libata: fix internal command failure handling
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / libata-core.c
blob8afc2740f1dc3e046ec575c72217658f53993a3d
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <scsi/scsi.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_host.h>
62 #include <linux/libata.h>
63 #include <asm/byteorder.h>
64 #include <linux/cdrom.h>
66 #include "libata.h"
69 /* debounce timing parameters in msecs { interval, duration, timeout } */
70 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
71 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
72 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
74 const struct ata_port_operations ata_base_port_ops = {
75 .prereset = ata_std_prereset,
76 .postreset = ata_std_postreset,
77 .error_handler = ata_std_error_handler,
80 const struct ata_port_operations sata_port_ops = {
81 .inherits = &ata_base_port_ops,
83 .qc_defer = ata_std_qc_defer,
84 .hardreset = sata_std_hardreset,
87 static unsigned int ata_dev_init_params(struct ata_device *dev,
88 u16 heads, u16 sectors);
89 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
90 static unsigned int ata_dev_set_feature(struct ata_device *dev,
91 u8 enable, u8 feature);
92 static void ata_dev_xfermask(struct ata_device *dev);
93 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
95 unsigned int ata_print_id = 1;
96 static struct workqueue_struct *ata_wq;
98 struct workqueue_struct *ata_aux_wq;
100 struct ata_force_param {
101 const char *name;
102 unsigned int cbl;
103 int spd_limit;
104 unsigned long xfer_mask;
105 unsigned int horkage_on;
106 unsigned int horkage_off;
107 unsigned int lflags;
110 struct ata_force_ent {
111 int port;
112 int device;
113 struct ata_force_param param;
116 static struct ata_force_ent *ata_force_tbl;
117 static int ata_force_tbl_size;
119 static char ata_force_param_buf[PAGE_SIZE] __initdata;
120 /* param_buf is thrown away after initialization, disallow read */
121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
124 static int atapi_enabled = 1;
125 module_param(atapi_enabled, int, 0444);
126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
128 static int atapi_dmadir = 0;
129 module_param(atapi_dmadir, int, 0444);
130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
132 int atapi_passthru16 = 1;
133 module_param(atapi_passthru16, int, 0444);
134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
136 int libata_fua = 0;
137 module_param_named(fua, libata_fua, int, 0444);
138 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
140 static int ata_ignore_hpa;
141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
145 module_param_named(dma, libata_dma_mask, int, 0444);
146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
148 static int ata_probe_timeout;
149 module_param(ata_probe_timeout, int, 0444);
150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
152 int libata_noacpi = 0;
153 module_param_named(noacpi, libata_noacpi, int, 0444);
154 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
156 int libata_allow_tpm = 0;
157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
160 MODULE_AUTHOR("Jeff Garzik");
161 MODULE_DESCRIPTION("Library module for ATA devices");
162 MODULE_LICENSE("GPL");
163 MODULE_VERSION(DRV_VERSION);
167 * ata_force_cbl - force cable type according to libata.force
168 * @ap: ATA port of interest
170 * Force cable type according to libata.force and whine about it.
171 * The last entry which has matching port number is used, so it
172 * can be specified as part of device force parameters. For
173 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
174 * same effect.
176 * LOCKING:
177 * EH context.
179 void ata_force_cbl(struct ata_port *ap)
181 int i;
183 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
184 const struct ata_force_ent *fe = &ata_force_tbl[i];
186 if (fe->port != -1 && fe->port != ap->print_id)
187 continue;
189 if (fe->param.cbl == ATA_CBL_NONE)
190 continue;
192 ap->cbl = fe->param.cbl;
193 ata_port_printk(ap, KERN_NOTICE,
194 "FORCE: cable set to %s\n", fe->param.name);
195 return;
200 * ata_force_link_limits - force link limits according to libata.force
201 * @link: ATA link of interest
203 * Force link flags and SATA spd limit according to libata.force
204 * and whine about it. When only the port part is specified
205 * (e.g. 1:), the limit applies to all links connected to both
206 * the host link and all fan-out ports connected via PMP. If the
207 * device part is specified as 0 (e.g. 1.00:), it specifies the
208 * first fan-out link not the host link. Device number 15 always
209 * points to the host link whether PMP is attached or not.
211 * LOCKING:
212 * EH context.
214 static void ata_force_link_limits(struct ata_link *link)
216 bool did_spd = false;
217 int linkno, i;
219 if (ata_is_host_link(link))
220 linkno = 15;
221 else
222 linkno = link->pmp;
224 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
225 const struct ata_force_ent *fe = &ata_force_tbl[i];
227 if (fe->port != -1 && fe->port != link->ap->print_id)
228 continue;
230 if (fe->device != -1 && fe->device != linkno)
231 continue;
233 /* only honor the first spd limit */
234 if (!did_spd && fe->param.spd_limit) {
235 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
236 ata_link_printk(link, KERN_NOTICE,
237 "FORCE: PHY spd limit set to %s\n",
238 fe->param.name);
239 did_spd = true;
242 /* let lflags stack */
243 if (fe->param.lflags) {
244 link->flags |= fe->param.lflags;
245 ata_link_printk(link, KERN_NOTICE,
246 "FORCE: link flag 0x%x forced -> 0x%x\n",
247 fe->param.lflags, link->flags);
253 * ata_force_xfermask - force xfermask according to libata.force
254 * @dev: ATA device of interest
256 * Force xfer_mask according to libata.force and whine about it.
257 * For consistency with link selection, device number 15 selects
258 * the first device connected to the host link.
260 * LOCKING:
261 * EH context.
263 static void ata_force_xfermask(struct ata_device *dev)
265 int devno = dev->link->pmp + dev->devno;
266 int alt_devno = devno;
267 int i;
269 /* allow n.15 for the first device attached to host port */
270 if (ata_is_host_link(dev->link) && devno == 0)
271 alt_devno = 15;
273 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
274 const struct ata_force_ent *fe = &ata_force_tbl[i];
275 unsigned long pio_mask, mwdma_mask, udma_mask;
277 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
278 continue;
280 if (fe->device != -1 && fe->device != devno &&
281 fe->device != alt_devno)
282 continue;
284 if (!fe->param.xfer_mask)
285 continue;
287 ata_unpack_xfermask(fe->param.xfer_mask,
288 &pio_mask, &mwdma_mask, &udma_mask);
289 if (udma_mask)
290 dev->udma_mask = udma_mask;
291 else if (mwdma_mask) {
292 dev->udma_mask = 0;
293 dev->mwdma_mask = mwdma_mask;
294 } else {
295 dev->udma_mask = 0;
296 dev->mwdma_mask = 0;
297 dev->pio_mask = pio_mask;
300 ata_dev_printk(dev, KERN_NOTICE,
301 "FORCE: xfer_mask set to %s\n", fe->param.name);
302 return;
307 * ata_force_horkage - force horkage according to libata.force
308 * @dev: ATA device of interest
310 * Force horkage according to libata.force and whine about it.
311 * For consistency with link selection, device number 15 selects
312 * the first device connected to the host link.
314 * LOCKING:
315 * EH context.
317 static void ata_force_horkage(struct ata_device *dev)
319 int devno = dev->link->pmp + dev->devno;
320 int alt_devno = devno;
321 int i;
323 /* allow n.15 for the first device attached to host port */
324 if (ata_is_host_link(dev->link) && devno == 0)
325 alt_devno = 15;
327 for (i = 0; i < ata_force_tbl_size; i++) {
328 const struct ata_force_ent *fe = &ata_force_tbl[i];
330 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
331 continue;
333 if (fe->device != -1 && fe->device != devno &&
334 fe->device != alt_devno)
335 continue;
337 if (!(~dev->horkage & fe->param.horkage_on) &&
338 !(dev->horkage & fe->param.horkage_off))
339 continue;
341 dev->horkage |= fe->param.horkage_on;
342 dev->horkage &= ~fe->param.horkage_off;
344 ata_dev_printk(dev, KERN_NOTICE,
345 "FORCE: horkage modified (%s)\n", fe->param.name);
350 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
351 * @opcode: SCSI opcode
353 * Determine ATAPI command type from @opcode.
355 * LOCKING:
356 * None.
358 * RETURNS:
359 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
361 int atapi_cmd_type(u8 opcode)
363 switch (opcode) {
364 case GPCMD_READ_10:
365 case GPCMD_READ_12:
366 return ATAPI_READ;
368 case GPCMD_WRITE_10:
369 case GPCMD_WRITE_12:
370 case GPCMD_WRITE_AND_VERIFY_10:
371 return ATAPI_WRITE;
373 case GPCMD_READ_CD:
374 case GPCMD_READ_CD_MSF:
375 return ATAPI_READ_CD;
377 case ATA_16:
378 case ATA_12:
379 if (atapi_passthru16)
380 return ATAPI_PASS_THRU;
381 /* fall thru */
382 default:
383 return ATAPI_MISC;
388 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
389 * @tf: Taskfile to convert
390 * @pmp: Port multiplier port
391 * @is_cmd: This FIS is for command
392 * @fis: Buffer into which data will output
394 * Converts a standard ATA taskfile to a Serial ATA
395 * FIS structure (Register - Host to Device).
397 * LOCKING:
398 * Inherited from caller.
400 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
402 fis[0] = 0x27; /* Register - Host to Device FIS */
403 fis[1] = pmp & 0xf; /* Port multiplier number*/
404 if (is_cmd)
405 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
407 fis[2] = tf->command;
408 fis[3] = tf->feature;
410 fis[4] = tf->lbal;
411 fis[5] = tf->lbam;
412 fis[6] = tf->lbah;
413 fis[7] = tf->device;
415 fis[8] = tf->hob_lbal;
416 fis[9] = tf->hob_lbam;
417 fis[10] = tf->hob_lbah;
418 fis[11] = tf->hob_feature;
420 fis[12] = tf->nsect;
421 fis[13] = tf->hob_nsect;
422 fis[14] = 0;
423 fis[15] = tf->ctl;
425 fis[16] = 0;
426 fis[17] = 0;
427 fis[18] = 0;
428 fis[19] = 0;
432 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
433 * @fis: Buffer from which data will be input
434 * @tf: Taskfile to output
436 * Converts a serial ATA FIS structure to a standard ATA taskfile.
438 * LOCKING:
439 * Inherited from caller.
442 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
444 tf->command = fis[2]; /* status */
445 tf->feature = fis[3]; /* error */
447 tf->lbal = fis[4];
448 tf->lbam = fis[5];
449 tf->lbah = fis[6];
450 tf->device = fis[7];
452 tf->hob_lbal = fis[8];
453 tf->hob_lbam = fis[9];
454 tf->hob_lbah = fis[10];
456 tf->nsect = fis[12];
457 tf->hob_nsect = fis[13];
460 static const u8 ata_rw_cmds[] = {
461 /* pio multi */
462 ATA_CMD_READ_MULTI,
463 ATA_CMD_WRITE_MULTI,
464 ATA_CMD_READ_MULTI_EXT,
465 ATA_CMD_WRITE_MULTI_EXT,
469 ATA_CMD_WRITE_MULTI_FUA_EXT,
470 /* pio */
471 ATA_CMD_PIO_READ,
472 ATA_CMD_PIO_WRITE,
473 ATA_CMD_PIO_READ_EXT,
474 ATA_CMD_PIO_WRITE_EXT,
479 /* dma */
480 ATA_CMD_READ,
481 ATA_CMD_WRITE,
482 ATA_CMD_READ_EXT,
483 ATA_CMD_WRITE_EXT,
487 ATA_CMD_WRITE_FUA_EXT
491 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
492 * @tf: command to examine and configure
493 * @dev: device tf belongs to
495 * Examine the device configuration and tf->flags to calculate
496 * the proper read/write commands and protocol to use.
498 * LOCKING:
499 * caller.
501 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
503 u8 cmd;
505 int index, fua, lba48, write;
507 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
508 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
509 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
511 if (dev->flags & ATA_DFLAG_PIO) {
512 tf->protocol = ATA_PROT_PIO;
513 index = dev->multi_count ? 0 : 8;
514 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
515 /* Unable to use DMA due to host limitation */
516 tf->protocol = ATA_PROT_PIO;
517 index = dev->multi_count ? 0 : 8;
518 } else {
519 tf->protocol = ATA_PROT_DMA;
520 index = 16;
523 cmd = ata_rw_cmds[index + fua + lba48 + write];
524 if (cmd) {
525 tf->command = cmd;
526 return 0;
528 return -1;
532 * ata_tf_read_block - Read block address from ATA taskfile
533 * @tf: ATA taskfile of interest
534 * @dev: ATA device @tf belongs to
536 * LOCKING:
537 * None.
539 * Read block address from @tf. This function can handle all
540 * three address formats - LBA, LBA48 and CHS. tf->protocol and
541 * flags select the address format to use.
543 * RETURNS:
544 * Block address read from @tf.
546 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
548 u64 block = 0;
550 if (tf->flags & ATA_TFLAG_LBA) {
551 if (tf->flags & ATA_TFLAG_LBA48) {
552 block |= (u64)tf->hob_lbah << 40;
553 block |= (u64)tf->hob_lbam << 32;
554 block |= (u64)tf->hob_lbal << 24;
555 } else
556 block |= (tf->device & 0xf) << 24;
558 block |= tf->lbah << 16;
559 block |= tf->lbam << 8;
560 block |= tf->lbal;
561 } else {
562 u32 cyl, head, sect;
564 cyl = tf->lbam | (tf->lbah << 8);
565 head = tf->device & 0xf;
566 sect = tf->lbal;
568 if (!sect) {
569 ata_dev_printk(dev, KERN_WARNING, "device reported "
570 "invalid CHS sector 0\n");
571 sect = 1; /* oh well */
574 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
577 return block;
581 * ata_build_rw_tf - Build ATA taskfile for given read/write request
582 * @tf: Target ATA taskfile
583 * @dev: ATA device @tf belongs to
584 * @block: Block address
585 * @n_block: Number of blocks
586 * @tf_flags: RW/FUA etc...
587 * @tag: tag
589 * LOCKING:
590 * None.
592 * Build ATA taskfile @tf for read/write request described by
593 * @block, @n_block, @tf_flags and @tag on @dev.
595 * RETURNS:
597 * 0 on success, -ERANGE if the request is too large for @dev,
598 * -EINVAL if the request is invalid.
600 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
601 u64 block, u32 n_block, unsigned int tf_flags,
602 unsigned int tag)
604 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
605 tf->flags |= tf_flags;
607 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
608 /* yay, NCQ */
609 if (!lba_48_ok(block, n_block))
610 return -ERANGE;
612 tf->protocol = ATA_PROT_NCQ;
613 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
615 if (tf->flags & ATA_TFLAG_WRITE)
616 tf->command = ATA_CMD_FPDMA_WRITE;
617 else
618 tf->command = ATA_CMD_FPDMA_READ;
620 tf->nsect = tag << 3;
621 tf->hob_feature = (n_block >> 8) & 0xff;
622 tf->feature = n_block & 0xff;
624 tf->hob_lbah = (block >> 40) & 0xff;
625 tf->hob_lbam = (block >> 32) & 0xff;
626 tf->hob_lbal = (block >> 24) & 0xff;
627 tf->lbah = (block >> 16) & 0xff;
628 tf->lbam = (block >> 8) & 0xff;
629 tf->lbal = block & 0xff;
631 tf->device = 1 << 6;
632 if (tf->flags & ATA_TFLAG_FUA)
633 tf->device |= 1 << 7;
634 } else if (dev->flags & ATA_DFLAG_LBA) {
635 tf->flags |= ATA_TFLAG_LBA;
637 if (lba_28_ok(block, n_block)) {
638 /* use LBA28 */
639 tf->device |= (block >> 24) & 0xf;
640 } else if (lba_48_ok(block, n_block)) {
641 if (!(dev->flags & ATA_DFLAG_LBA48))
642 return -ERANGE;
644 /* use LBA48 */
645 tf->flags |= ATA_TFLAG_LBA48;
647 tf->hob_nsect = (n_block >> 8) & 0xff;
649 tf->hob_lbah = (block >> 40) & 0xff;
650 tf->hob_lbam = (block >> 32) & 0xff;
651 tf->hob_lbal = (block >> 24) & 0xff;
652 } else
653 /* request too large even for LBA48 */
654 return -ERANGE;
656 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
657 return -EINVAL;
659 tf->nsect = n_block & 0xff;
661 tf->lbah = (block >> 16) & 0xff;
662 tf->lbam = (block >> 8) & 0xff;
663 tf->lbal = block & 0xff;
665 tf->device |= ATA_LBA;
666 } else {
667 /* CHS */
668 u32 sect, head, cyl, track;
670 /* The request -may- be too large for CHS addressing. */
671 if (!lba_28_ok(block, n_block))
672 return -ERANGE;
674 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
675 return -EINVAL;
677 /* Convert LBA to CHS */
678 track = (u32)block / dev->sectors;
679 cyl = track / dev->heads;
680 head = track % dev->heads;
681 sect = (u32)block % dev->sectors + 1;
683 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
684 (u32)block, track, cyl, head, sect);
686 /* Check whether the converted CHS can fit.
687 Cylinder: 0-65535
688 Head: 0-15
689 Sector: 1-255*/
690 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
691 return -ERANGE;
693 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
694 tf->lbal = sect;
695 tf->lbam = cyl;
696 tf->lbah = cyl >> 8;
697 tf->device |= head;
700 return 0;
704 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
705 * @pio_mask: pio_mask
706 * @mwdma_mask: mwdma_mask
707 * @udma_mask: udma_mask
709 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
710 * unsigned int xfer_mask.
712 * LOCKING:
713 * None.
715 * RETURNS:
716 * Packed xfer_mask.
718 unsigned long ata_pack_xfermask(unsigned long pio_mask,
719 unsigned long mwdma_mask,
720 unsigned long udma_mask)
722 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
723 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
724 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
728 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
729 * @xfer_mask: xfer_mask to unpack
730 * @pio_mask: resulting pio_mask
731 * @mwdma_mask: resulting mwdma_mask
732 * @udma_mask: resulting udma_mask
734 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
735 * Any NULL distination masks will be ignored.
737 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
738 unsigned long *mwdma_mask, unsigned long *udma_mask)
740 if (pio_mask)
741 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
742 if (mwdma_mask)
743 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
744 if (udma_mask)
745 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
748 static const struct ata_xfer_ent {
749 int shift, bits;
750 u8 base;
751 } ata_xfer_tbl[] = {
752 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
753 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
754 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
755 { -1, },
759 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
760 * @xfer_mask: xfer_mask of interest
762 * Return matching XFER_* value for @xfer_mask. Only the highest
763 * bit of @xfer_mask is considered.
765 * LOCKING:
766 * None.
768 * RETURNS:
769 * Matching XFER_* value, 0xff if no match found.
771 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
773 int highbit = fls(xfer_mask) - 1;
774 const struct ata_xfer_ent *ent;
776 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
777 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
778 return ent->base + highbit - ent->shift;
779 return 0xff;
783 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
784 * @xfer_mode: XFER_* of interest
786 * Return matching xfer_mask for @xfer_mode.
788 * LOCKING:
789 * None.
791 * RETURNS:
792 * Matching xfer_mask, 0 if no match found.
794 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
796 const struct ata_xfer_ent *ent;
798 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
799 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
800 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
801 & ~((1 << ent->shift) - 1);
802 return 0;
806 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
807 * @xfer_mode: XFER_* of interest
809 * Return matching xfer_shift for @xfer_mode.
811 * LOCKING:
812 * None.
814 * RETURNS:
815 * Matching xfer_shift, -1 if no match found.
817 int ata_xfer_mode2shift(unsigned long xfer_mode)
819 const struct ata_xfer_ent *ent;
821 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
822 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
823 return ent->shift;
824 return -1;
828 * ata_mode_string - convert xfer_mask to string
829 * @xfer_mask: mask of bits supported; only highest bit counts.
831 * Determine string which represents the highest speed
832 * (highest bit in @modemask).
834 * LOCKING:
835 * None.
837 * RETURNS:
838 * Constant C string representing highest speed listed in
839 * @mode_mask, or the constant C string "<n/a>".
841 const char *ata_mode_string(unsigned long xfer_mask)
843 static const char * const xfer_mode_str[] = {
844 "PIO0",
845 "PIO1",
846 "PIO2",
847 "PIO3",
848 "PIO4",
849 "PIO5",
850 "PIO6",
851 "MWDMA0",
852 "MWDMA1",
853 "MWDMA2",
854 "MWDMA3",
855 "MWDMA4",
856 "UDMA/16",
857 "UDMA/25",
858 "UDMA/33",
859 "UDMA/44",
860 "UDMA/66",
861 "UDMA/100",
862 "UDMA/133",
863 "UDMA7",
865 int highbit;
867 highbit = fls(xfer_mask) - 1;
868 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
869 return xfer_mode_str[highbit];
870 return "<n/a>";
873 static const char *sata_spd_string(unsigned int spd)
875 static const char * const spd_str[] = {
876 "1.5 Gbps",
877 "3.0 Gbps",
880 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
881 return "<unknown>";
882 return spd_str[spd - 1];
885 void ata_dev_disable(struct ata_device *dev)
887 if (ata_dev_enabled(dev)) {
888 if (ata_msg_drv(dev->link->ap))
889 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
890 ata_acpi_on_disable(dev);
891 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
892 ATA_DNXFER_QUIET);
893 dev->class++;
897 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
899 struct ata_link *link = dev->link;
900 struct ata_port *ap = link->ap;
901 u32 scontrol;
902 unsigned int err_mask;
903 int rc;
906 * disallow DIPM for drivers which haven't set
907 * ATA_FLAG_IPM. This is because when DIPM is enabled,
908 * phy ready will be set in the interrupt status on
909 * state changes, which will cause some drivers to
910 * think there are errors - additionally drivers will
911 * need to disable hot plug.
913 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
914 ap->pm_policy = NOT_AVAILABLE;
915 return -EINVAL;
919 * For DIPM, we will only enable it for the
920 * min_power setting.
922 * Why? Because Disks are too stupid to know that
923 * If the host rejects a request to go to SLUMBER
924 * they should retry at PARTIAL, and instead it
925 * just would give up. So, for medium_power to
926 * work at all, we need to only allow HIPM.
928 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
929 if (rc)
930 return rc;
932 switch (policy) {
933 case MIN_POWER:
934 /* no restrictions on IPM transitions */
935 scontrol &= ~(0x3 << 8);
936 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
937 if (rc)
938 return rc;
940 /* enable DIPM */
941 if (dev->flags & ATA_DFLAG_DIPM)
942 err_mask = ata_dev_set_feature(dev,
943 SETFEATURES_SATA_ENABLE, SATA_DIPM);
944 break;
945 case MEDIUM_POWER:
946 /* allow IPM to PARTIAL */
947 scontrol &= ~(0x1 << 8);
948 scontrol |= (0x2 << 8);
949 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
950 if (rc)
951 return rc;
954 * we don't have to disable DIPM since IPM flags
955 * disallow transitions to SLUMBER, which effectively
956 * disable DIPM if it does not support PARTIAL
958 break;
959 case NOT_AVAILABLE:
960 case MAX_PERFORMANCE:
961 /* disable all IPM transitions */
962 scontrol |= (0x3 << 8);
963 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
964 if (rc)
965 return rc;
968 * we don't have to disable DIPM since IPM flags
969 * disallow all transitions which effectively
970 * disable DIPM anyway.
972 break;
975 /* FIXME: handle SET FEATURES failure */
976 (void) err_mask;
978 return 0;
982 * ata_dev_enable_pm - enable SATA interface power management
983 * @dev: device to enable power management
984 * @policy: the link power management policy
986 * Enable SATA Interface power management. This will enable
987 * Device Interface Power Management (DIPM) for min_power
988 * policy, and then call driver specific callbacks for
989 * enabling Host Initiated Power management.
991 * Locking: Caller.
992 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
994 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
996 int rc = 0;
997 struct ata_port *ap = dev->link->ap;
999 /* set HIPM first, then DIPM */
1000 if (ap->ops->enable_pm)
1001 rc = ap->ops->enable_pm(ap, policy);
1002 if (rc)
1003 goto enable_pm_out;
1004 rc = ata_dev_set_dipm(dev, policy);
1006 enable_pm_out:
1007 if (rc)
1008 ap->pm_policy = MAX_PERFORMANCE;
1009 else
1010 ap->pm_policy = policy;
1011 return /* rc */; /* hopefully we can use 'rc' eventually */
1014 #ifdef CONFIG_PM
1016 * ata_dev_disable_pm - disable SATA interface power management
1017 * @dev: device to disable power management
1019 * Disable SATA Interface power management. This will disable
1020 * Device Interface Power Management (DIPM) without changing
1021 * policy, call driver specific callbacks for disabling Host
1022 * Initiated Power management.
1024 * Locking: Caller.
1025 * Returns: void
1027 static void ata_dev_disable_pm(struct ata_device *dev)
1029 struct ata_port *ap = dev->link->ap;
1031 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1032 if (ap->ops->disable_pm)
1033 ap->ops->disable_pm(ap);
1035 #endif /* CONFIG_PM */
1037 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1039 ap->pm_policy = policy;
1040 ap->link.eh_info.action |= ATA_EH_LPM;
1041 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1042 ata_port_schedule_eh(ap);
1045 #ifdef CONFIG_PM
1046 static void ata_lpm_enable(struct ata_host *host)
1048 struct ata_link *link;
1049 struct ata_port *ap;
1050 struct ata_device *dev;
1051 int i;
1053 for (i = 0; i < host->n_ports; i++) {
1054 ap = host->ports[i];
1055 ata_port_for_each_link(link, ap) {
1056 ata_link_for_each_dev(dev, link)
1057 ata_dev_disable_pm(dev);
1062 static void ata_lpm_disable(struct ata_host *host)
1064 int i;
1066 for (i = 0; i < host->n_ports; i++) {
1067 struct ata_port *ap = host->ports[i];
1068 ata_lpm_schedule(ap, ap->pm_policy);
1071 #endif /* CONFIG_PM */
1074 * ata_dev_classify - determine device type based on ATA-spec signature
1075 * @tf: ATA taskfile register set for device to be identified
1077 * Determine from taskfile register contents whether a device is
1078 * ATA or ATAPI, as per "Signature and persistence" section
1079 * of ATA/PI spec (volume 1, sect 5.14).
1081 * LOCKING:
1082 * None.
1084 * RETURNS:
1085 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1086 * %ATA_DEV_UNKNOWN the event of failure.
1088 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1090 /* Apple's open source Darwin code hints that some devices only
1091 * put a proper signature into the LBA mid/high registers,
1092 * So, we only check those. It's sufficient for uniqueness.
1094 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1095 * signatures for ATA and ATAPI devices attached on SerialATA,
1096 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1097 * spec has never mentioned about using different signatures
1098 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1099 * Multiplier specification began to use 0x69/0x96 to identify
1100 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1101 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1102 * 0x69/0x96 shortly and described them as reserved for
1103 * SerialATA.
1105 * We follow the current spec and consider that 0x69/0x96
1106 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1108 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1109 DPRINTK("found ATA device by sig\n");
1110 return ATA_DEV_ATA;
1113 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1114 DPRINTK("found ATAPI device by sig\n");
1115 return ATA_DEV_ATAPI;
1118 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1119 DPRINTK("found PMP device by sig\n");
1120 return ATA_DEV_PMP;
1123 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1124 printk(KERN_INFO "ata: SEMB device ignored\n");
1125 return ATA_DEV_SEMB_UNSUP; /* not yet */
1128 DPRINTK("unknown device\n");
1129 return ATA_DEV_UNKNOWN;
1133 * ata_id_string - Convert IDENTIFY DEVICE page into string
1134 * @id: IDENTIFY DEVICE results we will examine
1135 * @s: string into which data is output
1136 * @ofs: offset into identify device page
1137 * @len: length of string to return. must be an even number.
1139 * The strings in the IDENTIFY DEVICE page are broken up into
1140 * 16-bit chunks. Run through the string, and output each
1141 * 8-bit chunk linearly, regardless of platform.
1143 * LOCKING:
1144 * caller.
1147 void ata_id_string(const u16 *id, unsigned char *s,
1148 unsigned int ofs, unsigned int len)
1150 unsigned int c;
1152 BUG_ON(len & 1);
1154 while (len > 0) {
1155 c = id[ofs] >> 8;
1156 *s = c;
1157 s++;
1159 c = id[ofs] & 0xff;
1160 *s = c;
1161 s++;
1163 ofs++;
1164 len -= 2;
1169 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1170 * @id: IDENTIFY DEVICE results we will examine
1171 * @s: string into which data is output
1172 * @ofs: offset into identify device page
1173 * @len: length of string to return. must be an odd number.
1175 * This function is identical to ata_id_string except that it
1176 * trims trailing spaces and terminates the resulting string with
1177 * null. @len must be actual maximum length (even number) + 1.
1179 * LOCKING:
1180 * caller.
1182 void ata_id_c_string(const u16 *id, unsigned char *s,
1183 unsigned int ofs, unsigned int len)
1185 unsigned char *p;
1187 ata_id_string(id, s, ofs, len - 1);
1189 p = s + strnlen(s, len - 1);
1190 while (p > s && p[-1] == ' ')
1191 p--;
1192 *p = '\0';
1195 static u64 ata_id_n_sectors(const u16 *id)
1197 if (ata_id_has_lba(id)) {
1198 if (ata_id_has_lba48(id))
1199 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1200 else
1201 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1202 } else {
1203 if (ata_id_current_chs_valid(id))
1204 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1205 id[ATA_ID_CUR_SECTORS];
1206 else
1207 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1208 id[ATA_ID_SECTORS];
1212 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1214 u64 sectors = 0;
1216 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1217 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1218 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1219 sectors |= (tf->lbah & 0xff) << 16;
1220 sectors |= (tf->lbam & 0xff) << 8;
1221 sectors |= (tf->lbal & 0xff);
1223 return sectors;
1226 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1228 u64 sectors = 0;
1230 sectors |= (tf->device & 0x0f) << 24;
1231 sectors |= (tf->lbah & 0xff) << 16;
1232 sectors |= (tf->lbam & 0xff) << 8;
1233 sectors |= (tf->lbal & 0xff);
1235 return sectors;
1239 * ata_read_native_max_address - Read native max address
1240 * @dev: target device
1241 * @max_sectors: out parameter for the result native max address
1243 * Perform an LBA48 or LBA28 native size query upon the device in
1244 * question.
1246 * RETURNS:
1247 * 0 on success, -EACCES if command is aborted by the drive.
1248 * -EIO on other errors.
1250 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1252 unsigned int err_mask;
1253 struct ata_taskfile tf;
1254 int lba48 = ata_id_has_lba48(dev->id);
1256 ata_tf_init(dev, &tf);
1258 /* always clear all address registers */
1259 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1261 if (lba48) {
1262 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1263 tf.flags |= ATA_TFLAG_LBA48;
1264 } else
1265 tf.command = ATA_CMD_READ_NATIVE_MAX;
1267 tf.protocol |= ATA_PROT_NODATA;
1268 tf.device |= ATA_LBA;
1270 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1271 if (err_mask) {
1272 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1273 "max address (err_mask=0x%x)\n", err_mask);
1274 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1275 return -EACCES;
1276 return -EIO;
1279 if (lba48)
1280 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1281 else
1282 *max_sectors = ata_tf_to_lba(&tf) + 1;
1283 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1284 (*max_sectors)--;
1285 return 0;
1289 * ata_set_max_sectors - Set max sectors
1290 * @dev: target device
1291 * @new_sectors: new max sectors value to set for the device
1293 * Set max sectors of @dev to @new_sectors.
1295 * RETURNS:
1296 * 0 on success, -EACCES if command is aborted or denied (due to
1297 * previous non-volatile SET_MAX) by the drive. -EIO on other
1298 * errors.
1300 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1302 unsigned int err_mask;
1303 struct ata_taskfile tf;
1304 int lba48 = ata_id_has_lba48(dev->id);
1306 new_sectors--;
1308 ata_tf_init(dev, &tf);
1310 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1312 if (lba48) {
1313 tf.command = ATA_CMD_SET_MAX_EXT;
1314 tf.flags |= ATA_TFLAG_LBA48;
1316 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1317 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1318 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1319 } else {
1320 tf.command = ATA_CMD_SET_MAX;
1322 tf.device |= (new_sectors >> 24) & 0xf;
1325 tf.protocol |= ATA_PROT_NODATA;
1326 tf.device |= ATA_LBA;
1328 tf.lbal = (new_sectors >> 0) & 0xff;
1329 tf.lbam = (new_sectors >> 8) & 0xff;
1330 tf.lbah = (new_sectors >> 16) & 0xff;
1332 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1333 if (err_mask) {
1334 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1335 "max address (err_mask=0x%x)\n", err_mask);
1336 if (err_mask == AC_ERR_DEV &&
1337 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1338 return -EACCES;
1339 return -EIO;
1342 return 0;
1346 * ata_hpa_resize - Resize a device with an HPA set
1347 * @dev: Device to resize
1349 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1350 * it if required to the full size of the media. The caller must check
1351 * the drive has the HPA feature set enabled.
1353 * RETURNS:
1354 * 0 on success, -errno on failure.
1356 static int ata_hpa_resize(struct ata_device *dev)
1358 struct ata_eh_context *ehc = &dev->link->eh_context;
1359 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1360 u64 sectors = ata_id_n_sectors(dev->id);
1361 u64 native_sectors;
1362 int rc;
1364 /* do we need to do it? */
1365 if (dev->class != ATA_DEV_ATA ||
1366 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1367 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1368 return 0;
1370 /* read native max address */
1371 rc = ata_read_native_max_address(dev, &native_sectors);
1372 if (rc) {
1373 /* If device aborted the command or HPA isn't going to
1374 * be unlocked, skip HPA resizing.
1376 if (rc == -EACCES || !ata_ignore_hpa) {
1377 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1378 "broken, skipping HPA handling\n");
1379 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1381 /* we can continue if device aborted the command */
1382 if (rc == -EACCES)
1383 rc = 0;
1386 return rc;
1389 /* nothing to do? */
1390 if (native_sectors <= sectors || !ata_ignore_hpa) {
1391 if (!print_info || native_sectors == sectors)
1392 return 0;
1394 if (native_sectors > sectors)
1395 ata_dev_printk(dev, KERN_INFO,
1396 "HPA detected: current %llu, native %llu\n",
1397 (unsigned long long)sectors,
1398 (unsigned long long)native_sectors);
1399 else if (native_sectors < sectors)
1400 ata_dev_printk(dev, KERN_WARNING,
1401 "native sectors (%llu) is smaller than "
1402 "sectors (%llu)\n",
1403 (unsigned long long)native_sectors,
1404 (unsigned long long)sectors);
1405 return 0;
1408 /* let's unlock HPA */
1409 rc = ata_set_max_sectors(dev, native_sectors);
1410 if (rc == -EACCES) {
1411 /* if device aborted the command, skip HPA resizing */
1412 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1413 "(%llu -> %llu), skipping HPA handling\n",
1414 (unsigned long long)sectors,
1415 (unsigned long long)native_sectors);
1416 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1417 return 0;
1418 } else if (rc)
1419 return rc;
1421 /* re-read IDENTIFY data */
1422 rc = ata_dev_reread_id(dev, 0);
1423 if (rc) {
1424 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1425 "data after HPA resizing\n");
1426 return rc;
1429 if (print_info) {
1430 u64 new_sectors = ata_id_n_sectors(dev->id);
1431 ata_dev_printk(dev, KERN_INFO,
1432 "HPA unlocked: %llu -> %llu, native %llu\n",
1433 (unsigned long long)sectors,
1434 (unsigned long long)new_sectors,
1435 (unsigned long long)native_sectors);
1438 return 0;
1442 * ata_dump_id - IDENTIFY DEVICE info debugging output
1443 * @id: IDENTIFY DEVICE page to dump
1445 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1446 * page.
1448 * LOCKING:
1449 * caller.
1452 static inline void ata_dump_id(const u16 *id)
1454 DPRINTK("49==0x%04x "
1455 "53==0x%04x "
1456 "63==0x%04x "
1457 "64==0x%04x "
1458 "75==0x%04x \n",
1459 id[49],
1460 id[53],
1461 id[63],
1462 id[64],
1463 id[75]);
1464 DPRINTK("80==0x%04x "
1465 "81==0x%04x "
1466 "82==0x%04x "
1467 "83==0x%04x "
1468 "84==0x%04x \n",
1469 id[80],
1470 id[81],
1471 id[82],
1472 id[83],
1473 id[84]);
1474 DPRINTK("88==0x%04x "
1475 "93==0x%04x\n",
1476 id[88],
1477 id[93]);
1481 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1482 * @id: IDENTIFY data to compute xfer mask from
1484 * Compute the xfermask for this device. This is not as trivial
1485 * as it seems if we must consider early devices correctly.
1487 * FIXME: pre IDE drive timing (do we care ?).
1489 * LOCKING:
1490 * None.
1492 * RETURNS:
1493 * Computed xfermask
1495 unsigned long ata_id_xfermask(const u16 *id)
1497 unsigned long pio_mask, mwdma_mask, udma_mask;
1499 /* Usual case. Word 53 indicates word 64 is valid */
1500 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1501 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1502 pio_mask <<= 3;
1503 pio_mask |= 0x7;
1504 } else {
1505 /* If word 64 isn't valid then Word 51 high byte holds
1506 * the PIO timing number for the maximum. Turn it into
1507 * a mask.
1509 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1510 if (mode < 5) /* Valid PIO range */
1511 pio_mask = (2 << mode) - 1;
1512 else
1513 pio_mask = 1;
1515 /* But wait.. there's more. Design your standards by
1516 * committee and you too can get a free iordy field to
1517 * process. However its the speeds not the modes that
1518 * are supported... Note drivers using the timing API
1519 * will get this right anyway
1523 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1525 if (ata_id_is_cfa(id)) {
1527 * Process compact flash extended modes
1529 int pio = id[163] & 0x7;
1530 int dma = (id[163] >> 3) & 7;
1532 if (pio)
1533 pio_mask |= (1 << 5);
1534 if (pio > 1)
1535 pio_mask |= (1 << 6);
1536 if (dma)
1537 mwdma_mask |= (1 << 3);
1538 if (dma > 1)
1539 mwdma_mask |= (1 << 4);
1542 udma_mask = 0;
1543 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1544 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1546 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1550 * ata_pio_queue_task - Queue port_task
1551 * @ap: The ata_port to queue port_task for
1552 * @fn: workqueue function to be scheduled
1553 * @data: data for @fn to use
1554 * @delay: delay time in msecs for workqueue function
1556 * Schedule @fn(@data) for execution after @delay jiffies using
1557 * port_task. There is one port_task per port and it's the
1558 * user(low level driver)'s responsibility to make sure that only
1559 * one task is active at any given time.
1561 * libata core layer takes care of synchronization between
1562 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1563 * synchronization.
1565 * LOCKING:
1566 * Inherited from caller.
1568 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1570 ap->port_task_data = data;
1572 /* may fail if ata_port_flush_task() in progress */
1573 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1577 * ata_port_flush_task - Flush port_task
1578 * @ap: The ata_port to flush port_task for
1580 * After this function completes, port_task is guranteed not to
1581 * be running or scheduled.
1583 * LOCKING:
1584 * Kernel thread context (may sleep)
1586 void ata_port_flush_task(struct ata_port *ap)
1588 DPRINTK("ENTER\n");
1590 cancel_rearming_delayed_work(&ap->port_task);
1592 if (ata_msg_ctl(ap))
1593 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1596 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1598 struct completion *waiting = qc->private_data;
1600 complete(waiting);
1604 * ata_exec_internal_sg - execute libata internal command
1605 * @dev: Device to which the command is sent
1606 * @tf: Taskfile registers for the command and the result
1607 * @cdb: CDB for packet command
1608 * @dma_dir: Data tranfer direction of the command
1609 * @sgl: sg list for the data buffer of the command
1610 * @n_elem: Number of sg entries
1611 * @timeout: Timeout in msecs (0 for default)
1613 * Executes libata internal command with timeout. @tf contains
1614 * command on entry and result on return. Timeout and error
1615 * conditions are reported via return value. No recovery action
1616 * is taken after a command times out. It's caller's duty to
1617 * clean up after timeout.
1619 * LOCKING:
1620 * None. Should be called with kernel context, might sleep.
1622 * RETURNS:
1623 * Zero on success, AC_ERR_* mask on failure
1625 unsigned ata_exec_internal_sg(struct ata_device *dev,
1626 struct ata_taskfile *tf, const u8 *cdb,
1627 int dma_dir, struct scatterlist *sgl,
1628 unsigned int n_elem, unsigned long timeout)
1630 struct ata_link *link = dev->link;
1631 struct ata_port *ap = link->ap;
1632 u8 command = tf->command;
1633 int auto_timeout = 0;
1634 struct ata_queued_cmd *qc;
1635 unsigned int tag, preempted_tag;
1636 u32 preempted_sactive, preempted_qc_active;
1637 int preempted_nr_active_links;
1638 DECLARE_COMPLETION_ONSTACK(wait);
1639 unsigned long flags;
1640 unsigned int err_mask;
1641 int rc;
1643 spin_lock_irqsave(ap->lock, flags);
1645 /* no internal command while frozen */
1646 if (ap->pflags & ATA_PFLAG_FROZEN) {
1647 spin_unlock_irqrestore(ap->lock, flags);
1648 return AC_ERR_SYSTEM;
1651 /* initialize internal qc */
1653 /* XXX: Tag 0 is used for drivers with legacy EH as some
1654 * drivers choke if any other tag is given. This breaks
1655 * ata_tag_internal() test for those drivers. Don't use new
1656 * EH stuff without converting to it.
1658 if (ap->ops->error_handler)
1659 tag = ATA_TAG_INTERNAL;
1660 else
1661 tag = 0;
1663 if (test_and_set_bit(tag, &ap->qc_allocated))
1664 BUG();
1665 qc = __ata_qc_from_tag(ap, tag);
1667 qc->tag = tag;
1668 qc->scsicmd = NULL;
1669 qc->ap = ap;
1670 qc->dev = dev;
1671 ata_qc_reinit(qc);
1673 preempted_tag = link->active_tag;
1674 preempted_sactive = link->sactive;
1675 preempted_qc_active = ap->qc_active;
1676 preempted_nr_active_links = ap->nr_active_links;
1677 link->active_tag = ATA_TAG_POISON;
1678 link->sactive = 0;
1679 ap->qc_active = 0;
1680 ap->nr_active_links = 0;
1682 /* prepare & issue qc */
1683 qc->tf = *tf;
1684 if (cdb)
1685 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1686 qc->flags |= ATA_QCFLAG_RESULT_TF;
1687 qc->dma_dir = dma_dir;
1688 if (dma_dir != DMA_NONE) {
1689 unsigned int i, buflen = 0;
1690 struct scatterlist *sg;
1692 for_each_sg(sgl, sg, n_elem, i)
1693 buflen += sg->length;
1695 ata_sg_init(qc, sgl, n_elem);
1696 qc->nbytes = buflen;
1699 qc->private_data = &wait;
1700 qc->complete_fn = ata_qc_complete_internal;
1702 ata_qc_issue(qc);
1704 spin_unlock_irqrestore(ap->lock, flags);
1706 if (!timeout) {
1707 if (ata_probe_timeout)
1708 timeout = ata_probe_timeout * 1000;
1709 else {
1710 timeout = ata_internal_cmd_timeout(dev, command);
1711 auto_timeout = 1;
1715 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1717 ata_port_flush_task(ap);
1719 if (!rc) {
1720 spin_lock_irqsave(ap->lock, flags);
1722 /* We're racing with irq here. If we lose, the
1723 * following test prevents us from completing the qc
1724 * twice. If we win, the port is frozen and will be
1725 * cleaned up by ->post_internal_cmd().
1727 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1728 qc->err_mask |= AC_ERR_TIMEOUT;
1730 if (ap->ops->error_handler)
1731 ata_port_freeze(ap);
1732 else
1733 ata_qc_complete(qc);
1735 if (ata_msg_warn(ap))
1736 ata_dev_printk(dev, KERN_WARNING,
1737 "qc timeout (cmd 0x%x)\n", command);
1740 spin_unlock_irqrestore(ap->lock, flags);
1743 /* do post_internal_cmd */
1744 if (ap->ops->post_internal_cmd)
1745 ap->ops->post_internal_cmd(qc);
1747 /* perform minimal error analysis */
1748 if (qc->flags & ATA_QCFLAG_FAILED) {
1749 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1750 qc->err_mask |= AC_ERR_DEV;
1752 if (!qc->err_mask)
1753 qc->err_mask |= AC_ERR_OTHER;
1755 if (qc->err_mask & ~AC_ERR_OTHER)
1756 qc->err_mask &= ~AC_ERR_OTHER;
1759 /* finish up */
1760 spin_lock_irqsave(ap->lock, flags);
1762 *tf = qc->result_tf;
1763 err_mask = qc->err_mask;
1765 ata_qc_free(qc);
1766 link->active_tag = preempted_tag;
1767 link->sactive = preempted_sactive;
1768 ap->qc_active = preempted_qc_active;
1769 ap->nr_active_links = preempted_nr_active_links;
1771 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1772 * Until those drivers are fixed, we detect the condition
1773 * here, fail the command with AC_ERR_SYSTEM and reenable the
1774 * port.
1776 * Note that this doesn't change any behavior as internal
1777 * command failure results in disabling the device in the
1778 * higher layer for LLDDs without new reset/EH callbacks.
1780 * Kill the following code as soon as those drivers are fixed.
1782 if (ap->flags & ATA_FLAG_DISABLED) {
1783 err_mask |= AC_ERR_SYSTEM;
1784 ata_port_probe(ap);
1787 spin_unlock_irqrestore(ap->lock, flags);
1789 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1790 ata_internal_cmd_timed_out(dev, command);
1792 return err_mask;
1796 * ata_exec_internal - execute libata internal command
1797 * @dev: Device to which the command is sent
1798 * @tf: Taskfile registers for the command and the result
1799 * @cdb: CDB for packet command
1800 * @dma_dir: Data tranfer direction of the command
1801 * @buf: Data buffer of the command
1802 * @buflen: Length of data buffer
1803 * @timeout: Timeout in msecs (0 for default)
1805 * Wrapper around ata_exec_internal_sg() which takes simple
1806 * buffer instead of sg list.
1808 * LOCKING:
1809 * None. Should be called with kernel context, might sleep.
1811 * RETURNS:
1812 * Zero on success, AC_ERR_* mask on failure
1814 unsigned ata_exec_internal(struct ata_device *dev,
1815 struct ata_taskfile *tf, const u8 *cdb,
1816 int dma_dir, void *buf, unsigned int buflen,
1817 unsigned long timeout)
1819 struct scatterlist *psg = NULL, sg;
1820 unsigned int n_elem = 0;
1822 if (dma_dir != DMA_NONE) {
1823 WARN_ON(!buf);
1824 sg_init_one(&sg, buf, buflen);
1825 psg = &sg;
1826 n_elem++;
1829 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1830 timeout);
1834 * ata_do_simple_cmd - execute simple internal command
1835 * @dev: Device to which the command is sent
1836 * @cmd: Opcode to execute
1838 * Execute a 'simple' command, that only consists of the opcode
1839 * 'cmd' itself, without filling any other registers
1841 * LOCKING:
1842 * Kernel thread context (may sleep).
1844 * RETURNS:
1845 * Zero on success, AC_ERR_* mask on failure
1847 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1849 struct ata_taskfile tf;
1851 ata_tf_init(dev, &tf);
1853 tf.command = cmd;
1854 tf.flags |= ATA_TFLAG_DEVICE;
1855 tf.protocol = ATA_PROT_NODATA;
1857 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1861 * ata_pio_need_iordy - check if iordy needed
1862 * @adev: ATA device
1864 * Check if the current speed of the device requires IORDY. Used
1865 * by various controllers for chip configuration.
1868 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1870 /* Controller doesn't support IORDY. Probably a pointless check
1871 as the caller should know this */
1872 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1873 return 0;
1874 /* PIO3 and higher it is mandatory */
1875 if (adev->pio_mode > XFER_PIO_2)
1876 return 1;
1877 /* We turn it on when possible */
1878 if (ata_id_has_iordy(adev->id))
1879 return 1;
1880 return 0;
1884 * ata_pio_mask_no_iordy - Return the non IORDY mask
1885 * @adev: ATA device
1887 * Compute the highest mode possible if we are not using iordy. Return
1888 * -1 if no iordy mode is available.
1891 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1893 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1894 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1895 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1896 /* Is the speed faster than the drive allows non IORDY ? */
1897 if (pio) {
1898 /* This is cycle times not frequency - watch the logic! */
1899 if (pio > 240) /* PIO2 is 240nS per cycle */
1900 return 3 << ATA_SHIFT_PIO;
1901 return 7 << ATA_SHIFT_PIO;
1904 return 3 << ATA_SHIFT_PIO;
1908 * ata_do_dev_read_id - default ID read method
1909 * @dev: device
1910 * @tf: proposed taskfile
1911 * @id: data buffer
1913 * Issue the identify taskfile and hand back the buffer containing
1914 * identify data. For some RAID controllers and for pre ATA devices
1915 * this function is wrapped or replaced by the driver
1917 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1918 struct ata_taskfile *tf, u16 *id)
1920 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1921 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1925 * ata_dev_read_id - Read ID data from the specified device
1926 * @dev: target device
1927 * @p_class: pointer to class of the target device (may be changed)
1928 * @flags: ATA_READID_* flags
1929 * @id: buffer to read IDENTIFY data into
1931 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1932 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1933 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1934 * for pre-ATA4 drives.
1936 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1937 * now we abort if we hit that case.
1939 * LOCKING:
1940 * Kernel thread context (may sleep)
1942 * RETURNS:
1943 * 0 on success, -errno otherwise.
1945 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1946 unsigned int flags, u16 *id)
1948 struct ata_port *ap = dev->link->ap;
1949 unsigned int class = *p_class;
1950 struct ata_taskfile tf;
1951 unsigned int err_mask = 0;
1952 const char *reason;
1953 int may_fallback = 1, tried_spinup = 0;
1954 int rc;
1956 if (ata_msg_ctl(ap))
1957 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1959 retry:
1960 ata_tf_init(dev, &tf);
1962 switch (class) {
1963 case ATA_DEV_ATA:
1964 tf.command = ATA_CMD_ID_ATA;
1965 break;
1966 case ATA_DEV_ATAPI:
1967 tf.command = ATA_CMD_ID_ATAPI;
1968 break;
1969 default:
1970 rc = -ENODEV;
1971 reason = "unsupported class";
1972 goto err_out;
1975 tf.protocol = ATA_PROT_PIO;
1977 /* Some devices choke if TF registers contain garbage. Make
1978 * sure those are properly initialized.
1980 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1982 /* Device presence detection is unreliable on some
1983 * controllers. Always poll IDENTIFY if available.
1985 tf.flags |= ATA_TFLAG_POLLING;
1987 if (ap->ops->read_id)
1988 err_mask = ap->ops->read_id(dev, &tf, id);
1989 else
1990 err_mask = ata_do_dev_read_id(dev, &tf, id);
1992 if (err_mask) {
1993 if (err_mask & AC_ERR_NODEV_HINT) {
1994 ata_dev_printk(dev, KERN_DEBUG,
1995 "NODEV after polling detection\n");
1996 return -ENOENT;
1999 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2000 /* Device or controller might have reported
2001 * the wrong device class. Give a shot at the
2002 * other IDENTIFY if the current one is
2003 * aborted by the device.
2005 if (may_fallback) {
2006 may_fallback = 0;
2008 if (class == ATA_DEV_ATA)
2009 class = ATA_DEV_ATAPI;
2010 else
2011 class = ATA_DEV_ATA;
2012 goto retry;
2015 /* Control reaches here iff the device aborted
2016 * both flavors of IDENTIFYs which happens
2017 * sometimes with phantom devices.
2019 ata_dev_printk(dev, KERN_DEBUG,
2020 "both IDENTIFYs aborted, assuming NODEV\n");
2021 return -ENOENT;
2024 rc = -EIO;
2025 reason = "I/O error";
2026 goto err_out;
2029 /* Falling back doesn't make sense if ID data was read
2030 * successfully at least once.
2032 may_fallback = 0;
2034 swap_buf_le16(id, ATA_ID_WORDS);
2036 /* sanity check */
2037 rc = -EINVAL;
2038 reason = "device reports invalid type";
2040 if (class == ATA_DEV_ATA) {
2041 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2042 goto err_out;
2043 } else {
2044 if (ata_id_is_ata(id))
2045 goto err_out;
2048 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2049 tried_spinup = 1;
2051 * Drive powered-up in standby mode, and requires a specific
2052 * SET_FEATURES spin-up subcommand before it will accept
2053 * anything other than the original IDENTIFY command.
2055 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2056 if (err_mask && id[2] != 0x738c) {
2057 rc = -EIO;
2058 reason = "SPINUP failed";
2059 goto err_out;
2062 * If the drive initially returned incomplete IDENTIFY info,
2063 * we now must reissue the IDENTIFY command.
2065 if (id[2] == 0x37c8)
2066 goto retry;
2069 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2071 * The exact sequence expected by certain pre-ATA4 drives is:
2072 * SRST RESET
2073 * IDENTIFY (optional in early ATA)
2074 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2075 * anything else..
2076 * Some drives were very specific about that exact sequence.
2078 * Note that ATA4 says lba is mandatory so the second check
2079 * shoud never trigger.
2081 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2082 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2083 if (err_mask) {
2084 rc = -EIO;
2085 reason = "INIT_DEV_PARAMS failed";
2086 goto err_out;
2089 /* current CHS translation info (id[53-58]) might be
2090 * changed. reread the identify device info.
2092 flags &= ~ATA_READID_POSTRESET;
2093 goto retry;
2097 *p_class = class;
2099 return 0;
2101 err_out:
2102 if (ata_msg_warn(ap))
2103 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2104 "(%s, err_mask=0x%x)\n", reason, err_mask);
2105 return rc;
2108 static inline u8 ata_dev_knobble(struct ata_device *dev)
2110 struct ata_port *ap = dev->link->ap;
2111 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2114 static void ata_dev_config_ncq(struct ata_device *dev,
2115 char *desc, size_t desc_sz)
2117 struct ata_port *ap = dev->link->ap;
2118 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2120 if (!ata_id_has_ncq(dev->id)) {
2121 desc[0] = '\0';
2122 return;
2124 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2125 snprintf(desc, desc_sz, "NCQ (not used)");
2126 return;
2128 if (ap->flags & ATA_FLAG_NCQ) {
2129 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2130 dev->flags |= ATA_DFLAG_NCQ;
2133 if (hdepth >= ddepth)
2134 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2135 else
2136 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2140 * ata_dev_configure - Configure the specified ATA/ATAPI device
2141 * @dev: Target device to configure
2143 * Configure @dev according to @dev->id. Generic and low-level
2144 * driver specific fixups are also applied.
2146 * LOCKING:
2147 * Kernel thread context (may sleep)
2149 * RETURNS:
2150 * 0 on success, -errno otherwise
2152 int ata_dev_configure(struct ata_device *dev)
2154 struct ata_port *ap = dev->link->ap;
2155 struct ata_eh_context *ehc = &dev->link->eh_context;
2156 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2157 const u16 *id = dev->id;
2158 unsigned long xfer_mask;
2159 char revbuf[7]; /* XYZ-99\0 */
2160 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2161 char modelbuf[ATA_ID_PROD_LEN+1];
2162 int rc;
2164 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2165 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2166 __func__);
2167 return 0;
2170 if (ata_msg_probe(ap))
2171 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2173 /* set horkage */
2174 dev->horkage |= ata_dev_blacklisted(dev);
2175 ata_force_horkage(dev);
2177 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2178 ata_dev_printk(dev, KERN_INFO,
2179 "unsupported device, disabling\n");
2180 ata_dev_disable(dev);
2181 return 0;
2184 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2185 dev->class == ATA_DEV_ATAPI) {
2186 ata_dev_printk(dev, KERN_WARNING,
2187 "WARNING: ATAPI is %s, device ignored.\n",
2188 atapi_enabled ? "not supported with this driver"
2189 : "disabled");
2190 ata_dev_disable(dev);
2191 return 0;
2194 /* let ACPI work its magic */
2195 rc = ata_acpi_on_devcfg(dev);
2196 if (rc)
2197 return rc;
2199 /* massage HPA, do it early as it might change IDENTIFY data */
2200 rc = ata_hpa_resize(dev);
2201 if (rc)
2202 return rc;
2204 /* print device capabilities */
2205 if (ata_msg_probe(ap))
2206 ata_dev_printk(dev, KERN_DEBUG,
2207 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2208 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2209 __func__,
2210 id[49], id[82], id[83], id[84],
2211 id[85], id[86], id[87], id[88]);
2213 /* initialize to-be-configured parameters */
2214 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2215 dev->max_sectors = 0;
2216 dev->cdb_len = 0;
2217 dev->n_sectors = 0;
2218 dev->cylinders = 0;
2219 dev->heads = 0;
2220 dev->sectors = 0;
2223 * common ATA, ATAPI feature tests
2226 /* find max transfer mode; for printk only */
2227 xfer_mask = ata_id_xfermask(id);
2229 if (ata_msg_probe(ap))
2230 ata_dump_id(id);
2232 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2233 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2234 sizeof(fwrevbuf));
2236 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2237 sizeof(modelbuf));
2239 /* ATA-specific feature tests */
2240 if (dev->class == ATA_DEV_ATA) {
2241 if (ata_id_is_cfa(id)) {
2242 if (id[162] & 1) /* CPRM may make this media unusable */
2243 ata_dev_printk(dev, KERN_WARNING,
2244 "supports DRM functions and may "
2245 "not be fully accessable.\n");
2246 snprintf(revbuf, 7, "CFA");
2247 } else {
2248 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2249 /* Warn the user if the device has TPM extensions */
2250 if (ata_id_has_tpm(id))
2251 ata_dev_printk(dev, KERN_WARNING,
2252 "supports DRM functions and may "
2253 "not be fully accessable.\n");
2256 dev->n_sectors = ata_id_n_sectors(id);
2258 if (dev->id[59] & 0x100)
2259 dev->multi_count = dev->id[59] & 0xff;
2261 if (ata_id_has_lba(id)) {
2262 const char *lba_desc;
2263 char ncq_desc[20];
2265 lba_desc = "LBA";
2266 dev->flags |= ATA_DFLAG_LBA;
2267 if (ata_id_has_lba48(id)) {
2268 dev->flags |= ATA_DFLAG_LBA48;
2269 lba_desc = "LBA48";
2271 if (dev->n_sectors >= (1UL << 28) &&
2272 ata_id_has_flush_ext(id))
2273 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2276 /* config NCQ */
2277 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2279 /* print device info to dmesg */
2280 if (ata_msg_drv(ap) && print_info) {
2281 ata_dev_printk(dev, KERN_INFO,
2282 "%s: %s, %s, max %s\n",
2283 revbuf, modelbuf, fwrevbuf,
2284 ata_mode_string(xfer_mask));
2285 ata_dev_printk(dev, KERN_INFO,
2286 "%Lu sectors, multi %u: %s %s\n",
2287 (unsigned long long)dev->n_sectors,
2288 dev->multi_count, lba_desc, ncq_desc);
2290 } else {
2291 /* CHS */
2293 /* Default translation */
2294 dev->cylinders = id[1];
2295 dev->heads = id[3];
2296 dev->sectors = id[6];
2298 if (ata_id_current_chs_valid(id)) {
2299 /* Current CHS translation is valid. */
2300 dev->cylinders = id[54];
2301 dev->heads = id[55];
2302 dev->sectors = id[56];
2305 /* print device info to dmesg */
2306 if (ata_msg_drv(ap) && print_info) {
2307 ata_dev_printk(dev, KERN_INFO,
2308 "%s: %s, %s, max %s\n",
2309 revbuf, modelbuf, fwrevbuf,
2310 ata_mode_string(xfer_mask));
2311 ata_dev_printk(dev, KERN_INFO,
2312 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2313 (unsigned long long)dev->n_sectors,
2314 dev->multi_count, dev->cylinders,
2315 dev->heads, dev->sectors);
2319 dev->cdb_len = 16;
2322 /* ATAPI-specific feature tests */
2323 else if (dev->class == ATA_DEV_ATAPI) {
2324 const char *cdb_intr_string = "";
2325 const char *atapi_an_string = "";
2326 const char *dma_dir_string = "";
2327 u32 sntf;
2329 rc = atapi_cdb_len(id);
2330 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2331 if (ata_msg_warn(ap))
2332 ata_dev_printk(dev, KERN_WARNING,
2333 "unsupported CDB len\n");
2334 rc = -EINVAL;
2335 goto err_out_nosup;
2337 dev->cdb_len = (unsigned int) rc;
2339 /* Enable ATAPI AN if both the host and device have
2340 * the support. If PMP is attached, SNTF is required
2341 * to enable ATAPI AN to discern between PHY status
2342 * changed notifications and ATAPI ANs.
2344 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2345 (!sata_pmp_attached(ap) ||
2346 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2347 unsigned int err_mask;
2349 /* issue SET feature command to turn this on */
2350 err_mask = ata_dev_set_feature(dev,
2351 SETFEATURES_SATA_ENABLE, SATA_AN);
2352 if (err_mask)
2353 ata_dev_printk(dev, KERN_ERR,
2354 "failed to enable ATAPI AN "
2355 "(err_mask=0x%x)\n", err_mask);
2356 else {
2357 dev->flags |= ATA_DFLAG_AN;
2358 atapi_an_string = ", ATAPI AN";
2362 if (ata_id_cdb_intr(dev->id)) {
2363 dev->flags |= ATA_DFLAG_CDB_INTR;
2364 cdb_intr_string = ", CDB intr";
2367 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2368 dev->flags |= ATA_DFLAG_DMADIR;
2369 dma_dir_string = ", DMADIR";
2372 /* print device info to dmesg */
2373 if (ata_msg_drv(ap) && print_info)
2374 ata_dev_printk(dev, KERN_INFO,
2375 "ATAPI: %s, %s, max %s%s%s%s\n",
2376 modelbuf, fwrevbuf,
2377 ata_mode_string(xfer_mask),
2378 cdb_intr_string, atapi_an_string,
2379 dma_dir_string);
2382 /* determine max_sectors */
2383 dev->max_sectors = ATA_MAX_SECTORS;
2384 if (dev->flags & ATA_DFLAG_LBA48)
2385 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2387 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2388 if (ata_id_has_hipm(dev->id))
2389 dev->flags |= ATA_DFLAG_HIPM;
2390 if (ata_id_has_dipm(dev->id))
2391 dev->flags |= ATA_DFLAG_DIPM;
2394 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2395 200 sectors */
2396 if (ata_dev_knobble(dev)) {
2397 if (ata_msg_drv(ap) && print_info)
2398 ata_dev_printk(dev, KERN_INFO,
2399 "applying bridge limits\n");
2400 dev->udma_mask &= ATA_UDMA5;
2401 dev->max_sectors = ATA_MAX_SECTORS;
2404 if ((dev->class == ATA_DEV_ATAPI) &&
2405 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2406 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2407 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2410 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2411 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2412 dev->max_sectors);
2414 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2415 dev->horkage |= ATA_HORKAGE_IPM;
2417 /* reset link pm_policy for this port to no pm */
2418 ap->pm_policy = MAX_PERFORMANCE;
2421 if (ap->ops->dev_config)
2422 ap->ops->dev_config(dev);
2424 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2425 /* Let the user know. We don't want to disallow opens for
2426 rescue purposes, or in case the vendor is just a blithering
2427 idiot. Do this after the dev_config call as some controllers
2428 with buggy firmware may want to avoid reporting false device
2429 bugs */
2431 if (print_info) {
2432 ata_dev_printk(dev, KERN_WARNING,
2433 "Drive reports diagnostics failure. This may indicate a drive\n");
2434 ata_dev_printk(dev, KERN_WARNING,
2435 "fault or invalid emulation. Contact drive vendor for information.\n");
2439 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2440 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2441 "firmware update to be fully functional.\n");
2442 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2443 "or visit http://ata.wiki.kernel.org.\n");
2446 return 0;
2448 err_out_nosup:
2449 if (ata_msg_probe(ap))
2450 ata_dev_printk(dev, KERN_DEBUG,
2451 "%s: EXIT, err\n", __func__);
2452 return rc;
2456 * ata_cable_40wire - return 40 wire cable type
2457 * @ap: port
2459 * Helper method for drivers which want to hardwire 40 wire cable
2460 * detection.
2463 int ata_cable_40wire(struct ata_port *ap)
2465 return ATA_CBL_PATA40;
2469 * ata_cable_80wire - return 80 wire cable type
2470 * @ap: port
2472 * Helper method for drivers which want to hardwire 80 wire cable
2473 * detection.
2476 int ata_cable_80wire(struct ata_port *ap)
2478 return ATA_CBL_PATA80;
2482 * ata_cable_unknown - return unknown PATA cable.
2483 * @ap: port
2485 * Helper method for drivers which have no PATA cable detection.
2488 int ata_cable_unknown(struct ata_port *ap)
2490 return ATA_CBL_PATA_UNK;
2494 * ata_cable_ignore - return ignored PATA cable.
2495 * @ap: port
2497 * Helper method for drivers which don't use cable type to limit
2498 * transfer mode.
2500 int ata_cable_ignore(struct ata_port *ap)
2502 return ATA_CBL_PATA_IGN;
2506 * ata_cable_sata - return SATA cable type
2507 * @ap: port
2509 * Helper method for drivers which have SATA cables
2512 int ata_cable_sata(struct ata_port *ap)
2514 return ATA_CBL_SATA;
2518 * ata_bus_probe - Reset and probe ATA bus
2519 * @ap: Bus to probe
2521 * Master ATA bus probing function. Initiates a hardware-dependent
2522 * bus reset, then attempts to identify any devices found on
2523 * the bus.
2525 * LOCKING:
2526 * PCI/etc. bus probe sem.
2528 * RETURNS:
2529 * Zero on success, negative errno otherwise.
2532 int ata_bus_probe(struct ata_port *ap)
2534 unsigned int classes[ATA_MAX_DEVICES];
2535 int tries[ATA_MAX_DEVICES];
2536 int rc;
2537 struct ata_device *dev;
2539 ata_port_probe(ap);
2541 ata_link_for_each_dev(dev, &ap->link)
2542 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2544 retry:
2545 ata_link_for_each_dev(dev, &ap->link) {
2546 /* If we issue an SRST then an ATA drive (not ATAPI)
2547 * may change configuration and be in PIO0 timing. If
2548 * we do a hard reset (or are coming from power on)
2549 * this is true for ATA or ATAPI. Until we've set a
2550 * suitable controller mode we should not touch the
2551 * bus as we may be talking too fast.
2553 dev->pio_mode = XFER_PIO_0;
2555 /* If the controller has a pio mode setup function
2556 * then use it to set the chipset to rights. Don't
2557 * touch the DMA setup as that will be dealt with when
2558 * configuring devices.
2560 if (ap->ops->set_piomode)
2561 ap->ops->set_piomode(ap, dev);
2564 /* reset and determine device classes */
2565 ap->ops->phy_reset(ap);
2567 ata_link_for_each_dev(dev, &ap->link) {
2568 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2569 dev->class != ATA_DEV_UNKNOWN)
2570 classes[dev->devno] = dev->class;
2571 else
2572 classes[dev->devno] = ATA_DEV_NONE;
2574 dev->class = ATA_DEV_UNKNOWN;
2577 ata_port_probe(ap);
2579 /* read IDENTIFY page and configure devices. We have to do the identify
2580 specific sequence bass-ackwards so that PDIAG- is released by
2581 the slave device */
2583 ata_link_for_each_dev_reverse(dev, &ap->link) {
2584 if (tries[dev->devno])
2585 dev->class = classes[dev->devno];
2587 if (!ata_dev_enabled(dev))
2588 continue;
2590 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2591 dev->id);
2592 if (rc)
2593 goto fail;
2596 /* Now ask for the cable type as PDIAG- should have been released */
2597 if (ap->ops->cable_detect)
2598 ap->cbl = ap->ops->cable_detect(ap);
2600 /* We may have SATA bridge glue hiding here irrespective of the
2601 reported cable types and sensed types */
2602 ata_link_for_each_dev(dev, &ap->link) {
2603 if (!ata_dev_enabled(dev))
2604 continue;
2605 /* SATA drives indicate we have a bridge. We don't know which
2606 end of the link the bridge is which is a problem */
2607 if (ata_id_is_sata(dev->id))
2608 ap->cbl = ATA_CBL_SATA;
2611 /* After the identify sequence we can now set up the devices. We do
2612 this in the normal order so that the user doesn't get confused */
2614 ata_link_for_each_dev(dev, &ap->link) {
2615 if (!ata_dev_enabled(dev))
2616 continue;
2618 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2619 rc = ata_dev_configure(dev);
2620 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2621 if (rc)
2622 goto fail;
2625 /* configure transfer mode */
2626 rc = ata_set_mode(&ap->link, &dev);
2627 if (rc)
2628 goto fail;
2630 ata_link_for_each_dev(dev, &ap->link)
2631 if (ata_dev_enabled(dev))
2632 return 0;
2634 /* no device present, disable port */
2635 ata_port_disable(ap);
2636 return -ENODEV;
2638 fail:
2639 tries[dev->devno]--;
2641 switch (rc) {
2642 case -EINVAL:
2643 /* eeek, something went very wrong, give up */
2644 tries[dev->devno] = 0;
2645 break;
2647 case -ENODEV:
2648 /* give it just one more chance */
2649 tries[dev->devno] = min(tries[dev->devno], 1);
2650 case -EIO:
2651 if (tries[dev->devno] == 1) {
2652 /* This is the last chance, better to slow
2653 * down than lose it.
2655 sata_down_spd_limit(&ap->link);
2656 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2660 if (!tries[dev->devno])
2661 ata_dev_disable(dev);
2663 goto retry;
2667 * ata_port_probe - Mark port as enabled
2668 * @ap: Port for which we indicate enablement
2670 * Modify @ap data structure such that the system
2671 * thinks that the entire port is enabled.
2673 * LOCKING: host lock, or some other form of
2674 * serialization.
2677 void ata_port_probe(struct ata_port *ap)
2679 ap->flags &= ~ATA_FLAG_DISABLED;
2683 * sata_print_link_status - Print SATA link status
2684 * @link: SATA link to printk link status about
2686 * This function prints link speed and status of a SATA link.
2688 * LOCKING:
2689 * None.
2691 static void sata_print_link_status(struct ata_link *link)
2693 u32 sstatus, scontrol, tmp;
2695 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2696 return;
2697 sata_scr_read(link, SCR_CONTROL, &scontrol);
2699 if (ata_link_online(link)) {
2700 tmp = (sstatus >> 4) & 0xf;
2701 ata_link_printk(link, KERN_INFO,
2702 "SATA link up %s (SStatus %X SControl %X)\n",
2703 sata_spd_string(tmp), sstatus, scontrol);
2704 } else {
2705 ata_link_printk(link, KERN_INFO,
2706 "SATA link down (SStatus %X SControl %X)\n",
2707 sstatus, scontrol);
2712 * ata_dev_pair - return other device on cable
2713 * @adev: device
2715 * Obtain the other device on the same cable, or if none is
2716 * present NULL is returned
2719 struct ata_device *ata_dev_pair(struct ata_device *adev)
2721 struct ata_link *link = adev->link;
2722 struct ata_device *pair = &link->device[1 - adev->devno];
2723 if (!ata_dev_enabled(pair))
2724 return NULL;
2725 return pair;
2729 * ata_port_disable - Disable port.
2730 * @ap: Port to be disabled.
2732 * Modify @ap data structure such that the system
2733 * thinks that the entire port is disabled, and should
2734 * never attempt to probe or communicate with devices
2735 * on this port.
2737 * LOCKING: host lock, or some other form of
2738 * serialization.
2741 void ata_port_disable(struct ata_port *ap)
2743 ap->link.device[0].class = ATA_DEV_NONE;
2744 ap->link.device[1].class = ATA_DEV_NONE;
2745 ap->flags |= ATA_FLAG_DISABLED;
2749 * sata_down_spd_limit - adjust SATA spd limit downward
2750 * @link: Link to adjust SATA spd limit for
2752 * Adjust SATA spd limit of @link downward. Note that this
2753 * function only adjusts the limit. The change must be applied
2754 * using sata_set_spd().
2756 * LOCKING:
2757 * Inherited from caller.
2759 * RETURNS:
2760 * 0 on success, negative errno on failure
2762 int sata_down_spd_limit(struct ata_link *link)
2764 u32 sstatus, spd, mask;
2765 int rc, highbit;
2767 if (!sata_scr_valid(link))
2768 return -EOPNOTSUPP;
2770 /* If SCR can be read, use it to determine the current SPD.
2771 * If not, use cached value in link->sata_spd.
2773 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2774 if (rc == 0)
2775 spd = (sstatus >> 4) & 0xf;
2776 else
2777 spd = link->sata_spd;
2779 mask = link->sata_spd_limit;
2780 if (mask <= 1)
2781 return -EINVAL;
2783 /* unconditionally mask off the highest bit */
2784 highbit = fls(mask) - 1;
2785 mask &= ~(1 << highbit);
2787 /* Mask off all speeds higher than or equal to the current
2788 * one. Force 1.5Gbps if current SPD is not available.
2790 if (spd > 1)
2791 mask &= (1 << (spd - 1)) - 1;
2792 else
2793 mask &= 1;
2795 /* were we already at the bottom? */
2796 if (!mask)
2797 return -EINVAL;
2799 link->sata_spd_limit = mask;
2801 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2802 sata_spd_string(fls(mask)));
2804 return 0;
2807 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2809 struct ata_link *host_link = &link->ap->link;
2810 u32 limit, target, spd;
2812 limit = link->sata_spd_limit;
2814 /* Don't configure downstream link faster than upstream link.
2815 * It doesn't speed up anything and some PMPs choke on such
2816 * configuration.
2818 if (!ata_is_host_link(link) && host_link->sata_spd)
2819 limit &= (1 << host_link->sata_spd) - 1;
2821 if (limit == UINT_MAX)
2822 target = 0;
2823 else
2824 target = fls(limit);
2826 spd = (*scontrol >> 4) & 0xf;
2827 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2829 return spd != target;
2833 * sata_set_spd_needed - is SATA spd configuration needed
2834 * @link: Link in question
2836 * Test whether the spd limit in SControl matches
2837 * @link->sata_spd_limit. This function is used to determine
2838 * whether hardreset is necessary to apply SATA spd
2839 * configuration.
2841 * LOCKING:
2842 * Inherited from caller.
2844 * RETURNS:
2845 * 1 if SATA spd configuration is needed, 0 otherwise.
2847 static int sata_set_spd_needed(struct ata_link *link)
2849 u32 scontrol;
2851 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2852 return 1;
2854 return __sata_set_spd_needed(link, &scontrol);
2858 * sata_set_spd - set SATA spd according to spd limit
2859 * @link: Link to set SATA spd for
2861 * Set SATA spd of @link according to sata_spd_limit.
2863 * LOCKING:
2864 * Inherited from caller.
2866 * RETURNS:
2867 * 0 if spd doesn't need to be changed, 1 if spd has been
2868 * changed. Negative errno if SCR registers are inaccessible.
2870 int sata_set_spd(struct ata_link *link)
2872 u32 scontrol;
2873 int rc;
2875 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2876 return rc;
2878 if (!__sata_set_spd_needed(link, &scontrol))
2879 return 0;
2881 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2882 return rc;
2884 return 1;
2888 * This mode timing computation functionality is ported over from
2889 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2892 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2893 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2894 * for UDMA6, which is currently supported only by Maxtor drives.
2896 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2899 static const struct ata_timing ata_timing[] = {
2900 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2901 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2902 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2903 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2904 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2905 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2906 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2907 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2909 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2910 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2911 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2913 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2914 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2915 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2916 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2917 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2919 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2920 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2921 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2922 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2923 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2924 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2925 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2926 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2928 { 0xFF }
2931 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2932 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2934 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2936 q->setup = EZ(t->setup * 1000, T);
2937 q->act8b = EZ(t->act8b * 1000, T);
2938 q->rec8b = EZ(t->rec8b * 1000, T);
2939 q->cyc8b = EZ(t->cyc8b * 1000, T);
2940 q->active = EZ(t->active * 1000, T);
2941 q->recover = EZ(t->recover * 1000, T);
2942 q->cycle = EZ(t->cycle * 1000, T);
2943 q->udma = EZ(t->udma * 1000, UT);
2946 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2947 struct ata_timing *m, unsigned int what)
2949 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2950 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2951 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2952 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2953 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2954 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2955 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2956 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2959 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2961 const struct ata_timing *t = ata_timing;
2963 while (xfer_mode > t->mode)
2964 t++;
2966 if (xfer_mode == t->mode)
2967 return t;
2968 return NULL;
2971 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2972 struct ata_timing *t, int T, int UT)
2974 const struct ata_timing *s;
2975 struct ata_timing p;
2978 * Find the mode.
2981 if (!(s = ata_timing_find_mode(speed)))
2982 return -EINVAL;
2984 memcpy(t, s, sizeof(*s));
2987 * If the drive is an EIDE drive, it can tell us it needs extended
2988 * PIO/MW_DMA cycle timing.
2991 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2992 memset(&p, 0, sizeof(p));
2993 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2994 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2995 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2996 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2997 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2999 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3003 * Convert the timing to bus clock counts.
3006 ata_timing_quantize(t, t, T, UT);
3009 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3010 * S.M.A.R.T * and some other commands. We have to ensure that the
3011 * DMA cycle timing is slower/equal than the fastest PIO timing.
3014 if (speed > XFER_PIO_6) {
3015 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3016 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3020 * Lengthen active & recovery time so that cycle time is correct.
3023 if (t->act8b + t->rec8b < t->cyc8b) {
3024 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3025 t->rec8b = t->cyc8b - t->act8b;
3028 if (t->active + t->recover < t->cycle) {
3029 t->active += (t->cycle - (t->active + t->recover)) / 2;
3030 t->recover = t->cycle - t->active;
3033 /* In a few cases quantisation may produce enough errors to
3034 leave t->cycle too low for the sum of active and recovery
3035 if so we must correct this */
3036 if (t->active + t->recover > t->cycle)
3037 t->cycle = t->active + t->recover;
3039 return 0;
3043 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3044 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3045 * @cycle: cycle duration in ns
3047 * Return matching xfer mode for @cycle. The returned mode is of
3048 * the transfer type specified by @xfer_shift. If @cycle is too
3049 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3050 * than the fastest known mode, the fasted mode is returned.
3052 * LOCKING:
3053 * None.
3055 * RETURNS:
3056 * Matching xfer_mode, 0xff if no match found.
3058 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3060 u8 base_mode = 0xff, last_mode = 0xff;
3061 const struct ata_xfer_ent *ent;
3062 const struct ata_timing *t;
3064 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3065 if (ent->shift == xfer_shift)
3066 base_mode = ent->base;
3068 for (t = ata_timing_find_mode(base_mode);
3069 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3070 unsigned short this_cycle;
3072 switch (xfer_shift) {
3073 case ATA_SHIFT_PIO:
3074 case ATA_SHIFT_MWDMA:
3075 this_cycle = t->cycle;
3076 break;
3077 case ATA_SHIFT_UDMA:
3078 this_cycle = t->udma;
3079 break;
3080 default:
3081 return 0xff;
3084 if (cycle > this_cycle)
3085 break;
3087 last_mode = t->mode;
3090 return last_mode;
3094 * ata_down_xfermask_limit - adjust dev xfer masks downward
3095 * @dev: Device to adjust xfer masks
3096 * @sel: ATA_DNXFER_* selector
3098 * Adjust xfer masks of @dev downward. Note that this function
3099 * does not apply the change. Invoking ata_set_mode() afterwards
3100 * will apply the limit.
3102 * LOCKING:
3103 * Inherited from caller.
3105 * RETURNS:
3106 * 0 on success, negative errno on failure
3108 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3110 char buf[32];
3111 unsigned long orig_mask, xfer_mask;
3112 unsigned long pio_mask, mwdma_mask, udma_mask;
3113 int quiet, highbit;
3115 quiet = !!(sel & ATA_DNXFER_QUIET);
3116 sel &= ~ATA_DNXFER_QUIET;
3118 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3119 dev->mwdma_mask,
3120 dev->udma_mask);
3121 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3123 switch (sel) {
3124 case ATA_DNXFER_PIO:
3125 highbit = fls(pio_mask) - 1;
3126 pio_mask &= ~(1 << highbit);
3127 break;
3129 case ATA_DNXFER_DMA:
3130 if (udma_mask) {
3131 highbit = fls(udma_mask) - 1;
3132 udma_mask &= ~(1 << highbit);
3133 if (!udma_mask)
3134 return -ENOENT;
3135 } else if (mwdma_mask) {
3136 highbit = fls(mwdma_mask) - 1;
3137 mwdma_mask &= ~(1 << highbit);
3138 if (!mwdma_mask)
3139 return -ENOENT;
3141 break;
3143 case ATA_DNXFER_40C:
3144 udma_mask &= ATA_UDMA_MASK_40C;
3145 break;
3147 case ATA_DNXFER_FORCE_PIO0:
3148 pio_mask &= 1;
3149 case ATA_DNXFER_FORCE_PIO:
3150 mwdma_mask = 0;
3151 udma_mask = 0;
3152 break;
3154 default:
3155 BUG();
3158 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3160 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3161 return -ENOENT;
3163 if (!quiet) {
3164 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3165 snprintf(buf, sizeof(buf), "%s:%s",
3166 ata_mode_string(xfer_mask),
3167 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3168 else
3169 snprintf(buf, sizeof(buf), "%s",
3170 ata_mode_string(xfer_mask));
3172 ata_dev_printk(dev, KERN_WARNING,
3173 "limiting speed to %s\n", buf);
3176 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3177 &dev->udma_mask);
3179 return 0;
3182 static int ata_dev_set_mode(struct ata_device *dev)
3184 struct ata_eh_context *ehc = &dev->link->eh_context;
3185 const char *dev_err_whine = "";
3186 int ign_dev_err = 0;
3187 unsigned int err_mask;
3188 int rc;
3190 dev->flags &= ~ATA_DFLAG_PIO;
3191 if (dev->xfer_shift == ATA_SHIFT_PIO)
3192 dev->flags |= ATA_DFLAG_PIO;
3194 err_mask = ata_dev_set_xfermode(dev);
3196 if (err_mask & ~AC_ERR_DEV)
3197 goto fail;
3199 /* revalidate */
3200 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3201 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3202 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3203 if (rc)
3204 return rc;
3206 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3207 /* Old CFA may refuse this command, which is just fine */
3208 if (ata_id_is_cfa(dev->id))
3209 ign_dev_err = 1;
3210 /* Catch several broken garbage emulations plus some pre
3211 ATA devices */
3212 if (ata_id_major_version(dev->id) == 0 &&
3213 dev->pio_mode <= XFER_PIO_2)
3214 ign_dev_err = 1;
3215 /* Some very old devices and some bad newer ones fail
3216 any kind of SET_XFERMODE request but support PIO0-2
3217 timings and no IORDY */
3218 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3219 ign_dev_err = 1;
3221 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3222 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3223 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3224 dev->dma_mode == XFER_MW_DMA_0 &&
3225 (dev->id[63] >> 8) & 1)
3226 ign_dev_err = 1;
3228 /* if the device is actually configured correctly, ignore dev err */
3229 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3230 ign_dev_err = 1;
3232 if (err_mask & AC_ERR_DEV) {
3233 if (!ign_dev_err)
3234 goto fail;
3235 else
3236 dev_err_whine = " (device error ignored)";
3239 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3240 dev->xfer_shift, (int)dev->xfer_mode);
3242 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3243 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3244 dev_err_whine);
3246 return 0;
3248 fail:
3249 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3250 "(err_mask=0x%x)\n", err_mask);
3251 return -EIO;
3255 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3256 * @link: link on which timings will be programmed
3257 * @r_failed_dev: out parameter for failed device
3259 * Standard implementation of the function used to tune and set
3260 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3261 * ata_dev_set_mode() fails, pointer to the failing device is
3262 * returned in @r_failed_dev.
3264 * LOCKING:
3265 * PCI/etc. bus probe sem.
3267 * RETURNS:
3268 * 0 on success, negative errno otherwise
3271 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3273 struct ata_port *ap = link->ap;
3274 struct ata_device *dev;
3275 int rc = 0, used_dma = 0, found = 0;
3277 /* step 1: calculate xfer_mask */
3278 ata_link_for_each_dev(dev, link) {
3279 unsigned long pio_mask, dma_mask;
3280 unsigned int mode_mask;
3282 if (!ata_dev_enabled(dev))
3283 continue;
3285 mode_mask = ATA_DMA_MASK_ATA;
3286 if (dev->class == ATA_DEV_ATAPI)
3287 mode_mask = ATA_DMA_MASK_ATAPI;
3288 else if (ata_id_is_cfa(dev->id))
3289 mode_mask = ATA_DMA_MASK_CFA;
3291 ata_dev_xfermask(dev);
3292 ata_force_xfermask(dev);
3294 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3295 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3297 if (libata_dma_mask & mode_mask)
3298 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3299 else
3300 dma_mask = 0;
3302 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3303 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3305 found = 1;
3306 if (ata_dma_enabled(dev))
3307 used_dma = 1;
3309 if (!found)
3310 goto out;
3312 /* step 2: always set host PIO timings */
3313 ata_link_for_each_dev(dev, link) {
3314 if (!ata_dev_enabled(dev))
3315 continue;
3317 if (dev->pio_mode == 0xff) {
3318 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3319 rc = -EINVAL;
3320 goto out;
3323 dev->xfer_mode = dev->pio_mode;
3324 dev->xfer_shift = ATA_SHIFT_PIO;
3325 if (ap->ops->set_piomode)
3326 ap->ops->set_piomode(ap, dev);
3329 /* step 3: set host DMA timings */
3330 ata_link_for_each_dev(dev, link) {
3331 if (!ata_dev_enabled(dev) || !ata_dma_enabled(dev))
3332 continue;
3334 dev->xfer_mode = dev->dma_mode;
3335 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3336 if (ap->ops->set_dmamode)
3337 ap->ops->set_dmamode(ap, dev);
3340 /* step 4: update devices' xfer mode */
3341 ata_link_for_each_dev(dev, link) {
3342 /* don't update suspended devices' xfer mode */
3343 if (!ata_dev_enabled(dev))
3344 continue;
3346 rc = ata_dev_set_mode(dev);
3347 if (rc)
3348 goto out;
3351 /* Record simplex status. If we selected DMA then the other
3352 * host channels are not permitted to do so.
3354 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3355 ap->host->simplex_claimed = ap;
3357 out:
3358 if (rc)
3359 *r_failed_dev = dev;
3360 return rc;
3364 * ata_wait_ready - wait for link to become ready
3365 * @link: link to be waited on
3366 * @deadline: deadline jiffies for the operation
3367 * @check_ready: callback to check link readiness
3369 * Wait for @link to become ready. @check_ready should return
3370 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3371 * link doesn't seem to be occupied, other errno for other error
3372 * conditions.
3374 * Transient -ENODEV conditions are allowed for
3375 * ATA_TMOUT_FF_WAIT.
3377 * LOCKING:
3378 * EH context.
3380 * RETURNS:
3381 * 0 if @linke is ready before @deadline; otherwise, -errno.
3383 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3384 int (*check_ready)(struct ata_link *link))
3386 unsigned long start = jiffies;
3387 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3388 int warned = 0;
3390 if (time_after(nodev_deadline, deadline))
3391 nodev_deadline = deadline;
3393 while (1) {
3394 unsigned long now = jiffies;
3395 int ready, tmp;
3397 ready = tmp = check_ready(link);
3398 if (ready > 0)
3399 return 0;
3401 /* -ENODEV could be transient. Ignore -ENODEV if link
3402 * is online. Also, some SATA devices take a long
3403 * time to clear 0xff after reset. For example,
3404 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3405 * GoVault needs even more than that. Wait for
3406 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3408 * Note that some PATA controllers (pata_ali) explode
3409 * if status register is read more than once when
3410 * there's no device attached.
3412 if (ready == -ENODEV) {
3413 if (ata_link_online(link))
3414 ready = 0;
3415 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3416 !ata_link_offline(link) &&
3417 time_before(now, nodev_deadline))
3418 ready = 0;
3421 if (ready)
3422 return ready;
3423 if (time_after(now, deadline))
3424 return -EBUSY;
3426 if (!warned && time_after(now, start + 5 * HZ) &&
3427 (deadline - now > 3 * HZ)) {
3428 ata_link_printk(link, KERN_WARNING,
3429 "link is slow to respond, please be patient "
3430 "(ready=%d)\n", tmp);
3431 warned = 1;
3434 msleep(50);
3439 * ata_wait_after_reset - wait for link to become ready after reset
3440 * @link: link to be waited on
3441 * @deadline: deadline jiffies for the operation
3442 * @check_ready: callback to check link readiness
3444 * Wait for @link to become ready after reset.
3446 * LOCKING:
3447 * EH context.
3449 * RETURNS:
3450 * 0 if @linke is ready before @deadline; otherwise, -errno.
3452 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3453 int (*check_ready)(struct ata_link *link))
3455 msleep(ATA_WAIT_AFTER_RESET);
3457 return ata_wait_ready(link, deadline, check_ready);
3461 * sata_link_debounce - debounce SATA phy status
3462 * @link: ATA link to debounce SATA phy status for
3463 * @params: timing parameters { interval, duratinon, timeout } in msec
3464 * @deadline: deadline jiffies for the operation
3466 * Make sure SStatus of @link reaches stable state, determined by
3467 * holding the same value where DET is not 1 for @duration polled
3468 * every @interval, before @timeout. Timeout constraints the
3469 * beginning of the stable state. Because DET gets stuck at 1 on
3470 * some controllers after hot unplugging, this functions waits
3471 * until timeout then returns 0 if DET is stable at 1.
3473 * @timeout is further limited by @deadline. The sooner of the
3474 * two is used.
3476 * LOCKING:
3477 * Kernel thread context (may sleep)
3479 * RETURNS:
3480 * 0 on success, -errno on failure.
3482 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3483 unsigned long deadline)
3485 unsigned long interval = params[0];
3486 unsigned long duration = params[1];
3487 unsigned long last_jiffies, t;
3488 u32 last, cur;
3489 int rc;
3491 t = ata_deadline(jiffies, params[2]);
3492 if (time_before(t, deadline))
3493 deadline = t;
3495 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3496 return rc;
3497 cur &= 0xf;
3499 last = cur;
3500 last_jiffies = jiffies;
3502 while (1) {
3503 msleep(interval);
3504 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3505 return rc;
3506 cur &= 0xf;
3508 /* DET stable? */
3509 if (cur == last) {
3510 if (cur == 1 && time_before(jiffies, deadline))
3511 continue;
3512 if (time_after(jiffies,
3513 ata_deadline(last_jiffies, duration)))
3514 return 0;
3515 continue;
3518 /* unstable, start over */
3519 last = cur;
3520 last_jiffies = jiffies;
3522 /* Check deadline. If debouncing failed, return
3523 * -EPIPE to tell upper layer to lower link speed.
3525 if (time_after(jiffies, deadline))
3526 return -EPIPE;
3531 * sata_link_resume - resume SATA link
3532 * @link: ATA link to resume SATA
3533 * @params: timing parameters { interval, duratinon, timeout } in msec
3534 * @deadline: deadline jiffies for the operation
3536 * Resume SATA phy @link and debounce it.
3538 * LOCKING:
3539 * Kernel thread context (may sleep)
3541 * RETURNS:
3542 * 0 on success, -errno on failure.
3544 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3545 unsigned long deadline)
3547 u32 scontrol, serror;
3548 int rc;
3550 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3551 return rc;
3553 scontrol = (scontrol & 0x0f0) | 0x300;
3555 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3556 return rc;
3558 /* Some PHYs react badly if SStatus is pounded immediately
3559 * after resuming. Delay 200ms before debouncing.
3561 msleep(200);
3563 if ((rc = sata_link_debounce(link, params, deadline)))
3564 return rc;
3566 /* clear SError, some PHYs require this even for SRST to work */
3567 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3568 rc = sata_scr_write(link, SCR_ERROR, serror);
3570 return rc != -EINVAL ? rc : 0;
3574 * ata_std_prereset - prepare for reset
3575 * @link: ATA link to be reset
3576 * @deadline: deadline jiffies for the operation
3578 * @link is about to be reset. Initialize it. Failure from
3579 * prereset makes libata abort whole reset sequence and give up
3580 * that port, so prereset should be best-effort. It does its
3581 * best to prepare for reset sequence but if things go wrong, it
3582 * should just whine, not fail.
3584 * LOCKING:
3585 * Kernel thread context (may sleep)
3587 * RETURNS:
3588 * 0 on success, -errno otherwise.
3590 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3592 struct ata_port *ap = link->ap;
3593 struct ata_eh_context *ehc = &link->eh_context;
3594 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3595 int rc;
3597 /* if we're about to do hardreset, nothing more to do */
3598 if (ehc->i.action & ATA_EH_HARDRESET)
3599 return 0;
3601 /* if SATA, resume link */
3602 if (ap->flags & ATA_FLAG_SATA) {
3603 rc = sata_link_resume(link, timing, deadline);
3604 /* whine about phy resume failure but proceed */
3605 if (rc && rc != -EOPNOTSUPP)
3606 ata_link_printk(link, KERN_WARNING, "failed to resume "
3607 "link for reset (errno=%d)\n", rc);
3610 /* no point in trying softreset on offline link */
3611 if (ata_link_offline(link))
3612 ehc->i.action &= ~ATA_EH_SOFTRESET;
3614 return 0;
3618 * sata_link_hardreset - reset link via SATA phy reset
3619 * @link: link to reset
3620 * @timing: timing parameters { interval, duratinon, timeout } in msec
3621 * @deadline: deadline jiffies for the operation
3622 * @online: optional out parameter indicating link onlineness
3623 * @check_ready: optional callback to check link readiness
3625 * SATA phy-reset @link using DET bits of SControl register.
3626 * After hardreset, link readiness is waited upon using
3627 * ata_wait_ready() if @check_ready is specified. LLDs are
3628 * allowed to not specify @check_ready and wait itself after this
3629 * function returns. Device classification is LLD's
3630 * responsibility.
3632 * *@online is set to one iff reset succeeded and @link is online
3633 * after reset.
3635 * LOCKING:
3636 * Kernel thread context (may sleep)
3638 * RETURNS:
3639 * 0 on success, -errno otherwise.
3641 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3642 unsigned long deadline,
3643 bool *online, int (*check_ready)(struct ata_link *))
3645 u32 scontrol;
3646 int rc;
3648 DPRINTK("ENTER\n");
3650 if (online)
3651 *online = false;
3653 if (sata_set_spd_needed(link)) {
3654 /* SATA spec says nothing about how to reconfigure
3655 * spd. To be on the safe side, turn off phy during
3656 * reconfiguration. This works for at least ICH7 AHCI
3657 * and Sil3124.
3659 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3660 goto out;
3662 scontrol = (scontrol & 0x0f0) | 0x304;
3664 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3665 goto out;
3667 sata_set_spd(link);
3670 /* issue phy wake/reset */
3671 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3672 goto out;
3674 scontrol = (scontrol & 0x0f0) | 0x301;
3676 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3677 goto out;
3679 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3680 * 10.4.2 says at least 1 ms.
3682 msleep(1);
3684 /* bring link back */
3685 rc = sata_link_resume(link, timing, deadline);
3686 if (rc)
3687 goto out;
3688 /* if link is offline nothing more to do */
3689 if (ata_link_offline(link))
3690 goto out;
3692 /* Link is online. From this point, -ENODEV too is an error. */
3693 if (online)
3694 *online = true;
3696 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3697 /* If PMP is supported, we have to do follow-up SRST.
3698 * Some PMPs don't send D2H Reg FIS after hardreset if
3699 * the first port is empty. Wait only for
3700 * ATA_TMOUT_PMP_SRST_WAIT.
3702 if (check_ready) {
3703 unsigned long pmp_deadline;
3705 pmp_deadline = ata_deadline(jiffies,
3706 ATA_TMOUT_PMP_SRST_WAIT);
3707 if (time_after(pmp_deadline, deadline))
3708 pmp_deadline = deadline;
3709 ata_wait_ready(link, pmp_deadline, check_ready);
3711 rc = -EAGAIN;
3712 goto out;
3715 rc = 0;
3716 if (check_ready)
3717 rc = ata_wait_ready(link, deadline, check_ready);
3718 out:
3719 if (rc && rc != -EAGAIN) {
3720 /* online is set iff link is online && reset succeeded */
3721 if (online)
3722 *online = false;
3723 ata_link_printk(link, KERN_ERR,
3724 "COMRESET failed (errno=%d)\n", rc);
3726 DPRINTK("EXIT, rc=%d\n", rc);
3727 return rc;
3731 * sata_std_hardreset - COMRESET w/o waiting or classification
3732 * @link: link to reset
3733 * @class: resulting class of attached device
3734 * @deadline: deadline jiffies for the operation
3736 * Standard SATA COMRESET w/o waiting or classification.
3738 * LOCKING:
3739 * Kernel thread context (may sleep)
3741 * RETURNS:
3742 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3744 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3745 unsigned long deadline)
3747 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3748 bool online;
3749 int rc;
3751 /* do hardreset */
3752 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3753 return online ? -EAGAIN : rc;
3757 * ata_std_postreset - standard postreset callback
3758 * @link: the target ata_link
3759 * @classes: classes of attached devices
3761 * This function is invoked after a successful reset. Note that
3762 * the device might have been reset more than once using
3763 * different reset methods before postreset is invoked.
3765 * LOCKING:
3766 * Kernel thread context (may sleep)
3768 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3770 u32 serror;
3772 DPRINTK("ENTER\n");
3774 /* reset complete, clear SError */
3775 if (!sata_scr_read(link, SCR_ERROR, &serror))
3776 sata_scr_write(link, SCR_ERROR, serror);
3778 /* print link status */
3779 sata_print_link_status(link);
3781 DPRINTK("EXIT\n");
3785 * ata_dev_same_device - Determine whether new ID matches configured device
3786 * @dev: device to compare against
3787 * @new_class: class of the new device
3788 * @new_id: IDENTIFY page of the new device
3790 * Compare @new_class and @new_id against @dev and determine
3791 * whether @dev is the device indicated by @new_class and
3792 * @new_id.
3794 * LOCKING:
3795 * None.
3797 * RETURNS:
3798 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3800 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3801 const u16 *new_id)
3803 const u16 *old_id = dev->id;
3804 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3805 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3807 if (dev->class != new_class) {
3808 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3809 dev->class, new_class);
3810 return 0;
3813 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3814 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3815 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3816 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3818 if (strcmp(model[0], model[1])) {
3819 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3820 "'%s' != '%s'\n", model[0], model[1]);
3821 return 0;
3824 if (strcmp(serial[0], serial[1])) {
3825 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3826 "'%s' != '%s'\n", serial[0], serial[1]);
3827 return 0;
3830 return 1;
3834 * ata_dev_reread_id - Re-read IDENTIFY data
3835 * @dev: target ATA device
3836 * @readid_flags: read ID flags
3838 * Re-read IDENTIFY page and make sure @dev is still attached to
3839 * the port.
3841 * LOCKING:
3842 * Kernel thread context (may sleep)
3844 * RETURNS:
3845 * 0 on success, negative errno otherwise
3847 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3849 unsigned int class = dev->class;
3850 u16 *id = (void *)dev->link->ap->sector_buf;
3851 int rc;
3853 /* read ID data */
3854 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3855 if (rc)
3856 return rc;
3858 /* is the device still there? */
3859 if (!ata_dev_same_device(dev, class, id))
3860 return -ENODEV;
3862 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3863 return 0;
3867 * ata_dev_revalidate - Revalidate ATA device
3868 * @dev: device to revalidate
3869 * @new_class: new class code
3870 * @readid_flags: read ID flags
3872 * Re-read IDENTIFY page, make sure @dev is still attached to the
3873 * port and reconfigure it according to the new IDENTIFY page.
3875 * LOCKING:
3876 * Kernel thread context (may sleep)
3878 * RETURNS:
3879 * 0 on success, negative errno otherwise
3881 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3882 unsigned int readid_flags)
3884 u64 n_sectors = dev->n_sectors;
3885 int rc;
3887 if (!ata_dev_enabled(dev))
3888 return -ENODEV;
3890 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3891 if (ata_class_enabled(new_class) &&
3892 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3893 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3894 dev->class, new_class);
3895 rc = -ENODEV;
3896 goto fail;
3899 /* re-read ID */
3900 rc = ata_dev_reread_id(dev, readid_flags);
3901 if (rc)
3902 goto fail;
3904 /* configure device according to the new ID */
3905 rc = ata_dev_configure(dev);
3906 if (rc)
3907 goto fail;
3909 /* verify n_sectors hasn't changed */
3910 if (dev->class == ATA_DEV_ATA && n_sectors &&
3911 dev->n_sectors != n_sectors) {
3912 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3913 "%llu != %llu\n",
3914 (unsigned long long)n_sectors,
3915 (unsigned long long)dev->n_sectors);
3917 /* restore original n_sectors */
3918 dev->n_sectors = n_sectors;
3920 rc = -ENODEV;
3921 goto fail;
3924 return 0;
3926 fail:
3927 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3928 return rc;
3931 struct ata_blacklist_entry {
3932 const char *model_num;
3933 const char *model_rev;
3934 unsigned long horkage;
3937 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3938 /* Devices with DMA related problems under Linux */
3939 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3940 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3941 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3942 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3943 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3944 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3945 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3946 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3947 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3948 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3949 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3950 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3951 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3952 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3953 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3954 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3955 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3956 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3957 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3958 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3959 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3960 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3961 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3962 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3963 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3964 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3965 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3966 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3967 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
3968 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3969 /* Odd clown on sil3726/4726 PMPs */
3970 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
3972 /* Weird ATAPI devices */
3973 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3975 /* Devices we expect to fail diagnostics */
3977 /* Devices where NCQ should be avoided */
3978 /* NCQ is slow */
3979 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3980 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3981 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3982 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3983 /* NCQ is broken */
3984 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3985 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3986 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
3987 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
3989 /* Seagate NCQ + FLUSH CACHE firmware bug */
3990 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
3991 ATA_HORKAGE_FIRMWARE_WARN },
3992 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
3993 ATA_HORKAGE_FIRMWARE_WARN },
3994 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
3995 ATA_HORKAGE_FIRMWARE_WARN },
3996 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
3997 ATA_HORKAGE_FIRMWARE_WARN },
3998 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
3999 ATA_HORKAGE_FIRMWARE_WARN },
4001 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4002 ATA_HORKAGE_FIRMWARE_WARN },
4003 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4004 ATA_HORKAGE_FIRMWARE_WARN },
4005 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4006 ATA_HORKAGE_FIRMWARE_WARN },
4007 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4008 ATA_HORKAGE_FIRMWARE_WARN },
4009 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4010 ATA_HORKAGE_FIRMWARE_WARN },
4012 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4013 ATA_HORKAGE_FIRMWARE_WARN },
4014 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4015 ATA_HORKAGE_FIRMWARE_WARN },
4016 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4017 ATA_HORKAGE_FIRMWARE_WARN },
4018 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4019 ATA_HORKAGE_FIRMWARE_WARN },
4020 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4021 ATA_HORKAGE_FIRMWARE_WARN },
4023 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4024 ATA_HORKAGE_FIRMWARE_WARN },
4025 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4026 ATA_HORKAGE_FIRMWARE_WARN },
4027 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4028 ATA_HORKAGE_FIRMWARE_WARN },
4029 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4030 ATA_HORKAGE_FIRMWARE_WARN },
4031 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4032 ATA_HORKAGE_FIRMWARE_WARN },
4034 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4035 ATA_HORKAGE_FIRMWARE_WARN },
4036 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4037 ATA_HORKAGE_FIRMWARE_WARN },
4038 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4039 ATA_HORKAGE_FIRMWARE_WARN },
4040 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4041 ATA_HORKAGE_FIRMWARE_WARN },
4042 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4043 ATA_HORKAGE_FIRMWARE_WARN },
4045 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4046 ATA_HORKAGE_FIRMWARE_WARN },
4047 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4048 ATA_HORKAGE_FIRMWARE_WARN },
4049 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4050 ATA_HORKAGE_FIRMWARE_WARN },
4051 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4052 ATA_HORKAGE_FIRMWARE_WARN },
4053 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
4054 ATA_HORKAGE_FIRMWARE_WARN },
4056 /* Blacklist entries taken from Silicon Image 3124/3132
4057 Windows driver .inf file - also several Linux problem reports */
4058 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4059 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4060 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4062 /* devices which puke on READ_NATIVE_MAX */
4063 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4064 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4065 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4066 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4068 /* Devices which report 1 sector over size HPA */
4069 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4070 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4071 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4073 /* Devices which get the IVB wrong */
4074 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4075 /* Maybe we should just blacklist TSSTcorp... */
4076 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4077 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4078 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4079 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4080 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4081 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4083 /* End Marker */
4087 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4089 const char *p;
4090 int len;
4093 * check for trailing wildcard: *\0
4095 p = strchr(patt, wildchar);
4096 if (p && ((*(p + 1)) == 0))
4097 len = p - patt;
4098 else {
4099 len = strlen(name);
4100 if (!len) {
4101 if (!*patt)
4102 return 0;
4103 return -1;
4107 return strncmp(patt, name, len);
4110 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4112 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4113 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4114 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4116 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4117 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4119 while (ad->model_num) {
4120 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4121 if (ad->model_rev == NULL)
4122 return ad->horkage;
4123 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4124 return ad->horkage;
4126 ad++;
4128 return 0;
4131 static int ata_dma_blacklisted(const struct ata_device *dev)
4133 /* We don't support polling DMA.
4134 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4135 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4137 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4138 (dev->flags & ATA_DFLAG_CDB_INTR))
4139 return 1;
4140 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4144 * ata_is_40wire - check drive side detection
4145 * @dev: device
4147 * Perform drive side detection decoding, allowing for device vendors
4148 * who can't follow the documentation.
4151 static int ata_is_40wire(struct ata_device *dev)
4153 if (dev->horkage & ATA_HORKAGE_IVB)
4154 return ata_drive_40wire_relaxed(dev->id);
4155 return ata_drive_40wire(dev->id);
4159 * cable_is_40wire - 40/80/SATA decider
4160 * @ap: port to consider
4162 * This function encapsulates the policy for speed management
4163 * in one place. At the moment we don't cache the result but
4164 * there is a good case for setting ap->cbl to the result when
4165 * we are called with unknown cables (and figuring out if it
4166 * impacts hotplug at all).
4168 * Return 1 if the cable appears to be 40 wire.
4171 static int cable_is_40wire(struct ata_port *ap)
4173 struct ata_link *link;
4174 struct ata_device *dev;
4176 /* If the controller thinks we are 40 wire, we are */
4177 if (ap->cbl == ATA_CBL_PATA40)
4178 return 1;
4179 /* If the controller thinks we are 80 wire, we are */
4180 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4181 return 0;
4182 /* If the system is known to be 40 wire short cable (eg laptop),
4183 then we allow 80 wire modes even if the drive isn't sure */
4184 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4185 return 0;
4186 /* If the controller doesn't know we scan
4188 - Note: We look for all 40 wire detects at this point.
4189 Any 80 wire detect is taken to be 80 wire cable
4190 because
4191 - In many setups only the one drive (slave if present)
4192 will give a valid detect
4193 - If you have a non detect capable drive you don't
4194 want it to colour the choice
4196 ata_port_for_each_link(link, ap) {
4197 ata_link_for_each_dev(dev, link) {
4198 if (!ata_is_40wire(dev))
4199 return 0;
4202 return 1;
4206 * ata_dev_xfermask - Compute supported xfermask of the given device
4207 * @dev: Device to compute xfermask for
4209 * Compute supported xfermask of @dev and store it in
4210 * dev->*_mask. This function is responsible for applying all
4211 * known limits including host controller limits, device
4212 * blacklist, etc...
4214 * LOCKING:
4215 * None.
4217 static void ata_dev_xfermask(struct ata_device *dev)
4219 struct ata_link *link = dev->link;
4220 struct ata_port *ap = link->ap;
4221 struct ata_host *host = ap->host;
4222 unsigned long xfer_mask;
4224 /* controller modes available */
4225 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4226 ap->mwdma_mask, ap->udma_mask);
4228 /* drive modes available */
4229 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4230 dev->mwdma_mask, dev->udma_mask);
4231 xfer_mask &= ata_id_xfermask(dev->id);
4234 * CFA Advanced TrueIDE timings are not allowed on a shared
4235 * cable
4237 if (ata_dev_pair(dev)) {
4238 /* No PIO5 or PIO6 */
4239 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4240 /* No MWDMA3 or MWDMA 4 */
4241 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4244 if (ata_dma_blacklisted(dev)) {
4245 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4246 ata_dev_printk(dev, KERN_WARNING,
4247 "device is on DMA blacklist, disabling DMA\n");
4250 if ((host->flags & ATA_HOST_SIMPLEX) &&
4251 host->simplex_claimed && host->simplex_claimed != ap) {
4252 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4253 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4254 "other device, disabling DMA\n");
4257 if (ap->flags & ATA_FLAG_NO_IORDY)
4258 xfer_mask &= ata_pio_mask_no_iordy(dev);
4260 if (ap->ops->mode_filter)
4261 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4263 /* Apply cable rule here. Don't apply it early because when
4264 * we handle hot plug the cable type can itself change.
4265 * Check this last so that we know if the transfer rate was
4266 * solely limited by the cable.
4267 * Unknown or 80 wire cables reported host side are checked
4268 * drive side as well. Cases where we know a 40wire cable
4269 * is used safely for 80 are not checked here.
4271 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4272 /* UDMA/44 or higher would be available */
4273 if (cable_is_40wire(ap)) {
4274 ata_dev_printk(dev, KERN_WARNING,
4275 "limited to UDMA/33 due to 40-wire cable\n");
4276 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4279 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4280 &dev->mwdma_mask, &dev->udma_mask);
4284 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4285 * @dev: Device to which command will be sent
4287 * Issue SET FEATURES - XFER MODE command to device @dev
4288 * on port @ap.
4290 * LOCKING:
4291 * PCI/etc. bus probe sem.
4293 * RETURNS:
4294 * 0 on success, AC_ERR_* mask otherwise.
4297 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4299 struct ata_taskfile tf;
4300 unsigned int err_mask;
4302 /* set up set-features taskfile */
4303 DPRINTK("set features - xfer mode\n");
4305 /* Some controllers and ATAPI devices show flaky interrupt
4306 * behavior after setting xfer mode. Use polling instead.
4308 ata_tf_init(dev, &tf);
4309 tf.command = ATA_CMD_SET_FEATURES;
4310 tf.feature = SETFEATURES_XFER;
4311 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4312 tf.protocol = ATA_PROT_NODATA;
4313 /* If we are using IORDY we must send the mode setting command */
4314 if (ata_pio_need_iordy(dev))
4315 tf.nsect = dev->xfer_mode;
4316 /* If the device has IORDY and the controller does not - turn it off */
4317 else if (ata_id_has_iordy(dev->id))
4318 tf.nsect = 0x01;
4319 else /* In the ancient relic department - skip all of this */
4320 return 0;
4322 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4324 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4325 return err_mask;
4328 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4329 * @dev: Device to which command will be sent
4330 * @enable: Whether to enable or disable the feature
4331 * @feature: The sector count represents the feature to set
4333 * Issue SET FEATURES - SATA FEATURES command to device @dev
4334 * on port @ap with sector count
4336 * LOCKING:
4337 * PCI/etc. bus probe sem.
4339 * RETURNS:
4340 * 0 on success, AC_ERR_* mask otherwise.
4342 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4343 u8 feature)
4345 struct ata_taskfile tf;
4346 unsigned int err_mask;
4348 /* set up set-features taskfile */
4349 DPRINTK("set features - SATA features\n");
4351 ata_tf_init(dev, &tf);
4352 tf.command = ATA_CMD_SET_FEATURES;
4353 tf.feature = enable;
4354 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4355 tf.protocol = ATA_PROT_NODATA;
4356 tf.nsect = feature;
4358 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4360 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4361 return err_mask;
4365 * ata_dev_init_params - Issue INIT DEV PARAMS command
4366 * @dev: Device to which command will be sent
4367 * @heads: Number of heads (taskfile parameter)
4368 * @sectors: Number of sectors (taskfile parameter)
4370 * LOCKING:
4371 * Kernel thread context (may sleep)
4373 * RETURNS:
4374 * 0 on success, AC_ERR_* mask otherwise.
4376 static unsigned int ata_dev_init_params(struct ata_device *dev,
4377 u16 heads, u16 sectors)
4379 struct ata_taskfile tf;
4380 unsigned int err_mask;
4382 /* Number of sectors per track 1-255. Number of heads 1-16 */
4383 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4384 return AC_ERR_INVALID;
4386 /* set up init dev params taskfile */
4387 DPRINTK("init dev params \n");
4389 ata_tf_init(dev, &tf);
4390 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4391 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4392 tf.protocol = ATA_PROT_NODATA;
4393 tf.nsect = sectors;
4394 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4396 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4397 /* A clean abort indicates an original or just out of spec drive
4398 and we should continue as we issue the setup based on the
4399 drive reported working geometry */
4400 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4401 err_mask = 0;
4403 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4404 return err_mask;
4408 * ata_sg_clean - Unmap DMA memory associated with command
4409 * @qc: Command containing DMA memory to be released
4411 * Unmap all mapped DMA memory associated with this command.
4413 * LOCKING:
4414 * spin_lock_irqsave(host lock)
4416 void ata_sg_clean(struct ata_queued_cmd *qc)
4418 struct ata_port *ap = qc->ap;
4419 struct scatterlist *sg = qc->sg;
4420 int dir = qc->dma_dir;
4422 WARN_ON(sg == NULL);
4424 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4426 if (qc->n_elem)
4427 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4429 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4430 qc->sg = NULL;
4434 * atapi_check_dma - Check whether ATAPI DMA can be supported
4435 * @qc: Metadata associated with taskfile to check
4437 * Allow low-level driver to filter ATA PACKET commands, returning
4438 * a status indicating whether or not it is OK to use DMA for the
4439 * supplied PACKET command.
4441 * LOCKING:
4442 * spin_lock_irqsave(host lock)
4444 * RETURNS: 0 when ATAPI DMA can be used
4445 * nonzero otherwise
4447 int atapi_check_dma(struct ata_queued_cmd *qc)
4449 struct ata_port *ap = qc->ap;
4451 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4452 * few ATAPI devices choke on such DMA requests.
4454 if (unlikely(qc->nbytes & 15))
4455 return 1;
4457 if (ap->ops->check_atapi_dma)
4458 return ap->ops->check_atapi_dma(qc);
4460 return 0;
4464 * ata_std_qc_defer - Check whether a qc needs to be deferred
4465 * @qc: ATA command in question
4467 * Non-NCQ commands cannot run with any other command, NCQ or
4468 * not. As upper layer only knows the queue depth, we are
4469 * responsible for maintaining exclusion. This function checks
4470 * whether a new command @qc can be issued.
4472 * LOCKING:
4473 * spin_lock_irqsave(host lock)
4475 * RETURNS:
4476 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4478 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4480 struct ata_link *link = qc->dev->link;
4482 if (qc->tf.protocol == ATA_PROT_NCQ) {
4483 if (!ata_tag_valid(link->active_tag))
4484 return 0;
4485 } else {
4486 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4487 return 0;
4490 return ATA_DEFER_LINK;
4493 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4496 * ata_sg_init - Associate command with scatter-gather table.
4497 * @qc: Command to be associated
4498 * @sg: Scatter-gather table.
4499 * @n_elem: Number of elements in s/g table.
4501 * Initialize the data-related elements of queued_cmd @qc
4502 * to point to a scatter-gather table @sg, containing @n_elem
4503 * elements.
4505 * LOCKING:
4506 * spin_lock_irqsave(host lock)
4508 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4509 unsigned int n_elem)
4511 qc->sg = sg;
4512 qc->n_elem = n_elem;
4513 qc->cursg = qc->sg;
4517 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4518 * @qc: Command with scatter-gather table to be mapped.
4520 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4522 * LOCKING:
4523 * spin_lock_irqsave(host lock)
4525 * RETURNS:
4526 * Zero on success, negative on error.
4529 static int ata_sg_setup(struct ata_queued_cmd *qc)
4531 struct ata_port *ap = qc->ap;
4532 unsigned int n_elem;
4534 VPRINTK("ENTER, ata%u\n", ap->print_id);
4536 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4537 if (n_elem < 1)
4538 return -1;
4540 DPRINTK("%d sg elements mapped\n", n_elem);
4542 qc->n_elem = n_elem;
4543 qc->flags |= ATA_QCFLAG_DMAMAP;
4545 return 0;
4549 * swap_buf_le16 - swap halves of 16-bit words in place
4550 * @buf: Buffer to swap
4551 * @buf_words: Number of 16-bit words in buffer.
4553 * Swap halves of 16-bit words if needed to convert from
4554 * little-endian byte order to native cpu byte order, or
4555 * vice-versa.
4557 * LOCKING:
4558 * Inherited from caller.
4560 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4562 #ifdef __BIG_ENDIAN
4563 unsigned int i;
4565 for (i = 0; i < buf_words; i++)
4566 buf[i] = le16_to_cpu(buf[i]);
4567 #endif /* __BIG_ENDIAN */
4571 * ata_qc_new - Request an available ATA command, for queueing
4572 * @ap: Port associated with device @dev
4573 * @dev: Device from whom we request an available command structure
4575 * LOCKING:
4576 * None.
4579 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4581 struct ata_queued_cmd *qc = NULL;
4582 unsigned int i;
4584 /* no command while frozen */
4585 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4586 return NULL;
4588 /* the last tag is reserved for internal command. */
4589 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4590 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4591 qc = __ata_qc_from_tag(ap, i);
4592 break;
4595 if (qc)
4596 qc->tag = i;
4598 return qc;
4602 * ata_qc_new_init - Request an available ATA command, and initialize it
4603 * @dev: Device from whom we request an available command structure
4605 * LOCKING:
4606 * None.
4609 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4611 struct ata_port *ap = dev->link->ap;
4612 struct ata_queued_cmd *qc;
4614 qc = ata_qc_new(ap);
4615 if (qc) {
4616 qc->scsicmd = NULL;
4617 qc->ap = ap;
4618 qc->dev = dev;
4620 ata_qc_reinit(qc);
4623 return qc;
4627 * ata_qc_free - free unused ata_queued_cmd
4628 * @qc: Command to complete
4630 * Designed to free unused ata_queued_cmd object
4631 * in case something prevents using it.
4633 * LOCKING:
4634 * spin_lock_irqsave(host lock)
4636 void ata_qc_free(struct ata_queued_cmd *qc)
4638 struct ata_port *ap = qc->ap;
4639 unsigned int tag;
4641 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4643 qc->flags = 0;
4644 tag = qc->tag;
4645 if (likely(ata_tag_valid(tag))) {
4646 qc->tag = ATA_TAG_POISON;
4647 clear_bit(tag, &ap->qc_allocated);
4651 void __ata_qc_complete(struct ata_queued_cmd *qc)
4653 struct ata_port *ap = qc->ap;
4654 struct ata_link *link = qc->dev->link;
4656 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4657 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4659 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4660 ata_sg_clean(qc);
4662 /* command should be marked inactive atomically with qc completion */
4663 if (qc->tf.protocol == ATA_PROT_NCQ) {
4664 link->sactive &= ~(1 << qc->tag);
4665 if (!link->sactive)
4666 ap->nr_active_links--;
4667 } else {
4668 link->active_tag = ATA_TAG_POISON;
4669 ap->nr_active_links--;
4672 /* clear exclusive status */
4673 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4674 ap->excl_link == link))
4675 ap->excl_link = NULL;
4677 /* atapi: mark qc as inactive to prevent the interrupt handler
4678 * from completing the command twice later, before the error handler
4679 * is called. (when rc != 0 and atapi request sense is needed)
4681 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4682 ap->qc_active &= ~(1 << qc->tag);
4684 /* call completion callback */
4685 qc->complete_fn(qc);
4688 static void fill_result_tf(struct ata_queued_cmd *qc)
4690 struct ata_port *ap = qc->ap;
4692 qc->result_tf.flags = qc->tf.flags;
4693 ap->ops->qc_fill_rtf(qc);
4696 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4698 struct ata_device *dev = qc->dev;
4700 if (ata_tag_internal(qc->tag))
4701 return;
4703 if (ata_is_nodata(qc->tf.protocol))
4704 return;
4706 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4707 return;
4709 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4713 * ata_qc_complete - Complete an active ATA command
4714 * @qc: Command to complete
4715 * @err_mask: ATA Status register contents
4717 * Indicate to the mid and upper layers that an ATA
4718 * command has completed, with either an ok or not-ok status.
4720 * LOCKING:
4721 * spin_lock_irqsave(host lock)
4723 void ata_qc_complete(struct ata_queued_cmd *qc)
4725 struct ata_port *ap = qc->ap;
4727 /* XXX: New EH and old EH use different mechanisms to
4728 * synchronize EH with regular execution path.
4730 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4731 * Normal execution path is responsible for not accessing a
4732 * failed qc. libata core enforces the rule by returning NULL
4733 * from ata_qc_from_tag() for failed qcs.
4735 * Old EH depends on ata_qc_complete() nullifying completion
4736 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4737 * not synchronize with interrupt handler. Only PIO task is
4738 * taken care of.
4740 if (ap->ops->error_handler) {
4741 struct ata_device *dev = qc->dev;
4742 struct ata_eh_info *ehi = &dev->link->eh_info;
4744 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4746 if (unlikely(qc->err_mask))
4747 qc->flags |= ATA_QCFLAG_FAILED;
4749 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4750 /* always fill result TF for failed qc */
4751 fill_result_tf(qc);
4753 if (!ata_tag_internal(qc->tag))
4754 ata_qc_schedule_eh(qc);
4755 else
4756 __ata_qc_complete(qc);
4757 return;
4760 /* read result TF if requested */
4761 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4762 fill_result_tf(qc);
4764 /* Some commands need post-processing after successful
4765 * completion.
4767 switch (qc->tf.command) {
4768 case ATA_CMD_SET_FEATURES:
4769 if (qc->tf.feature != SETFEATURES_WC_ON &&
4770 qc->tf.feature != SETFEATURES_WC_OFF)
4771 break;
4772 /* fall through */
4773 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4774 case ATA_CMD_SET_MULTI: /* multi_count changed */
4775 /* revalidate device */
4776 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4777 ata_port_schedule_eh(ap);
4778 break;
4780 case ATA_CMD_SLEEP:
4781 dev->flags |= ATA_DFLAG_SLEEPING;
4782 break;
4785 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4786 ata_verify_xfer(qc);
4788 __ata_qc_complete(qc);
4789 } else {
4790 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4791 return;
4793 /* read result TF if failed or requested */
4794 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4795 fill_result_tf(qc);
4797 __ata_qc_complete(qc);
4802 * ata_qc_complete_multiple - Complete multiple qcs successfully
4803 * @ap: port in question
4804 * @qc_active: new qc_active mask
4806 * Complete in-flight commands. This functions is meant to be
4807 * called from low-level driver's interrupt routine to complete
4808 * requests normally. ap->qc_active and @qc_active is compared
4809 * and commands are completed accordingly.
4811 * LOCKING:
4812 * spin_lock_irqsave(host lock)
4814 * RETURNS:
4815 * Number of completed commands on success, -errno otherwise.
4817 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4819 int nr_done = 0;
4820 u32 done_mask;
4821 int i;
4823 done_mask = ap->qc_active ^ qc_active;
4825 if (unlikely(done_mask & qc_active)) {
4826 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4827 "(%08x->%08x)\n", ap->qc_active, qc_active);
4828 return -EINVAL;
4831 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4832 struct ata_queued_cmd *qc;
4834 if (!(done_mask & (1 << i)))
4835 continue;
4837 if ((qc = ata_qc_from_tag(ap, i))) {
4838 ata_qc_complete(qc);
4839 nr_done++;
4843 return nr_done;
4847 * ata_qc_issue - issue taskfile to device
4848 * @qc: command to issue to device
4850 * Prepare an ATA command to submission to device.
4851 * This includes mapping the data into a DMA-able
4852 * area, filling in the S/G table, and finally
4853 * writing the taskfile to hardware, starting the command.
4855 * LOCKING:
4856 * spin_lock_irqsave(host lock)
4858 void ata_qc_issue(struct ata_queued_cmd *qc)
4860 struct ata_port *ap = qc->ap;
4861 struct ata_link *link = qc->dev->link;
4862 u8 prot = qc->tf.protocol;
4864 /* Make sure only one non-NCQ command is outstanding. The
4865 * check is skipped for old EH because it reuses active qc to
4866 * request ATAPI sense.
4868 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4870 if (ata_is_ncq(prot)) {
4871 WARN_ON(link->sactive & (1 << qc->tag));
4873 if (!link->sactive)
4874 ap->nr_active_links++;
4875 link->sactive |= 1 << qc->tag;
4876 } else {
4877 WARN_ON(link->sactive);
4879 ap->nr_active_links++;
4880 link->active_tag = qc->tag;
4883 qc->flags |= ATA_QCFLAG_ACTIVE;
4884 ap->qc_active |= 1 << qc->tag;
4886 /* We guarantee to LLDs that they will have at least one
4887 * non-zero sg if the command is a data command.
4889 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
4891 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4892 (ap->flags & ATA_FLAG_PIO_DMA)))
4893 if (ata_sg_setup(qc))
4894 goto sg_err;
4896 /* if device is sleeping, schedule reset and abort the link */
4897 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4898 link->eh_info.action |= ATA_EH_RESET;
4899 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4900 ata_link_abort(link);
4901 return;
4904 ap->ops->qc_prep(qc);
4906 qc->err_mask |= ap->ops->qc_issue(qc);
4907 if (unlikely(qc->err_mask))
4908 goto err;
4909 return;
4911 sg_err:
4912 qc->err_mask |= AC_ERR_SYSTEM;
4913 err:
4914 ata_qc_complete(qc);
4918 * sata_scr_valid - test whether SCRs are accessible
4919 * @link: ATA link to test SCR accessibility for
4921 * Test whether SCRs are accessible for @link.
4923 * LOCKING:
4924 * None.
4926 * RETURNS:
4927 * 1 if SCRs are accessible, 0 otherwise.
4929 int sata_scr_valid(struct ata_link *link)
4931 struct ata_port *ap = link->ap;
4933 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
4937 * sata_scr_read - read SCR register of the specified port
4938 * @link: ATA link to read SCR for
4939 * @reg: SCR to read
4940 * @val: Place to store read value
4942 * Read SCR register @reg of @link into *@val. This function is
4943 * guaranteed to succeed if @link is ap->link, the cable type of
4944 * the port is SATA and the port implements ->scr_read.
4946 * LOCKING:
4947 * None if @link is ap->link. Kernel thread context otherwise.
4949 * RETURNS:
4950 * 0 on success, negative errno on failure.
4952 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
4954 if (ata_is_host_link(link)) {
4955 struct ata_port *ap = link->ap;
4957 if (sata_scr_valid(link))
4958 return ap->ops->scr_read(ap, reg, val);
4959 return -EOPNOTSUPP;
4962 return sata_pmp_scr_read(link, reg, val);
4966 * sata_scr_write - write SCR register of the specified port
4967 * @link: ATA link to write SCR for
4968 * @reg: SCR to write
4969 * @val: value to write
4971 * Write @val to SCR register @reg of @link. This function is
4972 * guaranteed to succeed if @link is ap->link, the cable type of
4973 * the port is SATA and the port implements ->scr_read.
4975 * LOCKING:
4976 * None if @link is ap->link. Kernel thread context otherwise.
4978 * RETURNS:
4979 * 0 on success, negative errno on failure.
4981 int sata_scr_write(struct ata_link *link, int reg, u32 val)
4983 if (ata_is_host_link(link)) {
4984 struct ata_port *ap = link->ap;
4986 if (sata_scr_valid(link))
4987 return ap->ops->scr_write(ap, reg, val);
4988 return -EOPNOTSUPP;
4991 return sata_pmp_scr_write(link, reg, val);
4995 * sata_scr_write_flush - write SCR register of the specified port and flush
4996 * @link: ATA link to write SCR for
4997 * @reg: SCR to write
4998 * @val: value to write
5000 * This function is identical to sata_scr_write() except that this
5001 * function performs flush after writing to the register.
5003 * LOCKING:
5004 * None if @link is ap->link. Kernel thread context otherwise.
5006 * RETURNS:
5007 * 0 on success, negative errno on failure.
5009 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5011 if (ata_is_host_link(link)) {
5012 struct ata_port *ap = link->ap;
5013 int rc;
5015 if (sata_scr_valid(link)) {
5016 rc = ap->ops->scr_write(ap, reg, val);
5017 if (rc == 0)
5018 rc = ap->ops->scr_read(ap, reg, &val);
5019 return rc;
5021 return -EOPNOTSUPP;
5024 return sata_pmp_scr_write(link, reg, val);
5028 * ata_link_online - test whether the given link is online
5029 * @link: ATA link to test
5031 * Test whether @link is online. Note that this function returns
5032 * 0 if online status of @link cannot be obtained, so
5033 * ata_link_online(link) != !ata_link_offline(link).
5035 * LOCKING:
5036 * None.
5038 * RETURNS:
5039 * 1 if the port online status is available and online.
5041 int ata_link_online(struct ata_link *link)
5043 u32 sstatus;
5045 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5046 (sstatus & 0xf) == 0x3)
5047 return 1;
5048 return 0;
5052 * ata_link_offline - test whether the given link is offline
5053 * @link: ATA link to test
5055 * Test whether @link is offline. Note that this function
5056 * returns 0 if offline status of @link cannot be obtained, so
5057 * ata_link_online(link) != !ata_link_offline(link).
5059 * LOCKING:
5060 * None.
5062 * RETURNS:
5063 * 1 if the port offline status is available and offline.
5065 int ata_link_offline(struct ata_link *link)
5067 u32 sstatus;
5069 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5070 (sstatus & 0xf) != 0x3)
5071 return 1;
5072 return 0;
5075 #ifdef CONFIG_PM
5076 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5077 unsigned int action, unsigned int ehi_flags,
5078 int wait)
5080 unsigned long flags;
5081 int i, rc;
5083 for (i = 0; i < host->n_ports; i++) {
5084 struct ata_port *ap = host->ports[i];
5085 struct ata_link *link;
5087 /* Previous resume operation might still be in
5088 * progress. Wait for PM_PENDING to clear.
5090 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5091 ata_port_wait_eh(ap);
5092 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5095 /* request PM ops to EH */
5096 spin_lock_irqsave(ap->lock, flags);
5098 ap->pm_mesg = mesg;
5099 if (wait) {
5100 rc = 0;
5101 ap->pm_result = &rc;
5104 ap->pflags |= ATA_PFLAG_PM_PENDING;
5105 __ata_port_for_each_link(link, ap) {
5106 link->eh_info.action |= action;
5107 link->eh_info.flags |= ehi_flags;
5110 ata_port_schedule_eh(ap);
5112 spin_unlock_irqrestore(ap->lock, flags);
5114 /* wait and check result */
5115 if (wait) {
5116 ata_port_wait_eh(ap);
5117 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5118 if (rc)
5119 return rc;
5123 return 0;
5127 * ata_host_suspend - suspend host
5128 * @host: host to suspend
5129 * @mesg: PM message
5131 * Suspend @host. Actual operation is performed by EH. This
5132 * function requests EH to perform PM operations and waits for EH
5133 * to finish.
5135 * LOCKING:
5136 * Kernel thread context (may sleep).
5138 * RETURNS:
5139 * 0 on success, -errno on failure.
5141 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5143 int rc;
5146 * disable link pm on all ports before requesting
5147 * any pm activity
5149 ata_lpm_enable(host);
5151 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5152 if (rc == 0)
5153 host->dev->power.power_state = mesg;
5154 return rc;
5158 * ata_host_resume - resume host
5159 * @host: host to resume
5161 * Resume @host. Actual operation is performed by EH. This
5162 * function requests EH to perform PM operations and returns.
5163 * Note that all resume operations are performed parallely.
5165 * LOCKING:
5166 * Kernel thread context (may sleep).
5168 void ata_host_resume(struct ata_host *host)
5170 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5171 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5172 host->dev->power.power_state = PMSG_ON;
5174 /* reenable link pm */
5175 ata_lpm_disable(host);
5177 #endif
5180 * ata_port_start - Set port up for dma.
5181 * @ap: Port to initialize
5183 * Called just after data structures for each port are
5184 * initialized. Allocates space for PRD table.
5186 * May be used as the port_start() entry in ata_port_operations.
5188 * LOCKING:
5189 * Inherited from caller.
5191 int ata_port_start(struct ata_port *ap)
5193 struct device *dev = ap->dev;
5195 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5196 GFP_KERNEL);
5197 if (!ap->prd)
5198 return -ENOMEM;
5200 return 0;
5204 * ata_dev_init - Initialize an ata_device structure
5205 * @dev: Device structure to initialize
5207 * Initialize @dev in preparation for probing.
5209 * LOCKING:
5210 * Inherited from caller.
5212 void ata_dev_init(struct ata_device *dev)
5214 struct ata_link *link = dev->link;
5215 struct ata_port *ap = link->ap;
5216 unsigned long flags;
5218 /* SATA spd limit is bound to the first device */
5219 link->sata_spd_limit = link->hw_sata_spd_limit;
5220 link->sata_spd = 0;
5222 /* High bits of dev->flags are used to record warm plug
5223 * requests which occur asynchronously. Synchronize using
5224 * host lock.
5226 spin_lock_irqsave(ap->lock, flags);
5227 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5228 dev->horkage = 0;
5229 spin_unlock_irqrestore(ap->lock, flags);
5231 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5232 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5233 dev->pio_mask = UINT_MAX;
5234 dev->mwdma_mask = UINT_MAX;
5235 dev->udma_mask = UINT_MAX;
5239 * ata_link_init - Initialize an ata_link structure
5240 * @ap: ATA port link is attached to
5241 * @link: Link structure to initialize
5242 * @pmp: Port multiplier port number
5244 * Initialize @link.
5246 * LOCKING:
5247 * Kernel thread context (may sleep)
5249 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5251 int i;
5253 /* clear everything except for devices */
5254 memset(link, 0, offsetof(struct ata_link, device[0]));
5256 link->ap = ap;
5257 link->pmp = pmp;
5258 link->active_tag = ATA_TAG_POISON;
5259 link->hw_sata_spd_limit = UINT_MAX;
5261 /* can't use iterator, ap isn't initialized yet */
5262 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5263 struct ata_device *dev = &link->device[i];
5265 dev->link = link;
5266 dev->devno = dev - link->device;
5267 ata_dev_init(dev);
5272 * sata_link_init_spd - Initialize link->sata_spd_limit
5273 * @link: Link to configure sata_spd_limit for
5275 * Initialize @link->[hw_]sata_spd_limit to the currently
5276 * configured value.
5278 * LOCKING:
5279 * Kernel thread context (may sleep).
5281 * RETURNS:
5282 * 0 on success, -errno on failure.
5284 int sata_link_init_spd(struct ata_link *link)
5286 u8 spd;
5287 int rc;
5289 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5290 if (rc)
5291 return rc;
5293 spd = (link->saved_scontrol >> 4) & 0xf;
5294 if (spd)
5295 link->hw_sata_spd_limit &= (1 << spd) - 1;
5297 ata_force_link_limits(link);
5299 link->sata_spd_limit = link->hw_sata_spd_limit;
5301 return 0;
5305 * ata_port_alloc - allocate and initialize basic ATA port resources
5306 * @host: ATA host this allocated port belongs to
5308 * Allocate and initialize basic ATA port resources.
5310 * RETURNS:
5311 * Allocate ATA port on success, NULL on failure.
5313 * LOCKING:
5314 * Inherited from calling layer (may sleep).
5316 struct ata_port *ata_port_alloc(struct ata_host *host)
5318 struct ata_port *ap;
5320 DPRINTK("ENTER\n");
5322 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5323 if (!ap)
5324 return NULL;
5326 ap->pflags |= ATA_PFLAG_INITIALIZING;
5327 ap->lock = &host->lock;
5328 ap->flags = ATA_FLAG_DISABLED;
5329 ap->print_id = -1;
5330 ap->ctl = ATA_DEVCTL_OBS;
5331 ap->host = host;
5332 ap->dev = host->dev;
5333 ap->last_ctl = 0xFF;
5335 #if defined(ATA_VERBOSE_DEBUG)
5336 /* turn on all debugging levels */
5337 ap->msg_enable = 0x00FF;
5338 #elif defined(ATA_DEBUG)
5339 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5340 #else
5341 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5342 #endif
5344 #ifdef CONFIG_ATA_SFF
5345 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5346 #else
5347 INIT_DELAYED_WORK(&ap->port_task, NULL);
5348 #endif
5349 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5350 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5351 INIT_LIST_HEAD(&ap->eh_done_q);
5352 init_waitqueue_head(&ap->eh_wait_q);
5353 init_timer_deferrable(&ap->fastdrain_timer);
5354 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5355 ap->fastdrain_timer.data = (unsigned long)ap;
5357 ap->cbl = ATA_CBL_NONE;
5359 ata_link_init(ap, &ap->link, 0);
5361 #ifdef ATA_IRQ_TRAP
5362 ap->stats.unhandled_irq = 1;
5363 ap->stats.idle_irq = 1;
5364 #endif
5365 return ap;
5368 static void ata_host_release(struct device *gendev, void *res)
5370 struct ata_host *host = dev_get_drvdata(gendev);
5371 int i;
5373 for (i = 0; i < host->n_ports; i++) {
5374 struct ata_port *ap = host->ports[i];
5376 if (!ap)
5377 continue;
5379 if (ap->scsi_host)
5380 scsi_host_put(ap->scsi_host);
5382 kfree(ap->pmp_link);
5383 kfree(ap);
5384 host->ports[i] = NULL;
5387 dev_set_drvdata(gendev, NULL);
5391 * ata_host_alloc - allocate and init basic ATA host resources
5392 * @dev: generic device this host is associated with
5393 * @max_ports: maximum number of ATA ports associated with this host
5395 * Allocate and initialize basic ATA host resources. LLD calls
5396 * this function to allocate a host, initializes it fully and
5397 * attaches it using ata_host_register().
5399 * @max_ports ports are allocated and host->n_ports is
5400 * initialized to @max_ports. The caller is allowed to decrease
5401 * host->n_ports before calling ata_host_register(). The unused
5402 * ports will be automatically freed on registration.
5404 * RETURNS:
5405 * Allocate ATA host on success, NULL on failure.
5407 * LOCKING:
5408 * Inherited from calling layer (may sleep).
5410 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5412 struct ata_host *host;
5413 size_t sz;
5414 int i;
5416 DPRINTK("ENTER\n");
5418 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5419 return NULL;
5421 /* alloc a container for our list of ATA ports (buses) */
5422 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5423 /* alloc a container for our list of ATA ports (buses) */
5424 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5425 if (!host)
5426 goto err_out;
5428 devres_add(dev, host);
5429 dev_set_drvdata(dev, host);
5431 spin_lock_init(&host->lock);
5432 host->dev = dev;
5433 host->n_ports = max_ports;
5435 /* allocate ports bound to this host */
5436 for (i = 0; i < max_ports; i++) {
5437 struct ata_port *ap;
5439 ap = ata_port_alloc(host);
5440 if (!ap)
5441 goto err_out;
5443 ap->port_no = i;
5444 host->ports[i] = ap;
5447 devres_remove_group(dev, NULL);
5448 return host;
5450 err_out:
5451 devres_release_group(dev, NULL);
5452 return NULL;
5456 * ata_host_alloc_pinfo - alloc host and init with port_info array
5457 * @dev: generic device this host is associated with
5458 * @ppi: array of ATA port_info to initialize host with
5459 * @n_ports: number of ATA ports attached to this host
5461 * Allocate ATA host and initialize with info from @ppi. If NULL
5462 * terminated, @ppi may contain fewer entries than @n_ports. The
5463 * last entry will be used for the remaining ports.
5465 * RETURNS:
5466 * Allocate ATA host on success, NULL on failure.
5468 * LOCKING:
5469 * Inherited from calling layer (may sleep).
5471 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5472 const struct ata_port_info * const * ppi,
5473 int n_ports)
5475 const struct ata_port_info *pi;
5476 struct ata_host *host;
5477 int i, j;
5479 host = ata_host_alloc(dev, n_ports);
5480 if (!host)
5481 return NULL;
5483 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5484 struct ata_port *ap = host->ports[i];
5486 if (ppi[j])
5487 pi = ppi[j++];
5489 ap->pio_mask = pi->pio_mask;
5490 ap->mwdma_mask = pi->mwdma_mask;
5491 ap->udma_mask = pi->udma_mask;
5492 ap->flags |= pi->flags;
5493 ap->link.flags |= pi->link_flags;
5494 ap->ops = pi->port_ops;
5496 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5497 host->ops = pi->port_ops;
5500 return host;
5503 static void ata_host_stop(struct device *gendev, void *res)
5505 struct ata_host *host = dev_get_drvdata(gendev);
5506 int i;
5508 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5510 for (i = 0; i < host->n_ports; i++) {
5511 struct ata_port *ap = host->ports[i];
5513 if (ap->ops->port_stop)
5514 ap->ops->port_stop(ap);
5517 if (host->ops->host_stop)
5518 host->ops->host_stop(host);
5522 * ata_finalize_port_ops - finalize ata_port_operations
5523 * @ops: ata_port_operations to finalize
5525 * An ata_port_operations can inherit from another ops and that
5526 * ops can again inherit from another. This can go on as many
5527 * times as necessary as long as there is no loop in the
5528 * inheritance chain.
5530 * Ops tables are finalized when the host is started. NULL or
5531 * unspecified entries are inherited from the closet ancestor
5532 * which has the method and the entry is populated with it.
5533 * After finalization, the ops table directly points to all the
5534 * methods and ->inherits is no longer necessary and cleared.
5536 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5538 * LOCKING:
5539 * None.
5541 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5543 static DEFINE_SPINLOCK(lock);
5544 const struct ata_port_operations *cur;
5545 void **begin = (void **)ops;
5546 void **end = (void **)&ops->inherits;
5547 void **pp;
5549 if (!ops || !ops->inherits)
5550 return;
5552 spin_lock(&lock);
5554 for (cur = ops->inherits; cur; cur = cur->inherits) {
5555 void **inherit = (void **)cur;
5557 for (pp = begin; pp < end; pp++, inherit++)
5558 if (!*pp)
5559 *pp = *inherit;
5562 for (pp = begin; pp < end; pp++)
5563 if (IS_ERR(*pp))
5564 *pp = NULL;
5566 ops->inherits = NULL;
5568 spin_unlock(&lock);
5572 * ata_host_start - start and freeze ports of an ATA host
5573 * @host: ATA host to start ports for
5575 * Start and then freeze ports of @host. Started status is
5576 * recorded in host->flags, so this function can be called
5577 * multiple times. Ports are guaranteed to get started only
5578 * once. If host->ops isn't initialized yet, its set to the
5579 * first non-dummy port ops.
5581 * LOCKING:
5582 * Inherited from calling layer (may sleep).
5584 * RETURNS:
5585 * 0 if all ports are started successfully, -errno otherwise.
5587 int ata_host_start(struct ata_host *host)
5589 int have_stop = 0;
5590 void *start_dr = NULL;
5591 int i, rc;
5593 if (host->flags & ATA_HOST_STARTED)
5594 return 0;
5596 ata_finalize_port_ops(host->ops);
5598 for (i = 0; i < host->n_ports; i++) {
5599 struct ata_port *ap = host->ports[i];
5601 ata_finalize_port_ops(ap->ops);
5603 if (!host->ops && !ata_port_is_dummy(ap))
5604 host->ops = ap->ops;
5606 if (ap->ops->port_stop)
5607 have_stop = 1;
5610 if (host->ops->host_stop)
5611 have_stop = 1;
5613 if (have_stop) {
5614 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5615 if (!start_dr)
5616 return -ENOMEM;
5619 for (i = 0; i < host->n_ports; i++) {
5620 struct ata_port *ap = host->ports[i];
5622 if (ap->ops->port_start) {
5623 rc = ap->ops->port_start(ap);
5624 if (rc) {
5625 if (rc != -ENODEV)
5626 dev_printk(KERN_ERR, host->dev,
5627 "failed to start port %d "
5628 "(errno=%d)\n", i, rc);
5629 goto err_out;
5632 ata_eh_freeze_port(ap);
5635 if (start_dr)
5636 devres_add(host->dev, start_dr);
5637 host->flags |= ATA_HOST_STARTED;
5638 return 0;
5640 err_out:
5641 while (--i >= 0) {
5642 struct ata_port *ap = host->ports[i];
5644 if (ap->ops->port_stop)
5645 ap->ops->port_stop(ap);
5647 devres_free(start_dr);
5648 return rc;
5652 * ata_sas_host_init - Initialize a host struct
5653 * @host: host to initialize
5654 * @dev: device host is attached to
5655 * @flags: host flags
5656 * @ops: port_ops
5658 * LOCKING:
5659 * PCI/etc. bus probe sem.
5662 /* KILLME - the only user left is ipr */
5663 void ata_host_init(struct ata_host *host, struct device *dev,
5664 unsigned long flags, struct ata_port_operations *ops)
5666 spin_lock_init(&host->lock);
5667 host->dev = dev;
5668 host->flags = flags;
5669 host->ops = ops;
5673 * ata_host_register - register initialized ATA host
5674 * @host: ATA host to register
5675 * @sht: template for SCSI host
5677 * Register initialized ATA host. @host is allocated using
5678 * ata_host_alloc() and fully initialized by LLD. This function
5679 * starts ports, registers @host with ATA and SCSI layers and
5680 * probe registered devices.
5682 * LOCKING:
5683 * Inherited from calling layer (may sleep).
5685 * RETURNS:
5686 * 0 on success, -errno otherwise.
5688 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5690 int i, rc;
5692 /* host must have been started */
5693 if (!(host->flags & ATA_HOST_STARTED)) {
5694 dev_printk(KERN_ERR, host->dev,
5695 "BUG: trying to register unstarted host\n");
5696 WARN_ON(1);
5697 return -EINVAL;
5700 /* Blow away unused ports. This happens when LLD can't
5701 * determine the exact number of ports to allocate at
5702 * allocation time.
5704 for (i = host->n_ports; host->ports[i]; i++)
5705 kfree(host->ports[i]);
5707 /* give ports names and add SCSI hosts */
5708 for (i = 0; i < host->n_ports; i++)
5709 host->ports[i]->print_id = ata_print_id++;
5711 rc = ata_scsi_add_hosts(host, sht);
5712 if (rc)
5713 return rc;
5715 /* associate with ACPI nodes */
5716 ata_acpi_associate(host);
5718 /* set cable, sata_spd_limit and report */
5719 for (i = 0; i < host->n_ports; i++) {
5720 struct ata_port *ap = host->ports[i];
5721 unsigned long xfer_mask;
5723 /* set SATA cable type if still unset */
5724 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5725 ap->cbl = ATA_CBL_SATA;
5727 /* init sata_spd_limit to the current value */
5728 sata_link_init_spd(&ap->link);
5730 /* print per-port info to dmesg */
5731 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5732 ap->udma_mask);
5734 if (!ata_port_is_dummy(ap)) {
5735 ata_port_printk(ap, KERN_INFO,
5736 "%cATA max %s %s\n",
5737 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5738 ata_mode_string(xfer_mask),
5739 ap->link.eh_info.desc);
5740 ata_ehi_clear_desc(&ap->link.eh_info);
5741 } else
5742 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5745 /* perform each probe synchronously */
5746 DPRINTK("probe begin\n");
5747 for (i = 0; i < host->n_ports; i++) {
5748 struct ata_port *ap = host->ports[i];
5750 /* probe */
5751 if (ap->ops->error_handler) {
5752 struct ata_eh_info *ehi = &ap->link.eh_info;
5753 unsigned long flags;
5755 ata_port_probe(ap);
5757 /* kick EH for boot probing */
5758 spin_lock_irqsave(ap->lock, flags);
5760 ehi->probe_mask |= ATA_ALL_DEVICES;
5761 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
5762 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5764 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5765 ap->pflags |= ATA_PFLAG_LOADING;
5766 ata_port_schedule_eh(ap);
5768 spin_unlock_irqrestore(ap->lock, flags);
5770 /* wait for EH to finish */
5771 ata_port_wait_eh(ap);
5772 } else {
5773 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5774 rc = ata_bus_probe(ap);
5775 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5777 if (rc) {
5778 /* FIXME: do something useful here?
5779 * Current libata behavior will
5780 * tear down everything when
5781 * the module is removed
5782 * or the h/w is unplugged.
5788 /* probes are done, now scan each port's disk(s) */
5789 DPRINTK("host probe begin\n");
5790 for (i = 0; i < host->n_ports; i++) {
5791 struct ata_port *ap = host->ports[i];
5793 ata_scsi_scan_host(ap, 1);
5796 return 0;
5800 * ata_host_activate - start host, request IRQ and register it
5801 * @host: target ATA host
5802 * @irq: IRQ to request
5803 * @irq_handler: irq_handler used when requesting IRQ
5804 * @irq_flags: irq_flags used when requesting IRQ
5805 * @sht: scsi_host_template to use when registering the host
5807 * After allocating an ATA host and initializing it, most libata
5808 * LLDs perform three steps to activate the host - start host,
5809 * request IRQ and register it. This helper takes necessasry
5810 * arguments and performs the three steps in one go.
5812 * An invalid IRQ skips the IRQ registration and expects the host to
5813 * have set polling mode on the port. In this case, @irq_handler
5814 * should be NULL.
5816 * LOCKING:
5817 * Inherited from calling layer (may sleep).
5819 * RETURNS:
5820 * 0 on success, -errno otherwise.
5822 int ata_host_activate(struct ata_host *host, int irq,
5823 irq_handler_t irq_handler, unsigned long irq_flags,
5824 struct scsi_host_template *sht)
5826 int i, rc;
5828 rc = ata_host_start(host);
5829 if (rc)
5830 return rc;
5832 /* Special case for polling mode */
5833 if (!irq) {
5834 WARN_ON(irq_handler);
5835 return ata_host_register(host, sht);
5838 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5839 dev_driver_string(host->dev), host);
5840 if (rc)
5841 return rc;
5843 for (i = 0; i < host->n_ports; i++)
5844 ata_port_desc(host->ports[i], "irq %d", irq);
5846 rc = ata_host_register(host, sht);
5847 /* if failed, just free the IRQ and leave ports alone */
5848 if (rc)
5849 devm_free_irq(host->dev, irq, host);
5851 return rc;
5855 * ata_port_detach - Detach ATA port in prepration of device removal
5856 * @ap: ATA port to be detached
5858 * Detach all ATA devices and the associated SCSI devices of @ap;
5859 * then, remove the associated SCSI host. @ap is guaranteed to
5860 * be quiescent on return from this function.
5862 * LOCKING:
5863 * Kernel thread context (may sleep).
5865 static void ata_port_detach(struct ata_port *ap)
5867 unsigned long flags;
5868 struct ata_link *link;
5869 struct ata_device *dev;
5871 if (!ap->ops->error_handler)
5872 goto skip_eh;
5874 /* tell EH we're leaving & flush EH */
5875 spin_lock_irqsave(ap->lock, flags);
5876 ap->pflags |= ATA_PFLAG_UNLOADING;
5877 spin_unlock_irqrestore(ap->lock, flags);
5879 ata_port_wait_eh(ap);
5881 /* EH is now guaranteed to see UNLOADING - EH context belongs
5882 * to us. Restore SControl and disable all existing devices.
5884 __ata_port_for_each_link(link, ap) {
5885 sata_scr_write(link, SCR_CONTROL, link->saved_scontrol);
5886 ata_link_for_each_dev(dev, link)
5887 ata_dev_disable(dev);
5890 /* Final freeze & EH. All in-flight commands are aborted. EH
5891 * will be skipped and retrials will be terminated with bad
5892 * target.
5894 spin_lock_irqsave(ap->lock, flags);
5895 ata_port_freeze(ap); /* won't be thawed */
5896 spin_unlock_irqrestore(ap->lock, flags);
5898 ata_port_wait_eh(ap);
5899 cancel_rearming_delayed_work(&ap->hotplug_task);
5901 skip_eh:
5902 /* remove the associated SCSI host */
5903 scsi_remove_host(ap->scsi_host);
5907 * ata_host_detach - Detach all ports of an ATA host
5908 * @host: Host to detach
5910 * Detach all ports of @host.
5912 * LOCKING:
5913 * Kernel thread context (may sleep).
5915 void ata_host_detach(struct ata_host *host)
5917 int i;
5919 for (i = 0; i < host->n_ports; i++)
5920 ata_port_detach(host->ports[i]);
5922 /* the host is dead now, dissociate ACPI */
5923 ata_acpi_dissociate(host);
5926 #ifdef CONFIG_PCI
5929 * ata_pci_remove_one - PCI layer callback for device removal
5930 * @pdev: PCI device that was removed
5932 * PCI layer indicates to libata via this hook that hot-unplug or
5933 * module unload event has occurred. Detach all ports. Resource
5934 * release is handled via devres.
5936 * LOCKING:
5937 * Inherited from PCI layer (may sleep).
5939 void ata_pci_remove_one(struct pci_dev *pdev)
5941 struct device *dev = &pdev->dev;
5942 struct ata_host *host = dev_get_drvdata(dev);
5944 ata_host_detach(host);
5947 /* move to PCI subsystem */
5948 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5950 unsigned long tmp = 0;
5952 switch (bits->width) {
5953 case 1: {
5954 u8 tmp8 = 0;
5955 pci_read_config_byte(pdev, bits->reg, &tmp8);
5956 tmp = tmp8;
5957 break;
5959 case 2: {
5960 u16 tmp16 = 0;
5961 pci_read_config_word(pdev, bits->reg, &tmp16);
5962 tmp = tmp16;
5963 break;
5965 case 4: {
5966 u32 tmp32 = 0;
5967 pci_read_config_dword(pdev, bits->reg, &tmp32);
5968 tmp = tmp32;
5969 break;
5972 default:
5973 return -EINVAL;
5976 tmp &= bits->mask;
5978 return (tmp == bits->val) ? 1 : 0;
5981 #ifdef CONFIG_PM
5982 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
5984 pci_save_state(pdev);
5985 pci_disable_device(pdev);
5987 if (mesg.event & PM_EVENT_SLEEP)
5988 pci_set_power_state(pdev, PCI_D3hot);
5991 int ata_pci_device_do_resume(struct pci_dev *pdev)
5993 int rc;
5995 pci_set_power_state(pdev, PCI_D0);
5996 pci_restore_state(pdev);
5998 rc = pcim_enable_device(pdev);
5999 if (rc) {
6000 dev_printk(KERN_ERR, &pdev->dev,
6001 "failed to enable device after resume (%d)\n", rc);
6002 return rc;
6005 pci_set_master(pdev);
6006 return 0;
6009 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6011 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6012 int rc = 0;
6014 rc = ata_host_suspend(host, mesg);
6015 if (rc)
6016 return rc;
6018 ata_pci_device_do_suspend(pdev, mesg);
6020 return 0;
6023 int ata_pci_device_resume(struct pci_dev *pdev)
6025 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6026 int rc;
6028 rc = ata_pci_device_do_resume(pdev);
6029 if (rc == 0)
6030 ata_host_resume(host);
6031 return rc;
6033 #endif /* CONFIG_PM */
6035 #endif /* CONFIG_PCI */
6037 static int __init ata_parse_force_one(char **cur,
6038 struct ata_force_ent *force_ent,
6039 const char **reason)
6041 /* FIXME: Currently, there's no way to tag init const data and
6042 * using __initdata causes build failure on some versions of
6043 * gcc. Once __initdataconst is implemented, add const to the
6044 * following structure.
6046 static struct ata_force_param force_tbl[] __initdata = {
6047 { "40c", .cbl = ATA_CBL_PATA40 },
6048 { "80c", .cbl = ATA_CBL_PATA80 },
6049 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6050 { "unk", .cbl = ATA_CBL_PATA_UNK },
6051 { "ign", .cbl = ATA_CBL_PATA_IGN },
6052 { "sata", .cbl = ATA_CBL_SATA },
6053 { "1.5Gbps", .spd_limit = 1 },
6054 { "3.0Gbps", .spd_limit = 2 },
6055 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6056 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6057 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6058 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6059 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6060 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6061 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6062 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6063 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6064 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6065 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6066 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6067 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6068 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6069 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6070 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6071 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6072 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6073 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6074 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6075 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6076 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6077 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6078 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6079 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6080 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6081 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6082 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6083 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6084 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6085 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6086 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6087 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6088 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6089 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6090 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6091 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6092 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6093 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6095 char *start = *cur, *p = *cur;
6096 char *id, *val, *endp;
6097 const struct ata_force_param *match_fp = NULL;
6098 int nr_matches = 0, i;
6100 /* find where this param ends and update *cur */
6101 while (*p != '\0' && *p != ',')
6102 p++;
6104 if (*p == '\0')
6105 *cur = p;
6106 else
6107 *cur = p + 1;
6109 *p = '\0';
6111 /* parse */
6112 p = strchr(start, ':');
6113 if (!p) {
6114 val = strstrip(start);
6115 goto parse_val;
6117 *p = '\0';
6119 id = strstrip(start);
6120 val = strstrip(p + 1);
6122 /* parse id */
6123 p = strchr(id, '.');
6124 if (p) {
6125 *p++ = '\0';
6126 force_ent->device = simple_strtoul(p, &endp, 10);
6127 if (p == endp || *endp != '\0') {
6128 *reason = "invalid device";
6129 return -EINVAL;
6133 force_ent->port = simple_strtoul(id, &endp, 10);
6134 if (p == endp || *endp != '\0') {
6135 *reason = "invalid port/link";
6136 return -EINVAL;
6139 parse_val:
6140 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6141 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6142 const struct ata_force_param *fp = &force_tbl[i];
6144 if (strncasecmp(val, fp->name, strlen(val)))
6145 continue;
6147 nr_matches++;
6148 match_fp = fp;
6150 if (strcasecmp(val, fp->name) == 0) {
6151 nr_matches = 1;
6152 break;
6156 if (!nr_matches) {
6157 *reason = "unknown value";
6158 return -EINVAL;
6160 if (nr_matches > 1) {
6161 *reason = "ambigious value";
6162 return -EINVAL;
6165 force_ent->param = *match_fp;
6167 return 0;
6170 static void __init ata_parse_force_param(void)
6172 int idx = 0, size = 1;
6173 int last_port = -1, last_device = -1;
6174 char *p, *cur, *next;
6176 /* calculate maximum number of params and allocate force_tbl */
6177 for (p = ata_force_param_buf; *p; p++)
6178 if (*p == ',')
6179 size++;
6181 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6182 if (!ata_force_tbl) {
6183 printk(KERN_WARNING "ata: failed to extend force table, "
6184 "libata.force ignored\n");
6185 return;
6188 /* parse and populate the table */
6189 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6190 const char *reason = "";
6191 struct ata_force_ent te = { .port = -1, .device = -1 };
6193 next = cur;
6194 if (ata_parse_force_one(&next, &te, &reason)) {
6195 printk(KERN_WARNING "ata: failed to parse force "
6196 "parameter \"%s\" (%s)\n",
6197 cur, reason);
6198 continue;
6201 if (te.port == -1) {
6202 te.port = last_port;
6203 te.device = last_device;
6206 ata_force_tbl[idx++] = te;
6208 last_port = te.port;
6209 last_device = te.device;
6212 ata_force_tbl_size = idx;
6215 static int __init ata_init(void)
6217 ata_parse_force_param();
6219 ata_wq = create_workqueue("ata");
6220 if (!ata_wq)
6221 goto free_force_tbl;
6223 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6224 if (!ata_aux_wq)
6225 goto free_wq;
6227 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6228 return 0;
6230 free_wq:
6231 destroy_workqueue(ata_wq);
6232 free_force_tbl:
6233 kfree(ata_force_tbl);
6234 return -ENOMEM;
6237 static void __exit ata_exit(void)
6239 kfree(ata_force_tbl);
6240 destroy_workqueue(ata_wq);
6241 destroy_workqueue(ata_aux_wq);
6244 subsys_initcall(ata_init);
6245 module_exit(ata_exit);
6247 static unsigned long ratelimit_time;
6248 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6250 int ata_ratelimit(void)
6252 int rc;
6253 unsigned long flags;
6255 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6257 if (time_after(jiffies, ratelimit_time)) {
6258 rc = 1;
6259 ratelimit_time = jiffies + (HZ/5);
6260 } else
6261 rc = 0;
6263 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6265 return rc;
6269 * ata_wait_register - wait until register value changes
6270 * @reg: IO-mapped register
6271 * @mask: Mask to apply to read register value
6272 * @val: Wait condition
6273 * @interval: polling interval in milliseconds
6274 * @timeout: timeout in milliseconds
6276 * Waiting for some bits of register to change is a common
6277 * operation for ATA controllers. This function reads 32bit LE
6278 * IO-mapped register @reg and tests for the following condition.
6280 * (*@reg & mask) != val
6282 * If the condition is met, it returns; otherwise, the process is
6283 * repeated after @interval_msec until timeout.
6285 * LOCKING:
6286 * Kernel thread context (may sleep)
6288 * RETURNS:
6289 * The final register value.
6291 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6292 unsigned long interval, unsigned long timeout)
6294 unsigned long deadline;
6295 u32 tmp;
6297 tmp = ioread32(reg);
6299 /* Calculate timeout _after_ the first read to make sure
6300 * preceding writes reach the controller before starting to
6301 * eat away the timeout.
6303 deadline = ata_deadline(jiffies, timeout);
6305 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6306 msleep(interval);
6307 tmp = ioread32(reg);
6310 return tmp;
6314 * Dummy port_ops
6316 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6318 return AC_ERR_SYSTEM;
6321 static void ata_dummy_error_handler(struct ata_port *ap)
6323 /* truly dummy */
6326 struct ata_port_operations ata_dummy_port_ops = {
6327 .qc_prep = ata_noop_qc_prep,
6328 .qc_issue = ata_dummy_qc_issue,
6329 .error_handler = ata_dummy_error_handler,
6332 const struct ata_port_info ata_dummy_port_info = {
6333 .port_ops = &ata_dummy_port_ops,
6337 * libata is essentially a library of internal helper functions for
6338 * low-level ATA host controller drivers. As such, the API/ABI is
6339 * likely to change as new drivers are added and updated.
6340 * Do not depend on ABI/API stability.
6342 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6343 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6344 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6345 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6346 EXPORT_SYMBOL_GPL(sata_port_ops);
6347 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6348 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6349 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6350 EXPORT_SYMBOL_GPL(ata_host_init);
6351 EXPORT_SYMBOL_GPL(ata_host_alloc);
6352 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6353 EXPORT_SYMBOL_GPL(ata_host_start);
6354 EXPORT_SYMBOL_GPL(ata_host_register);
6355 EXPORT_SYMBOL_GPL(ata_host_activate);
6356 EXPORT_SYMBOL_GPL(ata_host_detach);
6357 EXPORT_SYMBOL_GPL(ata_sg_init);
6358 EXPORT_SYMBOL_GPL(ata_qc_complete);
6359 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6360 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6361 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6362 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6363 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6364 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6365 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6366 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6367 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6368 EXPORT_SYMBOL_GPL(ata_mode_string);
6369 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6370 EXPORT_SYMBOL_GPL(ata_port_start);
6371 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6372 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6373 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6374 EXPORT_SYMBOL_GPL(ata_port_probe);
6375 EXPORT_SYMBOL_GPL(ata_dev_disable);
6376 EXPORT_SYMBOL_GPL(sata_set_spd);
6377 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6378 EXPORT_SYMBOL_GPL(sata_link_debounce);
6379 EXPORT_SYMBOL_GPL(sata_link_resume);
6380 EXPORT_SYMBOL_GPL(ata_std_prereset);
6381 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6382 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6383 EXPORT_SYMBOL_GPL(ata_std_postreset);
6384 EXPORT_SYMBOL_GPL(ata_dev_classify);
6385 EXPORT_SYMBOL_GPL(ata_dev_pair);
6386 EXPORT_SYMBOL_GPL(ata_port_disable);
6387 EXPORT_SYMBOL_GPL(ata_ratelimit);
6388 EXPORT_SYMBOL_GPL(ata_wait_register);
6389 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6390 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6391 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6392 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6393 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6394 EXPORT_SYMBOL_GPL(sata_scr_valid);
6395 EXPORT_SYMBOL_GPL(sata_scr_read);
6396 EXPORT_SYMBOL_GPL(sata_scr_write);
6397 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6398 EXPORT_SYMBOL_GPL(ata_link_online);
6399 EXPORT_SYMBOL_GPL(ata_link_offline);
6400 #ifdef CONFIG_PM
6401 EXPORT_SYMBOL_GPL(ata_host_suspend);
6402 EXPORT_SYMBOL_GPL(ata_host_resume);
6403 #endif /* CONFIG_PM */
6404 EXPORT_SYMBOL_GPL(ata_id_string);
6405 EXPORT_SYMBOL_GPL(ata_id_c_string);
6406 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6407 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6409 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6410 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6411 EXPORT_SYMBOL_GPL(ata_timing_compute);
6412 EXPORT_SYMBOL_GPL(ata_timing_merge);
6413 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6415 #ifdef CONFIG_PCI
6416 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6417 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6418 #ifdef CONFIG_PM
6419 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6420 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6421 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6422 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6423 #endif /* CONFIG_PM */
6424 #endif /* CONFIG_PCI */
6426 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6427 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6428 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6429 EXPORT_SYMBOL_GPL(ata_port_desc);
6430 #ifdef CONFIG_PCI
6431 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6432 #endif /* CONFIG_PCI */
6433 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6434 EXPORT_SYMBOL_GPL(ata_link_abort);
6435 EXPORT_SYMBOL_GPL(ata_port_abort);
6436 EXPORT_SYMBOL_GPL(ata_port_freeze);
6437 EXPORT_SYMBOL_GPL(sata_async_notification);
6438 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6439 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6440 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6441 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6442 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6443 EXPORT_SYMBOL_GPL(ata_do_eh);
6444 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6446 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6447 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6448 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6449 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6450 EXPORT_SYMBOL_GPL(ata_cable_sata);