1 #include <linux/init.h>
2 #include <linux/kernel.h>
3 #include <linux/sched.h>
4 #include <linux/string.h>
5 #include <linux/bootmem.h>
6 #include <linux/bitops.h>
7 #include <linux/module.h>
8 #include <linux/kgdb.h>
9 #include <linux/topology.h>
10 #include <linux/delay.h>
11 #include <linux/smp.h>
12 #include <linux/percpu.h>
16 #include <asm/linkage.h>
17 #include <asm/mmu_context.h>
25 #include <asm/cpumask.h>
28 #ifdef CONFIG_X86_LOCAL_APIC
29 #include <asm/uv/uv.h>
32 #include <asm/pgtable.h>
33 #include <asm/processor.h>
35 #include <asm/atomic.h>
36 #include <asm/proto.h>
37 #include <asm/sections.h>
38 #include <asm/setup.h>
39 #include <asm/hypervisor.h>
40 #include <asm/stackprotector.h>
44 /* all of these masks are initialized in setup_cpu_local_masks() */
45 cpumask_var_t cpu_callin_mask
;
46 cpumask_var_t cpu_callout_mask
;
47 cpumask_var_t cpu_initialized_mask
;
49 /* representing cpus for which sibling maps can be computed */
50 cpumask_var_t cpu_sibling_setup_mask
;
52 /* correctly size the local cpu masks */
53 void __init
setup_cpu_local_masks(void)
55 alloc_bootmem_cpumask_var(&cpu_initialized_mask
);
56 alloc_bootmem_cpumask_var(&cpu_callin_mask
);
57 alloc_bootmem_cpumask_var(&cpu_callout_mask
);
58 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask
);
61 static struct cpu_dev
*this_cpu __cpuinitdata
;
63 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page
, gdt_page
) = { .gdt
= {
66 * We need valid kernel segments for data and code in long mode too
67 * IRET will check the segment types kkeil 2000/10/28
68 * Also sysret mandates a special GDT layout
70 * The TLS descriptors are currently at a different place compared to i386.
71 * Hopefully nobody expects them at a fixed place (Wine?)
73 [GDT_ENTRY_KERNEL32_CS
] = { { { 0x0000ffff, 0x00cf9b00 } } },
74 [GDT_ENTRY_KERNEL_CS
] = { { { 0x0000ffff, 0x00af9b00 } } },
75 [GDT_ENTRY_KERNEL_DS
] = { { { 0x0000ffff, 0x00cf9300 } } },
76 [GDT_ENTRY_DEFAULT_USER32_CS
] = { { { 0x0000ffff, 0x00cffb00 } } },
77 [GDT_ENTRY_DEFAULT_USER_DS
] = { { { 0x0000ffff, 0x00cff300 } } },
78 [GDT_ENTRY_DEFAULT_USER_CS
] = { { { 0x0000ffff, 0x00affb00 } } },
80 [GDT_ENTRY_KERNEL_CS
] = { { { 0x0000ffff, 0x00cf9a00 } } },
81 [GDT_ENTRY_KERNEL_DS
] = { { { 0x0000ffff, 0x00cf9200 } } },
82 [GDT_ENTRY_DEFAULT_USER_CS
] = { { { 0x0000ffff, 0x00cffa00 } } },
83 [GDT_ENTRY_DEFAULT_USER_DS
] = { { { 0x0000ffff, 0x00cff200 } } },
85 * Segments used for calling PnP BIOS have byte granularity.
86 * They code segments and data segments have fixed 64k limits,
87 * the transfer segment sizes are set at run time.
90 [GDT_ENTRY_PNPBIOS_CS32
] = { { { 0x0000ffff, 0x00409a00 } } },
92 [GDT_ENTRY_PNPBIOS_CS16
] = { { { 0x0000ffff, 0x00009a00 } } },
94 [GDT_ENTRY_PNPBIOS_DS
] = { { { 0x0000ffff, 0x00009200 } } },
96 [GDT_ENTRY_PNPBIOS_TS1
] = { { { 0x00000000, 0x00009200 } } },
98 [GDT_ENTRY_PNPBIOS_TS2
] = { { { 0x00000000, 0x00009200 } } },
100 * The APM segments have byte granularity and their bases
101 * are set at run time. All have 64k limits.
104 [GDT_ENTRY_APMBIOS_BASE
] = { { { 0x0000ffff, 0x00409a00 } } },
106 [GDT_ENTRY_APMBIOS_BASE
+1] = { { { 0x0000ffff, 0x00009a00 } } },
108 [GDT_ENTRY_APMBIOS_BASE
+2] = { { { 0x0000ffff, 0x00409200 } } },
110 [GDT_ENTRY_ESPFIX_SS
] = { { { 0x00000000, 0x00c09200 } } },
111 [GDT_ENTRY_PERCPU
] = { { { 0x0000ffff, 0x00cf9200 } } },
112 GDT_STACK_CANARY_INIT
115 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page
);
118 static int cachesize_override __cpuinitdata
= -1;
119 static int disable_x86_serial_nr __cpuinitdata
= 1;
121 static int __init
cachesize_setup(char *str
)
123 get_option(&str
, &cachesize_override
);
126 __setup("cachesize=", cachesize_setup
);
128 static int __init
x86_fxsr_setup(char *s
)
130 setup_clear_cpu_cap(X86_FEATURE_FXSR
);
131 setup_clear_cpu_cap(X86_FEATURE_XMM
);
134 __setup("nofxsr", x86_fxsr_setup
);
136 static int __init
x86_sep_setup(char *s
)
138 setup_clear_cpu_cap(X86_FEATURE_SEP
);
141 __setup("nosep", x86_sep_setup
);
143 /* Standard macro to see if a specific flag is changeable */
144 static inline int flag_is_changeable_p(u32 flag
)
149 * Cyrix and IDT cpus allow disabling of CPUID
150 * so the code below may return different results
151 * when it is executed before and after enabling
152 * the CPUID. Add "volatile" to not allow gcc to
153 * optimize the subsequent calls to this function.
155 asm volatile ("pushfl\n\t"
165 : "=&r" (f1
), "=&r" (f2
)
168 return ((f1
^f2
) & flag
) != 0;
171 /* Probe for the CPUID instruction */
172 static int __cpuinit
have_cpuid_p(void)
174 return flag_is_changeable_p(X86_EFLAGS_ID
);
177 static void __cpuinit
squash_the_stupid_serial_number(struct cpuinfo_x86
*c
)
179 if (cpu_has(c
, X86_FEATURE_PN
) && disable_x86_serial_nr
) {
180 /* Disable processor serial number */
181 unsigned long lo
, hi
;
182 rdmsr(MSR_IA32_BBL_CR_CTL
, lo
, hi
);
184 wrmsr(MSR_IA32_BBL_CR_CTL
, lo
, hi
);
185 printk(KERN_NOTICE
"CPU serial number disabled.\n");
186 clear_cpu_cap(c
, X86_FEATURE_PN
);
188 /* Disabling the serial number may affect the cpuid level */
189 c
->cpuid_level
= cpuid_eax(0);
193 static int __init
x86_serial_nr_setup(char *s
)
195 disable_x86_serial_nr
= 0;
198 __setup("serialnumber", x86_serial_nr_setup
);
200 static inline int flag_is_changeable_p(u32 flag
)
204 /* Probe for the CPUID instruction */
205 static inline int have_cpuid_p(void)
209 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86
*c
)
215 * Some CPU features depend on higher CPUID levels, which may not always
216 * be available due to CPUID level capping or broken virtualization
217 * software. Add those features to this table to auto-disable them.
219 struct cpuid_dependent_feature
{
223 static const struct cpuid_dependent_feature __cpuinitconst
224 cpuid_dependent_features
[] = {
225 { X86_FEATURE_MWAIT
, 0x00000005 },
226 { X86_FEATURE_DCA
, 0x00000009 },
227 { X86_FEATURE_XSAVE
, 0x0000000d },
231 static void __cpuinit
filter_cpuid_features(struct cpuinfo_x86
*c
, bool warn
)
233 const struct cpuid_dependent_feature
*df
;
234 for (df
= cpuid_dependent_features
; df
->feature
; df
++) {
236 * Note: cpuid_level is set to -1 if unavailable, but
237 * extended_extended_level is set to 0 if unavailable
238 * and the legitimate extended levels are all negative
239 * when signed; hence the weird messing around with
242 if (cpu_has(c
, df
->feature
) &&
243 ((s32
)df
->level
< 0 ?
244 (u32
)df
->level
> (u32
)c
->extended_cpuid_level
:
245 (s32
)df
->level
> (s32
)c
->cpuid_level
)) {
246 clear_cpu_cap(c
, df
->feature
);
249 "CPU: CPU feature %s disabled "
250 "due to lack of CPUID level 0x%x\n",
251 x86_cap_flags
[df
->feature
],
258 * Naming convention should be: <Name> [(<Codename>)]
259 * This table only is used unless init_<vendor>() below doesn't set it;
260 * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
264 /* Look up CPU names by table lookup. */
265 static char __cpuinit
*table_lookup_model(struct cpuinfo_x86
*c
)
267 struct cpu_model_info
*info
;
269 if (c
->x86_model
>= 16)
270 return NULL
; /* Range check */
275 info
= this_cpu
->c_models
;
277 while (info
&& info
->family
) {
278 if (info
->family
== c
->x86
)
279 return info
->model_names
[c
->x86_model
];
282 return NULL
; /* Not found */
285 __u32 cleared_cpu_caps
[NCAPINTS
] __cpuinitdata
;
287 void load_percpu_segment(int cpu
)
290 loadsegment(fs
, __KERNEL_PERCPU
);
293 wrmsrl(MSR_GS_BASE
, (unsigned long)per_cpu(irq_stack_union
.gs_base
, cpu
));
295 load_stack_canary_segment();
298 /* Current gdt points %fs at the "master" per-cpu area: after this,
299 * it's on the real one. */
300 void switch_to_new_gdt(int cpu
)
302 struct desc_ptr gdt_descr
;
304 gdt_descr
.address
= (long)get_cpu_gdt_table(cpu
);
305 gdt_descr
.size
= GDT_SIZE
- 1;
306 load_gdt(&gdt_descr
);
307 /* Reload the per-cpu base */
309 load_percpu_segment(cpu
);
312 static struct cpu_dev
*cpu_devs
[X86_VENDOR_NUM
] = {};
314 static void __cpuinit
default_init(struct cpuinfo_x86
*c
)
317 display_cacheinfo(c
);
319 /* Not much we can do here... */
320 /* Check if at least it has cpuid */
321 if (c
->cpuid_level
== -1) {
322 /* No cpuid. It must be an ancient CPU */
324 strcpy(c
->x86_model_id
, "486");
325 else if (c
->x86
== 3)
326 strcpy(c
->x86_model_id
, "386");
331 static struct cpu_dev __cpuinitdata default_cpu
= {
332 .c_init
= default_init
,
333 .c_vendor
= "Unknown",
334 .c_x86_vendor
= X86_VENDOR_UNKNOWN
,
337 static void __cpuinit
get_model_name(struct cpuinfo_x86
*c
)
342 if (c
->extended_cpuid_level
< 0x80000004)
345 v
= (unsigned int *) c
->x86_model_id
;
346 cpuid(0x80000002, &v
[0], &v
[1], &v
[2], &v
[3]);
347 cpuid(0x80000003, &v
[4], &v
[5], &v
[6], &v
[7]);
348 cpuid(0x80000004, &v
[8], &v
[9], &v
[10], &v
[11]);
349 c
->x86_model_id
[48] = 0;
351 /* Intel chips right-justify this string for some dumb reason;
352 undo that brain damage */
353 p
= q
= &c
->x86_model_id
[0];
359 while (q
<= &c
->x86_model_id
[48])
360 *q
++ = '\0'; /* Zero-pad the rest */
364 void __cpuinit
display_cacheinfo(struct cpuinfo_x86
*c
)
366 unsigned int n
, dummy
, ebx
, ecx
, edx
, l2size
;
368 n
= c
->extended_cpuid_level
;
370 if (n
>= 0x80000005) {
371 cpuid(0x80000005, &dummy
, &ebx
, &ecx
, &edx
);
372 printk(KERN_INFO
"CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
373 edx
>>24, edx
&0xFF, ecx
>>24, ecx
&0xFF);
374 c
->x86_cache_size
= (ecx
>>24) + (edx
>>24);
376 /* On K8 L1 TLB is inclusive, so don't count it */
381 if (n
< 0x80000006) /* Some chips just has a large L1. */
384 cpuid(0x80000006, &dummy
, &ebx
, &ecx
, &edx
);
388 c
->x86_tlbsize
+= ((ebx
>> 16) & 0xfff) + (ebx
& 0xfff);
390 /* do processor-specific cache resizing */
391 if (this_cpu
->c_size_cache
)
392 l2size
= this_cpu
->c_size_cache(c
, l2size
);
394 /* Allow user to override all this if necessary. */
395 if (cachesize_override
!= -1)
396 l2size
= cachesize_override
;
399 return; /* Again, no L2 cache is possible */
402 c
->x86_cache_size
= l2size
;
404 printk(KERN_INFO
"CPU: L2 Cache: %dK (%d bytes/line)\n",
408 void __cpuinit
detect_ht(struct cpuinfo_x86
*c
)
411 u32 eax
, ebx
, ecx
, edx
;
412 int index_msb
, core_bits
;
414 if (!cpu_has(c
, X86_FEATURE_HT
))
417 if (cpu_has(c
, X86_FEATURE_CMP_LEGACY
))
420 if (cpu_has(c
, X86_FEATURE_XTOPOLOGY
))
423 cpuid(1, &eax
, &ebx
, &ecx
, &edx
);
425 smp_num_siblings
= (ebx
& 0xff0000) >> 16;
427 if (smp_num_siblings
== 1) {
428 printk(KERN_INFO
"CPU: Hyper-Threading is disabled\n");
429 } else if (smp_num_siblings
> 1) {
431 if (smp_num_siblings
> nr_cpu_ids
) {
432 printk(KERN_WARNING
"CPU: Unsupported number of siblings %d",
434 smp_num_siblings
= 1;
438 index_msb
= get_count_order(smp_num_siblings
);
439 c
->phys_proc_id
= apic
->phys_pkg_id(c
->initial_apicid
, index_msb
);
441 smp_num_siblings
= smp_num_siblings
/ c
->x86_max_cores
;
443 index_msb
= get_count_order(smp_num_siblings
);
445 core_bits
= get_count_order(c
->x86_max_cores
);
447 c
->cpu_core_id
= apic
->phys_pkg_id(c
->initial_apicid
, index_msb
) &
448 ((1 << core_bits
) - 1);
452 if ((c
->x86_max_cores
* smp_num_siblings
) > 1) {
453 printk(KERN_INFO
"CPU: Physical Processor ID: %d\n",
455 printk(KERN_INFO
"CPU: Processor Core ID: %d\n",
461 static void __cpuinit
get_cpu_vendor(struct cpuinfo_x86
*c
)
463 char *v
= c
->x86_vendor_id
;
467 for (i
= 0; i
< X86_VENDOR_NUM
; i
++) {
471 if (!strcmp(v
, cpu_devs
[i
]->c_ident
[0]) ||
472 (cpu_devs
[i
]->c_ident
[1] &&
473 !strcmp(v
, cpu_devs
[i
]->c_ident
[1]))) {
474 this_cpu
= cpu_devs
[i
];
475 c
->x86_vendor
= this_cpu
->c_x86_vendor
;
482 printk(KERN_ERR
"CPU: vendor_id '%s' unknown, using generic init.\n", v
);
483 printk(KERN_ERR
"CPU: Your system may be unstable.\n");
486 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
487 this_cpu
= &default_cpu
;
490 void __cpuinit
cpu_detect(struct cpuinfo_x86
*c
)
492 /* Get vendor name */
493 cpuid(0x00000000, (unsigned int *)&c
->cpuid_level
,
494 (unsigned int *)&c
->x86_vendor_id
[0],
495 (unsigned int *)&c
->x86_vendor_id
[8],
496 (unsigned int *)&c
->x86_vendor_id
[4]);
499 /* Intel-defined flags: level 0x00000001 */
500 if (c
->cpuid_level
>= 0x00000001) {
501 u32 junk
, tfms
, cap0
, misc
;
502 cpuid(0x00000001, &tfms
, &misc
, &junk
, &cap0
);
503 c
->x86
= (tfms
>> 8) & 0xf;
504 c
->x86_model
= (tfms
>> 4) & 0xf;
505 c
->x86_mask
= tfms
& 0xf;
507 c
->x86
+= (tfms
>> 20) & 0xff;
509 c
->x86_model
+= ((tfms
>> 16) & 0xf) << 4;
510 if (cap0
& (1<<19)) {
511 c
->x86_clflush_size
= ((misc
>> 8) & 0xff) * 8;
512 c
->x86_cache_alignment
= c
->x86_clflush_size
;
517 static void __cpuinit
get_cpu_cap(struct cpuinfo_x86
*c
)
522 /* Intel-defined flags: level 0x00000001 */
523 if (c
->cpuid_level
>= 0x00000001) {
524 u32 capability
, excap
;
525 cpuid(0x00000001, &tfms
, &ebx
, &excap
, &capability
);
526 c
->x86_capability
[0] = capability
;
527 c
->x86_capability
[4] = excap
;
530 /* AMD-defined flags: level 0x80000001 */
531 xlvl
= cpuid_eax(0x80000000);
532 c
->extended_cpuid_level
= xlvl
;
533 if ((xlvl
& 0xffff0000) == 0x80000000) {
534 if (xlvl
>= 0x80000001) {
535 c
->x86_capability
[1] = cpuid_edx(0x80000001);
536 c
->x86_capability
[6] = cpuid_ecx(0x80000001);
541 if (c
->extended_cpuid_level
>= 0x80000008) {
542 u32 eax
= cpuid_eax(0x80000008);
544 c
->x86_virt_bits
= (eax
>> 8) & 0xff;
545 c
->x86_phys_bits
= eax
& 0xff;
549 if (c
->extended_cpuid_level
>= 0x80000007)
550 c
->x86_power
= cpuid_edx(0x80000007);
554 static void __cpuinit
identify_cpu_without_cpuid(struct cpuinfo_x86
*c
)
560 * First of all, decide if this is a 486 or higher
561 * It's a 486 if we can modify the AC flag
563 if (flag_is_changeable_p(X86_EFLAGS_AC
))
568 for (i
= 0; i
< X86_VENDOR_NUM
; i
++)
569 if (cpu_devs
[i
] && cpu_devs
[i
]->c_identify
) {
570 c
->x86_vendor_id
[0] = 0;
571 cpu_devs
[i
]->c_identify(c
);
572 if (c
->x86_vendor_id
[0]) {
581 * Do minimum CPU detection early.
582 * Fields really needed: vendor, cpuid_level, family, model, mask,
584 * The others are not touched to avoid unwanted side effects.
586 * WARNING: this function is only called on the BP. Don't add code here
587 * that is supposed to run on all CPUs.
589 static void __init
early_identify_cpu(struct cpuinfo_x86
*c
)
592 c
->x86_clflush_size
= 64;
594 c
->x86_clflush_size
= 32;
596 c
->x86_cache_alignment
= c
->x86_clflush_size
;
598 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
599 c
->extended_cpuid_level
= 0;
602 identify_cpu_without_cpuid(c
);
604 /* cyrix could have cpuid enabled via c_identify()*/
614 if (this_cpu
->c_early_init
)
615 this_cpu
->c_early_init(c
);
618 c
->cpu_index
= boot_cpu_id
;
620 filter_cpuid_features(c
, false);
623 void __init
early_cpu_init(void)
625 struct cpu_dev
**cdev
;
628 printk("KERNEL supported cpus:\n");
629 for (cdev
= __x86_cpu_dev_start
; cdev
< __x86_cpu_dev_end
; cdev
++) {
630 struct cpu_dev
*cpudev
= *cdev
;
633 if (count
>= X86_VENDOR_NUM
)
635 cpu_devs
[count
] = cpudev
;
638 for (j
= 0; j
< 2; j
++) {
639 if (!cpudev
->c_ident
[j
])
641 printk(" %s %s\n", cpudev
->c_vendor
,
646 early_identify_cpu(&boot_cpu_data
);
650 * The NOPL instruction is supposed to exist on all CPUs with
651 * family >= 6; unfortunately, that's not true in practice because
652 * of early VIA chips and (more importantly) broken virtualizers that
653 * are not easy to detect. In the latter case it doesn't even *fail*
654 * reliably, so probing for it doesn't even work. Disable it completely
655 * unless we can find a reliable way to detect all the broken cases.
657 static void __cpuinit
detect_nopl(struct cpuinfo_x86
*c
)
659 clear_cpu_cap(c
, X86_FEATURE_NOPL
);
662 static void __cpuinit
generic_identify(struct cpuinfo_x86
*c
)
664 c
->extended_cpuid_level
= 0;
667 identify_cpu_without_cpuid(c
);
669 /* cyrix could have cpuid enabled via c_identify()*/
679 if (c
->cpuid_level
>= 0x00000001) {
680 c
->initial_apicid
= (cpuid_ebx(1) >> 24) & 0xFF;
682 # ifdef CONFIG_X86_HT
683 c
->apicid
= apic
->phys_pkg_id(c
->initial_apicid
, 0);
685 c
->apicid
= c
->initial_apicid
;
690 c
->phys_proc_id
= c
->initial_apicid
;
694 get_model_name(c
); /* Default name */
696 init_scattered_cpuid_features(c
);
701 * This does the hard work of actually picking apart the CPU stuff...
703 static void __cpuinit
identify_cpu(struct cpuinfo_x86
*c
)
707 c
->loops_per_jiffy
= loops_per_jiffy
;
708 c
->x86_cache_size
= -1;
709 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
710 c
->x86_model
= c
->x86_mask
= 0; /* So far unknown... */
711 c
->x86_vendor_id
[0] = '\0'; /* Unset */
712 c
->x86_model_id
[0] = '\0'; /* Unset */
713 c
->x86_max_cores
= 1;
714 c
->x86_coreid_bits
= 0;
716 c
->x86_clflush_size
= 64;
718 c
->cpuid_level
= -1; /* CPUID not detected */
719 c
->x86_clflush_size
= 32;
721 c
->x86_cache_alignment
= c
->x86_clflush_size
;
722 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
726 if (this_cpu
->c_identify
)
727 this_cpu
->c_identify(c
);
730 c
->apicid
= apic
->phys_pkg_id(c
->initial_apicid
, 0);
734 * Vendor-specific initialization. In this section we
735 * canonicalize the feature flags, meaning if there are
736 * features a certain CPU supports which CPUID doesn't
737 * tell us, CPUID claiming incorrect flags, or other bugs,
738 * we handle them here.
740 * At the end of this section, c->x86_capability better
741 * indicate the features this CPU genuinely supports!
743 if (this_cpu
->c_init
)
746 /* Disable the PN if appropriate */
747 squash_the_stupid_serial_number(c
);
750 * The vendor-specific functions might have changed features. Now
751 * we do "generic changes."
754 /* Filter out anything that depends on CPUID levels we don't have */
755 filter_cpuid_features(c
, true);
757 /* If the model name is still unset, do table lookup. */
758 if (!c
->x86_model_id
[0]) {
760 p
= table_lookup_model(c
);
762 strcpy(c
->x86_model_id
, p
);
765 sprintf(c
->x86_model_id
, "%02x/%02x",
766 c
->x86
, c
->x86_model
);
775 * On SMP, boot_cpu_data holds the common feature set between
776 * all CPUs; so make sure that we indicate which features are
777 * common between the CPUs. The first time this routine gets
778 * executed, c == &boot_cpu_data.
780 if (c
!= &boot_cpu_data
) {
781 /* AND the already accumulated flags with these */
782 for (i
= 0; i
< NCAPINTS
; i
++)
783 boot_cpu_data
.x86_capability
[i
] &= c
->x86_capability
[i
];
786 /* Clear all flags overriden by options */
787 for (i
= 0; i
< NCAPINTS
; i
++)
788 c
->x86_capability
[i
] &= ~cleared_cpu_caps
[i
];
790 #ifdef CONFIG_X86_MCE
791 /* Init Machine Check Exception if available. */
795 select_idle_routine(c
);
797 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
798 numa_add_cpu(smp_processor_id());
803 static void vgetcpu_set_mode(void)
805 if (cpu_has(&boot_cpu_data
, X86_FEATURE_RDTSCP
))
806 vgetcpu_mode
= VGETCPU_RDTSCP
;
808 vgetcpu_mode
= VGETCPU_LSL
;
812 void __init
identify_boot_cpu(void)
814 identify_cpu(&boot_cpu_data
);
824 void __cpuinit
identify_secondary_cpu(struct cpuinfo_x86
*c
)
826 BUG_ON(c
== &boot_cpu_data
);
839 static struct msr_range msr_range_array
[] __cpuinitdata
= {
840 { 0x00000000, 0x00000418},
841 { 0xc0000000, 0xc000040b},
842 { 0xc0010000, 0xc0010142},
843 { 0xc0011000, 0xc001103b},
846 static void __cpuinit
print_cpu_msr(void)
851 unsigned index_min
, index_max
;
853 for (i
= 0; i
< ARRAY_SIZE(msr_range_array
); i
++) {
854 index_min
= msr_range_array
[i
].min
;
855 index_max
= msr_range_array
[i
].max
;
856 for (index
= index_min
; index
< index_max
; index
++) {
857 if (rdmsrl_amd_safe(index
, &val
))
859 printk(KERN_INFO
" MSR%08x: %016llx\n", index
, val
);
864 static int show_msr __cpuinitdata
;
865 static __init
int setup_show_msr(char *arg
)
869 get_option(&arg
, &num
);
875 __setup("show_msr=", setup_show_msr
);
877 static __init
int setup_noclflush(char *arg
)
879 setup_clear_cpu_cap(X86_FEATURE_CLFLSH
);
882 __setup("noclflush", setup_noclflush
);
884 void __cpuinit
print_cpu_info(struct cpuinfo_x86
*c
)
888 if (c
->x86_vendor
< X86_VENDOR_NUM
)
889 vendor
= this_cpu
->c_vendor
;
890 else if (c
->cpuid_level
>= 0)
891 vendor
= c
->x86_vendor_id
;
893 if (vendor
&& !strstr(c
->x86_model_id
, vendor
))
894 printk(KERN_CONT
"%s ", vendor
);
896 if (c
->x86_model_id
[0])
897 printk(KERN_CONT
"%s", c
->x86_model_id
);
899 printk(KERN_CONT
"%d86", c
->x86
);
901 if (c
->x86_mask
|| c
->cpuid_level
>= 0)
902 printk(KERN_CONT
" stepping %02x\n", c
->x86_mask
);
904 printk(KERN_CONT
"\n");
907 if (c
->cpu_index
< show_msr
)
915 static __init
int setup_disablecpuid(char *arg
)
918 if (get_option(&arg
, &bit
) && bit
< NCAPINTS
*32)
919 setup_clear_cpu_cap(bit
);
924 __setup("clearcpuid=", setup_disablecpuid
);
927 struct desc_ptr idt_descr
= { 256 * 16 - 1, (unsigned long) idt_table
};
929 DEFINE_PER_CPU_FIRST(union irq_stack_union
,
930 irq_stack_union
) __aligned(PAGE_SIZE
);
931 DEFINE_PER_CPU(char *, irq_stack_ptr
) =
932 init_per_cpu_var(irq_stack_union
.irq_stack
) + IRQ_STACK_SIZE
- 64;
934 DEFINE_PER_CPU(unsigned long, kernel_stack
) =
935 (unsigned long)&init_thread_union
- KERNEL_STACK_OFFSET
+ THREAD_SIZE
;
936 EXPORT_PER_CPU_SYMBOL(kernel_stack
);
938 DEFINE_PER_CPU(unsigned int, irq_count
) = -1;
940 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
941 [(N_EXCEPTION_STACKS
- 1) * EXCEPTION_STKSZ
+ DEBUG_STKSZ
])
942 __aligned(PAGE_SIZE
);
944 extern asmlinkage
void ignore_sysret(void);
946 /* May not be marked __init: used by software suspend */
947 void syscall_init(void)
950 * LSTAR and STAR live in a bit strange symbiosis.
951 * They both write to the same internal register. STAR allows to
952 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
954 wrmsrl(MSR_STAR
, ((u64
)__USER32_CS
)<<48 | ((u64
)__KERNEL_CS
)<<32);
955 wrmsrl(MSR_LSTAR
, system_call
);
956 wrmsrl(MSR_CSTAR
, ignore_sysret
);
958 #ifdef CONFIG_IA32_EMULATION
959 syscall32_cpu_init();
962 /* Flags to clear on syscall */
963 wrmsrl(MSR_SYSCALL_MASK
,
964 X86_EFLAGS_TF
|X86_EFLAGS_DF
|X86_EFLAGS_IF
|X86_EFLAGS_IOPL
);
967 unsigned long kernel_eflags
;
970 * Copies of the original ist values from the tss are only accessed during
971 * debugging, no special alignment required.
973 DEFINE_PER_CPU(struct orig_ist
, orig_ist
);
977 #ifdef CONFIG_CC_STACKPROTECTOR
978 DEFINE_PER_CPU(unsigned long, stack_canary
);
981 /* Make sure %fs and %gs are initialized properly in idle threads */
982 struct pt_regs
* __cpuinit
idle_regs(struct pt_regs
*regs
)
984 memset(regs
, 0, sizeof(struct pt_regs
));
985 regs
->fs
= __KERNEL_PERCPU
;
986 regs
->gs
= __KERNEL_STACK_CANARY
;
992 * cpu_init() initializes state that is per-CPU. Some data is already
993 * initialized (naturally) in the bootstrap process, such as the GDT
994 * and IDT. We reload them nevertheless, this function acts as a
995 * 'CPU state barrier', nothing should get across.
996 * A lot of state is already set up in PDA init for 64 bit
999 void __cpuinit
cpu_init(void)
1001 int cpu
= stack_smp_processor_id();
1002 struct tss_struct
*t
= &per_cpu(init_tss
, cpu
);
1003 struct orig_ist
*orig_ist
= &per_cpu(orig_ist
, cpu
);
1005 struct task_struct
*me
;
1009 if (cpu
!= 0 && percpu_read(node_number
) == 0 &&
1010 cpu_to_node(cpu
) != NUMA_NO_NODE
)
1011 percpu_write(node_number
, cpu_to_node(cpu
));
1016 if (cpumask_test_and_set_cpu(cpu
, cpu_initialized_mask
))
1017 panic("CPU#%d already initialized!\n", cpu
);
1019 printk(KERN_INFO
"Initializing CPU#%d\n", cpu
);
1021 clear_in_cr4(X86_CR4_VME
|X86_CR4_PVI
|X86_CR4_TSD
|X86_CR4_DE
);
1024 * Initialize the per-CPU GDT with the boot GDT,
1025 * and set up the GDT descriptor:
1028 switch_to_new_gdt(cpu
);
1031 load_idt((const struct desc_ptr
*)&idt_descr
);
1033 memset(me
->thread
.tls_array
, 0, GDT_ENTRY_TLS_ENTRIES
* 8);
1036 wrmsrl(MSR_FS_BASE
, 0);
1037 wrmsrl(MSR_KERNEL_GS_BASE
, 0);
1045 * set up and load the per-CPU TSS
1047 if (!orig_ist
->ist
[0]) {
1048 static const unsigned int sizes
[N_EXCEPTION_STACKS
] = {
1049 [0 ... N_EXCEPTION_STACKS
- 1] = EXCEPTION_STKSZ
,
1050 [DEBUG_STACK
- 1] = DEBUG_STKSZ
1052 char *estacks
= per_cpu(exception_stacks
, cpu
);
1053 for (v
= 0; v
< N_EXCEPTION_STACKS
; v
++) {
1054 estacks
+= sizes
[v
];
1055 orig_ist
->ist
[v
] = t
->x86_tss
.ist
[v
] =
1056 (unsigned long)estacks
;
1060 t
->x86_tss
.io_bitmap_base
= offsetof(struct tss_struct
, io_bitmap
);
1062 * <= is required because the CPU will access up to
1063 * 8 bits beyond the end of the IO permission bitmap.
1065 for (i
= 0; i
<= IO_BITMAP_LONGS
; i
++)
1066 t
->io_bitmap
[i
] = ~0UL;
1068 atomic_inc(&init_mm
.mm_count
);
1069 me
->active_mm
= &init_mm
;
1072 enter_lazy_tlb(&init_mm
, me
);
1074 load_sp0(t
, ¤t
->thread
);
1075 set_tss_desc(cpu
, t
);
1077 load_LDT(&init_mm
.context
);
1081 * If the kgdb is connected no debug regs should be altered. This
1082 * is only applicable when KGDB and a KGDB I/O module are built
1083 * into the kernel and you are using early debugging with
1084 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1086 if (kgdb_connected
&& arch_kgdb_ops
.correct_hw_break
)
1087 arch_kgdb_ops
.correct_hw_break();
1092 * Clear all 6 debug registers:
1094 set_debugreg(0UL, 0);
1095 set_debugreg(0UL, 1);
1096 set_debugreg(0UL, 2);
1097 set_debugreg(0UL, 3);
1098 set_debugreg(0UL, 6);
1099 set_debugreg(0UL, 7);
1104 raw_local_save_flags(kernel_eflags
);
1112 void __cpuinit
cpu_init(void)
1114 int cpu
= smp_processor_id();
1115 struct task_struct
*curr
= current
;
1116 struct tss_struct
*t
= &per_cpu(init_tss
, cpu
);
1117 struct thread_struct
*thread
= &curr
->thread
;
1119 if (cpumask_test_and_set_cpu(cpu
, cpu_initialized_mask
)) {
1120 printk(KERN_WARNING
"CPU#%d already initialized!\n", cpu
);
1121 for (;;) local_irq_enable();
1124 printk(KERN_INFO
"Initializing CPU#%d\n", cpu
);
1126 if (cpu_has_vme
|| cpu_has_tsc
|| cpu_has_de
)
1127 clear_in_cr4(X86_CR4_VME
|X86_CR4_PVI
|X86_CR4_TSD
|X86_CR4_DE
);
1129 load_idt(&idt_descr
);
1130 switch_to_new_gdt(cpu
);
1133 * Set up and load the per-CPU TSS and LDT
1135 atomic_inc(&init_mm
.mm_count
);
1136 curr
->active_mm
= &init_mm
;
1139 enter_lazy_tlb(&init_mm
, curr
);
1141 load_sp0(t
, thread
);
1142 set_tss_desc(cpu
, t
);
1144 load_LDT(&init_mm
.context
);
1146 #ifdef CONFIG_DOUBLEFAULT
1147 /* Set up doublefault TSS pointer in the GDT */
1148 __set_tss_desc(cpu
, GDT_ENTRY_DOUBLEFAULT_TSS
, &doublefault_tss
);
1151 /* Clear all 6 debug registers: */
1160 * Force FPU initialization:
1163 current_thread_info()->status
= TS_XSAVE
;
1165 current_thread_info()->status
= 0;
1167 mxcsr_feature_mask_init();
1170 * Boot processor to setup the FP and extended state context info.
1172 if (smp_processor_id() == boot_cpu_id
)
1173 init_thread_xstate();