4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h> /* for try_to_release_page(),
26 buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
40 #include <linux/swapops.h>
42 /* possible outcome of pageout() */
44 /* failed to write page out, page is locked */
46 /* move page to the active list, page is locked */
48 /* page has been sent to the disk successfully, page is unlocked */
50 /* page is clean and locked */
55 /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56 unsigned long nr_to_scan
;
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned
;
61 /* Incremented by the number of pages reclaimed */
62 unsigned long nr_reclaimed
;
64 unsigned long nr_mapped
; /* From page_state */
66 /* How many pages shrink_cache() should reclaim */
69 /* Ask shrink_caches, or shrink_zone to scan at this priority */
70 unsigned int priority
;
72 /* This context's GFP mask */
73 unsigned int gfp_mask
;
77 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
78 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
79 * In this context, it doesn't matter that we scan the
80 * whole list at once. */
85 * The list of shrinker callbacks used by to apply pressure to
90 struct list_head list
;
91 int seeks
; /* seeks to recreate an obj */
92 long nr
; /* objs pending delete */
95 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
97 #ifdef ARCH_HAS_PREFETCH
98 #define prefetch_prev_lru_page(_page, _base, _field) \
100 if ((_page)->lru.prev != _base) { \
103 prev = lru_to_page(&(_page->lru)); \
104 prefetch(&prev->_field); \
108 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #ifdef ARCH_HAS_PREFETCHW
112 #define prefetchw_prev_lru_page(_page, _base, _field) \
114 if ((_page)->lru.prev != _base) { \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetchw(&prev->_field); \
122 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 * From 0 .. 100. Higher means more swappy.
128 int vm_swappiness
= 60;
129 static long total_memory
;
131 static LIST_HEAD(shrinker_list
);
132 static DECLARE_RWSEM(shrinker_rwsem
);
135 * Add a shrinker callback to be called from the vm
137 struct shrinker
*set_shrinker(int seeks
, shrinker_t theshrinker
)
139 struct shrinker
*shrinker
;
141 shrinker
= kmalloc(sizeof(*shrinker
), GFP_KERNEL
);
143 shrinker
->shrinker
= theshrinker
;
144 shrinker
->seeks
= seeks
;
146 down_write(&shrinker_rwsem
);
147 list_add_tail(&shrinker
->list
, &shrinker_list
);
148 up_write(&shrinker_rwsem
);
152 EXPORT_SYMBOL(set_shrinker
);
157 void remove_shrinker(struct shrinker
*shrinker
)
159 down_write(&shrinker_rwsem
);
160 list_del(&shrinker
->list
);
161 up_write(&shrinker_rwsem
);
164 EXPORT_SYMBOL(remove_shrinker
);
166 #define SHRINK_BATCH 128
168 * Call the shrink functions to age shrinkable caches
170 * Here we assume it costs one seek to replace a lru page and that it also
171 * takes a seek to recreate a cache object. With this in mind we age equal
172 * percentages of the lru and ageable caches. This should balance the seeks
173 * generated by these structures.
175 * If the vm encounted mapped pages on the LRU it increase the pressure on
176 * slab to avoid swapping.
178 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
180 * `lru_pages' represents the number of on-LRU pages in all the zones which
181 * are eligible for the caller's allocation attempt. It is used for balancing
182 * slab reclaim versus page reclaim.
184 static int shrink_slab(unsigned long scanned
, unsigned int gfp_mask
,
185 unsigned long lru_pages
)
187 struct shrinker
*shrinker
;
190 scanned
= SWAP_CLUSTER_MAX
;
192 if (!down_read_trylock(&shrinker_rwsem
))
195 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
196 unsigned long long delta
;
197 unsigned long total_scan
;
199 delta
= (4 * scanned
) / shrinker
->seeks
;
200 delta
*= (*shrinker
->shrinker
)(0, gfp_mask
);
201 do_div(delta
, lru_pages
+ 1);
202 shrinker
->nr
+= delta
;
203 if (shrinker
->nr
< 0)
204 shrinker
->nr
= LONG_MAX
; /* It wrapped! */
206 total_scan
= shrinker
->nr
;
209 while (total_scan
>= SHRINK_BATCH
) {
210 long this_scan
= SHRINK_BATCH
;
213 shrink_ret
= (*shrinker
->shrinker
)(this_scan
, gfp_mask
);
214 if (shrink_ret
== -1)
216 mod_page_state(slabs_scanned
, this_scan
);
217 total_scan
-= this_scan
;
222 shrinker
->nr
+= total_scan
;
224 up_read(&shrinker_rwsem
);
228 /* Called without lock on whether page is mapped, so answer is unstable */
229 static inline int page_mapping_inuse(struct page
*page
)
231 struct address_space
*mapping
;
233 /* Page is in somebody's page tables. */
234 if (page_mapped(page
))
237 /* Be more reluctant to reclaim swapcache than pagecache */
238 if (PageSwapCache(page
))
241 mapping
= page_mapping(page
);
245 /* File is mmap'd by somebody? */
246 return mapping_mapped(mapping
);
249 static inline int is_page_cache_freeable(struct page
*page
)
251 return page_count(page
) - !!PagePrivate(page
) == 2;
254 static int may_write_to_queue(struct backing_dev_info
*bdi
)
256 if (current_is_kswapd())
258 if (current_is_pdflush()) /* This is unlikely, but why not... */
260 if (!bdi_write_congested(bdi
))
262 if (bdi
== current
->backing_dev_info
)
268 * We detected a synchronous write error writing a page out. Probably
269 * -ENOSPC. We need to propagate that into the address_space for a subsequent
270 * fsync(), msync() or close().
272 * The tricky part is that after writepage we cannot touch the mapping: nothing
273 * prevents it from being freed up. But we have a ref on the page and once
274 * that page is locked, the mapping is pinned.
276 * We're allowed to run sleeping lock_page() here because we know the caller has
279 static void handle_write_error(struct address_space
*mapping
,
280 struct page
*page
, int error
)
283 if (page_mapping(page
) == mapping
) {
284 if (error
== -ENOSPC
)
285 set_bit(AS_ENOSPC
, &mapping
->flags
);
287 set_bit(AS_EIO
, &mapping
->flags
);
293 * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
295 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
)
298 * If the page is dirty, only perform writeback if that write
299 * will be non-blocking. To prevent this allocation from being
300 * stalled by pagecache activity. But note that there may be
301 * stalls if we need to run get_block(). We could test
302 * PagePrivate for that.
304 * If this process is currently in generic_file_write() against
305 * this page's queue, we can perform writeback even if that
308 * If the page is swapcache, write it back even if that would
309 * block, for some throttling. This happens by accident, because
310 * swap_backing_dev_info is bust: it doesn't reflect the
311 * congestion state of the swapdevs. Easy to fix, if needed.
312 * See swapfile.c:page_queue_congested().
314 if (!is_page_cache_freeable(page
))
318 * Some data journaling orphaned pages can have
319 * page->mapping == NULL while being dirty with clean buffers.
321 if (PagePrivate(page
)) {
322 if (try_to_free_buffers(page
)) {
323 ClearPageDirty(page
);
324 printk("%s: orphaned page\n", __FUNCTION__
);
330 if (mapping
->a_ops
->writepage
== NULL
)
331 return PAGE_ACTIVATE
;
332 if (!may_write_to_queue(mapping
->backing_dev_info
))
335 if (clear_page_dirty_for_io(page
)) {
337 struct writeback_control wbc
= {
338 .sync_mode
= WB_SYNC_NONE
,
339 .nr_to_write
= SWAP_CLUSTER_MAX
,
344 SetPageReclaim(page
);
345 res
= mapping
->a_ops
->writepage(page
, &wbc
);
347 handle_write_error(mapping
, page
, res
);
348 if (res
== WRITEPAGE_ACTIVATE
) {
349 ClearPageReclaim(page
);
350 return PAGE_ACTIVATE
;
352 if (!PageWriteback(page
)) {
353 /* synchronous write or broken a_ops? */
354 ClearPageReclaim(page
);
364 * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
366 static int shrink_list(struct list_head
*page_list
, struct scan_control
*sc
)
368 LIST_HEAD(ret_pages
);
369 struct pagevec freed_pvec
;
375 pagevec_init(&freed_pvec
, 1);
376 while (!list_empty(page_list
)) {
377 struct address_space
*mapping
;
384 page
= lru_to_page(page_list
);
385 list_del(&page
->lru
);
387 if (TestSetPageLocked(page
))
390 BUG_ON(PageActive(page
));
393 /* Double the slab pressure for mapped and swapcache pages */
394 if (page_mapped(page
) || PageSwapCache(page
))
397 if (PageWriteback(page
))
400 referenced
= page_referenced(page
, 1, sc
->priority
<= 0);
401 /* In active use or really unfreeable? Activate it. */
402 if (referenced
&& page_mapping_inuse(page
))
403 goto activate_locked
;
407 * Anonymous process memory has backing store?
408 * Try to allocate it some swap space here.
410 if (PageAnon(page
) && !PageSwapCache(page
)) {
411 if (!add_to_swap(page
))
412 goto activate_locked
;
414 #endif /* CONFIG_SWAP */
416 mapping
= page_mapping(page
);
417 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
418 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
421 * The page is mapped into the page tables of one or more
422 * processes. Try to unmap it here.
424 if (page_mapped(page
) && mapping
) {
425 switch (try_to_unmap(page
)) {
427 goto activate_locked
;
431 ; /* try to free the page below */
435 if (PageDirty(page
)) {
440 if (laptop_mode
&& !sc
->may_writepage
)
443 /* Page is dirty, try to write it out here */
444 switch(pageout(page
, mapping
)) {
448 goto activate_locked
;
450 if (PageWriteback(page
) || PageDirty(page
))
453 * A synchronous write - probably a ramdisk. Go
454 * ahead and try to reclaim the page.
456 if (TestSetPageLocked(page
))
458 if (PageDirty(page
) || PageWriteback(page
))
460 mapping
= page_mapping(page
);
462 ; /* try to free the page below */
467 * If the page has buffers, try to free the buffer mappings
468 * associated with this page. If we succeed we try to free
471 * We do this even if the page is PageDirty().
472 * try_to_release_page() does not perform I/O, but it is
473 * possible for a page to have PageDirty set, but it is actually
474 * clean (all its buffers are clean). This happens if the
475 * buffers were written out directly, with submit_bh(). ext3
476 * will do this, as well as the blockdev mapping.
477 * try_to_release_page() will discover that cleanness and will
478 * drop the buffers and mark the page clean - it can be freed.
480 * Rarely, pages can have buffers and no ->mapping. These are
481 * the pages which were not successfully invalidated in
482 * truncate_complete_page(). We try to drop those buffers here
483 * and if that worked, and the page is no longer mapped into
484 * process address space (page_count == 1) it can be freed.
485 * Otherwise, leave the page on the LRU so it is swappable.
487 if (PagePrivate(page
)) {
488 if (!try_to_release_page(page
, sc
->gfp_mask
))
489 goto activate_locked
;
490 if (!mapping
&& page_count(page
) == 1)
495 goto keep_locked
; /* truncate got there first */
497 write_lock_irq(&mapping
->tree_lock
);
500 * The non-racy check for busy page. It is critical to check
501 * PageDirty _after_ making sure that the page is freeable and
502 * not in use by anybody. (pagecache + us == 2)
504 if (page_count(page
) != 2 || PageDirty(page
)) {
505 write_unlock_irq(&mapping
->tree_lock
);
510 if (PageSwapCache(page
)) {
511 swp_entry_t swap
= { .val
= page
->private };
512 __delete_from_swap_cache(page
);
513 write_unlock_irq(&mapping
->tree_lock
);
515 __put_page(page
); /* The pagecache ref */
518 #endif /* CONFIG_SWAP */
520 __remove_from_page_cache(page
);
521 write_unlock_irq(&mapping
->tree_lock
);
527 if (!pagevec_add(&freed_pvec
, page
))
528 __pagevec_release_nonlru(&freed_pvec
);
537 list_add(&page
->lru
, &ret_pages
);
538 BUG_ON(PageLRU(page
));
540 list_splice(&ret_pages
, page_list
);
541 if (pagevec_count(&freed_pvec
))
542 __pagevec_release_nonlru(&freed_pvec
);
543 mod_page_state(pgactivate
, pgactivate
);
544 sc
->nr_reclaimed
+= reclaimed
;
549 * zone->lru_lock is heavily contended. Some of the functions that
550 * shrink the lists perform better by taking out a batch of pages
551 * and working on them outside the LRU lock.
553 * For pagecache intensive workloads, this function is the hottest
554 * spot in the kernel (apart from copy_*_user functions).
556 * Appropriate locks must be held before calling this function.
558 * @nr_to_scan: The number of pages to look through on the list.
559 * @src: The LRU list to pull pages off.
560 * @dst: The temp list to put pages on to.
561 * @scanned: The number of pages that were scanned.
563 * returns how many pages were moved onto *@dst.
565 static int isolate_lru_pages(int nr_to_scan
, struct list_head
*src
,
566 struct list_head
*dst
, int *scanned
)
572 while (scan
++ < nr_to_scan
&& !list_empty(src
)) {
573 page
= lru_to_page(src
);
574 prefetchw_prev_lru_page(page
, src
, flags
);
576 if (!TestClearPageLRU(page
))
578 list_del(&page
->lru
);
579 if (get_page_testone(page
)) {
581 * It is being freed elsewhere
585 list_add(&page
->lru
, src
);
588 list_add(&page
->lru
, dst
);
598 * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
600 static void shrink_cache(struct zone
*zone
, struct scan_control
*sc
)
602 LIST_HEAD(page_list
);
604 int max_scan
= sc
->nr_to_scan
;
606 pagevec_init(&pvec
, 1);
609 spin_lock_irq(&zone
->lru_lock
);
610 while (max_scan
> 0) {
616 nr_taken
= isolate_lru_pages(sc
->swap_cluster_max
,
617 &zone
->inactive_list
,
618 &page_list
, &nr_scan
);
619 zone
->nr_inactive
-= nr_taken
;
620 zone
->pages_scanned
+= nr_scan
;
621 spin_unlock_irq(&zone
->lru_lock
);
627 if (current_is_kswapd())
628 mod_page_state_zone(zone
, pgscan_kswapd
, nr_scan
);
630 mod_page_state_zone(zone
, pgscan_direct
, nr_scan
);
631 nr_freed
= shrink_list(&page_list
, sc
);
632 if (current_is_kswapd())
633 mod_page_state(kswapd_steal
, nr_freed
);
634 mod_page_state_zone(zone
, pgsteal
, nr_freed
);
635 sc
->nr_to_reclaim
-= nr_freed
;
637 spin_lock_irq(&zone
->lru_lock
);
639 * Put back any unfreeable pages.
641 while (!list_empty(&page_list
)) {
642 page
= lru_to_page(&page_list
);
643 if (TestSetPageLRU(page
))
645 list_del(&page
->lru
);
646 if (PageActive(page
))
647 add_page_to_active_list(zone
, page
);
649 add_page_to_inactive_list(zone
, page
);
650 if (!pagevec_add(&pvec
, page
)) {
651 spin_unlock_irq(&zone
->lru_lock
);
652 __pagevec_release(&pvec
);
653 spin_lock_irq(&zone
->lru_lock
);
657 spin_unlock_irq(&zone
->lru_lock
);
659 pagevec_release(&pvec
);
663 * This moves pages from the active list to the inactive list.
665 * We move them the other way if the page is referenced by one or more
666 * processes, from rmap.
668 * If the pages are mostly unmapped, the processing is fast and it is
669 * appropriate to hold zone->lru_lock across the whole operation. But if
670 * the pages are mapped, the processing is slow (page_referenced()) so we
671 * should drop zone->lru_lock around each page. It's impossible to balance
672 * this, so instead we remove the pages from the LRU while processing them.
673 * It is safe to rely on PG_active against the non-LRU pages in here because
674 * nobody will play with that bit on a non-LRU page.
676 * The downside is that we have to touch page->_count against each page.
677 * But we had to alter page->flags anyway.
680 refill_inactive_zone(struct zone
*zone
, struct scan_control
*sc
)
683 int pgdeactivate
= 0;
685 int nr_pages
= sc
->nr_to_scan
;
686 LIST_HEAD(l_hold
); /* The pages which were snipped off */
687 LIST_HEAD(l_inactive
); /* Pages to go onto the inactive_list */
688 LIST_HEAD(l_active
); /* Pages to go onto the active_list */
691 int reclaim_mapped
= 0;
697 spin_lock_irq(&zone
->lru_lock
);
698 pgmoved
= isolate_lru_pages(nr_pages
, &zone
->active_list
,
699 &l_hold
, &pgscanned
);
700 zone
->pages_scanned
+= pgscanned
;
701 zone
->nr_active
-= pgmoved
;
702 spin_unlock_irq(&zone
->lru_lock
);
705 * `distress' is a measure of how much trouble we're having reclaiming
706 * pages. 0 -> no problems. 100 -> great trouble.
708 distress
= 100 >> zone
->prev_priority
;
711 * The point of this algorithm is to decide when to start reclaiming
712 * mapped memory instead of just pagecache. Work out how much memory
715 mapped_ratio
= (sc
->nr_mapped
* 100) / total_memory
;
718 * Now decide how much we really want to unmap some pages. The mapped
719 * ratio is downgraded - just because there's a lot of mapped memory
720 * doesn't necessarily mean that page reclaim isn't succeeding.
722 * The distress ratio is important - we don't want to start going oom.
724 * A 100% value of vm_swappiness overrides this algorithm altogether.
726 swap_tendency
= mapped_ratio
/ 2 + distress
+ vm_swappiness
;
729 * Now use this metric to decide whether to start moving mapped memory
730 * onto the inactive list.
732 if (swap_tendency
>= 100)
735 while (!list_empty(&l_hold
)) {
737 page
= lru_to_page(&l_hold
);
738 list_del(&page
->lru
);
739 if (page_mapped(page
)) {
740 if (!reclaim_mapped
||
741 (total_swap_pages
== 0 && PageAnon(page
)) ||
742 page_referenced(page
, 0, sc
->priority
<= 0)) {
743 list_add(&page
->lru
, &l_active
);
747 list_add(&page
->lru
, &l_inactive
);
750 pagevec_init(&pvec
, 1);
752 spin_lock_irq(&zone
->lru_lock
);
753 while (!list_empty(&l_inactive
)) {
754 page
= lru_to_page(&l_inactive
);
755 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
756 if (TestSetPageLRU(page
))
758 if (!TestClearPageActive(page
))
760 list_move(&page
->lru
, &zone
->inactive_list
);
762 if (!pagevec_add(&pvec
, page
)) {
763 zone
->nr_inactive
+= pgmoved
;
764 spin_unlock_irq(&zone
->lru_lock
);
765 pgdeactivate
+= pgmoved
;
767 if (buffer_heads_over_limit
)
768 pagevec_strip(&pvec
);
769 __pagevec_release(&pvec
);
770 spin_lock_irq(&zone
->lru_lock
);
773 zone
->nr_inactive
+= pgmoved
;
774 pgdeactivate
+= pgmoved
;
775 if (buffer_heads_over_limit
) {
776 spin_unlock_irq(&zone
->lru_lock
);
777 pagevec_strip(&pvec
);
778 spin_lock_irq(&zone
->lru_lock
);
782 while (!list_empty(&l_active
)) {
783 page
= lru_to_page(&l_active
);
784 prefetchw_prev_lru_page(page
, &l_active
, flags
);
785 if (TestSetPageLRU(page
))
787 BUG_ON(!PageActive(page
));
788 list_move(&page
->lru
, &zone
->active_list
);
790 if (!pagevec_add(&pvec
, page
)) {
791 zone
->nr_active
+= pgmoved
;
793 spin_unlock_irq(&zone
->lru_lock
);
794 __pagevec_release(&pvec
);
795 spin_lock_irq(&zone
->lru_lock
);
798 zone
->nr_active
+= pgmoved
;
799 spin_unlock_irq(&zone
->lru_lock
);
800 pagevec_release(&pvec
);
802 mod_page_state_zone(zone
, pgrefill
, pgscanned
);
803 mod_page_state(pgdeactivate
, pgdeactivate
);
807 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
810 shrink_zone(struct zone
*zone
, struct scan_control
*sc
)
812 unsigned long nr_active
;
813 unsigned long nr_inactive
;
816 * Add one to `nr_to_scan' just to make sure that the kernel will
817 * slowly sift through the active list.
819 zone
->nr_scan_active
+= (zone
->nr_active
>> sc
->priority
) + 1;
820 nr_active
= zone
->nr_scan_active
;
821 if (nr_active
>= sc
->swap_cluster_max
)
822 zone
->nr_scan_active
= 0;
826 zone
->nr_scan_inactive
+= (zone
->nr_inactive
>> sc
->priority
) + 1;
827 nr_inactive
= zone
->nr_scan_inactive
;
828 if (nr_inactive
>= sc
->swap_cluster_max
)
829 zone
->nr_scan_inactive
= 0;
833 sc
->nr_to_reclaim
= sc
->swap_cluster_max
;
835 while (nr_active
|| nr_inactive
) {
837 sc
->nr_to_scan
= min(nr_active
,
838 (unsigned long)sc
->swap_cluster_max
);
839 nr_active
-= sc
->nr_to_scan
;
840 refill_inactive_zone(zone
, sc
);
844 sc
->nr_to_scan
= min(nr_inactive
,
845 (unsigned long)sc
->swap_cluster_max
);
846 nr_inactive
-= sc
->nr_to_scan
;
847 shrink_cache(zone
, sc
);
848 if (sc
->nr_to_reclaim
<= 0)
853 throttle_vm_writeout();
857 * This is the direct reclaim path, for page-allocating processes. We only
858 * try to reclaim pages from zones which will satisfy the caller's allocation
861 * We reclaim from a zone even if that zone is over pages_high. Because:
862 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
864 * b) The zones may be over pages_high but they must go *over* pages_high to
865 * satisfy the `incremental min' zone defense algorithm.
867 * Returns the number of reclaimed pages.
869 * If a zone is deemed to be full of pinned pages then just give it a light
870 * scan then give up on it.
873 shrink_caches(struct zone
**zones
, struct scan_control
*sc
)
877 for (i
= 0; zones
[i
] != NULL
; i
++) {
878 struct zone
*zone
= zones
[i
];
880 if (zone
->present_pages
== 0)
883 if (!cpuset_zone_allowed(zone
))
886 zone
->temp_priority
= sc
->priority
;
887 if (zone
->prev_priority
> sc
->priority
)
888 zone
->prev_priority
= sc
->priority
;
890 if (zone
->all_unreclaimable
&& sc
->priority
!= DEF_PRIORITY
)
891 continue; /* Let kswapd poll it */
893 shrink_zone(zone
, sc
);
898 * This is the main entry point to direct page reclaim.
900 * If a full scan of the inactive list fails to free enough memory then we
901 * are "out of memory" and something needs to be killed.
903 * If the caller is !__GFP_FS then the probability of a failure is reasonably
904 * high - the zone may be full of dirty or under-writeback pages, which this
905 * caller can't do much about. We kick pdflush and take explicit naps in the
906 * hope that some of these pages can be written. But if the allocating task
907 * holds filesystem locks which prevent writeout this might not work, and the
908 * allocation attempt will fail.
910 int try_to_free_pages(struct zone
**zones
,
911 unsigned int gfp_mask
, unsigned int order
)
915 int total_scanned
= 0, total_reclaimed
= 0;
916 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
917 struct scan_control sc
;
918 unsigned long lru_pages
= 0;
921 sc
.gfp_mask
= gfp_mask
;
922 sc
.may_writepage
= 0;
924 inc_page_state(allocstall
);
926 for (i
= 0; zones
[i
] != NULL
; i
++) {
927 struct zone
*zone
= zones
[i
];
929 if (!cpuset_zone_allowed(zone
))
932 zone
->temp_priority
= DEF_PRIORITY
;
933 lru_pages
+= zone
->nr_active
+ zone
->nr_inactive
;
936 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
937 sc
.nr_mapped
= read_page_state(nr_mapped
);
940 sc
.priority
= priority
;
941 sc
.swap_cluster_max
= SWAP_CLUSTER_MAX
;
942 shrink_caches(zones
, &sc
);
943 shrink_slab(sc
.nr_scanned
, gfp_mask
, lru_pages
);
945 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
946 reclaim_state
->reclaimed_slab
= 0;
948 total_scanned
+= sc
.nr_scanned
;
949 total_reclaimed
+= sc
.nr_reclaimed
;
950 if (total_reclaimed
>= sc
.swap_cluster_max
) {
956 * Try to write back as many pages as we just scanned. This
957 * tends to cause slow streaming writers to write data to the
958 * disk smoothly, at the dirtying rate, which is nice. But
959 * that's undesirable in laptop mode, where we *want* lumpy
960 * writeout. So in laptop mode, write out the whole world.
962 if (total_scanned
> sc
.swap_cluster_max
+ sc
.swap_cluster_max
/2) {
963 wakeup_bdflush(laptop_mode
? 0 : total_scanned
);
964 sc
.may_writepage
= 1;
967 /* Take a nap, wait for some writeback to complete */
968 if (sc
.nr_scanned
&& priority
< DEF_PRIORITY
- 2)
969 blk_congestion_wait(WRITE
, HZ
/10);
972 for (i
= 0; zones
[i
] != 0; i
++) {
973 struct zone
*zone
= zones
[i
];
975 if (!cpuset_zone_allowed(zone
))
978 zone
->prev_priority
= zone
->temp_priority
;
984 * For kswapd, balance_pgdat() will work across all this node's zones until
985 * they are all at pages_high.
987 * If `nr_pages' is non-zero then it is the number of pages which are to be
988 * reclaimed, regardless of the zone occupancies. This is a software suspend
991 * Returns the number of pages which were actually freed.
993 * There is special handling here for zones which are full of pinned pages.
994 * This can happen if the pages are all mlocked, or if they are all used by
995 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
996 * What we do is to detect the case where all pages in the zone have been
997 * scanned twice and there has been zero successful reclaim. Mark the zone as
998 * dead and from now on, only perform a short scan. Basically we're polling
999 * the zone for when the problem goes away.
1001 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1002 * zones which have free_pages > pages_high, but once a zone is found to have
1003 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1004 * of the number of free pages in the lower zones. This interoperates with
1005 * the page allocator fallback scheme to ensure that aging of pages is balanced
1008 static int balance_pgdat(pg_data_t
*pgdat
, int nr_pages
, int order
)
1010 int to_free
= nr_pages
;
1014 int total_scanned
, total_reclaimed
;
1015 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1016 struct scan_control sc
;
1020 total_reclaimed
= 0;
1021 sc
.gfp_mask
= GFP_KERNEL
;
1022 sc
.may_writepage
= 0;
1023 sc
.nr_mapped
= read_page_state(nr_mapped
);
1025 inc_page_state(pageoutrun
);
1027 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1028 struct zone
*zone
= pgdat
->node_zones
+ i
;
1030 zone
->temp_priority
= DEF_PRIORITY
;
1033 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1034 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1035 unsigned long lru_pages
= 0;
1039 if (nr_pages
== 0) {
1041 * Scan in the highmem->dma direction for the highest
1042 * zone which needs scanning
1044 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1045 struct zone
*zone
= pgdat
->node_zones
+ i
;
1047 if (zone
->present_pages
== 0)
1050 if (zone
->all_unreclaimable
&&
1051 priority
!= DEF_PRIORITY
)
1054 if (!zone_watermark_ok(zone
, order
,
1055 zone
->pages_high
, 0, 0, 0)) {
1062 end_zone
= pgdat
->nr_zones
- 1;
1065 for (i
= 0; i
<= end_zone
; i
++) {
1066 struct zone
*zone
= pgdat
->node_zones
+ i
;
1068 lru_pages
+= zone
->nr_active
+ zone
->nr_inactive
;
1072 * Now scan the zone in the dma->highmem direction, stopping
1073 * at the last zone which needs scanning.
1075 * We do this because the page allocator works in the opposite
1076 * direction. This prevents the page allocator from allocating
1077 * pages behind kswapd's direction of progress, which would
1078 * cause too much scanning of the lower zones.
1080 for (i
= 0; i
<= end_zone
; i
++) {
1081 struct zone
*zone
= pgdat
->node_zones
+ i
;
1083 if (zone
->present_pages
== 0)
1086 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1089 if (nr_pages
== 0) { /* Not software suspend */
1090 if (!zone_watermark_ok(zone
, order
,
1091 zone
->pages_high
, end_zone
, 0, 0))
1094 zone
->temp_priority
= priority
;
1095 if (zone
->prev_priority
> priority
)
1096 zone
->prev_priority
= priority
;
1098 sc
.nr_reclaimed
= 0;
1099 sc
.priority
= priority
;
1100 sc
.swap_cluster_max
= nr_pages
? nr_pages
: SWAP_CLUSTER_MAX
;
1101 shrink_zone(zone
, &sc
);
1102 reclaim_state
->reclaimed_slab
= 0;
1103 shrink_slab(sc
.nr_scanned
, GFP_KERNEL
, lru_pages
);
1104 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1105 total_reclaimed
+= sc
.nr_reclaimed
;
1106 total_scanned
+= sc
.nr_scanned
;
1107 if (zone
->all_unreclaimable
)
1109 if (zone
->pages_scanned
>= (zone
->nr_active
+
1110 zone
->nr_inactive
) * 4)
1111 zone
->all_unreclaimable
= 1;
1113 * If we've done a decent amount of scanning and
1114 * the reclaim ratio is low, start doing writepage
1115 * even in laptop mode
1117 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1118 total_scanned
> total_reclaimed
+total_reclaimed
/2)
1119 sc
.may_writepage
= 1;
1121 if (nr_pages
&& to_free
> total_reclaimed
)
1122 continue; /* swsusp: need to do more work */
1124 break; /* kswapd: all done */
1126 * OK, kswapd is getting into trouble. Take a nap, then take
1127 * another pass across the zones.
1129 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1130 blk_congestion_wait(WRITE
, HZ
/10);
1133 * We do this so kswapd doesn't build up large priorities for
1134 * example when it is freeing in parallel with allocators. It
1135 * matches the direct reclaim path behaviour in terms of impact
1136 * on zone->*_priority.
1138 if ((total_reclaimed
>= SWAP_CLUSTER_MAX
) && (!nr_pages
))
1142 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1143 struct zone
*zone
= pgdat
->node_zones
+ i
;
1145 zone
->prev_priority
= zone
->temp_priority
;
1147 if (!all_zones_ok
) {
1152 return total_reclaimed
;
1156 * The background pageout daemon, started as a kernel thread
1157 * from the init process.
1159 * This basically trickles out pages so that we have _some_
1160 * free memory available even if there is no other activity
1161 * that frees anything up. This is needed for things like routing
1162 * etc, where we otherwise might have all activity going on in
1163 * asynchronous contexts that cannot page things out.
1165 * If there are applications that are active memory-allocators
1166 * (most normal use), this basically shouldn't matter.
1168 static int kswapd(void *p
)
1170 unsigned long order
;
1171 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1172 struct task_struct
*tsk
= current
;
1174 struct reclaim_state reclaim_state
= {
1175 .reclaimed_slab
= 0,
1179 daemonize("kswapd%d", pgdat
->node_id
);
1180 cpumask
= node_to_cpumask(pgdat
->node_id
);
1181 if (!cpus_empty(cpumask
))
1182 set_cpus_allowed(tsk
, cpumask
);
1183 current
->reclaim_state
= &reclaim_state
;
1186 * Tell the memory management that we're a "memory allocator",
1187 * and that if we need more memory we should get access to it
1188 * regardless (see "__alloc_pages()"). "kswapd" should
1189 * never get caught in the normal page freeing logic.
1191 * (Kswapd normally doesn't need memory anyway, but sometimes
1192 * you need a small amount of memory in order to be able to
1193 * page out something else, and this flag essentially protects
1194 * us from recursively trying to free more memory as we're
1195 * trying to free the first piece of memory in the first place).
1197 tsk
->flags
|= PF_MEMALLOC
|PF_KSWAPD
;
1201 unsigned long new_order
;
1202 if (current
->flags
& PF_FREEZE
)
1203 refrigerator(PF_FREEZE
);
1205 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
1206 new_order
= pgdat
->kswapd_max_order
;
1207 pgdat
->kswapd_max_order
= 0;
1208 if (order
< new_order
) {
1210 * Don't sleep if someone wants a larger 'order'
1216 order
= pgdat
->kswapd_max_order
;
1218 finish_wait(&pgdat
->kswapd_wait
, &wait
);
1220 balance_pgdat(pgdat
, 0, order
);
1226 * A zone is low on free memory, so wake its kswapd task to service it.
1228 void wakeup_kswapd(struct zone
*zone
, int order
)
1232 if (zone
->present_pages
== 0)
1235 pgdat
= zone
->zone_pgdat
;
1236 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0, 0))
1238 if (pgdat
->kswapd_max_order
< order
)
1239 pgdat
->kswapd_max_order
= order
;
1240 if (!cpuset_zone_allowed(zone
))
1242 if (!waitqueue_active(&zone
->zone_pgdat
->kswapd_wait
))
1244 wake_up_interruptible(&zone
->zone_pgdat
->kswapd_wait
);
1249 * Try to free `nr_pages' of memory, system-wide. Returns the number of freed
1252 int shrink_all_memory(int nr_pages
)
1255 int nr_to_free
= nr_pages
;
1257 struct reclaim_state reclaim_state
= {
1258 .reclaimed_slab
= 0,
1261 current
->reclaim_state
= &reclaim_state
;
1262 for_each_pgdat(pgdat
) {
1264 freed
= balance_pgdat(pgdat
, nr_to_free
, 0);
1266 nr_to_free
-= freed
;
1267 if (nr_to_free
<= 0)
1270 current
->reclaim_state
= NULL
;
1275 #ifdef CONFIG_HOTPLUG_CPU
1276 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1277 not required for correctness. So if the last cpu in a node goes
1278 away, we get changed to run anywhere: as the first one comes back,
1279 restore their cpu bindings. */
1280 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
1281 unsigned long action
,
1287 if (action
== CPU_ONLINE
) {
1288 for_each_pgdat(pgdat
) {
1289 mask
= node_to_cpumask(pgdat
->node_id
);
1290 if (any_online_cpu(mask
) != NR_CPUS
)
1291 /* One of our CPUs online: restore mask */
1292 set_cpus_allowed(pgdat
->kswapd
, mask
);
1297 #endif /* CONFIG_HOTPLUG_CPU */
1299 static int __init
kswapd_init(void)
1303 for_each_pgdat(pgdat
)
1305 = find_task_by_pid(kernel_thread(kswapd
, pgdat
, CLONE_KERNEL
));
1306 total_memory
= nr_free_pagecache_pages();
1307 hotcpu_notifier(cpu_callback
, 0);
1311 module_init(kswapd_init
)