i2c: Documentation: upgrading clients HOWTO
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / cgroup.c
blob657f8f8d93a5fa947e79d0b8567a9c5288f425d9
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47 #include <linux/hash.h>
48 #include <linux/namei.h>
50 #include <asm/atomic.h>
52 static DEFINE_MUTEX(cgroup_mutex);
54 /* Generate an array of cgroup subsystem pointers */
55 #define SUBSYS(_x) &_x ## _subsys,
57 static struct cgroup_subsys *subsys[] = {
58 #include <linux/cgroup_subsys.h>
62 * A cgroupfs_root represents the root of a cgroup hierarchy,
63 * and may be associated with a superblock to form an active
64 * hierarchy
66 struct cgroupfs_root {
67 struct super_block *sb;
70 * The bitmask of subsystems intended to be attached to this
71 * hierarchy
73 unsigned long subsys_bits;
75 /* The bitmask of subsystems currently attached to this hierarchy */
76 unsigned long actual_subsys_bits;
78 /* A list running through the attached subsystems */
79 struct list_head subsys_list;
81 /* The root cgroup for this hierarchy */
82 struct cgroup top_cgroup;
84 /* Tracks how many cgroups are currently defined in hierarchy.*/
85 int number_of_cgroups;
87 /* A list running through the mounted hierarchies */
88 struct list_head root_list;
90 /* Hierarchy-specific flags */
91 unsigned long flags;
93 /* The path to use for release notifications. */
94 char release_agent_path[PATH_MAX];
99 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
100 * subsystems that are otherwise unattached - it never has more than a
101 * single cgroup, and all tasks are part of that cgroup.
103 static struct cgroupfs_root rootnode;
105 /* The list of hierarchy roots */
107 static LIST_HEAD(roots);
108 static int root_count;
110 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
111 #define dummytop (&rootnode.top_cgroup)
113 /* This flag indicates whether tasks in the fork and exit paths should
114 * check for fork/exit handlers to call. This avoids us having to do
115 * extra work in the fork/exit path if none of the subsystems need to
116 * be called.
118 static int need_forkexit_callback __read_mostly;
119 static int need_mm_owner_callback __read_mostly;
121 /* convenient tests for these bits */
122 inline int cgroup_is_removed(const struct cgroup *cgrp)
124 return test_bit(CGRP_REMOVED, &cgrp->flags);
127 /* bits in struct cgroupfs_root flags field */
128 enum {
129 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
132 static int cgroup_is_releasable(const struct cgroup *cgrp)
134 const int bits =
135 (1 << CGRP_RELEASABLE) |
136 (1 << CGRP_NOTIFY_ON_RELEASE);
137 return (cgrp->flags & bits) == bits;
140 static int notify_on_release(const struct cgroup *cgrp)
142 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
146 * for_each_subsys() allows you to iterate on each subsystem attached to
147 * an active hierarchy
149 #define for_each_subsys(_root, _ss) \
150 list_for_each_entry(_ss, &_root->subsys_list, sibling)
152 /* for_each_root() allows you to iterate across the active hierarchies */
153 #define for_each_root(_root) \
154 list_for_each_entry(_root, &roots, root_list)
156 /* the list of cgroups eligible for automatic release. Protected by
157 * release_list_lock */
158 static LIST_HEAD(release_list);
159 static DEFINE_SPINLOCK(release_list_lock);
160 static void cgroup_release_agent(struct work_struct *work);
161 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
162 static void check_for_release(struct cgroup *cgrp);
164 /* Link structure for associating css_set objects with cgroups */
165 struct cg_cgroup_link {
167 * List running through cg_cgroup_links associated with a
168 * cgroup, anchored on cgroup->css_sets
170 struct list_head cgrp_link_list;
172 * List running through cg_cgroup_links pointing at a
173 * single css_set object, anchored on css_set->cg_links
175 struct list_head cg_link_list;
176 struct css_set *cg;
179 /* The default css_set - used by init and its children prior to any
180 * hierarchies being mounted. It contains a pointer to the root state
181 * for each subsystem. Also used to anchor the list of css_sets. Not
182 * reference-counted, to improve performance when child cgroups
183 * haven't been created.
186 static struct css_set init_css_set;
187 static struct cg_cgroup_link init_css_set_link;
189 /* css_set_lock protects the list of css_set objects, and the
190 * chain of tasks off each css_set. Nests outside task->alloc_lock
191 * due to cgroup_iter_start() */
192 static DEFINE_RWLOCK(css_set_lock);
193 static int css_set_count;
195 /* hash table for cgroup groups. This improves the performance to
196 * find an existing css_set */
197 #define CSS_SET_HASH_BITS 7
198 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
199 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
201 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
203 int i;
204 int index;
205 unsigned long tmp = 0UL;
207 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
208 tmp += (unsigned long)css[i];
209 tmp = (tmp >> 16) ^ tmp;
211 index = hash_long(tmp, CSS_SET_HASH_BITS);
213 return &css_set_table[index];
216 /* We don't maintain the lists running through each css_set to its
217 * task until after the first call to cgroup_iter_start(). This
218 * reduces the fork()/exit() overhead for people who have cgroups
219 * compiled into their kernel but not actually in use */
220 static int use_task_css_set_links __read_mostly;
222 /* When we create or destroy a css_set, the operation simply
223 * takes/releases a reference count on all the cgroups referenced
224 * by subsystems in this css_set. This can end up multiple-counting
225 * some cgroups, but that's OK - the ref-count is just a
226 * busy/not-busy indicator; ensuring that we only count each cgroup
227 * once would require taking a global lock to ensure that no
228 * subsystems moved between hierarchies while we were doing so.
230 * Possible TODO: decide at boot time based on the number of
231 * registered subsystems and the number of CPUs or NUMA nodes whether
232 * it's better for performance to ref-count every subsystem, or to
233 * take a global lock and only add one ref count to each hierarchy.
237 * unlink a css_set from the list and free it
239 static void unlink_css_set(struct css_set *cg)
241 struct cg_cgroup_link *link;
242 struct cg_cgroup_link *saved_link;
244 write_lock(&css_set_lock);
245 hlist_del(&cg->hlist);
246 css_set_count--;
248 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
249 cg_link_list) {
250 list_del(&link->cg_link_list);
251 list_del(&link->cgrp_link_list);
252 kfree(link);
255 write_unlock(&css_set_lock);
258 static void __release_css_set(struct kref *k, int taskexit)
260 int i;
261 struct css_set *cg = container_of(k, struct css_set, ref);
263 unlink_css_set(cg);
265 rcu_read_lock();
266 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
267 struct cgroup *cgrp = cg->subsys[i]->cgroup;
268 if (atomic_dec_and_test(&cgrp->count) &&
269 notify_on_release(cgrp)) {
270 if (taskexit)
271 set_bit(CGRP_RELEASABLE, &cgrp->flags);
272 check_for_release(cgrp);
275 rcu_read_unlock();
276 kfree(cg);
279 static void release_css_set(struct kref *k)
281 __release_css_set(k, 0);
284 static void release_css_set_taskexit(struct kref *k)
286 __release_css_set(k, 1);
290 * refcounted get/put for css_set objects
292 static inline void get_css_set(struct css_set *cg)
294 kref_get(&cg->ref);
297 static inline void put_css_set(struct css_set *cg)
299 kref_put(&cg->ref, release_css_set);
302 static inline void put_css_set_taskexit(struct css_set *cg)
304 kref_put(&cg->ref, release_css_set_taskexit);
308 * find_existing_css_set() is a helper for
309 * find_css_set(), and checks to see whether an existing
310 * css_set is suitable.
312 * oldcg: the cgroup group that we're using before the cgroup
313 * transition
315 * cgrp: the cgroup that we're moving into
317 * template: location in which to build the desired set of subsystem
318 * state objects for the new cgroup group
320 static struct css_set *find_existing_css_set(
321 struct css_set *oldcg,
322 struct cgroup *cgrp,
323 struct cgroup_subsys_state *template[])
325 int i;
326 struct cgroupfs_root *root = cgrp->root;
327 struct hlist_head *hhead;
328 struct hlist_node *node;
329 struct css_set *cg;
331 /* Built the set of subsystem state objects that we want to
332 * see in the new css_set */
333 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
334 if (root->subsys_bits & (1UL << i)) {
335 /* Subsystem is in this hierarchy. So we want
336 * the subsystem state from the new
337 * cgroup */
338 template[i] = cgrp->subsys[i];
339 } else {
340 /* Subsystem is not in this hierarchy, so we
341 * don't want to change the subsystem state */
342 template[i] = oldcg->subsys[i];
346 hhead = css_set_hash(template);
347 hlist_for_each_entry(cg, node, hhead, hlist) {
348 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
349 /* All subsystems matched */
350 return cg;
354 /* No existing cgroup group matched */
355 return NULL;
359 * allocate_cg_links() allocates "count" cg_cgroup_link structures
360 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
361 * success or a negative error
363 static int allocate_cg_links(int count, struct list_head *tmp)
365 struct cg_cgroup_link *link;
366 struct cg_cgroup_link *saved_link;
367 int i;
368 INIT_LIST_HEAD(tmp);
369 for (i = 0; i < count; i++) {
370 link = kmalloc(sizeof(*link), GFP_KERNEL);
371 if (!link) {
372 list_for_each_entry_safe(link, saved_link, tmp,
373 cgrp_link_list) {
374 list_del(&link->cgrp_link_list);
375 kfree(link);
377 return -ENOMEM;
379 list_add(&link->cgrp_link_list, tmp);
381 return 0;
384 static void free_cg_links(struct list_head *tmp)
386 struct cg_cgroup_link *link;
387 struct cg_cgroup_link *saved_link;
389 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
390 list_del(&link->cgrp_link_list);
391 kfree(link);
396 * find_css_set() takes an existing cgroup group and a
397 * cgroup object, and returns a css_set object that's
398 * equivalent to the old group, but with the given cgroup
399 * substituted into the appropriate hierarchy. Must be called with
400 * cgroup_mutex held
402 static struct css_set *find_css_set(
403 struct css_set *oldcg, struct cgroup *cgrp)
405 struct css_set *res;
406 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
407 int i;
409 struct list_head tmp_cg_links;
410 struct cg_cgroup_link *link;
412 struct hlist_head *hhead;
414 /* First see if we already have a cgroup group that matches
415 * the desired set */
416 read_lock(&css_set_lock);
417 res = find_existing_css_set(oldcg, cgrp, template);
418 if (res)
419 get_css_set(res);
420 read_unlock(&css_set_lock);
422 if (res)
423 return res;
425 res = kmalloc(sizeof(*res), GFP_KERNEL);
426 if (!res)
427 return NULL;
429 /* Allocate all the cg_cgroup_link objects that we'll need */
430 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
431 kfree(res);
432 return NULL;
435 kref_init(&res->ref);
436 INIT_LIST_HEAD(&res->cg_links);
437 INIT_LIST_HEAD(&res->tasks);
438 INIT_HLIST_NODE(&res->hlist);
440 /* Copy the set of subsystem state objects generated in
441 * find_existing_css_set() */
442 memcpy(res->subsys, template, sizeof(res->subsys));
444 write_lock(&css_set_lock);
445 /* Add reference counts and links from the new css_set. */
446 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
447 struct cgroup *cgrp = res->subsys[i]->cgroup;
448 struct cgroup_subsys *ss = subsys[i];
449 atomic_inc(&cgrp->count);
451 * We want to add a link once per cgroup, so we
452 * only do it for the first subsystem in each
453 * hierarchy
455 if (ss->root->subsys_list.next == &ss->sibling) {
456 BUG_ON(list_empty(&tmp_cg_links));
457 link = list_entry(tmp_cg_links.next,
458 struct cg_cgroup_link,
459 cgrp_link_list);
460 list_del(&link->cgrp_link_list);
461 list_add(&link->cgrp_link_list, &cgrp->css_sets);
462 link->cg = res;
463 list_add(&link->cg_link_list, &res->cg_links);
466 if (list_empty(&rootnode.subsys_list)) {
467 link = list_entry(tmp_cg_links.next,
468 struct cg_cgroup_link,
469 cgrp_link_list);
470 list_del(&link->cgrp_link_list);
471 list_add(&link->cgrp_link_list, &dummytop->css_sets);
472 link->cg = res;
473 list_add(&link->cg_link_list, &res->cg_links);
476 BUG_ON(!list_empty(&tmp_cg_links));
478 css_set_count++;
480 /* Add this cgroup group to the hash table */
481 hhead = css_set_hash(res->subsys);
482 hlist_add_head(&res->hlist, hhead);
484 write_unlock(&css_set_lock);
486 return res;
490 * There is one global cgroup mutex. We also require taking
491 * task_lock() when dereferencing a task's cgroup subsys pointers.
492 * See "The task_lock() exception", at the end of this comment.
494 * A task must hold cgroup_mutex to modify cgroups.
496 * Any task can increment and decrement the count field without lock.
497 * So in general, code holding cgroup_mutex can't rely on the count
498 * field not changing. However, if the count goes to zero, then only
499 * cgroup_attach_task() can increment it again. Because a count of zero
500 * means that no tasks are currently attached, therefore there is no
501 * way a task attached to that cgroup can fork (the other way to
502 * increment the count). So code holding cgroup_mutex can safely
503 * assume that if the count is zero, it will stay zero. Similarly, if
504 * a task holds cgroup_mutex on a cgroup with zero count, it
505 * knows that the cgroup won't be removed, as cgroup_rmdir()
506 * needs that mutex.
508 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
509 * (usually) take cgroup_mutex. These are the two most performance
510 * critical pieces of code here. The exception occurs on cgroup_exit(),
511 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
512 * is taken, and if the cgroup count is zero, a usermode call made
513 * to the release agent with the name of the cgroup (path relative to
514 * the root of cgroup file system) as the argument.
516 * A cgroup can only be deleted if both its 'count' of using tasks
517 * is zero, and its list of 'children' cgroups is empty. Since all
518 * tasks in the system use _some_ cgroup, and since there is always at
519 * least one task in the system (init, pid == 1), therefore, top_cgroup
520 * always has either children cgroups and/or using tasks. So we don't
521 * need a special hack to ensure that top_cgroup cannot be deleted.
523 * The task_lock() exception
525 * The need for this exception arises from the action of
526 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
527 * another. It does so using cgroup_mutex, however there are
528 * several performance critical places that need to reference
529 * task->cgroup without the expense of grabbing a system global
530 * mutex. Therefore except as noted below, when dereferencing or, as
531 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
532 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
533 * the task_struct routinely used for such matters.
535 * P.S. One more locking exception. RCU is used to guard the
536 * update of a tasks cgroup pointer by cgroup_attach_task()
540 * cgroup_lock - lock out any changes to cgroup structures
543 void cgroup_lock(void)
545 mutex_lock(&cgroup_mutex);
549 * cgroup_unlock - release lock on cgroup changes
551 * Undo the lock taken in a previous cgroup_lock() call.
553 void cgroup_unlock(void)
555 mutex_unlock(&cgroup_mutex);
559 * A couple of forward declarations required, due to cyclic reference loop:
560 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
561 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
562 * -> cgroup_mkdir.
565 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
566 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
567 static int cgroup_populate_dir(struct cgroup *cgrp);
568 static struct inode_operations cgroup_dir_inode_operations;
569 static struct file_operations proc_cgroupstats_operations;
571 static struct backing_dev_info cgroup_backing_dev_info = {
572 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
575 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
577 struct inode *inode = new_inode(sb);
579 if (inode) {
580 inode->i_mode = mode;
581 inode->i_uid = current->fsuid;
582 inode->i_gid = current->fsgid;
583 inode->i_blocks = 0;
584 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
585 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
587 return inode;
591 * Call subsys's pre_destroy handler.
592 * This is called before css refcnt check.
594 static void cgroup_call_pre_destroy(struct cgroup *cgrp)
596 struct cgroup_subsys *ss;
597 for_each_subsys(cgrp->root, ss)
598 if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
599 ss->pre_destroy(ss, cgrp);
600 return;
603 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
605 /* is dentry a directory ? if so, kfree() associated cgroup */
606 if (S_ISDIR(inode->i_mode)) {
607 struct cgroup *cgrp = dentry->d_fsdata;
608 struct cgroup_subsys *ss;
609 BUG_ON(!(cgroup_is_removed(cgrp)));
610 /* It's possible for external users to be holding css
611 * reference counts on a cgroup; css_put() needs to
612 * be able to access the cgroup after decrementing
613 * the reference count in order to know if it needs to
614 * queue the cgroup to be handled by the release
615 * agent */
616 synchronize_rcu();
618 mutex_lock(&cgroup_mutex);
620 * Release the subsystem state objects.
622 for_each_subsys(cgrp->root, ss) {
623 if (cgrp->subsys[ss->subsys_id])
624 ss->destroy(ss, cgrp);
627 cgrp->root->number_of_cgroups--;
628 mutex_unlock(&cgroup_mutex);
630 /* Drop the active superblock reference that we took when we
631 * created the cgroup */
632 deactivate_super(cgrp->root->sb);
634 kfree(cgrp);
636 iput(inode);
639 static void remove_dir(struct dentry *d)
641 struct dentry *parent = dget(d->d_parent);
643 d_delete(d);
644 simple_rmdir(parent->d_inode, d);
645 dput(parent);
648 static void cgroup_clear_directory(struct dentry *dentry)
650 struct list_head *node;
652 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
653 spin_lock(&dcache_lock);
654 node = dentry->d_subdirs.next;
655 while (node != &dentry->d_subdirs) {
656 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
657 list_del_init(node);
658 if (d->d_inode) {
659 /* This should never be called on a cgroup
660 * directory with child cgroups */
661 BUG_ON(d->d_inode->i_mode & S_IFDIR);
662 d = dget_locked(d);
663 spin_unlock(&dcache_lock);
664 d_delete(d);
665 simple_unlink(dentry->d_inode, d);
666 dput(d);
667 spin_lock(&dcache_lock);
669 node = dentry->d_subdirs.next;
671 spin_unlock(&dcache_lock);
675 * NOTE : the dentry must have been dget()'ed
677 static void cgroup_d_remove_dir(struct dentry *dentry)
679 cgroup_clear_directory(dentry);
681 spin_lock(&dcache_lock);
682 list_del_init(&dentry->d_u.d_child);
683 spin_unlock(&dcache_lock);
684 remove_dir(dentry);
687 static int rebind_subsystems(struct cgroupfs_root *root,
688 unsigned long final_bits)
690 unsigned long added_bits, removed_bits;
691 struct cgroup *cgrp = &root->top_cgroup;
692 int i;
694 removed_bits = root->actual_subsys_bits & ~final_bits;
695 added_bits = final_bits & ~root->actual_subsys_bits;
696 /* Check that any added subsystems are currently free */
697 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
698 unsigned long bit = 1UL << i;
699 struct cgroup_subsys *ss = subsys[i];
700 if (!(bit & added_bits))
701 continue;
702 if (ss->root != &rootnode) {
703 /* Subsystem isn't free */
704 return -EBUSY;
708 /* Currently we don't handle adding/removing subsystems when
709 * any child cgroups exist. This is theoretically supportable
710 * but involves complex error handling, so it's being left until
711 * later */
712 if (!list_empty(&cgrp->children))
713 return -EBUSY;
715 /* Process each subsystem */
716 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
717 struct cgroup_subsys *ss = subsys[i];
718 unsigned long bit = 1UL << i;
719 if (bit & added_bits) {
720 /* We're binding this subsystem to this hierarchy */
721 BUG_ON(cgrp->subsys[i]);
722 BUG_ON(!dummytop->subsys[i]);
723 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
724 cgrp->subsys[i] = dummytop->subsys[i];
725 cgrp->subsys[i]->cgroup = cgrp;
726 list_add(&ss->sibling, &root->subsys_list);
727 rcu_assign_pointer(ss->root, root);
728 if (ss->bind)
729 ss->bind(ss, cgrp);
731 } else if (bit & removed_bits) {
732 /* We're removing this subsystem */
733 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
734 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
735 if (ss->bind)
736 ss->bind(ss, dummytop);
737 dummytop->subsys[i]->cgroup = dummytop;
738 cgrp->subsys[i] = NULL;
739 rcu_assign_pointer(subsys[i]->root, &rootnode);
740 list_del(&ss->sibling);
741 } else if (bit & final_bits) {
742 /* Subsystem state should already exist */
743 BUG_ON(!cgrp->subsys[i]);
744 } else {
745 /* Subsystem state shouldn't exist */
746 BUG_ON(cgrp->subsys[i]);
749 root->subsys_bits = root->actual_subsys_bits = final_bits;
750 synchronize_rcu();
752 return 0;
755 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
757 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
758 struct cgroup_subsys *ss;
760 mutex_lock(&cgroup_mutex);
761 for_each_subsys(root, ss)
762 seq_printf(seq, ",%s", ss->name);
763 if (test_bit(ROOT_NOPREFIX, &root->flags))
764 seq_puts(seq, ",noprefix");
765 if (strlen(root->release_agent_path))
766 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
767 mutex_unlock(&cgroup_mutex);
768 return 0;
771 struct cgroup_sb_opts {
772 unsigned long subsys_bits;
773 unsigned long flags;
774 char *release_agent;
777 /* Convert a hierarchy specifier into a bitmask of subsystems and
778 * flags. */
779 static int parse_cgroupfs_options(char *data,
780 struct cgroup_sb_opts *opts)
782 char *token, *o = data ?: "all";
784 opts->subsys_bits = 0;
785 opts->flags = 0;
786 opts->release_agent = NULL;
788 while ((token = strsep(&o, ",")) != NULL) {
789 if (!*token)
790 return -EINVAL;
791 if (!strcmp(token, "all")) {
792 /* Add all non-disabled subsystems */
793 int i;
794 opts->subsys_bits = 0;
795 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
796 struct cgroup_subsys *ss = subsys[i];
797 if (!ss->disabled)
798 opts->subsys_bits |= 1ul << i;
800 } else if (!strcmp(token, "noprefix")) {
801 set_bit(ROOT_NOPREFIX, &opts->flags);
802 } else if (!strncmp(token, "release_agent=", 14)) {
803 /* Specifying two release agents is forbidden */
804 if (opts->release_agent)
805 return -EINVAL;
806 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
807 if (!opts->release_agent)
808 return -ENOMEM;
809 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
810 opts->release_agent[PATH_MAX - 1] = 0;
811 } else {
812 struct cgroup_subsys *ss;
813 int i;
814 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
815 ss = subsys[i];
816 if (!strcmp(token, ss->name)) {
817 if (!ss->disabled)
818 set_bit(i, &opts->subsys_bits);
819 break;
822 if (i == CGROUP_SUBSYS_COUNT)
823 return -ENOENT;
827 /* We can't have an empty hierarchy */
828 if (!opts->subsys_bits)
829 return -EINVAL;
831 return 0;
834 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
836 int ret = 0;
837 struct cgroupfs_root *root = sb->s_fs_info;
838 struct cgroup *cgrp = &root->top_cgroup;
839 struct cgroup_sb_opts opts;
841 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
842 mutex_lock(&cgroup_mutex);
844 /* See what subsystems are wanted */
845 ret = parse_cgroupfs_options(data, &opts);
846 if (ret)
847 goto out_unlock;
849 /* Don't allow flags to change at remount */
850 if (opts.flags != root->flags) {
851 ret = -EINVAL;
852 goto out_unlock;
855 ret = rebind_subsystems(root, opts.subsys_bits);
857 /* (re)populate subsystem files */
858 if (!ret)
859 cgroup_populate_dir(cgrp);
861 if (opts.release_agent)
862 strcpy(root->release_agent_path, opts.release_agent);
863 out_unlock:
864 if (opts.release_agent)
865 kfree(opts.release_agent);
866 mutex_unlock(&cgroup_mutex);
867 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
868 return ret;
871 static struct super_operations cgroup_ops = {
872 .statfs = simple_statfs,
873 .drop_inode = generic_delete_inode,
874 .show_options = cgroup_show_options,
875 .remount_fs = cgroup_remount,
878 static void init_cgroup_root(struct cgroupfs_root *root)
880 struct cgroup *cgrp = &root->top_cgroup;
881 INIT_LIST_HEAD(&root->subsys_list);
882 INIT_LIST_HEAD(&root->root_list);
883 root->number_of_cgroups = 1;
884 cgrp->root = root;
885 cgrp->top_cgroup = cgrp;
886 INIT_LIST_HEAD(&cgrp->sibling);
887 INIT_LIST_HEAD(&cgrp->children);
888 INIT_LIST_HEAD(&cgrp->css_sets);
889 INIT_LIST_HEAD(&cgrp->release_list);
892 static int cgroup_test_super(struct super_block *sb, void *data)
894 struct cgroupfs_root *new = data;
895 struct cgroupfs_root *root = sb->s_fs_info;
897 /* First check subsystems */
898 if (new->subsys_bits != root->subsys_bits)
899 return 0;
901 /* Next check flags */
902 if (new->flags != root->flags)
903 return 0;
905 return 1;
908 static int cgroup_set_super(struct super_block *sb, void *data)
910 int ret;
911 struct cgroupfs_root *root = data;
913 ret = set_anon_super(sb, NULL);
914 if (ret)
915 return ret;
917 sb->s_fs_info = root;
918 root->sb = sb;
920 sb->s_blocksize = PAGE_CACHE_SIZE;
921 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
922 sb->s_magic = CGROUP_SUPER_MAGIC;
923 sb->s_op = &cgroup_ops;
925 return 0;
928 static int cgroup_get_rootdir(struct super_block *sb)
930 struct inode *inode =
931 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
932 struct dentry *dentry;
934 if (!inode)
935 return -ENOMEM;
937 inode->i_fop = &simple_dir_operations;
938 inode->i_op = &cgroup_dir_inode_operations;
939 /* directories start off with i_nlink == 2 (for "." entry) */
940 inc_nlink(inode);
941 dentry = d_alloc_root(inode);
942 if (!dentry) {
943 iput(inode);
944 return -ENOMEM;
946 sb->s_root = dentry;
947 return 0;
950 static int cgroup_get_sb(struct file_system_type *fs_type,
951 int flags, const char *unused_dev_name,
952 void *data, struct vfsmount *mnt)
954 struct cgroup_sb_opts opts;
955 int ret = 0;
956 struct super_block *sb;
957 struct cgroupfs_root *root;
958 struct list_head tmp_cg_links;
959 INIT_LIST_HEAD(&tmp_cg_links);
961 /* First find the desired set of subsystems */
962 ret = parse_cgroupfs_options(data, &opts);
963 if (ret) {
964 if (opts.release_agent)
965 kfree(opts.release_agent);
966 return ret;
969 root = kzalloc(sizeof(*root), GFP_KERNEL);
970 if (!root) {
971 if (opts.release_agent)
972 kfree(opts.release_agent);
973 return -ENOMEM;
976 init_cgroup_root(root);
977 root->subsys_bits = opts.subsys_bits;
978 root->flags = opts.flags;
979 if (opts.release_agent) {
980 strcpy(root->release_agent_path, opts.release_agent);
981 kfree(opts.release_agent);
984 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
986 if (IS_ERR(sb)) {
987 kfree(root);
988 return PTR_ERR(sb);
991 if (sb->s_fs_info != root) {
992 /* Reusing an existing superblock */
993 BUG_ON(sb->s_root == NULL);
994 kfree(root);
995 root = NULL;
996 } else {
997 /* New superblock */
998 struct cgroup *cgrp = &root->top_cgroup;
999 struct inode *inode;
1000 int i;
1002 BUG_ON(sb->s_root != NULL);
1004 ret = cgroup_get_rootdir(sb);
1005 if (ret)
1006 goto drop_new_super;
1007 inode = sb->s_root->d_inode;
1009 mutex_lock(&inode->i_mutex);
1010 mutex_lock(&cgroup_mutex);
1013 * We're accessing css_set_count without locking
1014 * css_set_lock here, but that's OK - it can only be
1015 * increased by someone holding cgroup_lock, and
1016 * that's us. The worst that can happen is that we
1017 * have some link structures left over
1019 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1020 if (ret) {
1021 mutex_unlock(&cgroup_mutex);
1022 mutex_unlock(&inode->i_mutex);
1023 goto drop_new_super;
1026 ret = rebind_subsystems(root, root->subsys_bits);
1027 if (ret == -EBUSY) {
1028 mutex_unlock(&cgroup_mutex);
1029 mutex_unlock(&inode->i_mutex);
1030 goto drop_new_super;
1033 /* EBUSY should be the only error here */
1034 BUG_ON(ret);
1036 list_add(&root->root_list, &roots);
1037 root_count++;
1039 sb->s_root->d_fsdata = &root->top_cgroup;
1040 root->top_cgroup.dentry = sb->s_root;
1042 /* Link the top cgroup in this hierarchy into all
1043 * the css_set objects */
1044 write_lock(&css_set_lock);
1045 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1046 struct hlist_head *hhead = &css_set_table[i];
1047 struct hlist_node *node;
1048 struct css_set *cg;
1050 hlist_for_each_entry(cg, node, hhead, hlist) {
1051 struct cg_cgroup_link *link;
1053 BUG_ON(list_empty(&tmp_cg_links));
1054 link = list_entry(tmp_cg_links.next,
1055 struct cg_cgroup_link,
1056 cgrp_link_list);
1057 list_del(&link->cgrp_link_list);
1058 link->cg = cg;
1059 list_add(&link->cgrp_link_list,
1060 &root->top_cgroup.css_sets);
1061 list_add(&link->cg_link_list, &cg->cg_links);
1064 write_unlock(&css_set_lock);
1066 free_cg_links(&tmp_cg_links);
1068 BUG_ON(!list_empty(&cgrp->sibling));
1069 BUG_ON(!list_empty(&cgrp->children));
1070 BUG_ON(root->number_of_cgroups != 1);
1072 cgroup_populate_dir(cgrp);
1073 mutex_unlock(&inode->i_mutex);
1074 mutex_unlock(&cgroup_mutex);
1077 return simple_set_mnt(mnt, sb);
1079 drop_new_super:
1080 up_write(&sb->s_umount);
1081 deactivate_super(sb);
1082 free_cg_links(&tmp_cg_links);
1083 return ret;
1086 static void cgroup_kill_sb(struct super_block *sb) {
1087 struct cgroupfs_root *root = sb->s_fs_info;
1088 struct cgroup *cgrp = &root->top_cgroup;
1089 int ret;
1090 struct cg_cgroup_link *link;
1091 struct cg_cgroup_link *saved_link;
1093 BUG_ON(!root);
1095 BUG_ON(root->number_of_cgroups != 1);
1096 BUG_ON(!list_empty(&cgrp->children));
1097 BUG_ON(!list_empty(&cgrp->sibling));
1099 mutex_lock(&cgroup_mutex);
1101 /* Rebind all subsystems back to the default hierarchy */
1102 ret = rebind_subsystems(root, 0);
1103 /* Shouldn't be able to fail ... */
1104 BUG_ON(ret);
1107 * Release all the links from css_sets to this hierarchy's
1108 * root cgroup
1110 write_lock(&css_set_lock);
1112 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1113 cgrp_link_list) {
1114 list_del(&link->cg_link_list);
1115 list_del(&link->cgrp_link_list);
1116 kfree(link);
1118 write_unlock(&css_set_lock);
1120 if (!list_empty(&root->root_list)) {
1121 list_del(&root->root_list);
1122 root_count--;
1124 mutex_unlock(&cgroup_mutex);
1126 kfree(root);
1127 kill_litter_super(sb);
1130 static struct file_system_type cgroup_fs_type = {
1131 .name = "cgroup",
1132 .get_sb = cgroup_get_sb,
1133 .kill_sb = cgroup_kill_sb,
1136 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1138 return dentry->d_fsdata;
1141 static inline struct cftype *__d_cft(struct dentry *dentry)
1143 return dentry->d_fsdata;
1147 * cgroup_path - generate the path of a cgroup
1148 * @cgrp: the cgroup in question
1149 * @buf: the buffer to write the path into
1150 * @buflen: the length of the buffer
1152 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1153 * Returns 0 on success, -errno on error.
1155 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1157 char *start;
1159 if (cgrp == dummytop) {
1161 * Inactive subsystems have no dentry for their root
1162 * cgroup
1164 strcpy(buf, "/");
1165 return 0;
1168 start = buf + buflen;
1170 *--start = '\0';
1171 for (;;) {
1172 int len = cgrp->dentry->d_name.len;
1173 if ((start -= len) < buf)
1174 return -ENAMETOOLONG;
1175 memcpy(start, cgrp->dentry->d_name.name, len);
1176 cgrp = cgrp->parent;
1177 if (!cgrp)
1178 break;
1179 if (!cgrp->parent)
1180 continue;
1181 if (--start < buf)
1182 return -ENAMETOOLONG;
1183 *start = '/';
1185 memmove(buf, start, buf + buflen - start);
1186 return 0;
1190 * Return the first subsystem attached to a cgroup's hierarchy, and
1191 * its subsystem id.
1194 static void get_first_subsys(const struct cgroup *cgrp,
1195 struct cgroup_subsys_state **css, int *subsys_id)
1197 const struct cgroupfs_root *root = cgrp->root;
1198 const struct cgroup_subsys *test_ss;
1199 BUG_ON(list_empty(&root->subsys_list));
1200 test_ss = list_entry(root->subsys_list.next,
1201 struct cgroup_subsys, sibling);
1202 if (css) {
1203 *css = cgrp->subsys[test_ss->subsys_id];
1204 BUG_ON(!*css);
1206 if (subsys_id)
1207 *subsys_id = test_ss->subsys_id;
1211 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1212 * @cgrp: the cgroup the task is attaching to
1213 * @tsk: the task to be attached
1215 * Call holding cgroup_mutex. May take task_lock of
1216 * the task 'tsk' during call.
1218 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1220 int retval = 0;
1221 struct cgroup_subsys *ss;
1222 struct cgroup *oldcgrp;
1223 struct css_set *cg = tsk->cgroups;
1224 struct css_set *newcg;
1225 struct cgroupfs_root *root = cgrp->root;
1226 int subsys_id;
1228 get_first_subsys(cgrp, NULL, &subsys_id);
1230 /* Nothing to do if the task is already in that cgroup */
1231 oldcgrp = task_cgroup(tsk, subsys_id);
1232 if (cgrp == oldcgrp)
1233 return 0;
1235 for_each_subsys(root, ss) {
1236 if (ss->can_attach) {
1237 retval = ss->can_attach(ss, cgrp, tsk);
1238 if (retval)
1239 return retval;
1244 * Locate or allocate a new css_set for this task,
1245 * based on its final set of cgroups
1247 newcg = find_css_set(cg, cgrp);
1248 if (!newcg)
1249 return -ENOMEM;
1251 task_lock(tsk);
1252 if (tsk->flags & PF_EXITING) {
1253 task_unlock(tsk);
1254 put_css_set(newcg);
1255 return -ESRCH;
1257 rcu_assign_pointer(tsk->cgroups, newcg);
1258 task_unlock(tsk);
1260 /* Update the css_set linked lists if we're using them */
1261 write_lock(&css_set_lock);
1262 if (!list_empty(&tsk->cg_list)) {
1263 list_del(&tsk->cg_list);
1264 list_add(&tsk->cg_list, &newcg->tasks);
1266 write_unlock(&css_set_lock);
1268 for_each_subsys(root, ss) {
1269 if (ss->attach)
1270 ss->attach(ss, cgrp, oldcgrp, tsk);
1272 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1273 synchronize_rcu();
1274 put_css_set(cg);
1275 return 0;
1279 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1280 * held. May take task_lock of task
1282 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1284 struct task_struct *tsk;
1285 int ret;
1287 if (pid) {
1288 rcu_read_lock();
1289 tsk = find_task_by_vpid(pid);
1290 if (!tsk || tsk->flags & PF_EXITING) {
1291 rcu_read_unlock();
1292 return -ESRCH;
1294 get_task_struct(tsk);
1295 rcu_read_unlock();
1297 if ((current->euid) && (current->euid != tsk->uid)
1298 && (current->euid != tsk->suid)) {
1299 put_task_struct(tsk);
1300 return -EACCES;
1302 } else {
1303 tsk = current;
1304 get_task_struct(tsk);
1307 ret = cgroup_attach_task(cgrp, tsk);
1308 put_task_struct(tsk);
1309 return ret;
1312 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1314 int ret;
1315 if (!cgroup_lock_live_group(cgrp))
1316 return -ENODEV;
1317 ret = attach_task_by_pid(cgrp, pid);
1318 cgroup_unlock();
1319 return ret;
1322 /* The various types of files and directories in a cgroup file system */
1323 enum cgroup_filetype {
1324 FILE_ROOT,
1325 FILE_DIR,
1326 FILE_TASKLIST,
1327 FILE_NOTIFY_ON_RELEASE,
1328 FILE_RELEASE_AGENT,
1332 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1333 * @cgrp: the cgroup to be checked for liveness
1335 * On success, returns true; the lock should be later released with
1336 * cgroup_unlock(). On failure returns false with no lock held.
1338 bool cgroup_lock_live_group(struct cgroup *cgrp)
1340 mutex_lock(&cgroup_mutex);
1341 if (cgroup_is_removed(cgrp)) {
1342 mutex_unlock(&cgroup_mutex);
1343 return false;
1345 return true;
1348 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1349 const char *buffer)
1351 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1352 if (!cgroup_lock_live_group(cgrp))
1353 return -ENODEV;
1354 strcpy(cgrp->root->release_agent_path, buffer);
1355 cgroup_unlock();
1356 return 0;
1359 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1360 struct seq_file *seq)
1362 if (!cgroup_lock_live_group(cgrp))
1363 return -ENODEV;
1364 seq_puts(seq, cgrp->root->release_agent_path);
1365 seq_putc(seq, '\n');
1366 cgroup_unlock();
1367 return 0;
1370 /* A buffer size big enough for numbers or short strings */
1371 #define CGROUP_LOCAL_BUFFER_SIZE 64
1373 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1374 struct file *file,
1375 const char __user *userbuf,
1376 size_t nbytes, loff_t *unused_ppos)
1378 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1379 int retval = 0;
1380 char *end;
1382 if (!nbytes)
1383 return -EINVAL;
1384 if (nbytes >= sizeof(buffer))
1385 return -E2BIG;
1386 if (copy_from_user(buffer, userbuf, nbytes))
1387 return -EFAULT;
1389 buffer[nbytes] = 0; /* nul-terminate */
1390 strstrip(buffer);
1391 if (cft->write_u64) {
1392 u64 val = simple_strtoull(buffer, &end, 0);
1393 if (*end)
1394 return -EINVAL;
1395 retval = cft->write_u64(cgrp, cft, val);
1396 } else {
1397 s64 val = simple_strtoll(buffer, &end, 0);
1398 if (*end)
1399 return -EINVAL;
1400 retval = cft->write_s64(cgrp, cft, val);
1402 if (!retval)
1403 retval = nbytes;
1404 return retval;
1407 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1408 struct file *file,
1409 const char __user *userbuf,
1410 size_t nbytes, loff_t *unused_ppos)
1412 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1413 int retval = 0;
1414 size_t max_bytes = cft->max_write_len;
1415 char *buffer = local_buffer;
1417 if (!max_bytes)
1418 max_bytes = sizeof(local_buffer) - 1;
1419 if (nbytes >= max_bytes)
1420 return -E2BIG;
1421 /* Allocate a dynamic buffer if we need one */
1422 if (nbytes >= sizeof(local_buffer)) {
1423 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1424 if (buffer == NULL)
1425 return -ENOMEM;
1427 if (nbytes && copy_from_user(buffer, userbuf, nbytes))
1428 return -EFAULT;
1430 buffer[nbytes] = 0; /* nul-terminate */
1431 strstrip(buffer);
1432 retval = cft->write_string(cgrp, cft, buffer);
1433 if (!retval)
1434 retval = nbytes;
1435 if (buffer != local_buffer)
1436 kfree(buffer);
1437 return retval;
1440 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1441 size_t nbytes, loff_t *ppos)
1443 struct cftype *cft = __d_cft(file->f_dentry);
1444 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1446 if (!cft || cgroup_is_removed(cgrp))
1447 return -ENODEV;
1448 if (cft->write)
1449 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1450 if (cft->write_u64 || cft->write_s64)
1451 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1452 if (cft->write_string)
1453 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1454 if (cft->trigger) {
1455 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1456 return ret ? ret : nbytes;
1458 return -EINVAL;
1461 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1462 struct file *file,
1463 char __user *buf, size_t nbytes,
1464 loff_t *ppos)
1466 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1467 u64 val = cft->read_u64(cgrp, cft);
1468 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1470 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1473 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1474 struct file *file,
1475 char __user *buf, size_t nbytes,
1476 loff_t *ppos)
1478 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1479 s64 val = cft->read_s64(cgrp, cft);
1480 int len = sprintf(tmp, "%lld\n", (long long) val);
1482 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1485 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1486 size_t nbytes, loff_t *ppos)
1488 struct cftype *cft = __d_cft(file->f_dentry);
1489 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1491 if (!cft || cgroup_is_removed(cgrp))
1492 return -ENODEV;
1494 if (cft->read)
1495 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1496 if (cft->read_u64)
1497 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1498 if (cft->read_s64)
1499 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1500 return -EINVAL;
1504 * seqfile ops/methods for returning structured data. Currently just
1505 * supports string->u64 maps, but can be extended in future.
1508 struct cgroup_seqfile_state {
1509 struct cftype *cft;
1510 struct cgroup *cgroup;
1513 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1515 struct seq_file *sf = cb->state;
1516 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1519 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1521 struct cgroup_seqfile_state *state = m->private;
1522 struct cftype *cft = state->cft;
1523 if (cft->read_map) {
1524 struct cgroup_map_cb cb = {
1525 .fill = cgroup_map_add,
1526 .state = m,
1528 return cft->read_map(state->cgroup, cft, &cb);
1530 return cft->read_seq_string(state->cgroup, cft, m);
1533 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1535 struct seq_file *seq = file->private_data;
1536 kfree(seq->private);
1537 return single_release(inode, file);
1540 static struct file_operations cgroup_seqfile_operations = {
1541 .read = seq_read,
1542 .write = cgroup_file_write,
1543 .llseek = seq_lseek,
1544 .release = cgroup_seqfile_release,
1547 static int cgroup_file_open(struct inode *inode, struct file *file)
1549 int err;
1550 struct cftype *cft;
1552 err = generic_file_open(inode, file);
1553 if (err)
1554 return err;
1556 cft = __d_cft(file->f_dentry);
1557 if (!cft)
1558 return -ENODEV;
1559 if (cft->read_map || cft->read_seq_string) {
1560 struct cgroup_seqfile_state *state =
1561 kzalloc(sizeof(*state), GFP_USER);
1562 if (!state)
1563 return -ENOMEM;
1564 state->cft = cft;
1565 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1566 file->f_op = &cgroup_seqfile_operations;
1567 err = single_open(file, cgroup_seqfile_show, state);
1568 if (err < 0)
1569 kfree(state);
1570 } else if (cft->open)
1571 err = cft->open(inode, file);
1572 else
1573 err = 0;
1575 return err;
1578 static int cgroup_file_release(struct inode *inode, struct file *file)
1580 struct cftype *cft = __d_cft(file->f_dentry);
1581 if (cft->release)
1582 return cft->release(inode, file);
1583 return 0;
1587 * cgroup_rename - Only allow simple rename of directories in place.
1589 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1590 struct inode *new_dir, struct dentry *new_dentry)
1592 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1593 return -ENOTDIR;
1594 if (new_dentry->d_inode)
1595 return -EEXIST;
1596 if (old_dir != new_dir)
1597 return -EIO;
1598 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1601 static struct file_operations cgroup_file_operations = {
1602 .read = cgroup_file_read,
1603 .write = cgroup_file_write,
1604 .llseek = generic_file_llseek,
1605 .open = cgroup_file_open,
1606 .release = cgroup_file_release,
1609 static struct inode_operations cgroup_dir_inode_operations = {
1610 .lookup = simple_lookup,
1611 .mkdir = cgroup_mkdir,
1612 .rmdir = cgroup_rmdir,
1613 .rename = cgroup_rename,
1616 static int cgroup_create_file(struct dentry *dentry, int mode,
1617 struct super_block *sb)
1619 static struct dentry_operations cgroup_dops = {
1620 .d_iput = cgroup_diput,
1623 struct inode *inode;
1625 if (!dentry)
1626 return -ENOENT;
1627 if (dentry->d_inode)
1628 return -EEXIST;
1630 inode = cgroup_new_inode(mode, sb);
1631 if (!inode)
1632 return -ENOMEM;
1634 if (S_ISDIR(mode)) {
1635 inode->i_op = &cgroup_dir_inode_operations;
1636 inode->i_fop = &simple_dir_operations;
1638 /* start off with i_nlink == 2 (for "." entry) */
1639 inc_nlink(inode);
1641 /* start with the directory inode held, so that we can
1642 * populate it without racing with another mkdir */
1643 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1644 } else if (S_ISREG(mode)) {
1645 inode->i_size = 0;
1646 inode->i_fop = &cgroup_file_operations;
1648 dentry->d_op = &cgroup_dops;
1649 d_instantiate(dentry, inode);
1650 dget(dentry); /* Extra count - pin the dentry in core */
1651 return 0;
1655 * cgroup_create_dir - create a directory for an object.
1656 * @cgrp: the cgroup we create the directory for. It must have a valid
1657 * ->parent field. And we are going to fill its ->dentry field.
1658 * @dentry: dentry of the new cgroup
1659 * @mode: mode to set on new directory.
1661 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1662 int mode)
1664 struct dentry *parent;
1665 int error = 0;
1667 parent = cgrp->parent->dentry;
1668 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1669 if (!error) {
1670 dentry->d_fsdata = cgrp;
1671 inc_nlink(parent->d_inode);
1672 cgrp->dentry = dentry;
1673 dget(dentry);
1675 dput(dentry);
1677 return error;
1680 int cgroup_add_file(struct cgroup *cgrp,
1681 struct cgroup_subsys *subsys,
1682 const struct cftype *cft)
1684 struct dentry *dir = cgrp->dentry;
1685 struct dentry *dentry;
1686 int error;
1688 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1689 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1690 strcpy(name, subsys->name);
1691 strcat(name, ".");
1693 strcat(name, cft->name);
1694 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1695 dentry = lookup_one_len(name, dir, strlen(name));
1696 if (!IS_ERR(dentry)) {
1697 error = cgroup_create_file(dentry, 0644 | S_IFREG,
1698 cgrp->root->sb);
1699 if (!error)
1700 dentry->d_fsdata = (void *)cft;
1701 dput(dentry);
1702 } else
1703 error = PTR_ERR(dentry);
1704 return error;
1707 int cgroup_add_files(struct cgroup *cgrp,
1708 struct cgroup_subsys *subsys,
1709 const struct cftype cft[],
1710 int count)
1712 int i, err;
1713 for (i = 0; i < count; i++) {
1714 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1715 if (err)
1716 return err;
1718 return 0;
1722 * cgroup_task_count - count the number of tasks in a cgroup.
1723 * @cgrp: the cgroup in question
1725 * Return the number of tasks in the cgroup.
1727 int cgroup_task_count(const struct cgroup *cgrp)
1729 int count = 0;
1730 struct cg_cgroup_link *link;
1732 read_lock(&css_set_lock);
1733 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1734 count += atomic_read(&link->cg->ref.refcount);
1736 read_unlock(&css_set_lock);
1737 return count;
1741 * Advance a list_head iterator. The iterator should be positioned at
1742 * the start of a css_set
1744 static void cgroup_advance_iter(struct cgroup *cgrp,
1745 struct cgroup_iter *it)
1747 struct list_head *l = it->cg_link;
1748 struct cg_cgroup_link *link;
1749 struct css_set *cg;
1751 /* Advance to the next non-empty css_set */
1752 do {
1753 l = l->next;
1754 if (l == &cgrp->css_sets) {
1755 it->cg_link = NULL;
1756 return;
1758 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1759 cg = link->cg;
1760 } while (list_empty(&cg->tasks));
1761 it->cg_link = l;
1762 it->task = cg->tasks.next;
1766 * To reduce the fork() overhead for systems that are not actually
1767 * using their cgroups capability, we don't maintain the lists running
1768 * through each css_set to its tasks until we see the list actually
1769 * used - in other words after the first call to cgroup_iter_start().
1771 * The tasklist_lock is not held here, as do_each_thread() and
1772 * while_each_thread() are protected by RCU.
1774 static void cgroup_enable_task_cg_lists(void)
1776 struct task_struct *p, *g;
1777 write_lock(&css_set_lock);
1778 use_task_css_set_links = 1;
1779 do_each_thread(g, p) {
1780 task_lock(p);
1782 * We should check if the process is exiting, otherwise
1783 * it will race with cgroup_exit() in that the list
1784 * entry won't be deleted though the process has exited.
1786 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1787 list_add(&p->cg_list, &p->cgroups->tasks);
1788 task_unlock(p);
1789 } while_each_thread(g, p);
1790 write_unlock(&css_set_lock);
1793 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1796 * The first time anyone tries to iterate across a cgroup,
1797 * we need to enable the list linking each css_set to its
1798 * tasks, and fix up all existing tasks.
1800 if (!use_task_css_set_links)
1801 cgroup_enable_task_cg_lists();
1803 read_lock(&css_set_lock);
1804 it->cg_link = &cgrp->css_sets;
1805 cgroup_advance_iter(cgrp, it);
1808 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1809 struct cgroup_iter *it)
1811 struct task_struct *res;
1812 struct list_head *l = it->task;
1814 /* If the iterator cg is NULL, we have no tasks */
1815 if (!it->cg_link)
1816 return NULL;
1817 res = list_entry(l, struct task_struct, cg_list);
1818 /* Advance iterator to find next entry */
1819 l = l->next;
1820 if (l == &res->cgroups->tasks) {
1821 /* We reached the end of this task list - move on to
1822 * the next cg_cgroup_link */
1823 cgroup_advance_iter(cgrp, it);
1824 } else {
1825 it->task = l;
1827 return res;
1830 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1832 read_unlock(&css_set_lock);
1835 static inline int started_after_time(struct task_struct *t1,
1836 struct timespec *time,
1837 struct task_struct *t2)
1839 int start_diff = timespec_compare(&t1->start_time, time);
1840 if (start_diff > 0) {
1841 return 1;
1842 } else if (start_diff < 0) {
1843 return 0;
1844 } else {
1846 * Arbitrarily, if two processes started at the same
1847 * time, we'll say that the lower pointer value
1848 * started first. Note that t2 may have exited by now
1849 * so this may not be a valid pointer any longer, but
1850 * that's fine - it still serves to distinguish
1851 * between two tasks started (effectively) simultaneously.
1853 return t1 > t2;
1858 * This function is a callback from heap_insert() and is used to order
1859 * the heap.
1860 * In this case we order the heap in descending task start time.
1862 static inline int started_after(void *p1, void *p2)
1864 struct task_struct *t1 = p1;
1865 struct task_struct *t2 = p2;
1866 return started_after_time(t1, &t2->start_time, t2);
1870 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1871 * @scan: struct cgroup_scanner containing arguments for the scan
1873 * Arguments include pointers to callback functions test_task() and
1874 * process_task().
1875 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1876 * and if it returns true, call process_task() for it also.
1877 * The test_task pointer may be NULL, meaning always true (select all tasks).
1878 * Effectively duplicates cgroup_iter_{start,next,end}()
1879 * but does not lock css_set_lock for the call to process_task().
1880 * The struct cgroup_scanner may be embedded in any structure of the caller's
1881 * creation.
1882 * It is guaranteed that process_task() will act on every task that
1883 * is a member of the cgroup for the duration of this call. This
1884 * function may or may not call process_task() for tasks that exit
1885 * or move to a different cgroup during the call, or are forked or
1886 * move into the cgroup during the call.
1888 * Note that test_task() may be called with locks held, and may in some
1889 * situations be called multiple times for the same task, so it should
1890 * be cheap.
1891 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1892 * pre-allocated and will be used for heap operations (and its "gt" member will
1893 * be overwritten), else a temporary heap will be used (allocation of which
1894 * may cause this function to fail).
1896 int cgroup_scan_tasks(struct cgroup_scanner *scan)
1898 int retval, i;
1899 struct cgroup_iter it;
1900 struct task_struct *p, *dropped;
1901 /* Never dereference latest_task, since it's not refcounted */
1902 struct task_struct *latest_task = NULL;
1903 struct ptr_heap tmp_heap;
1904 struct ptr_heap *heap;
1905 struct timespec latest_time = { 0, 0 };
1907 if (scan->heap) {
1908 /* The caller supplied our heap and pre-allocated its memory */
1909 heap = scan->heap;
1910 heap->gt = &started_after;
1911 } else {
1912 /* We need to allocate our own heap memory */
1913 heap = &tmp_heap;
1914 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1915 if (retval)
1916 /* cannot allocate the heap */
1917 return retval;
1920 again:
1922 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1923 * to determine which are of interest, and using the scanner's
1924 * "process_task" callback to process any of them that need an update.
1925 * Since we don't want to hold any locks during the task updates,
1926 * gather tasks to be processed in a heap structure.
1927 * The heap is sorted by descending task start time.
1928 * If the statically-sized heap fills up, we overflow tasks that
1929 * started later, and in future iterations only consider tasks that
1930 * started after the latest task in the previous pass. This
1931 * guarantees forward progress and that we don't miss any tasks.
1933 heap->size = 0;
1934 cgroup_iter_start(scan->cg, &it);
1935 while ((p = cgroup_iter_next(scan->cg, &it))) {
1937 * Only affect tasks that qualify per the caller's callback,
1938 * if he provided one
1940 if (scan->test_task && !scan->test_task(p, scan))
1941 continue;
1943 * Only process tasks that started after the last task
1944 * we processed
1946 if (!started_after_time(p, &latest_time, latest_task))
1947 continue;
1948 dropped = heap_insert(heap, p);
1949 if (dropped == NULL) {
1951 * The new task was inserted; the heap wasn't
1952 * previously full
1954 get_task_struct(p);
1955 } else if (dropped != p) {
1957 * The new task was inserted, and pushed out a
1958 * different task
1960 get_task_struct(p);
1961 put_task_struct(dropped);
1964 * Else the new task was newer than anything already in
1965 * the heap and wasn't inserted
1968 cgroup_iter_end(scan->cg, &it);
1970 if (heap->size) {
1971 for (i = 0; i < heap->size; i++) {
1972 struct task_struct *q = heap->ptrs[i];
1973 if (i == 0) {
1974 latest_time = q->start_time;
1975 latest_task = q;
1977 /* Process the task per the caller's callback */
1978 scan->process_task(q, scan);
1979 put_task_struct(q);
1982 * If we had to process any tasks at all, scan again
1983 * in case some of them were in the middle of forking
1984 * children that didn't get processed.
1985 * Not the most efficient way to do it, but it avoids
1986 * having to take callback_mutex in the fork path
1988 goto again;
1990 if (heap == &tmp_heap)
1991 heap_free(&tmp_heap);
1992 return 0;
1996 * Stuff for reading the 'tasks' file.
1998 * Reading this file can return large amounts of data if a cgroup has
1999 * *lots* of attached tasks. So it may need several calls to read(),
2000 * but we cannot guarantee that the information we produce is correct
2001 * unless we produce it entirely atomically.
2003 * Upon tasks file open(), a struct ctr_struct is allocated, that
2004 * will have a pointer to an array (also allocated here). The struct
2005 * ctr_struct * is stored in file->private_data. Its resources will
2006 * be freed by release() when the file is closed. The array is used
2007 * to sprintf the PIDs and then used by read().
2009 struct ctr_struct {
2010 char *buf;
2011 int bufsz;
2015 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2016 * 'cgrp'. Return actual number of pids loaded. No need to
2017 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2018 * read section, so the css_set can't go away, and is
2019 * immutable after creation.
2021 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2023 int n = 0;
2024 struct cgroup_iter it;
2025 struct task_struct *tsk;
2026 cgroup_iter_start(cgrp, &it);
2027 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2028 if (unlikely(n == npids))
2029 break;
2030 pidarray[n++] = task_pid_vnr(tsk);
2032 cgroup_iter_end(cgrp, &it);
2033 return n;
2037 * cgroupstats_build - build and fill cgroupstats
2038 * @stats: cgroupstats to fill information into
2039 * @dentry: A dentry entry belonging to the cgroup for which stats have
2040 * been requested.
2042 * Build and fill cgroupstats so that taskstats can export it to user
2043 * space.
2045 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2047 int ret = -EINVAL;
2048 struct cgroup *cgrp;
2049 struct cgroup_iter it;
2050 struct task_struct *tsk;
2052 * Validate dentry by checking the superblock operations
2054 if (dentry->d_sb->s_op != &cgroup_ops)
2055 goto err;
2057 ret = 0;
2058 cgrp = dentry->d_fsdata;
2059 rcu_read_lock();
2061 cgroup_iter_start(cgrp, &it);
2062 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2063 switch (tsk->state) {
2064 case TASK_RUNNING:
2065 stats->nr_running++;
2066 break;
2067 case TASK_INTERRUPTIBLE:
2068 stats->nr_sleeping++;
2069 break;
2070 case TASK_UNINTERRUPTIBLE:
2071 stats->nr_uninterruptible++;
2072 break;
2073 case TASK_STOPPED:
2074 stats->nr_stopped++;
2075 break;
2076 default:
2077 if (delayacct_is_task_waiting_on_io(tsk))
2078 stats->nr_io_wait++;
2079 break;
2082 cgroup_iter_end(cgrp, &it);
2084 rcu_read_unlock();
2085 err:
2086 return ret;
2089 static int cmppid(const void *a, const void *b)
2091 return *(pid_t *)a - *(pid_t *)b;
2095 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
2096 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
2097 * count 'cnt' of how many chars would be written if buf were large enough.
2099 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
2101 int cnt = 0;
2102 int i;
2104 for (i = 0; i < npids; i++)
2105 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
2106 return cnt;
2110 * Handle an open on 'tasks' file. Prepare a buffer listing the
2111 * process id's of tasks currently attached to the cgroup being opened.
2113 * Does not require any specific cgroup mutexes, and does not take any.
2115 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2117 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2118 struct ctr_struct *ctr;
2119 pid_t *pidarray;
2120 int npids;
2121 char c;
2123 if (!(file->f_mode & FMODE_READ))
2124 return 0;
2126 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
2127 if (!ctr)
2128 goto err0;
2131 * If cgroup gets more users after we read count, we won't have
2132 * enough space - tough. This race is indistinguishable to the
2133 * caller from the case that the additional cgroup users didn't
2134 * show up until sometime later on.
2136 npids = cgroup_task_count(cgrp);
2137 if (npids) {
2138 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2139 if (!pidarray)
2140 goto err1;
2142 npids = pid_array_load(pidarray, npids, cgrp);
2143 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2145 /* Call pid_array_to_buf() twice, first just to get bufsz */
2146 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
2147 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
2148 if (!ctr->buf)
2149 goto err2;
2150 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
2152 kfree(pidarray);
2153 } else {
2154 ctr->buf = NULL;
2155 ctr->bufsz = 0;
2157 file->private_data = ctr;
2158 return 0;
2160 err2:
2161 kfree(pidarray);
2162 err1:
2163 kfree(ctr);
2164 err0:
2165 return -ENOMEM;
2168 static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
2169 struct cftype *cft,
2170 struct file *file, char __user *buf,
2171 size_t nbytes, loff_t *ppos)
2173 struct ctr_struct *ctr = file->private_data;
2175 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
2178 static int cgroup_tasks_release(struct inode *unused_inode,
2179 struct file *file)
2181 struct ctr_struct *ctr;
2183 if (file->f_mode & FMODE_READ) {
2184 ctr = file->private_data;
2185 kfree(ctr->buf);
2186 kfree(ctr);
2188 return 0;
2191 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2192 struct cftype *cft)
2194 return notify_on_release(cgrp);
2197 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2198 struct cftype *cft,
2199 u64 val)
2201 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2202 if (val)
2203 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2204 else
2205 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2206 return 0;
2210 * for the common functions, 'private' gives the type of file
2212 static struct cftype files[] = {
2214 .name = "tasks",
2215 .open = cgroup_tasks_open,
2216 .read = cgroup_tasks_read,
2217 .write_u64 = cgroup_tasks_write,
2218 .release = cgroup_tasks_release,
2219 .private = FILE_TASKLIST,
2223 .name = "notify_on_release",
2224 .read_u64 = cgroup_read_notify_on_release,
2225 .write_u64 = cgroup_write_notify_on_release,
2226 .private = FILE_NOTIFY_ON_RELEASE,
2230 static struct cftype cft_release_agent = {
2231 .name = "release_agent",
2232 .read_seq_string = cgroup_release_agent_show,
2233 .write_string = cgroup_release_agent_write,
2234 .max_write_len = PATH_MAX,
2235 .private = FILE_RELEASE_AGENT,
2238 static int cgroup_populate_dir(struct cgroup *cgrp)
2240 int err;
2241 struct cgroup_subsys *ss;
2243 /* First clear out any existing files */
2244 cgroup_clear_directory(cgrp->dentry);
2246 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2247 if (err < 0)
2248 return err;
2250 if (cgrp == cgrp->top_cgroup) {
2251 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2252 return err;
2255 for_each_subsys(cgrp->root, ss) {
2256 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2257 return err;
2260 return 0;
2263 static void init_cgroup_css(struct cgroup_subsys_state *css,
2264 struct cgroup_subsys *ss,
2265 struct cgroup *cgrp)
2267 css->cgroup = cgrp;
2268 atomic_set(&css->refcnt, 0);
2269 css->flags = 0;
2270 if (cgrp == dummytop)
2271 set_bit(CSS_ROOT, &css->flags);
2272 BUG_ON(cgrp->subsys[ss->subsys_id]);
2273 cgrp->subsys[ss->subsys_id] = css;
2277 * cgroup_create - create a cgroup
2278 * @parent: cgroup that will be parent of the new cgroup
2279 * @dentry: dentry of the new cgroup
2280 * @mode: mode to set on new inode
2282 * Must be called with the mutex on the parent inode held
2284 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2285 int mode)
2287 struct cgroup *cgrp;
2288 struct cgroupfs_root *root = parent->root;
2289 int err = 0;
2290 struct cgroup_subsys *ss;
2291 struct super_block *sb = root->sb;
2293 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2294 if (!cgrp)
2295 return -ENOMEM;
2297 /* Grab a reference on the superblock so the hierarchy doesn't
2298 * get deleted on unmount if there are child cgroups. This
2299 * can be done outside cgroup_mutex, since the sb can't
2300 * disappear while someone has an open control file on the
2301 * fs */
2302 atomic_inc(&sb->s_active);
2304 mutex_lock(&cgroup_mutex);
2306 INIT_LIST_HEAD(&cgrp->sibling);
2307 INIT_LIST_HEAD(&cgrp->children);
2308 INIT_LIST_HEAD(&cgrp->css_sets);
2309 INIT_LIST_HEAD(&cgrp->release_list);
2311 cgrp->parent = parent;
2312 cgrp->root = parent->root;
2313 cgrp->top_cgroup = parent->top_cgroup;
2315 if (notify_on_release(parent))
2316 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2318 for_each_subsys(root, ss) {
2319 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2320 if (IS_ERR(css)) {
2321 err = PTR_ERR(css);
2322 goto err_destroy;
2324 init_cgroup_css(css, ss, cgrp);
2327 list_add(&cgrp->sibling, &cgrp->parent->children);
2328 root->number_of_cgroups++;
2330 err = cgroup_create_dir(cgrp, dentry, mode);
2331 if (err < 0)
2332 goto err_remove;
2334 /* The cgroup directory was pre-locked for us */
2335 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2337 err = cgroup_populate_dir(cgrp);
2338 /* If err < 0, we have a half-filled directory - oh well ;) */
2340 mutex_unlock(&cgroup_mutex);
2341 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2343 return 0;
2345 err_remove:
2347 list_del(&cgrp->sibling);
2348 root->number_of_cgroups--;
2350 err_destroy:
2352 for_each_subsys(root, ss) {
2353 if (cgrp->subsys[ss->subsys_id])
2354 ss->destroy(ss, cgrp);
2357 mutex_unlock(&cgroup_mutex);
2359 /* Release the reference count that we took on the superblock */
2360 deactivate_super(sb);
2362 kfree(cgrp);
2363 return err;
2366 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2368 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2370 /* the vfs holds inode->i_mutex already */
2371 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2374 static inline int cgroup_has_css_refs(struct cgroup *cgrp)
2376 /* Check the reference count on each subsystem. Since we
2377 * already established that there are no tasks in the
2378 * cgroup, if the css refcount is also 0, then there should
2379 * be no outstanding references, so the subsystem is safe to
2380 * destroy. We scan across all subsystems rather than using
2381 * the per-hierarchy linked list of mounted subsystems since
2382 * we can be called via check_for_release() with no
2383 * synchronization other than RCU, and the subsystem linked
2384 * list isn't RCU-safe */
2385 int i;
2386 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2387 struct cgroup_subsys *ss = subsys[i];
2388 struct cgroup_subsys_state *css;
2389 /* Skip subsystems not in this hierarchy */
2390 if (ss->root != cgrp->root)
2391 continue;
2392 css = cgrp->subsys[ss->subsys_id];
2393 /* When called from check_for_release() it's possible
2394 * that by this point the cgroup has been removed
2395 * and the css deleted. But a false-positive doesn't
2396 * matter, since it can only happen if the cgroup
2397 * has been deleted and hence no longer needs the
2398 * release agent to be called anyway. */
2399 if (css && atomic_read(&css->refcnt))
2400 return 1;
2402 return 0;
2405 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2407 struct cgroup *cgrp = dentry->d_fsdata;
2408 struct dentry *d;
2409 struct cgroup *parent;
2410 struct super_block *sb;
2411 struct cgroupfs_root *root;
2413 /* the vfs holds both inode->i_mutex already */
2415 mutex_lock(&cgroup_mutex);
2416 if (atomic_read(&cgrp->count) != 0) {
2417 mutex_unlock(&cgroup_mutex);
2418 return -EBUSY;
2420 if (!list_empty(&cgrp->children)) {
2421 mutex_unlock(&cgroup_mutex);
2422 return -EBUSY;
2425 parent = cgrp->parent;
2426 root = cgrp->root;
2427 sb = root->sb;
2430 * Call pre_destroy handlers of subsys. Notify subsystems
2431 * that rmdir() request comes.
2433 cgroup_call_pre_destroy(cgrp);
2435 if (cgroup_has_css_refs(cgrp)) {
2436 mutex_unlock(&cgroup_mutex);
2437 return -EBUSY;
2440 spin_lock(&release_list_lock);
2441 set_bit(CGRP_REMOVED, &cgrp->flags);
2442 if (!list_empty(&cgrp->release_list))
2443 list_del(&cgrp->release_list);
2444 spin_unlock(&release_list_lock);
2445 /* delete my sibling from parent->children */
2446 list_del(&cgrp->sibling);
2447 spin_lock(&cgrp->dentry->d_lock);
2448 d = dget(cgrp->dentry);
2449 cgrp->dentry = NULL;
2450 spin_unlock(&d->d_lock);
2452 cgroup_d_remove_dir(d);
2453 dput(d);
2455 set_bit(CGRP_RELEASABLE, &parent->flags);
2456 check_for_release(parent);
2458 mutex_unlock(&cgroup_mutex);
2459 return 0;
2462 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2464 struct cgroup_subsys_state *css;
2466 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2468 /* Create the top cgroup state for this subsystem */
2469 ss->root = &rootnode;
2470 css = ss->create(ss, dummytop);
2471 /* We don't handle early failures gracefully */
2472 BUG_ON(IS_ERR(css));
2473 init_cgroup_css(css, ss, dummytop);
2475 /* Update the init_css_set to contain a subsys
2476 * pointer to this state - since the subsystem is
2477 * newly registered, all tasks and hence the
2478 * init_css_set is in the subsystem's top cgroup. */
2479 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2481 need_forkexit_callback |= ss->fork || ss->exit;
2482 need_mm_owner_callback |= !!ss->mm_owner_changed;
2484 /* At system boot, before all subsystems have been
2485 * registered, no tasks have been forked, so we don't
2486 * need to invoke fork callbacks here. */
2487 BUG_ON(!list_empty(&init_task.tasks));
2489 ss->active = 1;
2493 * cgroup_init_early - cgroup initialization at system boot
2495 * Initialize cgroups at system boot, and initialize any
2496 * subsystems that request early init.
2498 int __init cgroup_init_early(void)
2500 int i;
2501 kref_init(&init_css_set.ref);
2502 kref_get(&init_css_set.ref);
2503 INIT_LIST_HEAD(&init_css_set.cg_links);
2504 INIT_LIST_HEAD(&init_css_set.tasks);
2505 INIT_HLIST_NODE(&init_css_set.hlist);
2506 css_set_count = 1;
2507 init_cgroup_root(&rootnode);
2508 list_add(&rootnode.root_list, &roots);
2509 root_count = 1;
2510 init_task.cgroups = &init_css_set;
2512 init_css_set_link.cg = &init_css_set;
2513 list_add(&init_css_set_link.cgrp_link_list,
2514 &rootnode.top_cgroup.css_sets);
2515 list_add(&init_css_set_link.cg_link_list,
2516 &init_css_set.cg_links);
2518 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
2519 INIT_HLIST_HEAD(&css_set_table[i]);
2521 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2522 struct cgroup_subsys *ss = subsys[i];
2524 BUG_ON(!ss->name);
2525 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2526 BUG_ON(!ss->create);
2527 BUG_ON(!ss->destroy);
2528 if (ss->subsys_id != i) {
2529 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2530 ss->name, ss->subsys_id);
2531 BUG();
2534 if (ss->early_init)
2535 cgroup_init_subsys(ss);
2537 return 0;
2541 * cgroup_init - cgroup initialization
2543 * Register cgroup filesystem and /proc file, and initialize
2544 * any subsystems that didn't request early init.
2546 int __init cgroup_init(void)
2548 int err;
2549 int i;
2550 struct hlist_head *hhead;
2552 err = bdi_init(&cgroup_backing_dev_info);
2553 if (err)
2554 return err;
2556 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2557 struct cgroup_subsys *ss = subsys[i];
2558 if (!ss->early_init)
2559 cgroup_init_subsys(ss);
2562 /* Add init_css_set to the hash table */
2563 hhead = css_set_hash(init_css_set.subsys);
2564 hlist_add_head(&init_css_set.hlist, hhead);
2566 err = register_filesystem(&cgroup_fs_type);
2567 if (err < 0)
2568 goto out;
2570 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2572 out:
2573 if (err)
2574 bdi_destroy(&cgroup_backing_dev_info);
2576 return err;
2580 * proc_cgroup_show()
2581 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2582 * - Used for /proc/<pid>/cgroup.
2583 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2584 * doesn't really matter if tsk->cgroup changes after we read it,
2585 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2586 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2587 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2588 * cgroup to top_cgroup.
2591 /* TODO: Use a proper seq_file iterator */
2592 static int proc_cgroup_show(struct seq_file *m, void *v)
2594 struct pid *pid;
2595 struct task_struct *tsk;
2596 char *buf;
2597 int retval;
2598 struct cgroupfs_root *root;
2600 retval = -ENOMEM;
2601 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2602 if (!buf)
2603 goto out;
2605 retval = -ESRCH;
2606 pid = m->private;
2607 tsk = get_pid_task(pid, PIDTYPE_PID);
2608 if (!tsk)
2609 goto out_free;
2611 retval = 0;
2613 mutex_lock(&cgroup_mutex);
2615 for_each_root(root) {
2616 struct cgroup_subsys *ss;
2617 struct cgroup *cgrp;
2618 int subsys_id;
2619 int count = 0;
2621 /* Skip this hierarchy if it has no active subsystems */
2622 if (!root->actual_subsys_bits)
2623 continue;
2624 seq_printf(m, "%lu:", root->subsys_bits);
2625 for_each_subsys(root, ss)
2626 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2627 seq_putc(m, ':');
2628 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2629 cgrp = task_cgroup(tsk, subsys_id);
2630 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2631 if (retval < 0)
2632 goto out_unlock;
2633 seq_puts(m, buf);
2634 seq_putc(m, '\n');
2637 out_unlock:
2638 mutex_unlock(&cgroup_mutex);
2639 put_task_struct(tsk);
2640 out_free:
2641 kfree(buf);
2642 out:
2643 return retval;
2646 static int cgroup_open(struct inode *inode, struct file *file)
2648 struct pid *pid = PROC_I(inode)->pid;
2649 return single_open(file, proc_cgroup_show, pid);
2652 struct file_operations proc_cgroup_operations = {
2653 .open = cgroup_open,
2654 .read = seq_read,
2655 .llseek = seq_lseek,
2656 .release = single_release,
2659 /* Display information about each subsystem and each hierarchy */
2660 static int proc_cgroupstats_show(struct seq_file *m, void *v)
2662 int i;
2664 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2665 mutex_lock(&cgroup_mutex);
2666 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2667 struct cgroup_subsys *ss = subsys[i];
2668 seq_printf(m, "%s\t%lu\t%d\t%d\n",
2669 ss->name, ss->root->subsys_bits,
2670 ss->root->number_of_cgroups, !ss->disabled);
2672 mutex_unlock(&cgroup_mutex);
2673 return 0;
2676 static int cgroupstats_open(struct inode *inode, struct file *file)
2678 return single_open(file, proc_cgroupstats_show, NULL);
2681 static struct file_operations proc_cgroupstats_operations = {
2682 .open = cgroupstats_open,
2683 .read = seq_read,
2684 .llseek = seq_lseek,
2685 .release = single_release,
2689 * cgroup_fork - attach newly forked task to its parents cgroup.
2690 * @child: pointer to task_struct of forking parent process.
2692 * Description: A task inherits its parent's cgroup at fork().
2694 * A pointer to the shared css_set was automatically copied in
2695 * fork.c by dup_task_struct(). However, we ignore that copy, since
2696 * it was not made under the protection of RCU or cgroup_mutex, so
2697 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2698 * have already changed current->cgroups, allowing the previously
2699 * referenced cgroup group to be removed and freed.
2701 * At the point that cgroup_fork() is called, 'current' is the parent
2702 * task, and the passed argument 'child' points to the child task.
2704 void cgroup_fork(struct task_struct *child)
2706 task_lock(current);
2707 child->cgroups = current->cgroups;
2708 get_css_set(child->cgroups);
2709 task_unlock(current);
2710 INIT_LIST_HEAD(&child->cg_list);
2714 * cgroup_fork_callbacks - run fork callbacks
2715 * @child: the new task
2717 * Called on a new task very soon before adding it to the
2718 * tasklist. No need to take any locks since no-one can
2719 * be operating on this task.
2721 void cgroup_fork_callbacks(struct task_struct *child)
2723 if (need_forkexit_callback) {
2724 int i;
2725 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2726 struct cgroup_subsys *ss = subsys[i];
2727 if (ss->fork)
2728 ss->fork(ss, child);
2733 #ifdef CONFIG_MM_OWNER
2735 * cgroup_mm_owner_callbacks - run callbacks when the mm->owner changes
2736 * @p: the new owner
2738 * Called on every change to mm->owner. mm_init_owner() does not
2739 * invoke this routine, since it assigns the mm->owner the first time
2740 * and does not change it.
2742 void cgroup_mm_owner_callbacks(struct task_struct *old, struct task_struct *new)
2744 struct cgroup *oldcgrp, *newcgrp;
2746 if (need_mm_owner_callback) {
2747 int i;
2748 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2749 struct cgroup_subsys *ss = subsys[i];
2750 oldcgrp = task_cgroup(old, ss->subsys_id);
2751 newcgrp = task_cgroup(new, ss->subsys_id);
2752 if (oldcgrp == newcgrp)
2753 continue;
2754 if (ss->mm_owner_changed)
2755 ss->mm_owner_changed(ss, oldcgrp, newcgrp);
2759 #endif /* CONFIG_MM_OWNER */
2762 * cgroup_post_fork - called on a new task after adding it to the task list
2763 * @child: the task in question
2765 * Adds the task to the list running through its css_set if necessary.
2766 * Has to be after the task is visible on the task list in case we race
2767 * with the first call to cgroup_iter_start() - to guarantee that the
2768 * new task ends up on its list.
2770 void cgroup_post_fork(struct task_struct *child)
2772 if (use_task_css_set_links) {
2773 write_lock(&css_set_lock);
2774 if (list_empty(&child->cg_list))
2775 list_add(&child->cg_list, &child->cgroups->tasks);
2776 write_unlock(&css_set_lock);
2780 * cgroup_exit - detach cgroup from exiting task
2781 * @tsk: pointer to task_struct of exiting process
2782 * @run_callback: run exit callbacks?
2784 * Description: Detach cgroup from @tsk and release it.
2786 * Note that cgroups marked notify_on_release force every task in
2787 * them to take the global cgroup_mutex mutex when exiting.
2788 * This could impact scaling on very large systems. Be reluctant to
2789 * use notify_on_release cgroups where very high task exit scaling
2790 * is required on large systems.
2792 * the_top_cgroup_hack:
2794 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2796 * We call cgroup_exit() while the task is still competent to
2797 * handle notify_on_release(), then leave the task attached to the
2798 * root cgroup in each hierarchy for the remainder of its exit.
2800 * To do this properly, we would increment the reference count on
2801 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2802 * code we would add a second cgroup function call, to drop that
2803 * reference. This would just create an unnecessary hot spot on
2804 * the top_cgroup reference count, to no avail.
2806 * Normally, holding a reference to a cgroup without bumping its
2807 * count is unsafe. The cgroup could go away, or someone could
2808 * attach us to a different cgroup, decrementing the count on
2809 * the first cgroup that we never incremented. But in this case,
2810 * top_cgroup isn't going away, and either task has PF_EXITING set,
2811 * which wards off any cgroup_attach_task() attempts, or task is a failed
2812 * fork, never visible to cgroup_attach_task.
2814 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2816 int i;
2817 struct css_set *cg;
2819 if (run_callbacks && need_forkexit_callback) {
2820 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2821 struct cgroup_subsys *ss = subsys[i];
2822 if (ss->exit)
2823 ss->exit(ss, tsk);
2828 * Unlink from the css_set task list if necessary.
2829 * Optimistically check cg_list before taking
2830 * css_set_lock
2832 if (!list_empty(&tsk->cg_list)) {
2833 write_lock(&css_set_lock);
2834 if (!list_empty(&tsk->cg_list))
2835 list_del(&tsk->cg_list);
2836 write_unlock(&css_set_lock);
2839 /* Reassign the task to the init_css_set. */
2840 task_lock(tsk);
2841 cg = tsk->cgroups;
2842 tsk->cgroups = &init_css_set;
2843 task_unlock(tsk);
2844 if (cg)
2845 put_css_set_taskexit(cg);
2849 * cgroup_clone - clone the cgroup the given subsystem is attached to
2850 * @tsk: the task to be moved
2851 * @subsys: the given subsystem
2852 * @nodename: the name for the new cgroup
2854 * Duplicate the current cgroup in the hierarchy that the given
2855 * subsystem is attached to, and move this task into the new
2856 * child.
2858 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
2859 char *nodename)
2861 struct dentry *dentry;
2862 int ret = 0;
2863 struct cgroup *parent, *child;
2864 struct inode *inode;
2865 struct css_set *cg;
2866 struct cgroupfs_root *root;
2867 struct cgroup_subsys *ss;
2869 /* We shouldn't be called by an unregistered subsystem */
2870 BUG_ON(!subsys->active);
2872 /* First figure out what hierarchy and cgroup we're dealing
2873 * with, and pin them so we can drop cgroup_mutex */
2874 mutex_lock(&cgroup_mutex);
2875 again:
2876 root = subsys->root;
2877 if (root == &rootnode) {
2878 printk(KERN_INFO
2879 "Not cloning cgroup for unused subsystem %s\n",
2880 subsys->name);
2881 mutex_unlock(&cgroup_mutex);
2882 return 0;
2884 cg = tsk->cgroups;
2885 parent = task_cgroup(tsk, subsys->subsys_id);
2887 /* Pin the hierarchy */
2888 atomic_inc(&parent->root->sb->s_active);
2890 /* Keep the cgroup alive */
2891 get_css_set(cg);
2892 mutex_unlock(&cgroup_mutex);
2894 /* Now do the VFS work to create a cgroup */
2895 inode = parent->dentry->d_inode;
2897 /* Hold the parent directory mutex across this operation to
2898 * stop anyone else deleting the new cgroup */
2899 mutex_lock(&inode->i_mutex);
2900 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2901 if (IS_ERR(dentry)) {
2902 printk(KERN_INFO
2903 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2904 PTR_ERR(dentry));
2905 ret = PTR_ERR(dentry);
2906 goto out_release;
2909 /* Create the cgroup directory, which also creates the cgroup */
2910 ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2911 child = __d_cgrp(dentry);
2912 dput(dentry);
2913 if (ret) {
2914 printk(KERN_INFO
2915 "Failed to create cgroup %s: %d\n", nodename,
2916 ret);
2917 goto out_release;
2920 if (!child) {
2921 printk(KERN_INFO
2922 "Couldn't find new cgroup %s\n", nodename);
2923 ret = -ENOMEM;
2924 goto out_release;
2927 /* The cgroup now exists. Retake cgroup_mutex and check
2928 * that we're still in the same state that we thought we
2929 * were. */
2930 mutex_lock(&cgroup_mutex);
2931 if ((root != subsys->root) ||
2932 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2933 /* Aargh, we raced ... */
2934 mutex_unlock(&inode->i_mutex);
2935 put_css_set(cg);
2937 deactivate_super(parent->root->sb);
2938 /* The cgroup is still accessible in the VFS, but
2939 * we're not going to try to rmdir() it at this
2940 * point. */
2941 printk(KERN_INFO
2942 "Race in cgroup_clone() - leaking cgroup %s\n",
2943 nodename);
2944 goto again;
2947 /* do any required auto-setup */
2948 for_each_subsys(root, ss) {
2949 if (ss->post_clone)
2950 ss->post_clone(ss, child);
2953 /* All seems fine. Finish by moving the task into the new cgroup */
2954 ret = cgroup_attach_task(child, tsk);
2955 mutex_unlock(&cgroup_mutex);
2957 out_release:
2958 mutex_unlock(&inode->i_mutex);
2960 mutex_lock(&cgroup_mutex);
2961 put_css_set(cg);
2962 mutex_unlock(&cgroup_mutex);
2963 deactivate_super(parent->root->sb);
2964 return ret;
2968 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
2969 * @cgrp: the cgroup in question
2971 * See if @cgrp is a descendant of the current task's cgroup in
2972 * the appropriate hierarchy.
2974 * If we are sending in dummytop, then presumably we are creating
2975 * the top cgroup in the subsystem.
2977 * Called only by the ns (nsproxy) cgroup.
2979 int cgroup_is_descendant(const struct cgroup *cgrp)
2981 int ret;
2982 struct cgroup *target;
2983 int subsys_id;
2985 if (cgrp == dummytop)
2986 return 1;
2988 get_first_subsys(cgrp, NULL, &subsys_id);
2989 target = task_cgroup(current, subsys_id);
2990 while (cgrp != target && cgrp!= cgrp->top_cgroup)
2991 cgrp = cgrp->parent;
2992 ret = (cgrp == target);
2993 return ret;
2996 static void check_for_release(struct cgroup *cgrp)
2998 /* All of these checks rely on RCU to keep the cgroup
2999 * structure alive */
3000 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3001 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3002 /* Control Group is currently removeable. If it's not
3003 * already queued for a userspace notification, queue
3004 * it now */
3005 int need_schedule_work = 0;
3006 spin_lock(&release_list_lock);
3007 if (!cgroup_is_removed(cgrp) &&
3008 list_empty(&cgrp->release_list)) {
3009 list_add(&cgrp->release_list, &release_list);
3010 need_schedule_work = 1;
3012 spin_unlock(&release_list_lock);
3013 if (need_schedule_work)
3014 schedule_work(&release_agent_work);
3018 void __css_put(struct cgroup_subsys_state *css)
3020 struct cgroup *cgrp = css->cgroup;
3021 rcu_read_lock();
3022 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
3023 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3024 check_for_release(cgrp);
3026 rcu_read_unlock();
3030 * Notify userspace when a cgroup is released, by running the
3031 * configured release agent with the name of the cgroup (path
3032 * relative to the root of cgroup file system) as the argument.
3034 * Most likely, this user command will try to rmdir this cgroup.
3036 * This races with the possibility that some other task will be
3037 * attached to this cgroup before it is removed, or that some other
3038 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3039 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3040 * unused, and this cgroup will be reprieved from its death sentence,
3041 * to continue to serve a useful existence. Next time it's released,
3042 * we will get notified again, if it still has 'notify_on_release' set.
3044 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3045 * means only wait until the task is successfully execve()'d. The
3046 * separate release agent task is forked by call_usermodehelper(),
3047 * then control in this thread returns here, without waiting for the
3048 * release agent task. We don't bother to wait because the caller of
3049 * this routine has no use for the exit status of the release agent
3050 * task, so no sense holding our caller up for that.
3052 static void cgroup_release_agent(struct work_struct *work)
3054 BUG_ON(work != &release_agent_work);
3055 mutex_lock(&cgroup_mutex);
3056 spin_lock(&release_list_lock);
3057 while (!list_empty(&release_list)) {
3058 char *argv[3], *envp[3];
3059 int i;
3060 char *pathbuf = NULL, *agentbuf = NULL;
3061 struct cgroup *cgrp = list_entry(release_list.next,
3062 struct cgroup,
3063 release_list);
3064 list_del_init(&cgrp->release_list);
3065 spin_unlock(&release_list_lock);
3066 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3067 if (!pathbuf)
3068 goto continue_free;
3069 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3070 goto continue_free;
3071 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3072 if (!agentbuf)
3073 goto continue_free;
3075 i = 0;
3076 argv[i++] = agentbuf;
3077 argv[i++] = pathbuf;
3078 argv[i] = NULL;
3080 i = 0;
3081 /* minimal command environment */
3082 envp[i++] = "HOME=/";
3083 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3084 envp[i] = NULL;
3086 /* Drop the lock while we invoke the usermode helper,
3087 * since the exec could involve hitting disk and hence
3088 * be a slow process */
3089 mutex_unlock(&cgroup_mutex);
3090 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3091 mutex_lock(&cgroup_mutex);
3092 continue_free:
3093 kfree(pathbuf);
3094 kfree(agentbuf);
3095 spin_lock(&release_list_lock);
3097 spin_unlock(&release_list_lock);
3098 mutex_unlock(&cgroup_mutex);
3101 static int __init cgroup_disable(char *str)
3103 int i;
3104 char *token;
3106 while ((token = strsep(&str, ",")) != NULL) {
3107 if (!*token)
3108 continue;
3110 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3111 struct cgroup_subsys *ss = subsys[i];
3113 if (!strcmp(token, ss->name)) {
3114 ss->disabled = 1;
3115 printk(KERN_INFO "Disabling %s control group"
3116 " subsystem\n", ss->name);
3117 break;
3121 return 1;
3123 __setup("cgroup_disable=", cgroup_disable);