2 * Kernel Probes (KProbes)
3 * arch/i386/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
27 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
28 * <prasanna@in.ibm.com> added function-return probes.
31 #include <linux/config.h>
32 #include <linux/kprobes.h>
33 #include <linux/ptrace.h>
34 #include <linux/preempt.h>
35 #include <asm/cacheflush.h>
36 #include <asm/kdebug.h>
39 void jprobe_return_end(void);
41 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
42 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
44 /* insert a jmp code */
45 static inline void set_jmp_op(void *from
, void *to
)
47 struct __arch_jmp_op
{
50 } __attribute__((packed
)) *jop
;
51 jop
= (struct __arch_jmp_op
*)from
;
52 jop
->raddr
= (long)(to
) - ((long)(from
) + 5);
53 jop
->op
= RELATIVEJUMP_INSTRUCTION
;
57 * returns non-zero if opcodes can be boosted.
59 static inline int can_boost(kprobe_opcode_t opcode
)
61 switch (opcode
& 0xf0 ) {
63 return 0; /* can't boost conditional jump */
65 /* can't boost call and pushf */
66 return opcode
!= 0x9a && opcode
!= 0x9c;
68 /* can't boost undefined opcodes and soft-interruptions */
69 return (0xc1 < opcode
&& opcode
< 0xc6) ||
70 (0xc7 < opcode
&& opcode
< 0xcc) || opcode
== 0xcf;
72 /* can boost AA* and XLAT */
73 return (opcode
== 0xd4 || opcode
== 0xd5 || opcode
== 0xd7);
75 /* can boost in/out and (may be) jmps */
76 return (0xe3 < opcode
&& opcode
!= 0xe8);
78 /* clear and set flags can be boost */
79 return (opcode
== 0xf5 || (0xf7 < opcode
&& opcode
< 0xfe));
81 /* currently, can't boost 2 bytes opcodes */
82 return opcode
!= 0x0f;
88 * returns non-zero if opcode modifies the interrupt flag.
90 static inline int is_IF_modifier(kprobe_opcode_t opcode
)
95 case 0xcf: /* iret/iretd */
96 case 0x9d: /* popf/popfd */
102 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
104 /* insn: must be on special executable page on i386. */
105 p
->ainsn
.insn
= get_insn_slot();
109 memcpy(p
->ainsn
.insn
, p
->addr
, MAX_INSN_SIZE
* sizeof(kprobe_opcode_t
));
110 p
->opcode
= *p
->addr
;
111 if (can_boost(p
->opcode
)) {
112 p
->ainsn
.boostable
= 0;
114 p
->ainsn
.boostable
= -1;
119 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
121 *p
->addr
= BREAKPOINT_INSTRUCTION
;
122 flush_icache_range((unsigned long) p
->addr
,
123 (unsigned long) p
->addr
+ sizeof(kprobe_opcode_t
));
126 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
128 *p
->addr
= p
->opcode
;
129 flush_icache_range((unsigned long) p
->addr
,
130 (unsigned long) p
->addr
+ sizeof(kprobe_opcode_t
));
133 void __kprobes
arch_remove_kprobe(struct kprobe
*p
)
135 mutex_lock(&kprobe_mutex
);
136 free_insn_slot(p
->ainsn
.insn
);
137 mutex_unlock(&kprobe_mutex
);
140 static inline void save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
142 kcb
->prev_kprobe
.kp
= kprobe_running();
143 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
144 kcb
->prev_kprobe
.old_eflags
= kcb
->kprobe_old_eflags
;
145 kcb
->prev_kprobe
.saved_eflags
= kcb
->kprobe_saved_eflags
;
148 static inline void restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
150 __get_cpu_var(current_kprobe
) = kcb
->prev_kprobe
.kp
;
151 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
152 kcb
->kprobe_old_eflags
= kcb
->prev_kprobe
.old_eflags
;
153 kcb
->kprobe_saved_eflags
= kcb
->prev_kprobe
.saved_eflags
;
156 static inline void set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
157 struct kprobe_ctlblk
*kcb
)
159 __get_cpu_var(current_kprobe
) = p
;
160 kcb
->kprobe_saved_eflags
= kcb
->kprobe_old_eflags
161 = (regs
->eflags
& (TF_MASK
| IF_MASK
));
162 if (is_IF_modifier(p
->opcode
))
163 kcb
->kprobe_saved_eflags
&= ~IF_MASK
;
166 static inline void prepare_singlestep(struct kprobe
*p
, struct pt_regs
*regs
)
168 regs
->eflags
|= TF_MASK
;
169 regs
->eflags
&= ~IF_MASK
;
170 /*single step inline if the instruction is an int3*/
171 if (p
->opcode
== BREAKPOINT_INSTRUCTION
)
172 regs
->eip
= (unsigned long)p
->addr
;
174 regs
->eip
= (unsigned long)p
->ainsn
.insn
;
177 /* Called with kretprobe_lock held */
178 void __kprobes
arch_prepare_kretprobe(struct kretprobe
*rp
,
179 struct pt_regs
*regs
)
181 unsigned long *sara
= (unsigned long *)®s
->esp
;
182 struct kretprobe_instance
*ri
;
184 if ((ri
= get_free_rp_inst(rp
)) != NULL
) {
187 ri
->ret_addr
= (kprobe_opcode_t
*) *sara
;
189 /* Replace the return addr with trampoline addr */
190 *sara
= (unsigned long) &kretprobe_trampoline
;
199 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
200 * remain disabled thorough out this function.
202 static int __kprobes
kprobe_handler(struct pt_regs
*regs
)
206 kprobe_opcode_t
*addr
= NULL
;
208 struct kprobe_ctlblk
*kcb
;
209 #ifdef CONFIG_PREEMPT
210 unsigned pre_preempt_count
= preempt_count();
211 #endif /* CONFIG_PREEMPT */
214 * We don't want to be preempted for the entire
215 * duration of kprobe processing
218 kcb
= get_kprobe_ctlblk();
220 /* Check if the application is using LDT entry for its code segment and
221 * calculate the address by reading the base address from the LDT entry.
223 if ((regs
->xcs
& 4) && (current
->mm
)) {
224 lp
= (unsigned long *) ((unsigned long)((regs
->xcs
>> 3) * 8)
225 + (char *) current
->mm
->context
.ldt
);
226 addr
= (kprobe_opcode_t
*) (get_desc_base(lp
) + regs
->eip
-
227 sizeof(kprobe_opcode_t
));
229 addr
= (kprobe_opcode_t
*)(regs
->eip
- sizeof(kprobe_opcode_t
));
231 /* Check we're not actually recursing */
232 if (kprobe_running()) {
233 p
= get_kprobe(addr
);
235 if (kcb
->kprobe_status
== KPROBE_HIT_SS
&&
236 *p
->ainsn
.insn
== BREAKPOINT_INSTRUCTION
) {
237 regs
->eflags
&= ~TF_MASK
;
238 regs
->eflags
|= kcb
->kprobe_saved_eflags
;
241 /* We have reentered the kprobe_handler(), since
242 * another probe was hit while within the handler.
243 * We here save the original kprobes variables and
244 * just single step on the instruction of the new probe
245 * without calling any user handlers.
247 save_previous_kprobe(kcb
);
248 set_current_kprobe(p
, regs
, kcb
);
249 kprobes_inc_nmissed_count(p
);
250 prepare_singlestep(p
, regs
);
251 kcb
->kprobe_status
= KPROBE_REENTER
;
254 if (regs
->eflags
& VM_MASK
) {
255 /* We are in virtual-8086 mode. Return 0 */
258 if (*addr
!= BREAKPOINT_INSTRUCTION
) {
259 /* The breakpoint instruction was removed by
260 * another cpu right after we hit, no further
261 * handling of this interrupt is appropriate
263 regs
->eip
-= sizeof(kprobe_opcode_t
);
267 p
= __get_cpu_var(current_kprobe
);
268 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
275 p
= get_kprobe(addr
);
277 if (regs
->eflags
& VM_MASK
) {
278 /* We are in virtual-8086 mode. Return 0 */
282 if (*addr
!= BREAKPOINT_INSTRUCTION
) {
284 * The breakpoint instruction was removed right
285 * after we hit it. Another cpu has removed
286 * either a probepoint or a debugger breakpoint
287 * at this address. In either case, no further
288 * handling of this interrupt is appropriate.
289 * Back up over the (now missing) int3 and run
290 * the original instruction.
292 regs
->eip
-= sizeof(kprobe_opcode_t
);
295 /* Not one of ours: let kernel handle it */
299 set_current_kprobe(p
, regs
, kcb
);
300 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
302 if (p
->pre_handler
&& p
->pre_handler(p
, regs
))
303 /* handler has already set things up, so skip ss setup */
306 if (p
->ainsn
.boostable
== 1 &&
307 #ifdef CONFIG_PREEMPT
308 !(pre_preempt_count
) && /*
309 * This enables booster when the direct
310 * execution path aren't preempted.
312 #endif /* CONFIG_PREEMPT */
313 !p
->post_handler
&& !p
->break_handler
) {
314 /* Boost up -- we can execute copied instructions directly */
315 reset_current_kprobe();
316 regs
->eip
= (unsigned long)p
->ainsn
.insn
;
317 preempt_enable_no_resched();
322 prepare_singlestep(p
, regs
);
323 kcb
->kprobe_status
= KPROBE_HIT_SS
;
327 preempt_enable_no_resched();
332 * For function-return probes, init_kprobes() establishes a probepoint
333 * here. When a retprobed function returns, this probe is hit and
334 * trampoline_probe_handler() runs, calling the kretprobe's handler.
336 void kretprobe_trampoline_holder(void)
338 asm volatile ( ".global kretprobe_trampoline\n"
339 "kretprobe_trampoline: \n"
344 * Called when we hit the probe point at kretprobe_trampoline
346 int __kprobes
trampoline_probe_handler(struct kprobe
*p
, struct pt_regs
*regs
)
348 struct kretprobe_instance
*ri
= NULL
;
349 struct hlist_head
*head
;
350 struct hlist_node
*node
, *tmp
;
351 unsigned long flags
, orig_ret_address
= 0;
352 unsigned long trampoline_address
=(unsigned long)&kretprobe_trampoline
;
354 spin_lock_irqsave(&kretprobe_lock
, flags
);
355 head
= kretprobe_inst_table_head(current
);
358 * It is possible to have multiple instances associated with a given
359 * task either because an multiple functions in the call path
360 * have a return probe installed on them, and/or more then one return
361 * return probe was registered for a target function.
363 * We can handle this because:
364 * - instances are always inserted at the head of the list
365 * - when multiple return probes are registered for the same
366 * function, the first instance's ret_addr will point to the
367 * real return address, and all the rest will point to
368 * kretprobe_trampoline
370 hlist_for_each_entry_safe(ri
, node
, tmp
, head
, hlist
) {
371 if (ri
->task
!= current
)
372 /* another task is sharing our hash bucket */
375 if (ri
->rp
&& ri
->rp
->handler
)
376 ri
->rp
->handler(ri
, regs
);
378 orig_ret_address
= (unsigned long)ri
->ret_addr
;
381 if (orig_ret_address
!= trampoline_address
)
383 * This is the real return address. Any other
384 * instances associated with this task are for
385 * other calls deeper on the call stack
390 BUG_ON(!orig_ret_address
|| (orig_ret_address
== trampoline_address
));
391 regs
->eip
= orig_ret_address
;
393 reset_current_kprobe();
394 spin_unlock_irqrestore(&kretprobe_lock
, flags
);
395 preempt_enable_no_resched();
398 * By returning a non-zero value, we are telling
399 * kprobe_handler() that we don't want the post_handler
400 * to run (and have re-enabled preemption)
406 * Called after single-stepping. p->addr is the address of the
407 * instruction whose first byte has been replaced by the "int 3"
408 * instruction. To avoid the SMP problems that can occur when we
409 * temporarily put back the original opcode to single-step, we
410 * single-stepped a copy of the instruction. The address of this
411 * copy is p->ainsn.insn.
413 * This function prepares to return from the post-single-step
414 * interrupt. We have to fix up the stack as follows:
416 * 0) Except in the case of absolute or indirect jump or call instructions,
417 * the new eip is relative to the copied instruction. We need to make
418 * it relative to the original instruction.
420 * 1) If the single-stepped instruction was pushfl, then the TF and IF
421 * flags are set in the just-pushed eflags, and may need to be cleared.
423 * 2) If the single-stepped instruction was a call, the return address
424 * that is atop the stack is the address following the copied instruction.
425 * We need to make it the address following the original instruction.
427 * This function also checks instruction size for preparing direct execution.
429 static void __kprobes
resume_execution(struct kprobe
*p
,
430 struct pt_regs
*regs
, struct kprobe_ctlblk
*kcb
)
432 unsigned long *tos
= (unsigned long *)®s
->esp
;
433 unsigned long copy_eip
= (unsigned long)p
->ainsn
.insn
;
434 unsigned long orig_eip
= (unsigned long)p
->addr
;
436 regs
->eflags
&= ~TF_MASK
;
437 switch (p
->ainsn
.insn
[0]) {
438 case 0x9c: /* pushfl */
439 *tos
&= ~(TF_MASK
| IF_MASK
);
440 *tos
|= kcb
->kprobe_old_eflags
;
442 case 0xc3: /* ret/lret */
446 case 0xea: /* jmp absolute -- eip is correct */
447 /* eip is already adjusted, no more changes required */
448 p
->ainsn
.boostable
= 1;
450 case 0xe8: /* call relative - Fix return addr */
451 *tos
= orig_eip
+ (*tos
- copy_eip
);
454 if ((p
->ainsn
.insn
[1] & 0x30) == 0x10) {
455 /* call absolute, indirect */
457 * Fix return addr; eip is correct.
458 * But this is not boostable
460 *tos
= orig_eip
+ (*tos
- copy_eip
);
462 } else if (((p
->ainsn
.insn
[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
463 ((p
->ainsn
.insn
[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
464 /* eip is correct. And this is boostable */
465 p
->ainsn
.boostable
= 1;
472 if (p
->ainsn
.boostable
== 0) {
473 if ((regs
->eip
> copy_eip
) &&
474 (regs
->eip
- copy_eip
) + 5 < MAX_INSN_SIZE
) {
476 * These instructions can be executed directly if it
477 * jumps back to correct address.
479 set_jmp_op((void *)regs
->eip
,
480 (void *)orig_eip
+ (regs
->eip
- copy_eip
));
481 p
->ainsn
.boostable
= 1;
483 p
->ainsn
.boostable
= -1;
487 regs
->eip
= orig_eip
+ (regs
->eip
- copy_eip
);
494 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
495 * remain disabled thoroughout this function.
497 static inline int post_kprobe_handler(struct pt_regs
*regs
)
499 struct kprobe
*cur
= kprobe_running();
500 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
505 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
506 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
507 cur
->post_handler(cur
, regs
, 0);
510 resume_execution(cur
, regs
, kcb
);
511 regs
->eflags
|= kcb
->kprobe_saved_eflags
;
513 /*Restore back the original saved kprobes variables and continue. */
514 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
515 restore_previous_kprobe(kcb
);
518 reset_current_kprobe();
520 preempt_enable_no_resched();
523 * if somebody else is singlestepping across a probe point, eflags
524 * will have TF set, in which case, continue the remaining processing
525 * of do_debug, as if this is not a probe hit.
527 if (regs
->eflags
& TF_MASK
)
533 static inline int kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
535 struct kprobe
*cur
= kprobe_running();
536 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
538 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
541 if (kcb
->kprobe_status
& KPROBE_HIT_SS
) {
542 resume_execution(cur
, regs
, kcb
);
543 regs
->eflags
|= kcb
->kprobe_old_eflags
;
545 reset_current_kprobe();
546 preempt_enable_no_resched();
552 * Wrapper routine to for handling exceptions.
554 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
555 unsigned long val
, void *data
)
557 struct die_args
*args
= (struct die_args
*)data
;
558 int ret
= NOTIFY_DONE
;
562 if (kprobe_handler(args
->regs
))
566 if (post_kprobe_handler(args
->regs
))
571 /* kprobe_running() needs smp_processor_id() */
573 if (kprobe_running() &&
574 kprobe_fault_handler(args
->regs
, args
->trapnr
))
584 int __kprobes
setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
586 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
588 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
590 kcb
->jprobe_saved_regs
= *regs
;
591 kcb
->jprobe_saved_esp
= ®s
->esp
;
592 addr
= (unsigned long)(kcb
->jprobe_saved_esp
);
595 * TBD: As Linus pointed out, gcc assumes that the callee
596 * owns the argument space and could overwrite it, e.g.
597 * tailcall optimization. So, to be absolutely safe
598 * we also save and restore enough stack bytes to cover
601 memcpy(kcb
->jprobes_stack
, (kprobe_opcode_t
*)addr
,
602 MIN_STACK_SIZE(addr
));
603 regs
->eflags
&= ~IF_MASK
;
604 regs
->eip
= (unsigned long)(jp
->entry
);
608 void __kprobes
jprobe_return(void)
610 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
612 asm volatile (" xchgl %%ebx,%%esp \n"
614 " .globl jprobe_return_end \n"
615 " jprobe_return_end: \n"
617 (kcb
->jprobe_saved_esp
):"memory");
620 int __kprobes
longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
622 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
623 u8
*addr
= (u8
*) (regs
->eip
- 1);
624 unsigned long stack_addr
= (unsigned long)(kcb
->jprobe_saved_esp
);
625 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
627 if ((addr
> (u8
*) jprobe_return
) && (addr
< (u8
*) jprobe_return_end
)) {
628 if (®s
->esp
!= kcb
->jprobe_saved_esp
) {
629 struct pt_regs
*saved_regs
=
630 container_of(kcb
->jprobe_saved_esp
,
631 struct pt_regs
, esp
);
632 printk("current esp %p does not match saved esp %p\n",
633 ®s
->esp
, kcb
->jprobe_saved_esp
);
634 printk("Saved registers for jprobe %p\n", jp
);
635 show_registers(saved_regs
);
636 printk("Current registers\n");
637 show_registers(regs
);
640 *regs
= kcb
->jprobe_saved_regs
;
641 memcpy((kprobe_opcode_t
*) stack_addr
, kcb
->jprobes_stack
,
642 MIN_STACK_SIZE(stack_addr
));
643 preempt_enable_no_resched();
649 static struct kprobe trampoline_p
= {
650 .addr
= (kprobe_opcode_t
*) &kretprobe_trampoline
,
651 .pre_handler
= trampoline_probe_handler
654 int __init
arch_init_kprobes(void)
656 return register_kprobe(&trampoline_p
);