_event(d40c, true);
1079 return d40_channel_execute_command(d40c, D40_DMA_RUN);
1082 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1084 struct d40_desc *d40d;
1085 int err;
1087 /* Start queued jobs, if any */
1088 d40d = d40_first_queued(d40c);
1090 if (d40d != NULL) {
1091 d40c->busy = true;
1093 /* Remove from queue */
1094 d40_desc_remove(d40d);
1096 /* Add to active queue */
1097 d40_desc_submit(d40c, d40d);
1099 /* Initiate DMA job */
1100 d40_desc_load(d40c, d40d);
1102 /* Start dma job */
1103 err = d40_start(d40c);
1105 if (err)
1106 return NULL;
1109 return d40d;
1112 /* called from interrupt context */
1113 static void dma_tc_handle(struct d40_chan *d40c)
1115 struct d40_desc *d40d;
1117 /* Get first active entry from list */
1118 d40d = d40_first_active_get(d40c);
1120 if (d40d == NULL)
1121 return;
1123 if (d40d->cyclic) {
1125 * If this was a paritially loaded list, we need to reloaded
1126 * it, and only when the list is completed. We need to check
1127 * for done because the interrupt will hit for every link, and
1128 * not just the last one.
1130 if (d40d->lli_current < d40d->lli_len
1131 && !d40_tx_is_linked(d40c)
1132 && !d40_residue(d40c)) {
1133 d40_lcla_free_all(d40c, d40d);
1134 d40_desc_load(d40c, d40d);
1135 (void) d40_start(d40c);
1137 if (d40d->lli_current == d40d->lli_len)
1138 d40d->lli_current = 0;
1140 } else {
1141 d40_lcla_free_all(d40c, d40d);
1143 if (d40d->lli_current < d40d->lli_len) {
1144 d40_desc_load(d40c, d40d);
1145 /* Start dma job */
1146 (void) d40_start(d40c);
1147 return;
1150 if (d40_queue_start(d40c) == NULL)
1151 d40c->busy = false;
1154 d40c->pending_tx++;
1155 tasklet_schedule(&d40c->tasklet);
1159 static void dma_tasklet(unsigned long data)
1161 struct d40_chan *d40c = (struct d40_chan *) data;
1162 struct d40_desc *d40d;
1163 unsigned long flags;
1164 dma_async_tx_callback callback;
1165 void *callback_param;
1167 spin_lock_irqsave(&d40c->lock, flags);
1169 /* Get first active entry from list */
1170 d40d = d40_first_active_get(d40c);
1171 if (d40d == NULL)
1172 goto err;
1174 if (!d40d->cyclic)
1175 d40c->completed = d40d->txd.cookie;
1178 * If terminating a channel pending_tx is set to zero.
1179 * This prevents any finished active jobs to return to the client.
1181 if (d40c->pending_tx == 0) {
1182 spin_unlock_irqrestore(&d40c->lock, flags);
1183 return;
1186 /* Callback to client */
1187 callback = d40d->txd.callback;
1188 callback_param = d40d->txd.callback_param;
1190 if (!d40d->cyclic) {
1191 if (async_tx_test_ack(&d40d->txd)) {
1192 d40_pool_lli_free(d40c, d40d);
1193 d40_desc_remove(d40d);
1194 d40_desc_free(d40c, d40d);
1195 } else {
1196 if (!d40d->is_in_client_list) {
1197 d40_desc_remove(d40d);
1198 d40_lcla_free_all(d40c, d40d);
1199 list_add_tail(&d40d->node, &d40c->client);
1200 d40d->is_in_client_list = true;
1205 d40c->pending_tx--;
1207 if (d40c->pending_tx)
1208 tasklet_schedule(&d40c->tasklet);
1210 spin_unlock_irqrestore(&d40c->lock, flags);
1212 if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1213 callback(callback_param);
1215 return;
1217 err:
1218 /* Rescue manoeuvre if receiving double interrupts */
1219 if (d40c->pending_tx > 0)
1220 d40c->pending_tx--;
1221 spin_unlock_irqrestore(&d40c->lock, flags);
1224 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1226 static const struct d40_interrupt_lookup il[] = {
1227 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
1228 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1229 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1230 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1231 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
1232 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
1233 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
1234 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
1235 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
1236 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
1239 int i;
1240 u32 regs[ARRAY_SIZE(il)];
1241 u32 idx;
1242 u32 row;
1243 long chan = -1;
1244 struct d40_chan *d40c;
1245 unsigned long flags;
1246 struct d40_base *base = data;
1248 spin_lock_irqsave(&base->interrupt_lock, flags);
1250 /* Read interrupt status of both logical and physical channels */
1251 for (i = 0; i < ARRAY_SIZE(il); i++)
1252 regs[i] = readl(base->virtbase + il[i].src);
1254 for (;;) {
1256 chan = find_next_bit((unsigned long *)regs,
1257 BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1259 /* No more set bits found? */
1260 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1261 break;
1263 row = chan / BITS_PER_LONG;
1264 idx = chan & (BITS_PER_LONG - 1);
1266 /* ACK interrupt */
1267 writel(1 << idx, base->virtbase + il[row].clr);
1269 if (il[row].offset == D40_PHY_CHAN)
1270 d40c = base->lookup_phy_chans[idx];
1271 else
1272 d40c = base->lookup_log_chans[il[row].offset + idx];
1273 spin_lock(&d40c->lock);
1275 if (!il[row].is_error)
1276 dma_tc_handle(d40c);
1277 else
1278 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1279 chan, il[row].offset, idx);
1281 spin_unlock(&d40c->lock);
1284 spin_unlock_irqrestore(&base->interrupt_lock, flags);
1286 return IRQ_HANDLED;
1289 static int d40_validate_conf(struct d40_chan *d40c,
1290 struct stedma40_chan_cfg *conf)
1292 int res = 0;
1293 u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1294 u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1295 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1297 if (!conf->dir) {
1298 chan_err(d40c, "Invalid direction.\n");
1299 res = -EINVAL;
1302 if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1303 d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1304 d40c->runtime_addr == 0) {
1306 chan_err(d40c, "Invalid TX channel address (%d)\n",
1307 conf->dst_dev_type);
1308 res = -EINVAL;
1311 if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1312 d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1313 d40c->runtime_addr == 0) {
1314 chan_err(d40c, "Invalid RX channel address (%d)\n",
1315 conf->src_dev_type);
1316 res = -EINVAL;
1319 if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1320 dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1321 chan_err(d40c, "Invalid dst\n");
1322 res = -EINVAL;
1325 if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1326 src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1327 chan_err(d40c, "Invalid src\n");
1328 res = -EINVAL;
1331 if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1332 dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1333 chan_err(d40c, "No event line\n");
1334 res = -EINVAL;
1337 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1338 (src_event_group != dst_event_group)) {
1339 chan_err(d40c, "Invalid event group\n");
1340 res = -EINVAL;
1343 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1345 * DMAC HW supports it. Will be added to this driver,
1346 * in case any dma client requires it.
1348 chan_err(d40c, "periph to periph not supported\n");
1349 res = -EINVAL;
1352 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1353 (1 << conf->src_info.data_width) !=
1354 d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1355 (1 << conf->dst_info.data_width)) {
1357 * The DMAC hardware only supports
1358 * src (burst x width) == dst (burst x width)
1361 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1362 res = -EINVAL;
1365 return res;
1368 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1369 int log_event_line, bool is_log)
1371 unsigned long flags;
1372 spin_lock_irqsave(&phy->lock, flags);
1373 if (!is_log) {
1374 /* Physical interrupts are masked per physical full channel */
1375 if (phy->allocated_src == D40_ALLOC_FREE &&
1376 phy->allocated_dst == D40_ALLOC_FREE) {
1377 phy->allocated_dst = D40_ALLOC_PHY;
1378 phy->allocated_src = D40_ALLOC_PHY;
1379 goto found;
1380 } else
1381 goto not_found;
1384 /* Logical channel */
1385 if (is_src) {
1386 if (phy->allocated_src == D40_ALLOC_PHY)
1387 goto not_found;
1389 if (phy->allocated_src == D40_ALLOC_FREE)
1390 phy->allocated_src = D40_ALLOC_LOG_FREE;
1392 if (!(phy->allocated_src & (1 << log_event_line))) {
1393 phy->allocated_src |= 1 << log_event_line;
1394 goto found;
1395 } else
1396 goto not_found;
1397 } else {
1398 if (phy->allocated_dst == D40_ALLOC_PHY)
1399 goto not_found;
1401 if (phy->allocated_dst == D40_ALLOC_FREE)
1402 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1404 if (!(phy->allocated_dst & (1 << log_event_line))) {
1405 phy->allocated_dst |= 1 << log_event_line;
1406 goto found;
1407 } else
1408 goto not_found;
1411 not_found:
1412 spin_unlock_irqrestore(&phy->lock, flags);
1413 return false;
1414 found:
1415 spin_unlock_irqrestore(&phy->lock, flags);
1416 return true;
1419 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1420 int log_event_line)
1422 unsigned long flags;
1423 bool is_free = false;
1425 spin_lock_irqsave(&phy->lock, flags);
1426 if (!log_event_line) {
1427 phy->allocated_dst = D40_ALLOC_FREE;
1428 phy->allocated_src = D40_ALLOC_FREE;
1429 is_free = true;
1430 goto out;
1433 /* Logical channel */
1434 if (is_src) {
1435 phy->allocated_src &= ~(1 << log_event_line);
1436 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1437 phy->allocated_src = D40_ALLOC_FREE;
1438 } else {
1439 phy->allocated_dst &= ~(1 << log_event_line);
1440 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1441 phy->allocated_dst = D40_ALLOC_FREE;
1444 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1445 D40_ALLOC_FREE);
1447 out:
1448 spin_unlock_irqrestore(&phy->lock, flags);
1450 return is_free;
1453 static int d40_allocate_channel(struct d40_chan *d40c)
1455 int dev_type;
1456 int event_group;
1457 int event_line;
1458 struct d40_phy_res *phys;
1459 int i;
1460 int j;
1461 int log_num;
1462 bool is_src;
1463 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1465 phys = d40c->base->phy_res;
1467 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1468 dev_type = d40c->dma_cfg.src_dev_type;
1469 log_num = 2 * dev_type;
1470 is_src = true;
1471 } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1472 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1473 /* dst event lines are used for logical memcpy */
1474 dev_type = d40c->dma_cfg.dst_dev_type;
1475 log_num = 2 * dev_type + 1;
1476 is_src = false;
1477 } else
1478 return -EINVAL;
1480 event_group = D40_TYPE_TO_GROUP(dev_type);
1481 event_line = D40_TYPE_TO_EVENT(dev_type);
1483 if (!is_log) {
1484 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1485 /* Find physical half channel */
1486 for (i = 0; i < d40c->base->num_phy_chans; i++) {
1488 if (d40_alloc_mask_set(&phys[i], is_src,
1489 0, is_log))
1490 goto found_phy;
1492 } else
1493 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1494 int phy_num = j + event_group * 2;
1495 for (i = phy_num; i < phy_num + 2; i++) {
1496 if (d40_alloc_mask_set(&phys[i],
1497 is_src,
1499 is_log))
1500 goto found_phy;
1503 return -EINVAL;
1504 found_phy:
1505 d40c->phy_chan = &phys[i];
1506 d40c->log_num = D40_PHY_CHAN;
1507 goto out;
1509 if (dev_type == -1)
1510 return -EINVAL;
1512 /* Find logical channel */
1513 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1514 int phy_num = j + event_group * 2;
1516 * Spread logical channels across all available physical rather
1517 * than pack every logical channel at the first available phy
1518 * channels.
1520 if (is_src) {
1521 for (i = phy_num; i < phy_num + 2; i++) {
1522 if (d40_alloc_mask_set(&phys[i], is_src,
1523 event_line, is_log))
1524 goto found_log;
1526 } else {
1527 for (i = phy_num + 1; i >= phy_num; i--) {
1528 if (d40_alloc_mask_set(&phys[i], is_src,
1529 event_line, is_log))
1530 goto found_log;
1534 return -EINVAL;
1536 found_log:
1537 d40c->phy_chan = &phys[i];
1538 d40c->log_num = log_num;
1539 out:
1541 if (is_log)
1542 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1543 else
1544 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1546 return 0;
1550 static int d40_config_memcpy(struct d40_chan *d40c)
1552 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1554 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1555 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1556 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1557 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1558 memcpy[d40c->chan.chan_id];
1560 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1561 dma_has_cap(DMA_SLAVE, cap)) {
1562 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1563 } else {
1564 chan_err(d40c, "No memcpy\n");
1565 return -EINVAL;
1568 return 0;
1572 static int d40_free_dma(struct d40_chan *d40c)
1575 int res = 0;
1576 u32 event;
1577 struct d40_phy_res *phy = d40c->phy_chan;
1578 bool is_src;
1579 struct d40_desc *d;
1580 struct d40_desc *_d;
1583 /* Terminate all queued and active transfers */
1584 d40_term_all(d40c);
1586 /* Release client owned descriptors */
1587 if (!list_empty(&d40c->client))
1588 list_for_each_entry_safe(d, _d, &d40c->client, node) {
1589 d40_pool_lli_free(d40c, d);
1590 d40_desc_remove(d);
1591 d40_desc_free(d40c, d);
1594 if (phy == NULL) {
1595 chan_err(d40c, "phy == null\n");
1596 return -EINVAL;
1599 if (phy->allocated_src == D40_ALLOC_FREE &&
1600 phy->allocated_dst == D40_ALLOC_FREE) {
1601 chan_err(d40c, "channel already free\n");
1602 return -EINVAL;
1605 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1606 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1607 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1608 is_src = false;
1609 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1610 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1611 is_src = true;
1612 } else {
1613 chan_err(d40c, "Unknown direction\n");
1614 return -EINVAL;
1617 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1618 if (res) {
1619 chan_err(d40c, "suspend failed\n");
1620 return res;
1623 if (chan_is_logical(d40c)) {
1624 /* Release logical channel, deactivate the event line */
1626 d40_config_set_event(d40c, false);
1627 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1630 * Check if there are more logical allocation
1631 * on this phy channel.
1633 if (!d40_alloc_mask_free(phy, is_src, event)) {
1634 /* Resume the other logical channels if any */
1635 if (d40_chan_has_events(d40c)) {
1636 res = d40_channel_execute_command(d40c,
1637 D40_DMA_RUN);
1638 if (res) {
1639 chan_err(d40c,
1640 "Executing RUN command\n");
1641 return res;
1644 return 0;
1646 } else {
1647 (void) d40_alloc_mask_free(phy, is_src, 0);
1650 /* Release physical channel */
1651 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1652 if (res) {
1653 chan_err(d40c, "Failed to stop channel\n");
1654 return res;
1656 d40c->phy_chan = NULL;
1657 d40c->configured = false;
1658 d40c->base->lookup_phy_chans[phy->num] = NULL;
1660 return 0;
1663 static bool d40_is_paused(struct d40_chan *d40c)
1665 void __iomem *chanbase = chan_base(d40c);
1666 bool is_paused = false;
1667 unsigned long flags;
1668 void __iomem *active_reg;
1669 u32 status;
1670 u32 event;
1672 spin_lock_irqsave(&d40c->lock, flags);
1674 if (chan_is_physical(d40c)) {
1675 if (d40c->phy_chan->num % 2 == 0)
1676 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1677 else
1678 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1680 status = (readl(active_reg) &
1681 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1682 D40_CHAN_POS(d40c->phy_chan->num);
1683 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1684 is_paused = true;
1686 goto _exit;
1689 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1690 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1691 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1692 status = readl(chanbase + D40_CHAN_REG_SDLNK);
1693 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1694 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1695 status = readl(chanbase + D40_CHAN_REG_SSLNK);
1696 } else {
1697 chan_err(d40c, "Unknown direction\n");
1698 goto _exit;
1701 status = (status & D40_EVENTLINE_MASK(event)) >>
1702 D40_EVENTLINE_POS(event);
1704 if (status != D40_DMA_RUN)
1705 is_paused = true;
1706 _exit:
1707 spin_unlock_irqrestore(&d40c->lock, flags);
1708 return is_paused;
1713 static u32 stedma40_residue(struct dma_chan *chan)
1715 struct d40_chan *d40c =
1716 container_of(chan, struct d40_chan, chan);
1717 u32 bytes_left;
1718 unsigned long flags;
1720 spin_lock_irqsave(&d40c->lock, flags);
1721 bytes_left = d40_residue(d40c);
1722 spin_unlock_irqrestore(&d40c->lock, flags);
1724 return bytes_left;
1727 static int
1728 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1729 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1730 unsigned int sg_len, dma_addr_t src_dev_addr,
1731 dma_addr_t dst_dev_addr)
1733 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1734 struct stedma40_half_channel_info *src_info = &cfg->src_info;
1735 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1736 int ret;
1738 ret = d40_log_sg_to_lli(sg_src, sg_len,
1739 src_dev_addr,
1740 desc->lli_log.src,
1741 chan->log_def.lcsp1,
1742 src_info->data_width,
1743 dst_info->data_width);
1745 ret = d40_log_sg_to_lli(sg_dst, sg_len,
1746 dst_dev_addr,
1747 desc->lli_log.dst,
1748 chan->log_def.lcsp3,
1749 dst_info->data_width,
1750 src_info->data_width);
1752 return ret < 0 ? ret : 0;
1755 static int
1756 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
1757 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1758 unsigned int sg_len, dma_addr_t src_dev_addr,
1759 dma_addr_t dst_dev_addr)
1761 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1762 struct stedma40_half_channel_info *src_info = &cfg->src_info;
1763 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1764 unsigned long flags = 0;
1765 int ret;
1767 if (desc->cyclic)
1768 flags |= LLI_CYCLIC | LLI_TERM_INT;
1770 ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
1771 desc->lli_phy.src,
1772 virt_to_phys(desc->lli_phy.src),
1773 chan->src_def_cfg,
1774 src_info, dst_info, flags);
1776 ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
1777 desc->lli_phy.dst,
1778 virt_to_phys(desc->lli_phy.dst),
1779 chan->dst_def_cfg,
1780 dst_info, src_info, flags);
1782 dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
1783 desc->lli_pool.size, DMA_TO_DEVICE);
1785 return ret < 0 ? ret : 0;
1789 static struct d40_desc *
1790 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
1791 unsigned int sg_len, unsigned long dma_flags)
1793 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1794 struct d40_desc *desc;
1795 int ret;
1797 desc = d40_desc_get(chan);
1798 if (!desc)
1799 return NULL;
1801 desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
1802 cfg->dst_info.data_width);
1803 if (desc->lli_len < 0) {
1804 chan_err(chan, "Unaligned size\n");
1805 goto err;
1808 ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
1809 if (ret < 0) {
1810 chan_err(chan, "Could not allocate lli\n");
1811 goto err;
1815 desc->lli_current = 0;
1816 desc->txd.flags = dma_flags;
1817 desc->txd.tx_submit = d40_tx_submit;
1819 dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
1821 return desc;
1823 err:
1824 d40_desc_free(chan, desc);
1825 return NULL;
1828 static dma_addr_t
1829 d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
1831 struct stedma40_platform_data *plat = chan->base->plat_data;
1832 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1833 dma_addr_t addr = 0;
1835 if (chan->runtime_addr)
1836 return chan->runtime_addr;
1838 if (direction == DMA_FROM_DEVICE)
1839 addr = plat->dev_rx[cfg->src_dev_type];
1840 else if (direction == DMA_TO_DEVICE)
1841 addr = plat->dev_tx[cfg->dst_dev_type];
1843 return addr;
1846 static struct dma_async_tx_descriptor *
1847 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
1848 struct scatterlist *sg_dst, unsigned int sg_len,
1849 enum dma_data_direction direction, unsigned long dma_flags)
1851 struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
1852 dma_addr_t src_dev_addr = 0;
1853 dma_addr_t dst_dev_addr = 0;
1854 struct d40_desc *desc;
1855 unsigned long flags;
1856 int ret;
1858 if (!chan->phy_chan) {
1859 chan_err(chan, "Cannot prepare unallocated channel\n");
1860 return NULL;
1864 spin_lock_irqsave(&chan->lock, flags);
1866 desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
1867 if (desc == NULL)
1868 goto err;
1870 if (sg_next(&sg_src[sg_len - 1]) == sg_src)
1871 desc->cyclic = true;
1873 if (direction != DMA_NONE) {
1874 dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
1876 if (direction == DMA_FROM_DEVICE)
1877 src_dev_addr = dev_addr;
1878 else if (direction == DMA_TO_DEVICE)
1879 dst_dev_addr = dev_addr;
1882 if (chan_is_logical(chan))
1883 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
1884 sg_len, src_dev_addr, dst_dev_addr);
1885 else
1886 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
1887 sg_len, src_dev_addr, dst_dev_addr);
1889 if (ret) {
1890 chan_err(chan, "Failed to prepare %s sg job: %d\n",
1891 chan_is_logical(chan) ? "log" : "phy", ret);
1892 goto err;
1895 spin_unlock_irqrestore(&chan->lock, flags);
1897 return &desc->txd;
1899 err:
1900 if (desc)
1901 d40_desc_free(chan, desc);
1902 spin_unlock_irqrestore(&chan->lock, flags);
1903 return NULL;
1906 bool stedma40_filter(struct dma_chan *chan, void *data)
1908 struct stedma40_chan_cfg *info = data;
1909 struct d40_chan *d40c =
1910 container_of(chan, struct d40_chan, chan);
1911 int err;
1913 if (data) {
1914 err = d40_validate_conf(d40c, info);
1915 if (!err)
1916 d40c->dma_cfg = *info;
1917 } else
1918 err = d40_config_memcpy(d40c);
1920 if (!err)
1921 d40c->configured = true;
1923 return err == 0;
1925 EXPORT_SYMBOL(stedma40_filter);
1927 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
1929 bool realtime = d40c->dma_cfg.realtime;
1930 bool highprio = d40c->dma_cfg.high_priority;
1931 u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
1932 u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
1933 u32 event = D40_TYPE_TO_EVENT(dev_type);
1934 u32 group = D40_TYPE_TO_GROUP(dev_type);
1935 u32 bit = 1 << event;
1937 /* Destination event lines are stored in the upper halfword */
1938 if (!src)
1939 bit <<= 16;
1941 writel(bit, d40c->base->virtbase + prioreg + group * 4);
1942 writel(bit, d40c->base->virtbase + rtreg + group * 4);
1945 static void d40_set_prio_realtime(struct d40_chan *d40c)
1947 if (d40c->base->rev < 3)
1948 return;
1950 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
1951 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1952 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
1954 if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
1955 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1956 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
1959 /* DMA ENGINE functions */
1960 static int d40_alloc_chan_resources(struct dma_chan *chan)
1962 int err;
1963 unsigned long flags;
1964 struct d40_chan *d40c =
1965 container_of(chan, struct d40_chan, chan);
1966 bool is_free_phy;
1967 spin_lock_irqsave(&d40c->lock, flags);
1969 d40c->completed = chan->cookie = 1;
1971 /* If no dma configuration is set use default configuration (memcpy) */
1972 if (!d40c->configured) {
1973 err = d40_config_memcpy(d40c);
1974 if (err) {
1975 chan_err(d40c, "Failed to configure memcpy channel\n");
1976 goto fail;
1979 is_free_phy = (d40c->phy_chan == NULL);
1981 err = d40_allocate_channel(d40c);
1982 if (err) {
1983 chan_err(d40c, "Failed to allocate channel\n");
1984 goto fail;
1987 /* Fill in basic CFG register values */
1988 d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1989 &d40c->dst_def_cfg, chan_is_logical(d40c));
1991 d40_set_prio_realtime(d40c);
1993 if (chan_is_logical(d40c)) {
1994 d40_log_cfg(&d40c->dma_cfg,
1995 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1997 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1998 d40c->lcpa = d40c->base->lcpa_base +
1999 d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2000 else
2001 d40c->lcpa = d40c->base->lcpa_base +
2002 d40c->dma_cfg.dst_dev_type *
2003 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2007 * Only write channel configuration to the DMA if the physical
2008 * resource is free. In case of multiple logical channels
2009 * on the same physical resource, only the first write is necessary.
2011 if (is_free_phy)
2012 d40_config_write(d40c);
2013 fail:
2014 spin_unlock_irqrestore(&d40c->lock, flags);
2015 return err;
2018 static void d40_free_chan_resources(struct dma_chan *chan)
2020 struct d40_chan *d40c =
2021 container_of(chan, struct d40_chan, chan);
2022 int err;
2023 unsigned long flags;
2025 if (d40c->phy_chan == NULL) {
2026 chan_err(d40c, "Cannot free unallocated channel\n");
2027 return;
2031 spin_lock_irqsave(&d40c->lock, flags);
2033 err = d40_free_dma(d40c);
2035 if (err)
2036 chan_err(d40c, "Failed to free channel\n");
2037 spin_unlock_irqrestore(&d40c->lock, flags);
2040 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2041 dma_addr_t dst,
2042 dma_addr_t src,
2043 size_t size,
2044 unsigned long dma_flags)
2046 struct scatterlist dst_sg;
2047 struct scatterlist src_sg;
2049 sg_init_table(&dst_sg, 1);
2050 sg_init_table(&src_sg, 1);
2052 sg_dma_address(&dst_sg) = dst;
2053 sg_dma_address(&src_sg) = src;
2055 sg_dma_len(&dst_sg) = size;
2056 sg_dma_len(&src_sg) = size;
2058 return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2061 static struct dma_async_tx_descriptor *
2062 d40_prep_memcpy_sg(struct dma_chan *chan,
2063 struct scatterlist *dst_sg, unsigned int dst_nents,
2064 struct scatterlist *src_sg, unsigned int src_nents,
2065 unsigned long dma_flags)
2067 if (dst_nents != src_nents)
2068 return NULL;
2070 return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2073 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2074 struct scatterlist *sgl,
2075 unsigned int sg_len,
2076 enum dma_data_direction direction,
2077 unsigned long dma_flags)
2079 if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
2080 return NULL;
2082 return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2085 static struct dma_async_tx_descriptor *
2086 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2087 size_t buf_len, size_t period_len,
2088 enum dma_data_direction direction)
2090 unsigned int periods = buf_len / period_len;
2091 struct dma_async_tx_descriptor *txd;
2092 struct scatterlist *sg;
2093 int i;
2095 sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_KERNEL);
2096 for (i = 0; i < periods; i++) {
2097 sg_dma_address(&sg[i]) = dma_addr;
2098 sg_dma_len(&sg[i]) = period_len;
2099 dma_addr += period_len;
2102 sg[periods].offset = 0;
2103 sg[periods].length = 0;
2104 sg[periods].page_link =
2105 ((unsigned long)sg | 0x01) & ~0x02;
2107 txd = d40_prep_sg(chan, sg, sg, periods, direction,
2108 DMA_PREP_INTERRUPT);
2110 kfree(sg);
2112 return txd;
2115 static enum dma_status d40_tx_status(struct dma_chan *chan,
2116 dma_cookie_t cookie,
2117 struct dma_tx_state *txstate)
2119 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2120 dma_cookie_t last_used;
2121 dma_cookie_t last_complete;
2122 int ret;
2124 if (d40c->phy_chan == NULL) {
2125 chan_err(d40c, "Cannot read status of unallocated channel\n");
2126 return -EINVAL;
2129 last_complete = d40c->completed;
2130 last_used = chan->cookie;
2132 if (d40_is_paused(d40c))
2133 ret = DMA_PAUSED;
2134 else
2135 ret = dma_async_is_complete(cookie, last_complete, last_used);
2137 dma_set_tx_state(txstate, last_complete, last_used,
2138 stedma40_residue(chan));
2140 return ret;
2143 static void d40_issue_pending(struct dma_chan *chan)
2145 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2146 unsigned long flags;
2148 if (d40c->phy_chan == NULL) {
2149 chan_err(d40c, "Channel is not allocated!\n");
2150 return;
2153 spin_lock_irqsave(&d40c->lock, flags);
2155 /* Busy means that pending jobs are already being processed */
2156 if (!d40c->busy)
2157 (void) d40_queue_start(d40c);
2159 spin_unlock_irqrestore(&d40c->lock, flags);
2162 /* Runtime reconfiguration extension */
2163 static void d40_set_runtime_config(struct dma_chan *chan,
2164 struct dma_slave_config *config)
2166 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2167 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2168 enum dma_slave_buswidth config_addr_width;
2169 dma_addr_t config_addr;
2170 u32 config_maxburst;
2171 enum stedma40_periph_data_width addr_width;
2172 int psize;
2174 if (config->direction == DMA_FROM_DEVICE) {
2175 dma_addr_t dev_addr_rx =
2176 d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2178 config_addr = config->src_addr;
2179 if (dev_addr_rx)
2180 dev_dbg(d40c->base->dev,
2181 "channel has a pre-wired RX address %08x "
2182 "overriding with %08x\n",
2183 dev_addr_rx, config_addr);
2184 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2185 dev_dbg(d40c->base->dev,
2186 "channel was not configured for peripheral "
2187 "to memory transfer (%d) overriding\n",
2188 cfg->dir);
2189 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2191 config_addr_width = config->src_addr_width;
2192 config_maxburst = config->src_maxburst;
2194 } else if (config->direction == DMA_TO_DEVICE) {
2195 dma_addr_t dev_addr_tx =
2196 d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2198 config_addr = config->dst_addr;
2199 if (dev_addr_tx)
2200 dev_dbg(d40c->base->dev,
2201 "channel has a pre-wired TX address %08x "
2202 "overriding with %08x\n",
2203 dev_addr_tx, config_addr);
2204 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2205 dev_dbg(d40c->base->dev,
2206 "channel was not configured for memory "
2207 "to peripheral transfer (%d) overriding\n",
2208 cfg->dir);
2209 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2211 config_addr_width = config->dst_addr_width;
2212 config_maxburst = config->dst_maxburst;
2214 } else {
2215 dev_err(d40c->base->dev,
2216 "unrecognized channel direction %d\n",
2217 config->direction);
2218 return;
2221 switch (config_addr_width) {
2222 case DMA_SLAVE_BUSWIDTH_1_BYTE:
2223 addr_width = STEDMA40_BYTE_WIDTH;
2224 break;
2225 case DMA_SLAVE_BUSWIDTH_2_BYTES:
2226 addr_width = STEDMA40_HALFWORD_WIDTH;
2227 break;
2228 case DMA_SLAVE_BUSWIDTH_4_BYTES:
2229 addr_width = STEDMA40_WORD_WIDTH;
2230 break;
2231 case DMA_SLAVE_BUSWIDTH_8_BYTES:
2232 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2233 break;
2234 default:
2235 dev_err(d40c->base->dev,
2236 "illegal peripheral address width "
2237 "requested (%d)\n",
2238 config->src_addr_width);
2239 return;
2242 if (chan_is_logical(d40c)) {
2243 if (config_maxburst >= 16)
2244 psize = STEDMA40_PSIZE_LOG_16;
2245 else if (config_maxburst >= 8)
2246 psize = STEDMA40_PSIZE_LOG_8;
2247 else if (config_maxburst >= 4)
2248 psize = STEDMA40_PSIZE_LOG_4;
2249 else
2250 psize = STEDMA40_PSIZE_LOG_1;
2251 } else {
2252 if (config_maxburst >= 16)
2253 psize = STEDMA40_PSIZE_PHY_16;
2254 else if (config_maxburst >= 8)
2255 psize = STEDMA40_PSIZE_PHY_8;
2256 else if (config_maxburst >= 4)
2257 psize = STEDMA40_PSIZE_PHY_4;
2258 else if (config_maxburst >= 2)
2259 psize = STEDMA40_PSIZE_PHY_2;
2260 else
2261 psize = STEDMA40_PSIZE_PHY_1;
2264 /* Set up all the endpoint configs */
2265 cfg->src_info.data_width = addr_width;
2266 cfg->src_info.psize = psize;
2267 cfg->src_info.big_endian = false;
2268 cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2269 cfg->dst_info.data_width = addr_width;
2270 cfg->dst_info.psize = psize;
2271 cfg->dst_info.big_endian = false;
2272 cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2274 /* Fill in register values */
2275 if (chan_is_logical(d40c))
2276 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2277 else
2278 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2279 &d40c->dst_def_cfg, false);
2281 /* These settings will take precedence later */
2282 d40c->runtime_addr = config_addr;
2283 d40c->runtime_direction = config->direction;
2284 dev_dbg(d40c->base->dev,
2285 "configured channel %s for %s, data width %d, "
2286 "maxburst %d bytes, LE, no flow control\n",
2287 dma_chan_name(chan),
2288 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2289 config_addr_width,
2290 config_maxburst);
2293 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2294 unsigned long arg)
2296 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2298 if (d40c->phy_chan == NULL) {
2299 chan_err(d40c, "Channel is not allocated!\n");
2300 return -EINVAL;
2303 switch (cmd) {
2304 case DMA_TERMINATE_ALL:
2305 return d40_terminate_all(d40c);
2306 case DMA_PAUSE:
2307 return d40_pause(d40c);
2308 case DMA_RESUME:
2309 return d40_resume(d40c);
2310 case DMA_SLAVE_CONFIG:
2311 d40_set_runtime_config(chan,
2312 (struct dma_slave_config *) arg);
2313 return 0;
2314 default:
2315 break;
2318 /* Other commands are unimplemented */
2319 return -ENXIO;
2322 /* Initialization functions */
2324 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2325 struct d40_chan *chans, int offset,
2326 int num_chans)
2328 int i = 0;
2329 struct d40_chan *d40c;
2331 INIT_LIST_HEAD(&dma->channels);
2333 for (i = offset; i < offset + num_chans; i++) {
2334 d40c = &chans[i];
2335 d40c->base = base;
2336 d40c->chan.device = dma;
2338 spin_lock_init(&d40c->lock);
2340 d40c->log_num = D40_PHY_CHAN;
2342 INIT_LIST_HEAD(&d40c->active);
2343 INIT_LIST_HEAD(&d40c->queue);
2344 INIT_LIST_HEAD(&d40c->client);
2346 tasklet_init(&d40c->tasklet, dma_tasklet,
2347 (unsigned long) d40c);
2349 list_add_tail(&d40c->chan.device_node,
2350 &dma->channels);
2354 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2356 if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2357 dev->device_prep_slave_sg = d40_prep_slave_sg;
2359 if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2360 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2363 * This controller can only access address at even
2364 * 32bit boundaries, i.e. 2^2
2366 dev->copy_align = 2;
2369 if (dma_has_cap(DMA_SG, dev->cap_mask))
2370 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2372 if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2373 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2375 dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2376 dev->device_free_chan_resources = d40_free_chan_resources;
2377 dev->device_issue_pending = d40_issue_pending;
2378 dev->device_tx_status = d40_tx_status;
2379 dev->device_control = d40_control;
2380 dev->dev = base->dev;
2383 static int __init d40_dmaengine_init(struct d40_base *base,
2384 int num_reserved_chans)
2386 int err ;
2388 d40_chan_init(base, &base->dma_slave, base->log_chans,
2389 0, base->num_log_chans);
2391 dma_cap_zero(base->dma_slave.cap_mask);
2392 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2393 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2395 d40_ops_init(base, &base->dma_slave);
2397 err = dma_async_device_register(&base->dma_slave);
2399 if (err) {
2400 d40_err(base->dev, "Failed to register slave channels\n");
2401 goto failure1;
2404 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2405 base->num_log_chans, base->plat_data->memcpy_len);
2407 dma_cap_zero(base->dma_memcpy.cap_mask);
2408 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2409 dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2411 d40_ops_init(base, &base->dma_memcpy);
2413 err = dma_async_device_register(&base->dma_memcpy);
2415 if (err) {
2416 d40_err(base->dev,
2417 "Failed to regsiter memcpy only channels\n");
2418 goto failure2;
2421 d40_chan_init(base, &base->dma_both, base->phy_chans,
2422 0, num_reserved_chans);
2424 dma_cap_zero(base->dma_both.cap_mask);
2425 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2426 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2427 dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2428 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2430 d40_ops_init(base, &base->dma_both);
2431 err = dma_async_device_register(&base->dma_both);
2433 if (err) {
2434 d40_err(base->dev,
2435 "Failed to register logical and physical capable channels\n");
2436 goto failure3;
2438 return 0;
2439 failure3:
2440 dma_async_device_unregister(&base->dma_memcpy);
2441 failure2:
2442 dma_async_device_unregister(&base->dma_slave);
2443 failure1:
2444 return err;
2447 /* Initialization functions. */
2449 static int __init d40_phy_res_init(struct d40_base *base)
2451 int i;
2452 int num_phy_chans_avail = 0;
2453 u32 val[2];
2454 int odd_even_bit = -2;
2456 val[0] = readl(base->virtbase + D40_DREG_PRSME);
2457 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2459 for (i = 0; i < base->num_phy_chans; i++) {
2460 base->phy_res[i].num = i;
2461 odd_even_bit += 2 * ((i % 2) == 0);
2462 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2463 /* Mark security only channels as occupied */
2464 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2465 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2466 } else {
2467 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2468 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2469 num_phy_chans_avail++;
2471 spin_lock_init(&base->phy_res[i].lock);
2474 /* Mark disabled channels as occupied */
2475 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2476 int chan = base->plat_data->disabled_channels[i];
2478 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2479 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2480 num_phy_chans_avail--;
2483 dev_info(base->dev, "%d of %d physical DMA channels available\n",
2484 num_phy_chans_avail, base->num_phy_chans);
2486 /* Verify settings extended vs standard */
2487 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2489 for (i = 0; i < base->num_phy_chans; i++) {
2491 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2492 (val[0] & 0x3) != 1)
2493 dev_info(base->dev,
2494 "[%s] INFO: channel %d is misconfigured (%d)\n",
2495 __func__, i, val[0] & 0x3);
2497 val[0] = val[0] >> 2;
2500 return num_phy_chans_avail;
2503 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2505 static const struct d40_reg_val dma_id_regs[] = {
2506 /* Peripheral Id */
2507 { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2508 { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2510 * D40_DREG_PERIPHID2 Depends on HW revision:
2511 * DB8500ed has 0x0008,
2512 * ? has 0x0018,
2513 * DB8500v1 has 0x0028
2514 * DB8500v2 has 0x0038
2516 { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2518 /* PCell Id */
2519 { .reg = D40_DREG_CELLID0, .val = 0x000d},
2520 { .reg = D40_DREG_CELLID1, .val = 0x00f0},
2521 { .reg = D40_DREG_CELLID2, .val = 0x0005},
2522 { .reg = D40_DREG_CELLID3, .val = 0x00b1}
2524 struct stedma40_platform_data *plat_data;
2525 struct clk *clk = NULL;
2526 void __iomem *virtbase = NULL;
2527 struct resource *res = NULL;
2528 struct d40_base *base = NULL;
2529 int num_log_chans = 0;
2530 int num_phy_chans;
2531 int i;
2532 u32 val;
2533 u32 rev;
2535 clk = clk_get(&pdev->dev, NULL);
2537 if (IS_ERR(clk)) {
2538 d40_err(&pdev->dev, "No matching clock found\n");
2539 goto failure;
2542 clk_enable(clk);
2544 /* Get IO for DMAC base address */
2545 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2546 if (!res)
2547 goto failure;
2549 if (request_mem_region(res->start, resource_size(res),
2550 D40_NAME " I/O base") == NULL)
2551 goto failure;
2553 virtbase = ioremap(res->start, resource_size(res));
2554 if (!virtbase)
2555 goto failure;
2557 /* HW version check */
2558 for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2559 if (dma_id_regs[i].val !=
2560 readl(virtbase + dma_id_regs[i].reg)) {
2561 d40_err(&pdev->dev,
2562 "Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2563 dma_id_regs[i].val,
2564 dma_id_regs[i].reg,
2565 readl(virtbase + dma_id_regs[i].reg));
2566 goto failure;
2570 /* Get silicon revision and designer */
2571 val = readl(virtbase + D40_DREG_PERIPHID2);
2573 if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
2574 D40_HW_DESIGNER) {
2575 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2576 val & D40_DREG_PERIPHID2_DESIGNER_MASK,
2577 D40_HW_DESIGNER);
2578 goto failure;
2581 rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
2582 D40_DREG_PERIPHID2_REV_POS;
2584 /* The number of physical channels on this HW */
2585 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2587 dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2588 rev, res->start);
2590 plat_data = pdev->dev.platform_data;
2592 /* Count the number of logical channels in use */
2593 for (i = 0; i < plat_data->dev_len; i++)
2594 if (plat_data->dev_rx[i] != 0)
2595 num_log_chans++;
2597 for (i = 0; i < plat_data->dev_len; i++)
2598 if (plat_data->dev_tx[i] != 0)
2599 num_log_chans++;
2601 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2602 (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2603 sizeof(struct d40_chan), GFP_KERNEL);
2605 if (base == NULL) {
2606 d40_err(&pdev->dev, "Out of memory\n");
2607 goto failure;
2610 base->rev = rev;
2611 base->clk = clk;
2612 base->num_phy_chans = num_phy_chans;
2613 base->num_log_chans = num_log_chans;
2614 base->phy_start = res->start;
2615 base->phy_size = resource_size(res);
2616 base->virtbase = virtbase;
2617 base->plat_data = plat_data;
2618 base->dev = &pdev->dev;
2619 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2620 base->log_chans = &base->phy_chans[num_phy_chans];
2622 base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2623 GFP_KERNEL);
2624 if (!base->phy_res)
2625 goto failure;
2627 base->lookup_phy_chans = kzalloc(num_phy_chans *
2628 sizeof(struct d40_chan *),
2629 GFP_KERNEL);
2630 if (!base->lookup_phy_chans)
2631 goto failure;
2633 if (num_log_chans + plat_data->memcpy_len) {
2635 * The max number of logical channels are event lines for all
2636 * src devices and dst devices
2638 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2639 sizeof(struct d40_chan *),
2640 GFP_KERNEL);
2641 if (!base->lookup_log_chans)
2642 goto failure;
2645 base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2646 sizeof(struct d40_desc *) *
2647 D40_LCLA_LINK_PER_EVENT_GRP,
2648 GFP_KERNEL);
2649 if (!base->lcla_pool.alloc_map)
2650 goto failure;
2652 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2653 0, SLAB_HWCACHE_ALIGN,
2654 NULL);
2655 if (base->desc_slab == NULL)
2656 goto failure;
2658 return base;
2660 failure:
2661 if (!IS_ERR(clk)) {
2662 clk_disable(clk);
2663 clk_put(clk);
2665 if (virtbase)
2666 iounmap(virtbase);
2667 if (res)
2668 release_mem_region(res->start,
2669 resource_size(res));
2670 if (virtbase)
2671 iounmap(virtbase);
2673 if (base) {
2674 kfree(base->lcla_pool.alloc_map);
2675 kfree(base->lookup_log_chans);
2676 kfree(base->lookup_phy_chans);
2677 kfree(base->phy_res);
2678 kfree(base);
2681 return NULL;
2684 static void __init d40_hw_init(struct d40_base *base)
2687 static const struct d40_reg_val dma_init_reg[] = {
2688 /* Clock every part of the DMA block from start */
2689 { .reg = D40_DREG_GCC, .val = 0x0000ff01},
2691 /* Interrupts on all logical channels */
2692 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2693 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2694 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2695 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2696 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2697 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2698 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2699 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2700 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2701 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2702 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2703 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2705 int i;
2706 u32 prmseo[2] = {0, 0};
2707 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2708 u32 pcmis = 0;
2709 u32 pcicr = 0;
2711 for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2712 writel(dma_init_reg[i].val,
2713 base->virtbase + dma_init_reg[i].reg);
2715 /* Configure all our dma channels to default settings */
2716 for (i = 0; i < base->num_phy_chans; i++) {
2718 activeo[i % 2] = activeo[i % 2] << 2;
2720 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2721 == D40_ALLOC_PHY) {
2722 activeo[i % 2] |= 3;
2723 continue;
2726 /* Enable interrupt # */
2727 pcmis = (pcmis << 1) | 1;
2729 /* Clear interrupt # */
2730 pcicr = (pcicr << 1) | 1;
2732 /* Set channel to physical mode */
2733 prmseo[i % 2] = prmseo[i % 2] << 2;
2734 prmseo[i % 2] |= 1;
2738 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2739 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2740 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2741 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2743 /* Write which interrupt to enable */
2744 writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2746 /* Write which interrupt to clear */
2747 writel(pcicr, base->virtbase + D40_DREG_PCICR);
2751 static int __init d40_lcla_allocate(struct d40_base *base)
2753 struct d40_lcla_pool *pool = &base->lcla_pool;
2754 unsigned long *page_list;
2755 int i, j;
2756 int ret = 0;
2759 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2760 * To full fill this hardware requirement without wasting 256 kb
2761 * we allocate pages until we get an aligned one.
2763 page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2764 GFP_KERNEL);
2766 if (!page_list) {
2767 ret = -ENOMEM;
2768 goto failure;
2771 /* Calculating how many pages that are required */
2772 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2774 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2775 page_list[i] = __get_free_pages(GFP_KERNEL,
2776 base->lcla_pool.pages);
2777 if (!page_list[i]) {
2779 d40_err(base->dev, "Failed to allocate %d pages.\n",
2780 base->lcla_pool.pages);
2782 for (j = 0; j < i; j++)
2783 free_pages(page_list[j], base->lcla_pool.pages);
2784 goto failure;
2787 if ((virt_to_phys((void *)page_list[i]) &
2788 (LCLA_ALIGNMENT - 1)) == 0)
2789 break;
2792 for (j = 0; j < i; j++)
2793 free_pages(page_list[j], base->lcla_pool.pages);
2795 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2796 base->lcla_pool.base = (void *)page_list[i];
2797 } else {
2799 * After many attempts and no succees with finding the correct
2800 * alignment, try with allocating a big buffer.
2802 dev_warn(base->dev,
2803 "[%s] Failed to get %d pages @ 18 bit align.\n",
2804 __func__, base->lcla_pool.pages);
2805 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2806 base->num_phy_chans +
2807 LCLA_ALIGNMENT,
2808 GFP_KERNEL);
2809 if (!base->lcla_pool.base_unaligned) {
2810 ret = -ENOMEM;
2811 goto failure;
2814 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2815 LCLA_ALIGNMENT);
2818 pool->dma_addr = dma_map_single(base->dev, pool->base,
2819 SZ_1K * base->num_phy_chans,
2820 DMA_TO_DEVICE);
2821 if (dma_mapping_error(base->dev, pool->dma_addr)) {
2822 pool->dma_addr = 0;
2823 ret = -ENOMEM;
2824 goto failure;
2827 writel(virt_to_phys(base->lcla_pool.base),
2828 base->virtbase + D40_DREG_LCLA);
2829 failure:
2830 kfree(page_list);
2831 return ret;
2834 static int __init d40_probe(struct platform_device *pdev)
2836 int err;
2837 int ret = -ENOENT;
2838 struct d40_base *base;
2839 struct resource *res = NULL;
2840 int num_reserved_chans;
2841 u32 val;
2843 base = d40_hw_detect_init(pdev);
2845 if (!base)
2846 goto failure;
2848 num_reserved_chans = d40_phy_res_init(base);
2850 platform_set_drvdata(pdev, base);
2852 spin_lock_init(&base->interrupt_lock);
2853 spin_lock_init(&base->execmd_lock);
2855 /* Get IO for logical channel parameter address */
2856 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2857 if (!res) {
2858 ret = -ENOENT;
2859 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2860 goto failure;
2862 base->lcpa_size = resource_size(res);
2863 base->phy_lcpa = res->start;
2865 if (request_mem_region(res->start, resource_size(res),
2866 D40_NAME " I/O lcpa") == NULL) {
2867 ret = -EBUSY;
2868 d40_err(&pdev->dev,
2869 "Failed to request LCPA region 0x%x-0x%x\n",
2870 res->start, res->end);
2871 goto failure;
2874 /* We make use of ESRAM memory for this. */
2875 val = readl(base->virtbase + D40_DREG_LCPA);
2876 if (res->start != val && val != 0) {
2877 dev_warn(&pdev->dev,
2878 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2879 __func__, val, res->start);
2880 } else
2881 writel(res->start, base->virtbase + D40_DREG_LCPA);
2883 base->lcpa_base = ioremap(res->start, resource_size(res));
2884 if (!base->lcpa_base) {
2885 ret = -ENOMEM;
2886 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2887 goto failure;
2890 ret = d40_lcla_allocate(base);
2891 if (ret) {
2892 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2893 goto failure;
2896 spin_lock_init(&base->lcla_pool.lock);
2898 base->irq = platform_get_irq(pdev, 0);
2900 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2901 if (ret) {
2902 d40_err(&pdev->dev, "No IRQ defined\n");
2903 goto failure;
2906 err = d40_dmaengine_init(base, num_reserved_chans);
2907 if (err)
2908 goto failure;
2910 d40_hw_init(base);
2912 dev_info(base->dev, "initialized\n");
2913 return 0;
2915 failure:
2916 if (base) {
2917 if (base->desc_slab)
2918 kmem_cache_destroy(base->desc_slab);
2919 if (base->virtbase)
2920 iounmap(base->virtbase);
2922 if (base->lcla_pool.dma_addr)
2923 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
2924 SZ_1K * base->num_phy_chans,
2925 DMA_TO_DEVICE);
2927 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2928 free_pages((unsigned long)base->lcla_pool.base,
2929 base->lcla_pool.pages);
2931 kfree(base->lcla_pool.base_unaligned);
2933 if (base->phy_lcpa)
2934 release_mem_region(base->phy_lcpa,
2935 base->lcpa_size);
2936 if (base->phy_start)
2937 release_mem_region(base->phy_start,
2938 base->phy_size);
2939 if (base->clk) {
2940 clk_disable(base->clk);
2941 clk_put(base->clk);
2944 kfree(base->lcla_pool.alloc_map);
2945 kfree(base->lookup_log_chans);
2946 kfree(base->lookup_phy_chans);
2947 kfree(base->phy_res);
2948 kfree(base);
2951 d40_err(&pdev->dev, "probe failed\n");
2952 return ret;
2955 static struct platform_driver d40_driver = {
2956 .driver = {
2957 .owner = THIS_MODULE,
2958 .name = D40_NAME,
2962 static int __init stedma40_init(void)
2964 return platform_driver_probe(&d40_driver, d40_probe);
2966 subsys_initcall(stedma40_init);