cpumask: fix CONFIG_CPUMASK_OFFSTACK=y cpu hotunplug crash
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / cpu / common.c
blobd7dd3c294e2a30669ae3cdf6faf3563d89a55c42
1 #include <linux/init.h>
2 #include <linux/kernel.h>
3 #include <linux/sched.h>
4 #include <linux/string.h>
5 #include <linux/bootmem.h>
6 #include <linux/bitops.h>
7 #include <linux/module.h>
8 #include <linux/kgdb.h>
9 #include <linux/topology.h>
10 #include <linux/delay.h>
11 #include <linux/smp.h>
12 #include <linux/percpu.h>
13 #include <asm/i387.h>
14 #include <asm/msr.h>
15 #include <asm/io.h>
16 #include <asm/linkage.h>
17 #include <asm/mmu_context.h>
18 #include <asm/mtrr.h>
19 #include <asm/mce.h>
20 #include <asm/pat.h>
21 #include <asm/asm.h>
22 #include <asm/numa.h>
23 #include <asm/smp.h>
24 #include <asm/cpu.h>
25 #include <asm/cpumask.h>
26 #include <asm/apic.h>
28 #ifdef CONFIG_X86_LOCAL_APIC
29 #include <asm/uv/uv.h>
30 #endif
32 #include <asm/pgtable.h>
33 #include <asm/processor.h>
34 #include <asm/desc.h>
35 #include <asm/atomic.h>
36 #include <asm/proto.h>
37 #include <asm/sections.h>
38 #include <asm/setup.h>
39 #include <asm/hypervisor.h>
40 #include <asm/stackprotector.h>
42 #include "cpu.h"
44 /* all of these masks are initialized in setup_cpu_local_masks() */
45 cpumask_var_t cpu_callin_mask;
46 cpumask_var_t cpu_callout_mask;
47 cpumask_var_t cpu_initialized_mask;
49 /* representing cpus for which sibling maps can be computed */
50 cpumask_var_t cpu_sibling_setup_mask;
52 /* correctly size the local cpu masks */
53 void __init setup_cpu_local_masks(void)
55 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
56 alloc_bootmem_cpumask_var(&cpu_callin_mask);
57 alloc_bootmem_cpumask_var(&cpu_callout_mask);
58 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
61 static struct cpu_dev *this_cpu __cpuinitdata;
63 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
64 #ifdef CONFIG_X86_64
66 * We need valid kernel segments for data and code in long mode too
67 * IRET will check the segment types kkeil 2000/10/28
68 * Also sysret mandates a special GDT layout
70 * The TLS descriptors are currently at a different place compared to i386.
71 * Hopefully nobody expects them at a fixed place (Wine?)
73 [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
74 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
75 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
76 [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
77 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
78 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
79 #else
80 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
81 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
82 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
83 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
85 * Segments used for calling PnP BIOS have byte granularity.
86 * They code segments and data segments have fixed 64k limits,
87 * the transfer segment sizes are set at run time.
89 /* 32-bit code */
90 [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
91 /* 16-bit code */
92 [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
93 /* 16-bit data */
94 [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
95 /* 16-bit data */
96 [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
97 /* 16-bit data */
98 [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
100 * The APM segments have byte granularity and their bases
101 * are set at run time. All have 64k limits.
103 /* 32-bit code */
104 [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
105 /* 16-bit code */
106 [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
107 /* data */
108 [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
110 [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
111 [GDT_ENTRY_PERCPU] = { { { 0x0000ffff, 0x00cf9200 } } },
112 GDT_STACK_CANARY_INIT
113 #endif
114 } };
115 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
117 #ifdef CONFIG_X86_32
118 static int cachesize_override __cpuinitdata = -1;
119 static int disable_x86_serial_nr __cpuinitdata = 1;
121 static int __init cachesize_setup(char *str)
123 get_option(&str, &cachesize_override);
124 return 1;
126 __setup("cachesize=", cachesize_setup);
128 static int __init x86_fxsr_setup(char *s)
130 setup_clear_cpu_cap(X86_FEATURE_FXSR);
131 setup_clear_cpu_cap(X86_FEATURE_XMM);
132 return 1;
134 __setup("nofxsr", x86_fxsr_setup);
136 static int __init x86_sep_setup(char *s)
138 setup_clear_cpu_cap(X86_FEATURE_SEP);
139 return 1;
141 __setup("nosep", x86_sep_setup);
143 /* Standard macro to see if a specific flag is changeable */
144 static inline int flag_is_changeable_p(u32 flag)
146 u32 f1, f2;
149 * Cyrix and IDT cpus allow disabling of CPUID
150 * so the code below may return different results
151 * when it is executed before and after enabling
152 * the CPUID. Add "volatile" to not allow gcc to
153 * optimize the subsequent calls to this function.
155 asm volatile ("pushfl\n\t"
156 "pushfl\n\t"
157 "popl %0\n\t"
158 "movl %0,%1\n\t"
159 "xorl %2,%0\n\t"
160 "pushl %0\n\t"
161 "popfl\n\t"
162 "pushfl\n\t"
163 "popl %0\n\t"
164 "popfl\n\t"
165 : "=&r" (f1), "=&r" (f2)
166 : "ir" (flag));
168 return ((f1^f2) & flag) != 0;
171 /* Probe for the CPUID instruction */
172 static int __cpuinit have_cpuid_p(void)
174 return flag_is_changeable_p(X86_EFLAGS_ID);
177 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
179 if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
180 /* Disable processor serial number */
181 unsigned long lo, hi;
182 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
183 lo |= 0x200000;
184 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
185 printk(KERN_NOTICE "CPU serial number disabled.\n");
186 clear_cpu_cap(c, X86_FEATURE_PN);
188 /* Disabling the serial number may affect the cpuid level */
189 c->cpuid_level = cpuid_eax(0);
193 static int __init x86_serial_nr_setup(char *s)
195 disable_x86_serial_nr = 0;
196 return 1;
198 __setup("serialnumber", x86_serial_nr_setup);
199 #else
200 static inline int flag_is_changeable_p(u32 flag)
202 return 1;
204 /* Probe for the CPUID instruction */
205 static inline int have_cpuid_p(void)
207 return 1;
209 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
212 #endif
215 * Some CPU features depend on higher CPUID levels, which may not always
216 * be available due to CPUID level capping or broken virtualization
217 * software. Add those features to this table to auto-disable them.
219 struct cpuid_dependent_feature {
220 u32 feature;
221 u32 level;
223 static const struct cpuid_dependent_feature __cpuinitconst
224 cpuid_dependent_features[] = {
225 { X86_FEATURE_MWAIT, 0x00000005 },
226 { X86_FEATURE_DCA, 0x00000009 },
227 { X86_FEATURE_XSAVE, 0x0000000d },
228 { 0, 0 }
231 static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
233 const struct cpuid_dependent_feature *df;
234 for (df = cpuid_dependent_features; df->feature; df++) {
236 * Note: cpuid_level is set to -1 if unavailable, but
237 * extended_extended_level is set to 0 if unavailable
238 * and the legitimate extended levels are all negative
239 * when signed; hence the weird messing around with
240 * signs here...
242 if (cpu_has(c, df->feature) &&
243 ((s32)df->level < 0 ?
244 (u32)df->level > (u32)c->extended_cpuid_level :
245 (s32)df->level > (s32)c->cpuid_level)) {
246 clear_cpu_cap(c, df->feature);
247 if (warn)
248 printk(KERN_WARNING
249 "CPU: CPU feature %s disabled "
250 "due to lack of CPUID level 0x%x\n",
251 x86_cap_flags[df->feature],
252 df->level);
258 * Naming convention should be: <Name> [(<Codename>)]
259 * This table only is used unless init_<vendor>() below doesn't set it;
260 * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
264 /* Look up CPU names by table lookup. */
265 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
267 struct cpu_model_info *info;
269 if (c->x86_model >= 16)
270 return NULL; /* Range check */
272 if (!this_cpu)
273 return NULL;
275 info = this_cpu->c_models;
277 while (info && info->family) {
278 if (info->family == c->x86)
279 return info->model_names[c->x86_model];
280 info++;
282 return NULL; /* Not found */
285 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
287 void load_percpu_segment(int cpu)
289 #ifdef CONFIG_X86_32
290 loadsegment(fs, __KERNEL_PERCPU);
291 #else
292 loadsegment(gs, 0);
293 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
294 #endif
295 load_stack_canary_segment();
298 /* Current gdt points %fs at the "master" per-cpu area: after this,
299 * it's on the real one. */
300 void switch_to_new_gdt(int cpu)
302 struct desc_ptr gdt_descr;
304 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
305 gdt_descr.size = GDT_SIZE - 1;
306 load_gdt(&gdt_descr);
307 /* Reload the per-cpu base */
309 load_percpu_segment(cpu);
312 static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
314 static void __cpuinit default_init(struct cpuinfo_x86 *c)
316 #ifdef CONFIG_X86_64
317 display_cacheinfo(c);
318 #else
319 /* Not much we can do here... */
320 /* Check if at least it has cpuid */
321 if (c->cpuid_level == -1) {
322 /* No cpuid. It must be an ancient CPU */
323 if (c->x86 == 4)
324 strcpy(c->x86_model_id, "486");
325 else if (c->x86 == 3)
326 strcpy(c->x86_model_id, "386");
328 #endif
331 static struct cpu_dev __cpuinitdata default_cpu = {
332 .c_init = default_init,
333 .c_vendor = "Unknown",
334 .c_x86_vendor = X86_VENDOR_UNKNOWN,
337 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
339 unsigned int *v;
340 char *p, *q;
342 if (c->extended_cpuid_level < 0x80000004)
343 return;
345 v = (unsigned int *) c->x86_model_id;
346 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
347 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
348 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
349 c->x86_model_id[48] = 0;
351 /* Intel chips right-justify this string for some dumb reason;
352 undo that brain damage */
353 p = q = &c->x86_model_id[0];
354 while (*p == ' ')
355 p++;
356 if (p != q) {
357 while (*p)
358 *q++ = *p++;
359 while (q <= &c->x86_model_id[48])
360 *q++ = '\0'; /* Zero-pad the rest */
364 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
366 unsigned int n, dummy, ebx, ecx, edx, l2size;
368 n = c->extended_cpuid_level;
370 if (n >= 0x80000005) {
371 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
372 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
373 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
374 c->x86_cache_size = (ecx>>24) + (edx>>24);
375 #ifdef CONFIG_X86_64
376 /* On K8 L1 TLB is inclusive, so don't count it */
377 c->x86_tlbsize = 0;
378 #endif
381 if (n < 0x80000006) /* Some chips just has a large L1. */
382 return;
384 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
385 l2size = ecx >> 16;
387 #ifdef CONFIG_X86_64
388 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
389 #else
390 /* do processor-specific cache resizing */
391 if (this_cpu->c_size_cache)
392 l2size = this_cpu->c_size_cache(c, l2size);
394 /* Allow user to override all this if necessary. */
395 if (cachesize_override != -1)
396 l2size = cachesize_override;
398 if (l2size == 0)
399 return; /* Again, no L2 cache is possible */
400 #endif
402 c->x86_cache_size = l2size;
404 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
405 l2size, ecx & 0xFF);
408 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
410 #ifdef CONFIG_X86_HT
411 u32 eax, ebx, ecx, edx;
412 int index_msb, core_bits;
414 if (!cpu_has(c, X86_FEATURE_HT))
415 return;
417 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
418 goto out;
420 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
421 return;
423 cpuid(1, &eax, &ebx, &ecx, &edx);
425 smp_num_siblings = (ebx & 0xff0000) >> 16;
427 if (smp_num_siblings == 1) {
428 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
429 } else if (smp_num_siblings > 1) {
431 if (smp_num_siblings > nr_cpu_ids) {
432 printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
433 smp_num_siblings);
434 smp_num_siblings = 1;
435 return;
438 index_msb = get_count_order(smp_num_siblings);
439 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
441 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
443 index_msb = get_count_order(smp_num_siblings);
445 core_bits = get_count_order(c->x86_max_cores);
447 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
448 ((1 << core_bits) - 1);
451 out:
452 if ((c->x86_max_cores * smp_num_siblings) > 1) {
453 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
454 c->phys_proc_id);
455 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
456 c->cpu_core_id);
458 #endif
461 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
463 char *v = c->x86_vendor_id;
464 int i;
465 static int printed;
467 for (i = 0; i < X86_VENDOR_NUM; i++) {
468 if (!cpu_devs[i])
469 break;
471 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
472 (cpu_devs[i]->c_ident[1] &&
473 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
474 this_cpu = cpu_devs[i];
475 c->x86_vendor = this_cpu->c_x86_vendor;
476 return;
480 if (!printed) {
481 printed++;
482 printk(KERN_ERR "CPU: vendor_id '%s' unknown, using generic init.\n", v);
483 printk(KERN_ERR "CPU: Your system may be unstable.\n");
486 c->x86_vendor = X86_VENDOR_UNKNOWN;
487 this_cpu = &default_cpu;
490 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
492 /* Get vendor name */
493 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
494 (unsigned int *)&c->x86_vendor_id[0],
495 (unsigned int *)&c->x86_vendor_id[8],
496 (unsigned int *)&c->x86_vendor_id[4]);
498 c->x86 = 4;
499 /* Intel-defined flags: level 0x00000001 */
500 if (c->cpuid_level >= 0x00000001) {
501 u32 junk, tfms, cap0, misc;
502 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
503 c->x86 = (tfms >> 8) & 0xf;
504 c->x86_model = (tfms >> 4) & 0xf;
505 c->x86_mask = tfms & 0xf;
506 if (c->x86 == 0xf)
507 c->x86 += (tfms >> 20) & 0xff;
508 if (c->x86 >= 0x6)
509 c->x86_model += ((tfms >> 16) & 0xf) << 4;
510 if (cap0 & (1<<19)) {
511 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
512 c->x86_cache_alignment = c->x86_clflush_size;
517 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
519 u32 tfms, xlvl;
520 u32 ebx;
522 /* Intel-defined flags: level 0x00000001 */
523 if (c->cpuid_level >= 0x00000001) {
524 u32 capability, excap;
525 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
526 c->x86_capability[0] = capability;
527 c->x86_capability[4] = excap;
530 /* AMD-defined flags: level 0x80000001 */
531 xlvl = cpuid_eax(0x80000000);
532 c->extended_cpuid_level = xlvl;
533 if ((xlvl & 0xffff0000) == 0x80000000) {
534 if (xlvl >= 0x80000001) {
535 c->x86_capability[1] = cpuid_edx(0x80000001);
536 c->x86_capability[6] = cpuid_ecx(0x80000001);
540 #ifdef CONFIG_X86_64
541 if (c->extended_cpuid_level >= 0x80000008) {
542 u32 eax = cpuid_eax(0x80000008);
544 c->x86_virt_bits = (eax >> 8) & 0xff;
545 c->x86_phys_bits = eax & 0xff;
547 #endif
549 if (c->extended_cpuid_level >= 0x80000007)
550 c->x86_power = cpuid_edx(0x80000007);
554 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
556 #ifdef CONFIG_X86_32
557 int i;
560 * First of all, decide if this is a 486 or higher
561 * It's a 486 if we can modify the AC flag
563 if (flag_is_changeable_p(X86_EFLAGS_AC))
564 c->x86 = 4;
565 else
566 c->x86 = 3;
568 for (i = 0; i < X86_VENDOR_NUM; i++)
569 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
570 c->x86_vendor_id[0] = 0;
571 cpu_devs[i]->c_identify(c);
572 if (c->x86_vendor_id[0]) {
573 get_cpu_vendor(c);
574 break;
577 #endif
581 * Do minimum CPU detection early.
582 * Fields really needed: vendor, cpuid_level, family, model, mask,
583 * cache alignment.
584 * The others are not touched to avoid unwanted side effects.
586 * WARNING: this function is only called on the BP. Don't add code here
587 * that is supposed to run on all CPUs.
589 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
591 #ifdef CONFIG_X86_64
592 c->x86_clflush_size = 64;
593 #else
594 c->x86_clflush_size = 32;
595 #endif
596 c->x86_cache_alignment = c->x86_clflush_size;
598 memset(&c->x86_capability, 0, sizeof c->x86_capability);
599 c->extended_cpuid_level = 0;
601 if (!have_cpuid_p())
602 identify_cpu_without_cpuid(c);
604 /* cyrix could have cpuid enabled via c_identify()*/
605 if (!have_cpuid_p())
606 return;
608 cpu_detect(c);
610 get_cpu_vendor(c);
612 get_cpu_cap(c);
614 if (this_cpu->c_early_init)
615 this_cpu->c_early_init(c);
617 #ifdef CONFIG_SMP
618 c->cpu_index = boot_cpu_id;
619 #endif
620 filter_cpuid_features(c, false);
623 void __init early_cpu_init(void)
625 struct cpu_dev **cdev;
626 int count = 0;
628 printk("KERNEL supported cpus:\n");
629 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
630 struct cpu_dev *cpudev = *cdev;
631 unsigned int j;
633 if (count >= X86_VENDOR_NUM)
634 break;
635 cpu_devs[count] = cpudev;
636 count++;
638 for (j = 0; j < 2; j++) {
639 if (!cpudev->c_ident[j])
640 continue;
641 printk(" %s %s\n", cpudev->c_vendor,
642 cpudev->c_ident[j]);
646 early_identify_cpu(&boot_cpu_data);
650 * The NOPL instruction is supposed to exist on all CPUs with
651 * family >= 6; unfortunately, that's not true in practice because
652 * of early VIA chips and (more importantly) broken virtualizers that
653 * are not easy to detect. In the latter case it doesn't even *fail*
654 * reliably, so probing for it doesn't even work. Disable it completely
655 * unless we can find a reliable way to detect all the broken cases.
657 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
659 clear_cpu_cap(c, X86_FEATURE_NOPL);
662 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
664 c->extended_cpuid_level = 0;
666 if (!have_cpuid_p())
667 identify_cpu_without_cpuid(c);
669 /* cyrix could have cpuid enabled via c_identify()*/
670 if (!have_cpuid_p())
671 return;
673 cpu_detect(c);
675 get_cpu_vendor(c);
677 get_cpu_cap(c);
679 if (c->cpuid_level >= 0x00000001) {
680 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
681 #ifdef CONFIG_X86_32
682 # ifdef CONFIG_X86_HT
683 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
684 # else
685 c->apicid = c->initial_apicid;
686 # endif
687 #endif
689 #ifdef CONFIG_X86_HT
690 c->phys_proc_id = c->initial_apicid;
691 #endif
694 get_model_name(c); /* Default name */
696 init_scattered_cpuid_features(c);
697 detect_nopl(c);
701 * This does the hard work of actually picking apart the CPU stuff...
703 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
705 int i;
707 c->loops_per_jiffy = loops_per_jiffy;
708 c->x86_cache_size = -1;
709 c->x86_vendor = X86_VENDOR_UNKNOWN;
710 c->x86_model = c->x86_mask = 0; /* So far unknown... */
711 c->x86_vendor_id[0] = '\0'; /* Unset */
712 c->x86_model_id[0] = '\0'; /* Unset */
713 c->x86_max_cores = 1;
714 c->x86_coreid_bits = 0;
715 #ifdef CONFIG_X86_64
716 c->x86_clflush_size = 64;
717 #else
718 c->cpuid_level = -1; /* CPUID not detected */
719 c->x86_clflush_size = 32;
720 #endif
721 c->x86_cache_alignment = c->x86_clflush_size;
722 memset(&c->x86_capability, 0, sizeof c->x86_capability);
724 generic_identify(c);
726 if (this_cpu->c_identify)
727 this_cpu->c_identify(c);
729 #ifdef CONFIG_X86_64
730 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
731 #endif
734 * Vendor-specific initialization. In this section we
735 * canonicalize the feature flags, meaning if there are
736 * features a certain CPU supports which CPUID doesn't
737 * tell us, CPUID claiming incorrect flags, or other bugs,
738 * we handle them here.
740 * At the end of this section, c->x86_capability better
741 * indicate the features this CPU genuinely supports!
743 if (this_cpu->c_init)
744 this_cpu->c_init(c);
746 /* Disable the PN if appropriate */
747 squash_the_stupid_serial_number(c);
750 * The vendor-specific functions might have changed features. Now
751 * we do "generic changes."
754 /* Filter out anything that depends on CPUID levels we don't have */
755 filter_cpuid_features(c, true);
757 /* If the model name is still unset, do table lookup. */
758 if (!c->x86_model_id[0]) {
759 char *p;
760 p = table_lookup_model(c);
761 if (p)
762 strcpy(c->x86_model_id, p);
763 else
764 /* Last resort... */
765 sprintf(c->x86_model_id, "%02x/%02x",
766 c->x86, c->x86_model);
769 #ifdef CONFIG_X86_64
770 detect_ht(c);
771 #endif
773 init_hypervisor(c);
775 * On SMP, boot_cpu_data holds the common feature set between
776 * all CPUs; so make sure that we indicate which features are
777 * common between the CPUs. The first time this routine gets
778 * executed, c == &boot_cpu_data.
780 if (c != &boot_cpu_data) {
781 /* AND the already accumulated flags with these */
782 for (i = 0; i < NCAPINTS; i++)
783 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
786 /* Clear all flags overriden by options */
787 for (i = 0; i < NCAPINTS; i++)
788 c->x86_capability[i] &= ~cleared_cpu_caps[i];
790 #ifdef CONFIG_X86_MCE
791 /* Init Machine Check Exception if available. */
792 mcheck_init(c);
793 #endif
795 select_idle_routine(c);
797 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
798 numa_add_cpu(smp_processor_id());
799 #endif
802 #ifdef CONFIG_X86_64
803 static void vgetcpu_set_mode(void)
805 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
806 vgetcpu_mode = VGETCPU_RDTSCP;
807 else
808 vgetcpu_mode = VGETCPU_LSL;
810 #endif
812 void __init identify_boot_cpu(void)
814 identify_cpu(&boot_cpu_data);
815 init_c1e_mask();
816 #ifdef CONFIG_X86_32
817 sysenter_setup();
818 enable_sep_cpu();
819 #else
820 vgetcpu_set_mode();
821 #endif
824 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
826 BUG_ON(c == &boot_cpu_data);
827 identify_cpu(c);
828 #ifdef CONFIG_X86_32
829 enable_sep_cpu();
830 #endif
831 mtrr_ap_init();
834 struct msr_range {
835 unsigned min;
836 unsigned max;
839 static struct msr_range msr_range_array[] __cpuinitdata = {
840 { 0x00000000, 0x00000418},
841 { 0xc0000000, 0xc000040b},
842 { 0xc0010000, 0xc0010142},
843 { 0xc0011000, 0xc001103b},
846 static void __cpuinit print_cpu_msr(void)
848 unsigned index;
849 u64 val;
850 int i;
851 unsigned index_min, index_max;
853 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
854 index_min = msr_range_array[i].min;
855 index_max = msr_range_array[i].max;
856 for (index = index_min; index < index_max; index++) {
857 if (rdmsrl_amd_safe(index, &val))
858 continue;
859 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
864 static int show_msr __cpuinitdata;
865 static __init int setup_show_msr(char *arg)
867 int num;
869 get_option(&arg, &num);
871 if (num > 0)
872 show_msr = num;
873 return 1;
875 __setup("show_msr=", setup_show_msr);
877 static __init int setup_noclflush(char *arg)
879 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
880 return 1;
882 __setup("noclflush", setup_noclflush);
884 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
886 char *vendor = NULL;
888 if (c->x86_vendor < X86_VENDOR_NUM)
889 vendor = this_cpu->c_vendor;
890 else if (c->cpuid_level >= 0)
891 vendor = c->x86_vendor_id;
893 if (vendor && !strstr(c->x86_model_id, vendor))
894 printk(KERN_CONT "%s ", vendor);
896 if (c->x86_model_id[0])
897 printk(KERN_CONT "%s", c->x86_model_id);
898 else
899 printk(KERN_CONT "%d86", c->x86);
901 if (c->x86_mask || c->cpuid_level >= 0)
902 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
903 else
904 printk(KERN_CONT "\n");
906 #ifdef CONFIG_SMP
907 if (c->cpu_index < show_msr)
908 print_cpu_msr();
909 #else
910 if (show_msr)
911 print_cpu_msr();
912 #endif
915 static __init int setup_disablecpuid(char *arg)
917 int bit;
918 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
919 setup_clear_cpu_cap(bit);
920 else
921 return 0;
922 return 1;
924 __setup("clearcpuid=", setup_disablecpuid);
926 #ifdef CONFIG_X86_64
927 struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
929 DEFINE_PER_CPU_FIRST(union irq_stack_union,
930 irq_stack_union) __aligned(PAGE_SIZE);
931 DEFINE_PER_CPU(char *, irq_stack_ptr) =
932 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
934 DEFINE_PER_CPU(unsigned long, kernel_stack) =
935 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
936 EXPORT_PER_CPU_SYMBOL(kernel_stack);
938 DEFINE_PER_CPU(unsigned int, irq_count) = -1;
940 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
941 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ])
942 __aligned(PAGE_SIZE);
944 extern asmlinkage void ignore_sysret(void);
946 /* May not be marked __init: used by software suspend */
947 void syscall_init(void)
950 * LSTAR and STAR live in a bit strange symbiosis.
951 * They both write to the same internal register. STAR allows to
952 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
954 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
955 wrmsrl(MSR_LSTAR, system_call);
956 wrmsrl(MSR_CSTAR, ignore_sysret);
958 #ifdef CONFIG_IA32_EMULATION
959 syscall32_cpu_init();
960 #endif
962 /* Flags to clear on syscall */
963 wrmsrl(MSR_SYSCALL_MASK,
964 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
967 unsigned long kernel_eflags;
970 * Copies of the original ist values from the tss are only accessed during
971 * debugging, no special alignment required.
973 DEFINE_PER_CPU(struct orig_ist, orig_ist);
975 #else /* x86_64 */
977 #ifdef CONFIG_CC_STACKPROTECTOR
978 DEFINE_PER_CPU(unsigned long, stack_canary);
979 #endif
981 /* Make sure %fs and %gs are initialized properly in idle threads */
982 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
984 memset(regs, 0, sizeof(struct pt_regs));
985 regs->fs = __KERNEL_PERCPU;
986 regs->gs = __KERNEL_STACK_CANARY;
987 return regs;
989 #endif /* x86_64 */
992 * cpu_init() initializes state that is per-CPU. Some data is already
993 * initialized (naturally) in the bootstrap process, such as the GDT
994 * and IDT. We reload them nevertheless, this function acts as a
995 * 'CPU state barrier', nothing should get across.
996 * A lot of state is already set up in PDA init for 64 bit
998 #ifdef CONFIG_X86_64
999 void __cpuinit cpu_init(void)
1001 int cpu = stack_smp_processor_id();
1002 struct tss_struct *t = &per_cpu(init_tss, cpu);
1003 struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
1004 unsigned long v;
1005 struct task_struct *me;
1006 int i;
1008 #ifdef CONFIG_NUMA
1009 if (cpu != 0 && percpu_read(node_number) == 0 &&
1010 cpu_to_node(cpu) != NUMA_NO_NODE)
1011 percpu_write(node_number, cpu_to_node(cpu));
1012 #endif
1014 me = current;
1016 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1017 panic("CPU#%d already initialized!\n", cpu);
1019 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1021 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1024 * Initialize the per-CPU GDT with the boot GDT,
1025 * and set up the GDT descriptor:
1028 switch_to_new_gdt(cpu);
1029 loadsegment(fs, 0);
1031 load_idt((const struct desc_ptr *)&idt_descr);
1033 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1034 syscall_init();
1036 wrmsrl(MSR_FS_BASE, 0);
1037 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1038 barrier();
1040 check_efer();
1041 if (cpu != 0)
1042 enable_x2apic();
1045 * set up and load the per-CPU TSS
1047 if (!orig_ist->ist[0]) {
1048 static const unsigned int sizes[N_EXCEPTION_STACKS] = {
1049 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1050 [DEBUG_STACK - 1] = DEBUG_STKSZ
1052 char *estacks = per_cpu(exception_stacks, cpu);
1053 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1054 estacks += sizes[v];
1055 orig_ist->ist[v] = t->x86_tss.ist[v] =
1056 (unsigned long)estacks;
1060 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1062 * <= is required because the CPU will access up to
1063 * 8 bits beyond the end of the IO permission bitmap.
1065 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1066 t->io_bitmap[i] = ~0UL;
1068 atomic_inc(&init_mm.mm_count);
1069 me->active_mm = &init_mm;
1070 if (me->mm)
1071 BUG();
1072 enter_lazy_tlb(&init_mm, me);
1074 load_sp0(t, &current->thread);
1075 set_tss_desc(cpu, t);
1076 load_TR_desc();
1077 load_LDT(&init_mm.context);
1079 #ifdef CONFIG_KGDB
1081 * If the kgdb is connected no debug regs should be altered. This
1082 * is only applicable when KGDB and a KGDB I/O module are built
1083 * into the kernel and you are using early debugging with
1084 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1086 if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1087 arch_kgdb_ops.correct_hw_break();
1088 else
1089 #endif
1092 * Clear all 6 debug registers:
1094 set_debugreg(0UL, 0);
1095 set_debugreg(0UL, 1);
1096 set_debugreg(0UL, 2);
1097 set_debugreg(0UL, 3);
1098 set_debugreg(0UL, 6);
1099 set_debugreg(0UL, 7);
1102 fpu_init();
1104 raw_local_save_flags(kernel_eflags);
1106 if (is_uv_system())
1107 uv_cpu_init();
1110 #else
1112 void __cpuinit cpu_init(void)
1114 int cpu = smp_processor_id();
1115 struct task_struct *curr = current;
1116 struct tss_struct *t = &per_cpu(init_tss, cpu);
1117 struct thread_struct *thread = &curr->thread;
1119 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1120 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1121 for (;;) local_irq_enable();
1124 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1126 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1127 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1129 load_idt(&idt_descr);
1130 switch_to_new_gdt(cpu);
1133 * Set up and load the per-CPU TSS and LDT
1135 atomic_inc(&init_mm.mm_count);
1136 curr->active_mm = &init_mm;
1137 if (curr->mm)
1138 BUG();
1139 enter_lazy_tlb(&init_mm, curr);
1141 load_sp0(t, thread);
1142 set_tss_desc(cpu, t);
1143 load_TR_desc();
1144 load_LDT(&init_mm.context);
1146 #ifdef CONFIG_DOUBLEFAULT
1147 /* Set up doublefault TSS pointer in the GDT */
1148 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1149 #endif
1151 /* Clear all 6 debug registers: */
1152 set_debugreg(0, 0);
1153 set_debugreg(0, 1);
1154 set_debugreg(0, 2);
1155 set_debugreg(0, 3);
1156 set_debugreg(0, 6);
1157 set_debugreg(0, 7);
1160 * Force FPU initialization:
1162 if (cpu_has_xsave)
1163 current_thread_info()->status = TS_XSAVE;
1164 else
1165 current_thread_info()->status = 0;
1166 clear_used_math();
1167 mxcsr_feature_mask_init();
1170 * Boot processor to setup the FP and extended state context info.
1172 if (smp_processor_id() == boot_cpu_id)
1173 init_thread_xstate();
1175 xsave_init();
1179 #endif