Btrfs: stop the readahead threads on failed mount
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / core / dev.c
blobb10ff0a71855207ecf56fc815d2b08b4239693cd
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
137 #include "net-sysfs.h"
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 * The list of packet types we will receive (as opposed to discard)
147 * and the routines to invoke.
149 * Why 16. Because with 16 the only overlap we get on a hash of the
150 * low nibble of the protocol value is RARP/SNAP/X.25.
152 * NOTE: That is no longer true with the addition of VLAN tags. Not
153 * sure which should go first, but I bet it won't make much
154 * difference if we are running VLANs. The good news is that
155 * this protocol won't be in the list unless compiled in, so
156 * the average user (w/out VLANs) will not be adversely affected.
157 * --BLG
159 * 0800 IP
160 * 8100 802.1Q VLAN
161 * 0001 802.3
162 * 0002 AX.25
163 * 0004 802.2
164 * 8035 RARP
165 * 0005 SNAP
166 * 0805 X.25
167 * 0806 ARP
168 * 8137 IPX
169 * 0009 Localtalk
170 * 86DD IPv6
173 #define PTYPE_HASH_SIZE (16)
174 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
176 static DEFINE_SPINLOCK(ptype_lock);
177 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
178 static struct list_head ptype_all __read_mostly; /* Taps */
181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
182 * semaphore.
184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
186 * Writers must hold the rtnl semaphore while they loop through the
187 * dev_base_head list, and hold dev_base_lock for writing when they do the
188 * actual updates. This allows pure readers to access the list even
189 * while a writer is preparing to update it.
191 * To put it another way, dev_base_lock is held for writing only to
192 * protect against pure readers; the rtnl semaphore provides the
193 * protection against other writers.
195 * See, for example usages, register_netdevice() and
196 * unregister_netdevice(), which must be called with the rtnl
197 * semaphore held.
199 DEFINE_RWLOCK(dev_base_lock);
200 EXPORT_SYMBOL(dev_base_lock);
202 static inline void dev_base_seq_inc(struct net *net)
204 while (++net->dev_base_seq == 0);
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 static inline void rps_lock(struct softnet_data *sd)
220 #ifdef CONFIG_RPS
221 spin_lock(&sd->input_pkt_queue.lock);
222 #endif
225 static inline void rps_unlock(struct softnet_data *sd)
227 #ifdef CONFIG_RPS
228 spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
232 /* Device list insertion */
233 static int list_netdevice(struct net_device *dev)
235 struct net *net = dev_net(dev);
237 ASSERT_RTNL();
239 write_lock_bh(&dev_base_lock);
240 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242 hlist_add_head_rcu(&dev->index_hlist,
243 dev_index_hash(net, dev->ifindex));
244 write_unlock_bh(&dev_base_lock);
246 dev_base_seq_inc(net);
248 return 0;
251 /* Device list removal
252 * caller must respect a RCU grace period before freeing/reusing dev
254 static void unlist_netdevice(struct net_device *dev)
256 ASSERT_RTNL();
258 /* Unlink dev from the device chain */
259 write_lock_bh(&dev_base_lock);
260 list_del_rcu(&dev->dev_list);
261 hlist_del_rcu(&dev->name_hlist);
262 hlist_del_rcu(&dev->index_hlist);
263 write_unlock_bh(&dev_base_lock);
265 dev_base_seq_inc(dev_net(dev));
269 * Our notifier list
272 static RAW_NOTIFIER_HEAD(netdev_chain);
275 * Device drivers call our routines to queue packets here. We empty the
276 * queue in the local softnet handler.
279 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
280 EXPORT_PER_CPU_SYMBOL(softnet_data);
282 #ifdef CONFIG_LOCKDEP
284 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
285 * according to dev->type
287 static const unsigned short netdev_lock_type[] =
288 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
289 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
290 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
291 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
292 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
293 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
294 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
295 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
296 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
297 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
298 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
299 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
300 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
301 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
302 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
303 ARPHRD_VOID, ARPHRD_NONE};
305 static const char *const netdev_lock_name[] =
306 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
307 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
308 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
309 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
310 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
311 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
312 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
313 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
314 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
315 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
316 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
317 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
318 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
319 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
320 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
321 "_xmit_VOID", "_xmit_NONE"};
323 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
324 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 int i;
330 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
331 if (netdev_lock_type[i] == dev_type)
332 return i;
333 /* the last key is used by default */
334 return ARRAY_SIZE(netdev_lock_type) - 1;
337 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
338 unsigned short dev_type)
340 int i;
342 i = netdev_lock_pos(dev_type);
343 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
344 netdev_lock_name[i]);
347 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 int i;
351 i = netdev_lock_pos(dev->type);
352 lockdep_set_class_and_name(&dev->addr_list_lock,
353 &netdev_addr_lock_key[i],
354 netdev_lock_name[i]);
356 #else
357 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
358 unsigned short dev_type)
361 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
364 #endif
366 /*******************************************************************************
368 Protocol management and registration routines
370 *******************************************************************************/
373 * Add a protocol ID to the list. Now that the input handler is
374 * smarter we can dispense with all the messy stuff that used to be
375 * here.
377 * BEWARE!!! Protocol handlers, mangling input packets,
378 * MUST BE last in hash buckets and checking protocol handlers
379 * MUST start from promiscuous ptype_all chain in net_bh.
380 * It is true now, do not change it.
381 * Explanation follows: if protocol handler, mangling packet, will
382 * be the first on list, it is not able to sense, that packet
383 * is cloned and should be copied-on-write, so that it will
384 * change it and subsequent readers will get broken packet.
385 * --ANK (980803)
388 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 if (pt->type == htons(ETH_P_ALL))
391 return &ptype_all;
392 else
393 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
397 * dev_add_pack - add packet handler
398 * @pt: packet type declaration
400 * Add a protocol handler to the networking stack. The passed &packet_type
401 * is linked into kernel lists and may not be freed until it has been
402 * removed from the kernel lists.
404 * This call does not sleep therefore it can not
405 * guarantee all CPU's that are in middle of receiving packets
406 * will see the new packet type (until the next received packet).
409 void dev_add_pack(struct packet_type *pt)
411 struct list_head *head = ptype_head(pt);
413 spin_lock(&ptype_lock);
414 list_add_rcu(&pt->list, head);
415 spin_unlock(&ptype_lock);
417 EXPORT_SYMBOL(dev_add_pack);
420 * __dev_remove_pack - remove packet handler
421 * @pt: packet type declaration
423 * Remove a protocol handler that was previously added to the kernel
424 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
425 * from the kernel lists and can be freed or reused once this function
426 * returns.
428 * The packet type might still be in use by receivers
429 * and must not be freed until after all the CPU's have gone
430 * through a quiescent state.
432 void __dev_remove_pack(struct packet_type *pt)
434 struct list_head *head = ptype_head(pt);
435 struct packet_type *pt1;
437 spin_lock(&ptype_lock);
439 list_for_each_entry(pt1, head, list) {
440 if (pt == pt1) {
441 list_del_rcu(&pt->list);
442 goto out;
446 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
447 out:
448 spin_unlock(&ptype_lock);
450 EXPORT_SYMBOL(__dev_remove_pack);
453 * dev_remove_pack - remove packet handler
454 * @pt: packet type declaration
456 * Remove a protocol handler that was previously added to the kernel
457 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
458 * from the kernel lists and can be freed or reused once this function
459 * returns.
461 * This call sleeps to guarantee that no CPU is looking at the packet
462 * type after return.
464 void dev_remove_pack(struct packet_type *pt)
466 __dev_remove_pack(pt);
468 synchronize_net();
470 EXPORT_SYMBOL(dev_remove_pack);
472 /******************************************************************************
474 Device Boot-time Settings Routines
476 *******************************************************************************/
478 /* Boot time configuration table */
479 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
482 * netdev_boot_setup_add - add new setup entry
483 * @name: name of the device
484 * @map: configured settings for the device
486 * Adds new setup entry to the dev_boot_setup list. The function
487 * returns 0 on error and 1 on success. This is a generic routine to
488 * all netdevices.
490 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 struct netdev_boot_setup *s;
493 int i;
495 s = dev_boot_setup;
496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
497 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
498 memset(s[i].name, 0, sizeof(s[i].name));
499 strlcpy(s[i].name, name, IFNAMSIZ);
500 memcpy(&s[i].map, map, sizeof(s[i].map));
501 break;
505 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
509 * netdev_boot_setup_check - check boot time settings
510 * @dev: the netdevice
512 * Check boot time settings for the device.
513 * The found settings are set for the device to be used
514 * later in the device probing.
515 * Returns 0 if no settings found, 1 if they are.
517 int netdev_boot_setup_check(struct net_device *dev)
519 struct netdev_boot_setup *s = dev_boot_setup;
520 int i;
522 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
523 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
524 !strcmp(dev->name, s[i].name)) {
525 dev->irq = s[i].map.irq;
526 dev->base_addr = s[i].map.base_addr;
527 dev->mem_start = s[i].map.mem_start;
528 dev->mem_end = s[i].map.mem_end;
529 return 1;
532 return 0;
534 EXPORT_SYMBOL(netdev_boot_setup_check);
538 * netdev_boot_base - get address from boot time settings
539 * @prefix: prefix for network device
540 * @unit: id for network device
542 * Check boot time settings for the base address of device.
543 * The found settings are set for the device to be used
544 * later in the device probing.
545 * Returns 0 if no settings found.
547 unsigned long netdev_boot_base(const char *prefix, int unit)
549 const struct netdev_boot_setup *s = dev_boot_setup;
550 char name[IFNAMSIZ];
551 int i;
553 sprintf(name, "%s%d", prefix, unit);
556 * If device already registered then return base of 1
557 * to indicate not to probe for this interface
559 if (__dev_get_by_name(&init_net, name))
560 return 1;
562 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
563 if (!strcmp(name, s[i].name))
564 return s[i].map.base_addr;
565 return 0;
569 * Saves at boot time configured settings for any netdevice.
571 int __init netdev_boot_setup(char *str)
573 int ints[5];
574 struct ifmap map;
576 str = get_options(str, ARRAY_SIZE(ints), ints);
577 if (!str || !*str)
578 return 0;
580 /* Save settings */
581 memset(&map, 0, sizeof(map));
582 if (ints[0] > 0)
583 map.irq = ints[1];
584 if (ints[0] > 1)
585 map.base_addr = ints[2];
586 if (ints[0] > 2)
587 map.mem_start = ints[3];
588 if (ints[0] > 3)
589 map.mem_end = ints[4];
591 /* Add new entry to the list */
592 return netdev_boot_setup_add(str, &map);
595 __setup("netdev=", netdev_boot_setup);
597 /*******************************************************************************
599 Device Interface Subroutines
601 *******************************************************************************/
604 * __dev_get_by_name - find a device by its name
605 * @net: the applicable net namespace
606 * @name: name to find
608 * Find an interface by name. Must be called under RTNL semaphore
609 * or @dev_base_lock. If the name is found a pointer to the device
610 * is returned. If the name is not found then %NULL is returned. The
611 * reference counters are not incremented so the caller must be
612 * careful with locks.
615 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 struct hlist_node *p;
618 struct net_device *dev;
619 struct hlist_head *head = dev_name_hash(net, name);
621 hlist_for_each_entry(dev, p, head, name_hlist)
622 if (!strncmp(dev->name, name, IFNAMSIZ))
623 return dev;
625 return NULL;
627 EXPORT_SYMBOL(__dev_get_by_name);
630 * dev_get_by_name_rcu - find a device by its name
631 * @net: the applicable net namespace
632 * @name: name to find
634 * Find an interface by name.
635 * If the name is found a pointer to the device is returned.
636 * If the name is not found then %NULL is returned.
637 * The reference counters are not incremented so the caller must be
638 * careful with locks. The caller must hold RCU lock.
641 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 struct hlist_node *p;
644 struct net_device *dev;
645 struct hlist_head *head = dev_name_hash(net, name);
647 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
648 if (!strncmp(dev->name, name, IFNAMSIZ))
649 return dev;
651 return NULL;
653 EXPORT_SYMBOL(dev_get_by_name_rcu);
656 * dev_get_by_name - find a device by its name
657 * @net: the applicable net namespace
658 * @name: name to find
660 * Find an interface by name. This can be called from any
661 * context and does its own locking. The returned handle has
662 * the usage count incremented and the caller must use dev_put() to
663 * release it when it is no longer needed. %NULL is returned if no
664 * matching device is found.
667 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 struct net_device *dev;
671 rcu_read_lock();
672 dev = dev_get_by_name_rcu(net, name);
673 if (dev)
674 dev_hold(dev);
675 rcu_read_unlock();
676 return dev;
678 EXPORT_SYMBOL(dev_get_by_name);
681 * __dev_get_by_index - find a device by its ifindex
682 * @net: the applicable net namespace
683 * @ifindex: index of device
685 * Search for an interface by index. Returns %NULL if the device
686 * is not found or a pointer to the device. The device has not
687 * had its reference counter increased so the caller must be careful
688 * about locking. The caller must hold either the RTNL semaphore
689 * or @dev_base_lock.
692 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 struct hlist_node *p;
695 struct net_device *dev;
696 struct hlist_head *head = dev_index_hash(net, ifindex);
698 hlist_for_each_entry(dev, p, head, index_hlist)
699 if (dev->ifindex == ifindex)
700 return dev;
702 return NULL;
704 EXPORT_SYMBOL(__dev_get_by_index);
707 * dev_get_by_index_rcu - find a device by its ifindex
708 * @net: the applicable net namespace
709 * @ifindex: index of device
711 * Search for an interface by index. Returns %NULL if the device
712 * is not found or a pointer to the device. The device has not
713 * had its reference counter increased so the caller must be careful
714 * about locking. The caller must hold RCU lock.
717 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 struct hlist_node *p;
720 struct net_device *dev;
721 struct hlist_head *head = dev_index_hash(net, ifindex);
723 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
724 if (dev->ifindex == ifindex)
725 return dev;
727 return NULL;
729 EXPORT_SYMBOL(dev_get_by_index_rcu);
733 * dev_get_by_index - find a device by its ifindex
734 * @net: the applicable net namespace
735 * @ifindex: index of device
737 * Search for an interface by index. Returns NULL if the device
738 * is not found or a pointer to the device. The device returned has
739 * had a reference added and the pointer is safe until the user calls
740 * dev_put to indicate they have finished with it.
743 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 struct net_device *dev;
747 rcu_read_lock();
748 dev = dev_get_by_index_rcu(net, ifindex);
749 if (dev)
750 dev_hold(dev);
751 rcu_read_unlock();
752 return dev;
754 EXPORT_SYMBOL(dev_get_by_index);
757 * dev_getbyhwaddr_rcu - find a device by its hardware address
758 * @net: the applicable net namespace
759 * @type: media type of device
760 * @ha: hardware address
762 * Search for an interface by MAC address. Returns NULL if the device
763 * is not found or a pointer to the device.
764 * The caller must hold RCU or RTNL.
765 * The returned device has not had its ref count increased
766 * and the caller must therefore be careful about locking
770 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
771 const char *ha)
773 struct net_device *dev;
775 for_each_netdev_rcu(net, dev)
776 if (dev->type == type &&
777 !memcmp(dev->dev_addr, ha, dev->addr_len))
778 return dev;
780 return NULL;
782 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 struct net_device *dev;
788 ASSERT_RTNL();
789 for_each_netdev(net, dev)
790 if (dev->type == type)
791 return dev;
793 return NULL;
795 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 struct net_device *dev, *ret = NULL;
801 rcu_read_lock();
802 for_each_netdev_rcu(net, dev)
803 if (dev->type == type) {
804 dev_hold(dev);
805 ret = dev;
806 break;
808 rcu_read_unlock();
809 return ret;
811 EXPORT_SYMBOL(dev_getfirstbyhwtype);
814 * dev_get_by_flags_rcu - find any device with given flags
815 * @net: the applicable net namespace
816 * @if_flags: IFF_* values
817 * @mask: bitmask of bits in if_flags to check
819 * Search for any interface with the given flags. Returns NULL if a device
820 * is not found or a pointer to the device. Must be called inside
821 * rcu_read_lock(), and result refcount is unchanged.
824 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
825 unsigned short mask)
827 struct net_device *dev, *ret;
829 ret = NULL;
830 for_each_netdev_rcu(net, dev) {
831 if (((dev->flags ^ if_flags) & mask) == 0) {
832 ret = dev;
833 break;
836 return ret;
838 EXPORT_SYMBOL(dev_get_by_flags_rcu);
841 * dev_valid_name - check if name is okay for network device
842 * @name: name string
844 * Network device names need to be valid file names to
845 * to allow sysfs to work. We also disallow any kind of
846 * whitespace.
848 int dev_valid_name(const char *name)
850 if (*name == '\0')
851 return 0;
852 if (strlen(name) >= IFNAMSIZ)
853 return 0;
854 if (!strcmp(name, ".") || !strcmp(name, ".."))
855 return 0;
857 while (*name) {
858 if (*name == '/' || isspace(*name))
859 return 0;
860 name++;
862 return 1;
864 EXPORT_SYMBOL(dev_valid_name);
867 * __dev_alloc_name - allocate a name for a device
868 * @net: network namespace to allocate the device name in
869 * @name: name format string
870 * @buf: scratch buffer and result name string
872 * Passed a format string - eg "lt%d" it will try and find a suitable
873 * id. It scans list of devices to build up a free map, then chooses
874 * the first empty slot. The caller must hold the dev_base or rtnl lock
875 * while allocating the name and adding the device in order to avoid
876 * duplicates.
877 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
878 * Returns the number of the unit assigned or a negative errno code.
881 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 int i = 0;
884 const char *p;
885 const int max_netdevices = 8*PAGE_SIZE;
886 unsigned long *inuse;
887 struct net_device *d;
889 p = strnchr(name, IFNAMSIZ-1, '%');
890 if (p) {
892 * Verify the string as this thing may have come from
893 * the user. There must be either one "%d" and no other "%"
894 * characters.
896 if (p[1] != 'd' || strchr(p + 2, '%'))
897 return -EINVAL;
899 /* Use one page as a bit array of possible slots */
900 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
901 if (!inuse)
902 return -ENOMEM;
904 for_each_netdev(net, d) {
905 if (!sscanf(d->name, name, &i))
906 continue;
907 if (i < 0 || i >= max_netdevices)
908 continue;
910 /* avoid cases where sscanf is not exact inverse of printf */
911 snprintf(buf, IFNAMSIZ, name, i);
912 if (!strncmp(buf, d->name, IFNAMSIZ))
913 set_bit(i, inuse);
916 i = find_first_zero_bit(inuse, max_netdevices);
917 free_page((unsigned long) inuse);
920 if (buf != name)
921 snprintf(buf, IFNAMSIZ, name, i);
922 if (!__dev_get_by_name(net, buf))
923 return i;
925 /* It is possible to run out of possible slots
926 * when the name is long and there isn't enough space left
927 * for the digits, or if all bits are used.
929 return -ENFILE;
933 * dev_alloc_name - allocate a name for a device
934 * @dev: device
935 * @name: name format string
937 * Passed a format string - eg "lt%d" it will try and find a suitable
938 * id. It scans list of devices to build up a free map, then chooses
939 * the first empty slot. The caller must hold the dev_base or rtnl lock
940 * while allocating the name and adding the device in order to avoid
941 * duplicates.
942 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
943 * Returns the number of the unit assigned or a negative errno code.
946 int dev_alloc_name(struct net_device *dev, const char *name)
948 char buf[IFNAMSIZ];
949 struct net *net;
950 int ret;
952 BUG_ON(!dev_net(dev));
953 net = dev_net(dev);
954 ret = __dev_alloc_name(net, name, buf);
955 if (ret >= 0)
956 strlcpy(dev->name, buf, IFNAMSIZ);
957 return ret;
959 EXPORT_SYMBOL(dev_alloc_name);
961 static int dev_get_valid_name(struct net_device *dev, const char *name)
963 struct net *net;
965 BUG_ON(!dev_net(dev));
966 net = dev_net(dev);
968 if (!dev_valid_name(name))
969 return -EINVAL;
971 if (strchr(name, '%'))
972 return dev_alloc_name(dev, name);
973 else if (__dev_get_by_name(net, name))
974 return -EEXIST;
975 else if (dev->name != name)
976 strlcpy(dev->name, name, IFNAMSIZ);
978 return 0;
982 * dev_change_name - change name of a device
983 * @dev: device
984 * @newname: name (or format string) must be at least IFNAMSIZ
986 * Change name of a device, can pass format strings "eth%d".
987 * for wildcarding.
989 int dev_change_name(struct net_device *dev, const char *newname)
991 char oldname[IFNAMSIZ];
992 int err = 0;
993 int ret;
994 struct net *net;
996 ASSERT_RTNL();
997 BUG_ON(!dev_net(dev));
999 net = dev_net(dev);
1000 if (dev->flags & IFF_UP)
1001 return -EBUSY;
1003 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1004 return 0;
1006 memcpy(oldname, dev->name, IFNAMSIZ);
1008 err = dev_get_valid_name(dev, newname);
1009 if (err < 0)
1010 return err;
1012 rollback:
1013 ret = device_rename(&dev->dev, dev->name);
1014 if (ret) {
1015 memcpy(dev->name, oldname, IFNAMSIZ);
1016 return ret;
1019 write_lock_bh(&dev_base_lock);
1020 hlist_del_rcu(&dev->name_hlist);
1021 write_unlock_bh(&dev_base_lock);
1023 synchronize_rcu();
1025 write_lock_bh(&dev_base_lock);
1026 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1027 write_unlock_bh(&dev_base_lock);
1029 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1030 ret = notifier_to_errno(ret);
1032 if (ret) {
1033 /* err >= 0 after dev_alloc_name() or stores the first errno */
1034 if (err >= 0) {
1035 err = ret;
1036 memcpy(dev->name, oldname, IFNAMSIZ);
1037 goto rollback;
1038 } else {
1039 printk(KERN_ERR
1040 "%s: name change rollback failed: %d.\n",
1041 dev->name, ret);
1045 return err;
1049 * dev_set_alias - change ifalias of a device
1050 * @dev: device
1051 * @alias: name up to IFALIASZ
1052 * @len: limit of bytes to copy from info
1054 * Set ifalias for a device,
1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1058 ASSERT_RTNL();
1060 if (len >= IFALIASZ)
1061 return -EINVAL;
1063 if (!len) {
1064 if (dev->ifalias) {
1065 kfree(dev->ifalias);
1066 dev->ifalias = NULL;
1068 return 0;
1071 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1072 if (!dev->ifalias)
1073 return -ENOMEM;
1075 strlcpy(dev->ifalias, alias, len+1);
1076 return len;
1081 * netdev_features_change - device changes features
1082 * @dev: device to cause notification
1084 * Called to indicate a device has changed features.
1086 void netdev_features_change(struct net_device *dev)
1088 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1090 EXPORT_SYMBOL(netdev_features_change);
1093 * netdev_state_change - device changes state
1094 * @dev: device to cause notification
1096 * Called to indicate a device has changed state. This function calls
1097 * the notifier chains for netdev_chain and sends a NEWLINK message
1098 * to the routing socket.
1100 void netdev_state_change(struct net_device *dev)
1102 if (dev->flags & IFF_UP) {
1103 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1104 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1107 EXPORT_SYMBOL(netdev_state_change);
1109 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1111 return call_netdevice_notifiers(event, dev);
1113 EXPORT_SYMBOL(netdev_bonding_change);
1116 * dev_load - load a network module
1117 * @net: the applicable net namespace
1118 * @name: name of interface
1120 * If a network interface is not present and the process has suitable
1121 * privileges this function loads the module. If module loading is not
1122 * available in this kernel then it becomes a nop.
1125 void dev_load(struct net *net, const char *name)
1127 struct net_device *dev;
1128 int no_module;
1130 rcu_read_lock();
1131 dev = dev_get_by_name_rcu(net, name);
1132 rcu_read_unlock();
1134 no_module = !dev;
1135 if (no_module && capable(CAP_NET_ADMIN))
1136 no_module = request_module("netdev-%s", name);
1137 if (no_module && capable(CAP_SYS_MODULE)) {
1138 if (!request_module("%s", name))
1139 pr_err("Loading kernel module for a network device "
1140 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1141 "instead\n", name);
1144 EXPORT_SYMBOL(dev_load);
1146 static int __dev_open(struct net_device *dev)
1148 const struct net_device_ops *ops = dev->netdev_ops;
1149 int ret;
1151 ASSERT_RTNL();
1153 if (!netif_device_present(dev))
1154 return -ENODEV;
1156 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1157 ret = notifier_to_errno(ret);
1158 if (ret)
1159 return ret;
1161 set_bit(__LINK_STATE_START, &dev->state);
1163 if (ops->ndo_validate_addr)
1164 ret = ops->ndo_validate_addr(dev);
1166 if (!ret && ops->ndo_open)
1167 ret = ops->ndo_open(dev);
1169 if (ret)
1170 clear_bit(__LINK_STATE_START, &dev->state);
1171 else {
1172 dev->flags |= IFF_UP;
1173 net_dmaengine_get();
1174 dev_set_rx_mode(dev);
1175 dev_activate(dev);
1178 return ret;
1182 * dev_open - prepare an interface for use.
1183 * @dev: device to open
1185 * Takes a device from down to up state. The device's private open
1186 * function is invoked and then the multicast lists are loaded. Finally
1187 * the device is moved into the up state and a %NETDEV_UP message is
1188 * sent to the netdev notifier chain.
1190 * Calling this function on an active interface is a nop. On a failure
1191 * a negative errno code is returned.
1193 int dev_open(struct net_device *dev)
1195 int ret;
1197 if (dev->flags & IFF_UP)
1198 return 0;
1200 ret = __dev_open(dev);
1201 if (ret < 0)
1202 return ret;
1204 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1205 call_netdevice_notifiers(NETDEV_UP, dev);
1207 return ret;
1209 EXPORT_SYMBOL(dev_open);
1211 static int __dev_close_many(struct list_head *head)
1213 struct net_device *dev;
1215 ASSERT_RTNL();
1216 might_sleep();
1218 list_for_each_entry(dev, head, unreg_list) {
1219 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1221 clear_bit(__LINK_STATE_START, &dev->state);
1223 /* Synchronize to scheduled poll. We cannot touch poll list, it
1224 * can be even on different cpu. So just clear netif_running().
1226 * dev->stop() will invoke napi_disable() on all of it's
1227 * napi_struct instances on this device.
1229 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1232 dev_deactivate_many(head);
1234 list_for_each_entry(dev, head, unreg_list) {
1235 const struct net_device_ops *ops = dev->netdev_ops;
1238 * Call the device specific close. This cannot fail.
1239 * Only if device is UP
1241 * We allow it to be called even after a DETACH hot-plug
1242 * event.
1244 if (ops->ndo_stop)
1245 ops->ndo_stop(dev);
1247 dev->flags &= ~IFF_UP;
1248 net_dmaengine_put();
1251 return 0;
1254 static int __dev_close(struct net_device *dev)
1256 int retval;
1257 LIST_HEAD(single);
1259 list_add(&dev->unreg_list, &single);
1260 retval = __dev_close_many(&single);
1261 list_del(&single);
1262 return retval;
1265 static int dev_close_many(struct list_head *head)
1267 struct net_device *dev, *tmp;
1268 LIST_HEAD(tmp_list);
1270 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1271 if (!(dev->flags & IFF_UP))
1272 list_move(&dev->unreg_list, &tmp_list);
1274 __dev_close_many(head);
1276 list_for_each_entry(dev, head, unreg_list) {
1277 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1278 call_netdevice_notifiers(NETDEV_DOWN, dev);
1281 /* rollback_registered_many needs the complete original list */
1282 list_splice(&tmp_list, head);
1283 return 0;
1287 * dev_close - shutdown an interface.
1288 * @dev: device to shutdown
1290 * This function moves an active device into down state. A
1291 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1292 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1293 * chain.
1295 int dev_close(struct net_device *dev)
1297 if (dev->flags & IFF_UP) {
1298 LIST_HEAD(single);
1300 list_add(&dev->unreg_list, &single);
1301 dev_close_many(&single);
1302 list_del(&single);
1304 return 0;
1306 EXPORT_SYMBOL(dev_close);
1310 * dev_disable_lro - disable Large Receive Offload on a device
1311 * @dev: device
1313 * Disable Large Receive Offload (LRO) on a net device. Must be
1314 * called under RTNL. This is needed if received packets may be
1315 * forwarded to another interface.
1317 void dev_disable_lro(struct net_device *dev)
1319 u32 flags;
1322 * If we're trying to disable lro on a vlan device
1323 * use the underlying physical device instead
1325 if (is_vlan_dev(dev))
1326 dev = vlan_dev_real_dev(dev);
1328 if (dev->ethtool_ops && dev->ethtool_ops->get_flags)
1329 flags = dev->ethtool_ops->get_flags(dev);
1330 else
1331 flags = ethtool_op_get_flags(dev);
1333 if (!(flags & ETH_FLAG_LRO))
1334 return;
1336 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO);
1337 if (unlikely(dev->features & NETIF_F_LRO))
1338 netdev_WARN(dev, "failed to disable LRO!\n");
1340 EXPORT_SYMBOL(dev_disable_lro);
1343 static int dev_boot_phase = 1;
1346 * register_netdevice_notifier - register a network notifier block
1347 * @nb: notifier
1349 * Register a notifier to be called when network device events occur.
1350 * The notifier passed is linked into the kernel structures and must
1351 * not be reused until it has been unregistered. A negative errno code
1352 * is returned on a failure.
1354 * When registered all registration and up events are replayed
1355 * to the new notifier to allow device to have a race free
1356 * view of the network device list.
1359 int register_netdevice_notifier(struct notifier_block *nb)
1361 struct net_device *dev;
1362 struct net_device *last;
1363 struct net *net;
1364 int err;
1366 rtnl_lock();
1367 err = raw_notifier_chain_register(&netdev_chain, nb);
1368 if (err)
1369 goto unlock;
1370 if (dev_boot_phase)
1371 goto unlock;
1372 for_each_net(net) {
1373 for_each_netdev(net, dev) {
1374 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1375 err = notifier_to_errno(err);
1376 if (err)
1377 goto rollback;
1379 if (!(dev->flags & IFF_UP))
1380 continue;
1382 nb->notifier_call(nb, NETDEV_UP, dev);
1386 unlock:
1387 rtnl_unlock();
1388 return err;
1390 rollback:
1391 last = dev;
1392 for_each_net(net) {
1393 for_each_netdev(net, dev) {
1394 if (dev == last)
1395 break;
1397 if (dev->flags & IFF_UP) {
1398 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1399 nb->notifier_call(nb, NETDEV_DOWN, dev);
1401 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1402 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1406 raw_notifier_chain_unregister(&netdev_chain, nb);
1407 goto unlock;
1409 EXPORT_SYMBOL(register_netdevice_notifier);
1412 * unregister_netdevice_notifier - unregister a network notifier block
1413 * @nb: notifier
1415 * Unregister a notifier previously registered by
1416 * register_netdevice_notifier(). The notifier is unlinked into the
1417 * kernel structures and may then be reused. A negative errno code
1418 * is returned on a failure.
1421 int unregister_netdevice_notifier(struct notifier_block *nb)
1423 int err;
1425 rtnl_lock();
1426 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1427 rtnl_unlock();
1428 return err;
1430 EXPORT_SYMBOL(unregister_netdevice_notifier);
1433 * call_netdevice_notifiers - call all network notifier blocks
1434 * @val: value passed unmodified to notifier function
1435 * @dev: net_device pointer passed unmodified to notifier function
1437 * Call all network notifier blocks. Parameters and return value
1438 * are as for raw_notifier_call_chain().
1441 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1443 ASSERT_RTNL();
1444 return raw_notifier_call_chain(&netdev_chain, val, dev);
1446 EXPORT_SYMBOL(call_netdevice_notifiers);
1448 /* When > 0 there are consumers of rx skb time stamps */
1449 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1451 void net_enable_timestamp(void)
1453 atomic_inc(&netstamp_needed);
1455 EXPORT_SYMBOL(net_enable_timestamp);
1457 void net_disable_timestamp(void)
1459 atomic_dec(&netstamp_needed);
1461 EXPORT_SYMBOL(net_disable_timestamp);
1463 static inline void net_timestamp_set(struct sk_buff *skb)
1465 if (atomic_read(&netstamp_needed))
1466 __net_timestamp(skb);
1467 else
1468 skb->tstamp.tv64 = 0;
1471 static inline void net_timestamp_check(struct sk_buff *skb)
1473 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1474 __net_timestamp(skb);
1477 static inline bool is_skb_forwardable(struct net_device *dev,
1478 struct sk_buff *skb)
1480 unsigned int len;
1482 if (!(dev->flags & IFF_UP))
1483 return false;
1485 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1486 if (skb->len <= len)
1487 return true;
1489 /* if TSO is enabled, we don't care about the length as the packet
1490 * could be forwarded without being segmented before
1492 if (skb_is_gso(skb))
1493 return true;
1495 return false;
1499 * dev_forward_skb - loopback an skb to another netif
1501 * @dev: destination network device
1502 * @skb: buffer to forward
1504 * return values:
1505 * NET_RX_SUCCESS (no congestion)
1506 * NET_RX_DROP (packet was dropped, but freed)
1508 * dev_forward_skb can be used for injecting an skb from the
1509 * start_xmit function of one device into the receive queue
1510 * of another device.
1512 * The receiving device may be in another namespace, so
1513 * we have to clear all information in the skb that could
1514 * impact namespace isolation.
1516 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1518 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1519 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1520 atomic_long_inc(&dev->rx_dropped);
1521 kfree_skb(skb);
1522 return NET_RX_DROP;
1526 skb_orphan(skb);
1527 nf_reset(skb);
1529 if (unlikely(!is_skb_forwardable(dev, skb))) {
1530 atomic_long_inc(&dev->rx_dropped);
1531 kfree_skb(skb);
1532 return NET_RX_DROP;
1534 skb_set_dev(skb, dev);
1535 skb->tstamp.tv64 = 0;
1536 skb->pkt_type = PACKET_HOST;
1537 skb->protocol = eth_type_trans(skb, dev);
1538 return netif_rx(skb);
1540 EXPORT_SYMBOL_GPL(dev_forward_skb);
1542 static inline int deliver_skb(struct sk_buff *skb,
1543 struct packet_type *pt_prev,
1544 struct net_device *orig_dev)
1546 atomic_inc(&skb->users);
1547 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1551 * Support routine. Sends outgoing frames to any network
1552 * taps currently in use.
1555 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1557 struct packet_type *ptype;
1558 struct sk_buff *skb2 = NULL;
1559 struct packet_type *pt_prev = NULL;
1561 rcu_read_lock();
1562 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1563 /* Never send packets back to the socket
1564 * they originated from - MvS (miquels@drinkel.ow.org)
1566 if ((ptype->dev == dev || !ptype->dev) &&
1567 (ptype->af_packet_priv == NULL ||
1568 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1569 if (pt_prev) {
1570 deliver_skb(skb2, pt_prev, skb->dev);
1571 pt_prev = ptype;
1572 continue;
1575 skb2 = skb_clone(skb, GFP_ATOMIC);
1576 if (!skb2)
1577 break;
1579 net_timestamp_set(skb2);
1581 /* skb->nh should be correctly
1582 set by sender, so that the second statement is
1583 just protection against buggy protocols.
1585 skb_reset_mac_header(skb2);
1587 if (skb_network_header(skb2) < skb2->data ||
1588 skb2->network_header > skb2->tail) {
1589 if (net_ratelimit())
1590 printk(KERN_CRIT "protocol %04x is "
1591 "buggy, dev %s\n",
1592 ntohs(skb2->protocol),
1593 dev->name);
1594 skb_reset_network_header(skb2);
1597 skb2->transport_header = skb2->network_header;
1598 skb2->pkt_type = PACKET_OUTGOING;
1599 pt_prev = ptype;
1602 if (pt_prev)
1603 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1604 rcu_read_unlock();
1607 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1608 * @dev: Network device
1609 * @txq: number of queues available
1611 * If real_num_tx_queues is changed the tc mappings may no longer be
1612 * valid. To resolve this verify the tc mapping remains valid and if
1613 * not NULL the mapping. With no priorities mapping to this
1614 * offset/count pair it will no longer be used. In the worst case TC0
1615 * is invalid nothing can be done so disable priority mappings. If is
1616 * expected that drivers will fix this mapping if they can before
1617 * calling netif_set_real_num_tx_queues.
1619 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1621 int i;
1622 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1624 /* If TC0 is invalidated disable TC mapping */
1625 if (tc->offset + tc->count > txq) {
1626 pr_warning("Number of in use tx queues changed "
1627 "invalidating tc mappings. Priority "
1628 "traffic classification disabled!\n");
1629 dev->num_tc = 0;
1630 return;
1633 /* Invalidated prio to tc mappings set to TC0 */
1634 for (i = 1; i < TC_BITMASK + 1; i++) {
1635 int q = netdev_get_prio_tc_map(dev, i);
1637 tc = &dev->tc_to_txq[q];
1638 if (tc->offset + tc->count > txq) {
1639 pr_warning("Number of in use tx queues "
1640 "changed. Priority %i to tc "
1641 "mapping %i is no longer valid "
1642 "setting map to 0\n",
1643 i, q);
1644 netdev_set_prio_tc_map(dev, i, 0);
1650 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1651 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1653 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1655 int rc;
1657 if (txq < 1 || txq > dev->num_tx_queues)
1658 return -EINVAL;
1660 if (dev->reg_state == NETREG_REGISTERED ||
1661 dev->reg_state == NETREG_UNREGISTERING) {
1662 ASSERT_RTNL();
1664 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1665 txq);
1666 if (rc)
1667 return rc;
1669 if (dev->num_tc)
1670 netif_setup_tc(dev, txq);
1672 if (txq < dev->real_num_tx_queues)
1673 qdisc_reset_all_tx_gt(dev, txq);
1676 dev->real_num_tx_queues = txq;
1677 return 0;
1679 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1681 #ifdef CONFIG_RPS
1683 * netif_set_real_num_rx_queues - set actual number of RX queues used
1684 * @dev: Network device
1685 * @rxq: Actual number of RX queues
1687 * This must be called either with the rtnl_lock held or before
1688 * registration of the net device. Returns 0 on success, or a
1689 * negative error code. If called before registration, it always
1690 * succeeds.
1692 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1694 int rc;
1696 if (rxq < 1 || rxq > dev->num_rx_queues)
1697 return -EINVAL;
1699 if (dev->reg_state == NETREG_REGISTERED) {
1700 ASSERT_RTNL();
1702 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1703 rxq);
1704 if (rc)
1705 return rc;
1708 dev->real_num_rx_queues = rxq;
1709 return 0;
1711 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1712 #endif
1714 static inline void __netif_reschedule(struct Qdisc *q)
1716 struct softnet_data *sd;
1717 unsigned long flags;
1719 local_irq_save(flags);
1720 sd = &__get_cpu_var(softnet_data);
1721 q->next_sched = NULL;
1722 *sd->output_queue_tailp = q;
1723 sd->output_queue_tailp = &q->next_sched;
1724 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1725 local_irq_restore(flags);
1728 void __netif_schedule(struct Qdisc *q)
1730 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1731 __netif_reschedule(q);
1733 EXPORT_SYMBOL(__netif_schedule);
1735 void dev_kfree_skb_irq(struct sk_buff *skb)
1737 if (atomic_dec_and_test(&skb->users)) {
1738 struct softnet_data *sd;
1739 unsigned long flags;
1741 local_irq_save(flags);
1742 sd = &__get_cpu_var(softnet_data);
1743 skb->next = sd->completion_queue;
1744 sd->completion_queue = skb;
1745 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1746 local_irq_restore(flags);
1749 EXPORT_SYMBOL(dev_kfree_skb_irq);
1751 void dev_kfree_skb_any(struct sk_buff *skb)
1753 if (in_irq() || irqs_disabled())
1754 dev_kfree_skb_irq(skb);
1755 else
1756 dev_kfree_skb(skb);
1758 EXPORT_SYMBOL(dev_kfree_skb_any);
1762 * netif_device_detach - mark device as removed
1763 * @dev: network device
1765 * Mark device as removed from system and therefore no longer available.
1767 void netif_device_detach(struct net_device *dev)
1769 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1770 netif_running(dev)) {
1771 netif_tx_stop_all_queues(dev);
1774 EXPORT_SYMBOL(netif_device_detach);
1777 * netif_device_attach - mark device as attached
1778 * @dev: network device
1780 * Mark device as attached from system and restart if needed.
1782 void netif_device_attach(struct net_device *dev)
1784 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1785 netif_running(dev)) {
1786 netif_tx_wake_all_queues(dev);
1787 __netdev_watchdog_up(dev);
1790 EXPORT_SYMBOL(netif_device_attach);
1793 * skb_dev_set -- assign a new device to a buffer
1794 * @skb: buffer for the new device
1795 * @dev: network device
1797 * If an skb is owned by a device already, we have to reset
1798 * all data private to the namespace a device belongs to
1799 * before assigning it a new device.
1801 #ifdef CONFIG_NET_NS
1802 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1804 skb_dst_drop(skb);
1805 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1806 secpath_reset(skb);
1807 nf_reset(skb);
1808 skb_init_secmark(skb);
1809 skb->mark = 0;
1810 skb->priority = 0;
1811 skb->nf_trace = 0;
1812 skb->ipvs_property = 0;
1813 #ifdef CONFIG_NET_SCHED
1814 skb->tc_index = 0;
1815 #endif
1817 skb->dev = dev;
1819 EXPORT_SYMBOL(skb_set_dev);
1820 #endif /* CONFIG_NET_NS */
1823 * Invalidate hardware checksum when packet is to be mangled, and
1824 * complete checksum manually on outgoing path.
1826 int skb_checksum_help(struct sk_buff *skb)
1828 __wsum csum;
1829 int ret = 0, offset;
1831 if (skb->ip_summed == CHECKSUM_COMPLETE)
1832 goto out_set_summed;
1834 if (unlikely(skb_shinfo(skb)->gso_size)) {
1835 /* Let GSO fix up the checksum. */
1836 goto out_set_summed;
1839 offset = skb_checksum_start_offset(skb);
1840 BUG_ON(offset >= skb_headlen(skb));
1841 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1843 offset += skb->csum_offset;
1844 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1846 if (skb_cloned(skb) &&
1847 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1848 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1849 if (ret)
1850 goto out;
1853 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1854 out_set_summed:
1855 skb->ip_summed = CHECKSUM_NONE;
1856 out:
1857 return ret;
1859 EXPORT_SYMBOL(skb_checksum_help);
1862 * skb_gso_segment - Perform segmentation on skb.
1863 * @skb: buffer to segment
1864 * @features: features for the output path (see dev->features)
1866 * This function segments the given skb and returns a list of segments.
1868 * It may return NULL if the skb requires no segmentation. This is
1869 * only possible when GSO is used for verifying header integrity.
1871 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1873 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1874 struct packet_type *ptype;
1875 __be16 type = skb->protocol;
1876 int vlan_depth = ETH_HLEN;
1877 int err;
1879 while (type == htons(ETH_P_8021Q)) {
1880 struct vlan_hdr *vh;
1882 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1883 return ERR_PTR(-EINVAL);
1885 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1886 type = vh->h_vlan_encapsulated_proto;
1887 vlan_depth += VLAN_HLEN;
1890 skb_reset_mac_header(skb);
1891 skb->mac_len = skb->network_header - skb->mac_header;
1892 __skb_pull(skb, skb->mac_len);
1894 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1895 struct net_device *dev = skb->dev;
1896 struct ethtool_drvinfo info = {};
1898 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1899 dev->ethtool_ops->get_drvinfo(dev, &info);
1901 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1902 info.driver, dev ? dev->features : 0L,
1903 skb->sk ? skb->sk->sk_route_caps : 0L,
1904 skb->len, skb->data_len, skb->ip_summed);
1906 if (skb_header_cloned(skb) &&
1907 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1908 return ERR_PTR(err);
1911 rcu_read_lock();
1912 list_for_each_entry_rcu(ptype,
1913 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1914 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1915 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1916 err = ptype->gso_send_check(skb);
1917 segs = ERR_PTR(err);
1918 if (err || skb_gso_ok(skb, features))
1919 break;
1920 __skb_push(skb, (skb->data -
1921 skb_network_header(skb)));
1923 segs = ptype->gso_segment(skb, features);
1924 break;
1927 rcu_read_unlock();
1929 __skb_push(skb, skb->data - skb_mac_header(skb));
1931 return segs;
1933 EXPORT_SYMBOL(skb_gso_segment);
1935 /* Take action when hardware reception checksum errors are detected. */
1936 #ifdef CONFIG_BUG
1937 void netdev_rx_csum_fault(struct net_device *dev)
1939 if (net_ratelimit()) {
1940 printk(KERN_ERR "%s: hw csum failure.\n",
1941 dev ? dev->name : "<unknown>");
1942 dump_stack();
1945 EXPORT_SYMBOL(netdev_rx_csum_fault);
1946 #endif
1948 /* Actually, we should eliminate this check as soon as we know, that:
1949 * 1. IOMMU is present and allows to map all the memory.
1950 * 2. No high memory really exists on this machine.
1953 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1955 #ifdef CONFIG_HIGHMEM
1956 int i;
1957 if (!(dev->features & NETIF_F_HIGHDMA)) {
1958 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1959 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1960 return 1;
1963 if (PCI_DMA_BUS_IS_PHYS) {
1964 struct device *pdev = dev->dev.parent;
1966 if (!pdev)
1967 return 0;
1968 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1969 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1970 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1971 return 1;
1974 #endif
1975 return 0;
1978 struct dev_gso_cb {
1979 void (*destructor)(struct sk_buff *skb);
1982 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1984 static void dev_gso_skb_destructor(struct sk_buff *skb)
1986 struct dev_gso_cb *cb;
1988 do {
1989 struct sk_buff *nskb = skb->next;
1991 skb->next = nskb->next;
1992 nskb->next = NULL;
1993 kfree_skb(nskb);
1994 } while (skb->next);
1996 cb = DEV_GSO_CB(skb);
1997 if (cb->destructor)
1998 cb->destructor(skb);
2002 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2003 * @skb: buffer to segment
2004 * @features: device features as applicable to this skb
2006 * This function segments the given skb and stores the list of segments
2007 * in skb->next.
2009 static int dev_gso_segment(struct sk_buff *skb, int features)
2011 struct sk_buff *segs;
2013 segs = skb_gso_segment(skb, features);
2015 /* Verifying header integrity only. */
2016 if (!segs)
2017 return 0;
2019 if (IS_ERR(segs))
2020 return PTR_ERR(segs);
2022 skb->next = segs;
2023 DEV_GSO_CB(skb)->destructor = skb->destructor;
2024 skb->destructor = dev_gso_skb_destructor;
2026 return 0;
2030 * Try to orphan skb early, right before transmission by the device.
2031 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2032 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2034 static inline void skb_orphan_try(struct sk_buff *skb)
2036 struct sock *sk = skb->sk;
2038 if (sk && !skb_shinfo(skb)->tx_flags) {
2039 /* skb_tx_hash() wont be able to get sk.
2040 * We copy sk_hash into skb->rxhash
2042 if (!skb->rxhash)
2043 skb->rxhash = sk->sk_hash;
2044 skb_orphan(skb);
2048 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2050 return ((features & NETIF_F_GEN_CSUM) ||
2051 ((features & NETIF_F_V4_CSUM) &&
2052 protocol == htons(ETH_P_IP)) ||
2053 ((features & NETIF_F_V6_CSUM) &&
2054 protocol == htons(ETH_P_IPV6)) ||
2055 ((features & NETIF_F_FCOE_CRC) &&
2056 protocol == htons(ETH_P_FCOE)));
2059 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2061 if (!can_checksum_protocol(features, protocol)) {
2062 features &= ~NETIF_F_ALL_CSUM;
2063 features &= ~NETIF_F_SG;
2064 } else if (illegal_highdma(skb->dev, skb)) {
2065 features &= ~NETIF_F_SG;
2068 return features;
2071 u32 netif_skb_features(struct sk_buff *skb)
2073 __be16 protocol = skb->protocol;
2074 u32 features = skb->dev->features;
2076 if (protocol == htons(ETH_P_8021Q)) {
2077 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2078 protocol = veh->h_vlan_encapsulated_proto;
2079 } else if (!vlan_tx_tag_present(skb)) {
2080 return harmonize_features(skb, protocol, features);
2083 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2085 if (protocol != htons(ETH_P_8021Q)) {
2086 return harmonize_features(skb, protocol, features);
2087 } else {
2088 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2089 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2090 return harmonize_features(skb, protocol, features);
2093 EXPORT_SYMBOL(netif_skb_features);
2096 * Returns true if either:
2097 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2098 * 2. skb is fragmented and the device does not support SG, or if
2099 * at least one of fragments is in highmem and device does not
2100 * support DMA from it.
2102 static inline int skb_needs_linearize(struct sk_buff *skb,
2103 int features)
2105 return skb_is_nonlinear(skb) &&
2106 ((skb_has_frag_list(skb) &&
2107 !(features & NETIF_F_FRAGLIST)) ||
2108 (skb_shinfo(skb)->nr_frags &&
2109 !(features & NETIF_F_SG)));
2112 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2113 struct netdev_queue *txq)
2115 const struct net_device_ops *ops = dev->netdev_ops;
2116 int rc = NETDEV_TX_OK;
2117 unsigned int skb_len;
2119 if (likely(!skb->next)) {
2120 u32 features;
2123 * If device doesn't need skb->dst, release it right now while
2124 * its hot in this cpu cache
2126 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2127 skb_dst_drop(skb);
2129 if (!list_empty(&ptype_all))
2130 dev_queue_xmit_nit(skb, dev);
2132 skb_orphan_try(skb);
2134 features = netif_skb_features(skb);
2136 if (vlan_tx_tag_present(skb) &&
2137 !(features & NETIF_F_HW_VLAN_TX)) {
2138 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2139 if (unlikely(!skb))
2140 goto out;
2142 skb->vlan_tci = 0;
2145 if (netif_needs_gso(skb, features)) {
2146 if (unlikely(dev_gso_segment(skb, features)))
2147 goto out_kfree_skb;
2148 if (skb->next)
2149 goto gso;
2150 } else {
2151 if (skb_needs_linearize(skb, features) &&
2152 __skb_linearize(skb))
2153 goto out_kfree_skb;
2155 /* If packet is not checksummed and device does not
2156 * support checksumming for this protocol, complete
2157 * checksumming here.
2159 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2160 skb_set_transport_header(skb,
2161 skb_checksum_start_offset(skb));
2162 if (!(features & NETIF_F_ALL_CSUM) &&
2163 skb_checksum_help(skb))
2164 goto out_kfree_skb;
2168 skb_len = skb->len;
2169 rc = ops->ndo_start_xmit(skb, dev);
2170 trace_net_dev_xmit(skb, rc, dev, skb_len);
2171 if (rc == NETDEV_TX_OK)
2172 txq_trans_update(txq);
2173 return rc;
2176 gso:
2177 do {
2178 struct sk_buff *nskb = skb->next;
2180 skb->next = nskb->next;
2181 nskb->next = NULL;
2184 * If device doesn't need nskb->dst, release it right now while
2185 * its hot in this cpu cache
2187 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2188 skb_dst_drop(nskb);
2190 skb_len = nskb->len;
2191 rc = ops->ndo_start_xmit(nskb, dev);
2192 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2193 if (unlikely(rc != NETDEV_TX_OK)) {
2194 if (rc & ~NETDEV_TX_MASK)
2195 goto out_kfree_gso_skb;
2196 nskb->next = skb->next;
2197 skb->next = nskb;
2198 return rc;
2200 txq_trans_update(txq);
2201 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2202 return NETDEV_TX_BUSY;
2203 } while (skb->next);
2205 out_kfree_gso_skb:
2206 if (likely(skb->next == NULL))
2207 skb->destructor = DEV_GSO_CB(skb)->destructor;
2208 out_kfree_skb:
2209 kfree_skb(skb);
2210 out:
2211 return rc;
2214 static u32 hashrnd __read_mostly;
2217 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2218 * to be used as a distribution range.
2220 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2221 unsigned int num_tx_queues)
2223 u32 hash;
2224 u16 qoffset = 0;
2225 u16 qcount = num_tx_queues;
2227 if (skb_rx_queue_recorded(skb)) {
2228 hash = skb_get_rx_queue(skb);
2229 while (unlikely(hash >= num_tx_queues))
2230 hash -= num_tx_queues;
2231 return hash;
2234 if (dev->num_tc) {
2235 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2236 qoffset = dev->tc_to_txq[tc].offset;
2237 qcount = dev->tc_to_txq[tc].count;
2240 if (skb->sk && skb->sk->sk_hash)
2241 hash = skb->sk->sk_hash;
2242 else
2243 hash = (__force u16) skb->protocol ^ skb->rxhash;
2244 hash = jhash_1word(hash, hashrnd);
2246 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2248 EXPORT_SYMBOL(__skb_tx_hash);
2250 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2252 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2253 if (net_ratelimit()) {
2254 pr_warning("%s selects TX queue %d, but "
2255 "real number of TX queues is %d\n",
2256 dev->name, queue_index, dev->real_num_tx_queues);
2258 return 0;
2260 return queue_index;
2263 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2265 #ifdef CONFIG_XPS
2266 struct xps_dev_maps *dev_maps;
2267 struct xps_map *map;
2268 int queue_index = -1;
2270 rcu_read_lock();
2271 dev_maps = rcu_dereference(dev->xps_maps);
2272 if (dev_maps) {
2273 map = rcu_dereference(
2274 dev_maps->cpu_map[raw_smp_processor_id()]);
2275 if (map) {
2276 if (map->len == 1)
2277 queue_index = map->queues[0];
2278 else {
2279 u32 hash;
2280 if (skb->sk && skb->sk->sk_hash)
2281 hash = skb->sk->sk_hash;
2282 else
2283 hash = (__force u16) skb->protocol ^
2284 skb->rxhash;
2285 hash = jhash_1word(hash, hashrnd);
2286 queue_index = map->queues[
2287 ((u64)hash * map->len) >> 32];
2289 if (unlikely(queue_index >= dev->real_num_tx_queues))
2290 queue_index = -1;
2293 rcu_read_unlock();
2295 return queue_index;
2296 #else
2297 return -1;
2298 #endif
2301 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2302 struct sk_buff *skb)
2304 int queue_index;
2305 const struct net_device_ops *ops = dev->netdev_ops;
2307 if (dev->real_num_tx_queues == 1)
2308 queue_index = 0;
2309 else if (ops->ndo_select_queue) {
2310 queue_index = ops->ndo_select_queue(dev, skb);
2311 queue_index = dev_cap_txqueue(dev, queue_index);
2312 } else {
2313 struct sock *sk = skb->sk;
2314 queue_index = sk_tx_queue_get(sk);
2316 if (queue_index < 0 || skb->ooo_okay ||
2317 queue_index >= dev->real_num_tx_queues) {
2318 int old_index = queue_index;
2320 queue_index = get_xps_queue(dev, skb);
2321 if (queue_index < 0)
2322 queue_index = skb_tx_hash(dev, skb);
2324 if (queue_index != old_index && sk) {
2325 struct dst_entry *dst =
2326 rcu_dereference_check(sk->sk_dst_cache, 1);
2328 if (dst && skb_dst(skb) == dst)
2329 sk_tx_queue_set(sk, queue_index);
2334 skb_set_queue_mapping(skb, queue_index);
2335 return netdev_get_tx_queue(dev, queue_index);
2338 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2339 struct net_device *dev,
2340 struct netdev_queue *txq)
2342 spinlock_t *root_lock = qdisc_lock(q);
2343 bool contended;
2344 int rc;
2346 qdisc_skb_cb(skb)->pkt_len = skb->len;
2347 qdisc_calculate_pkt_len(skb, q);
2349 * Heuristic to force contended enqueues to serialize on a
2350 * separate lock before trying to get qdisc main lock.
2351 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2352 * and dequeue packets faster.
2354 contended = qdisc_is_running(q);
2355 if (unlikely(contended))
2356 spin_lock(&q->busylock);
2358 spin_lock(root_lock);
2359 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2360 kfree_skb(skb);
2361 rc = NET_XMIT_DROP;
2362 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2363 qdisc_run_begin(q)) {
2365 * This is a work-conserving queue; there are no old skbs
2366 * waiting to be sent out; and the qdisc is not running -
2367 * xmit the skb directly.
2369 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2370 skb_dst_force(skb);
2372 qdisc_bstats_update(q, skb);
2374 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2375 if (unlikely(contended)) {
2376 spin_unlock(&q->busylock);
2377 contended = false;
2379 __qdisc_run(q);
2380 } else
2381 qdisc_run_end(q);
2383 rc = NET_XMIT_SUCCESS;
2384 } else {
2385 skb_dst_force(skb);
2386 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2387 if (qdisc_run_begin(q)) {
2388 if (unlikely(contended)) {
2389 spin_unlock(&q->busylock);
2390 contended = false;
2392 __qdisc_run(q);
2395 spin_unlock(root_lock);
2396 if (unlikely(contended))
2397 spin_unlock(&q->busylock);
2398 return rc;
2401 static DEFINE_PER_CPU(int, xmit_recursion);
2402 #define RECURSION_LIMIT 10
2405 * dev_queue_xmit - transmit a buffer
2406 * @skb: buffer to transmit
2408 * Queue a buffer for transmission to a network device. The caller must
2409 * have set the device and priority and built the buffer before calling
2410 * this function. The function can be called from an interrupt.
2412 * A negative errno code is returned on a failure. A success does not
2413 * guarantee the frame will be transmitted as it may be dropped due
2414 * to congestion or traffic shaping.
2416 * -----------------------------------------------------------------------------------
2417 * I notice this method can also return errors from the queue disciplines,
2418 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2419 * be positive.
2421 * Regardless of the return value, the skb is consumed, so it is currently
2422 * difficult to retry a send to this method. (You can bump the ref count
2423 * before sending to hold a reference for retry if you are careful.)
2425 * When calling this method, interrupts MUST be enabled. This is because
2426 * the BH enable code must have IRQs enabled so that it will not deadlock.
2427 * --BLG
2429 int dev_queue_xmit(struct sk_buff *skb)
2431 struct net_device *dev = skb->dev;
2432 struct netdev_queue *txq;
2433 struct Qdisc *q;
2434 int rc = -ENOMEM;
2436 /* Disable soft irqs for various locks below. Also
2437 * stops preemption for RCU.
2439 rcu_read_lock_bh();
2441 txq = dev_pick_tx(dev, skb);
2442 q = rcu_dereference_bh(txq->qdisc);
2444 #ifdef CONFIG_NET_CLS_ACT
2445 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2446 #endif
2447 trace_net_dev_queue(skb);
2448 if (q->enqueue) {
2449 rc = __dev_xmit_skb(skb, q, dev, txq);
2450 goto out;
2453 /* The device has no queue. Common case for software devices:
2454 loopback, all the sorts of tunnels...
2456 Really, it is unlikely that netif_tx_lock protection is necessary
2457 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2458 counters.)
2459 However, it is possible, that they rely on protection
2460 made by us here.
2462 Check this and shot the lock. It is not prone from deadlocks.
2463 Either shot noqueue qdisc, it is even simpler 8)
2465 if (dev->flags & IFF_UP) {
2466 int cpu = smp_processor_id(); /* ok because BHs are off */
2468 if (txq->xmit_lock_owner != cpu) {
2470 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2471 goto recursion_alert;
2473 HARD_TX_LOCK(dev, txq, cpu);
2475 if (!netif_tx_queue_stopped(txq)) {
2476 __this_cpu_inc(xmit_recursion);
2477 rc = dev_hard_start_xmit(skb, dev, txq);
2478 __this_cpu_dec(xmit_recursion);
2479 if (dev_xmit_complete(rc)) {
2480 HARD_TX_UNLOCK(dev, txq);
2481 goto out;
2484 HARD_TX_UNLOCK(dev, txq);
2485 if (net_ratelimit())
2486 printk(KERN_CRIT "Virtual device %s asks to "
2487 "queue packet!\n", dev->name);
2488 } else {
2489 /* Recursion is detected! It is possible,
2490 * unfortunately
2492 recursion_alert:
2493 if (net_ratelimit())
2494 printk(KERN_CRIT "Dead loop on virtual device "
2495 "%s, fix it urgently!\n", dev->name);
2499 rc = -ENETDOWN;
2500 rcu_read_unlock_bh();
2502 kfree_skb(skb);
2503 return rc;
2504 out:
2505 rcu_read_unlock_bh();
2506 return rc;
2508 EXPORT_SYMBOL(dev_queue_xmit);
2511 /*=======================================================================
2512 Receiver routines
2513 =======================================================================*/
2515 int netdev_max_backlog __read_mostly = 1000;
2516 int netdev_tstamp_prequeue __read_mostly = 1;
2517 int netdev_budget __read_mostly = 300;
2518 int weight_p __read_mostly = 64; /* old backlog weight */
2520 /* Called with irq disabled */
2521 static inline void ____napi_schedule(struct softnet_data *sd,
2522 struct napi_struct *napi)
2524 list_add_tail(&napi->poll_list, &sd->poll_list);
2525 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2529 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2530 * and src/dst port numbers. Returns a non-zero hash number on success
2531 * and 0 on failure.
2533 __u32 __skb_get_rxhash(struct sk_buff *skb)
2535 int nhoff, hash = 0, poff;
2536 const struct ipv6hdr *ip6;
2537 const struct iphdr *ip;
2538 u8 ip_proto;
2539 u32 addr1, addr2, ihl;
2540 union {
2541 u32 v32;
2542 u16 v16[2];
2543 } ports;
2545 nhoff = skb_network_offset(skb);
2547 switch (skb->protocol) {
2548 case __constant_htons(ETH_P_IP):
2549 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2550 goto done;
2552 ip = (const struct iphdr *) (skb->data + nhoff);
2553 if (ip_is_fragment(ip))
2554 ip_proto = 0;
2555 else
2556 ip_proto = ip->protocol;
2557 addr1 = (__force u32) ip->saddr;
2558 addr2 = (__force u32) ip->daddr;
2559 ihl = ip->ihl;
2560 break;
2561 case __constant_htons(ETH_P_IPV6):
2562 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2563 goto done;
2565 ip6 = (const struct ipv6hdr *) (skb->data + nhoff);
2566 ip_proto = ip6->nexthdr;
2567 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2568 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2569 ihl = (40 >> 2);
2570 break;
2571 default:
2572 goto done;
2575 ports.v32 = 0;
2576 poff = proto_ports_offset(ip_proto);
2577 if (poff >= 0) {
2578 nhoff += ihl * 4 + poff;
2579 if (pskb_may_pull(skb, nhoff + 4)) {
2580 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2581 if (ports.v16[1] < ports.v16[0])
2582 swap(ports.v16[0], ports.v16[1]);
2586 /* get a consistent hash (same value on both flow directions) */
2587 if (addr2 < addr1)
2588 swap(addr1, addr2);
2590 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2591 if (!hash)
2592 hash = 1;
2594 done:
2595 return hash;
2597 EXPORT_SYMBOL(__skb_get_rxhash);
2599 #ifdef CONFIG_RPS
2601 /* One global table that all flow-based protocols share. */
2602 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2603 EXPORT_SYMBOL(rps_sock_flow_table);
2605 static struct rps_dev_flow *
2606 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2607 struct rps_dev_flow *rflow, u16 next_cpu)
2609 u16 tcpu;
2611 tcpu = rflow->cpu = next_cpu;
2612 if (tcpu != RPS_NO_CPU) {
2613 #ifdef CONFIG_RFS_ACCEL
2614 struct netdev_rx_queue *rxqueue;
2615 struct rps_dev_flow_table *flow_table;
2616 struct rps_dev_flow *old_rflow;
2617 u32 flow_id;
2618 u16 rxq_index;
2619 int rc;
2621 /* Should we steer this flow to a different hardware queue? */
2622 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2623 !(dev->features & NETIF_F_NTUPLE))
2624 goto out;
2625 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2626 if (rxq_index == skb_get_rx_queue(skb))
2627 goto out;
2629 rxqueue = dev->_rx + rxq_index;
2630 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2631 if (!flow_table)
2632 goto out;
2633 flow_id = skb->rxhash & flow_table->mask;
2634 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2635 rxq_index, flow_id);
2636 if (rc < 0)
2637 goto out;
2638 old_rflow = rflow;
2639 rflow = &flow_table->flows[flow_id];
2640 rflow->cpu = next_cpu;
2641 rflow->filter = rc;
2642 if (old_rflow->filter == rflow->filter)
2643 old_rflow->filter = RPS_NO_FILTER;
2644 out:
2645 #endif
2646 rflow->last_qtail =
2647 per_cpu(softnet_data, tcpu).input_queue_head;
2650 return rflow;
2654 * get_rps_cpu is called from netif_receive_skb and returns the target
2655 * CPU from the RPS map of the receiving queue for a given skb.
2656 * rcu_read_lock must be held on entry.
2658 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2659 struct rps_dev_flow **rflowp)
2661 struct netdev_rx_queue *rxqueue;
2662 struct rps_map *map;
2663 struct rps_dev_flow_table *flow_table;
2664 struct rps_sock_flow_table *sock_flow_table;
2665 int cpu = -1;
2666 u16 tcpu;
2668 if (skb_rx_queue_recorded(skb)) {
2669 u16 index = skb_get_rx_queue(skb);
2670 if (unlikely(index >= dev->real_num_rx_queues)) {
2671 WARN_ONCE(dev->real_num_rx_queues > 1,
2672 "%s received packet on queue %u, but number "
2673 "of RX queues is %u\n",
2674 dev->name, index, dev->real_num_rx_queues);
2675 goto done;
2677 rxqueue = dev->_rx + index;
2678 } else
2679 rxqueue = dev->_rx;
2681 map = rcu_dereference(rxqueue->rps_map);
2682 if (map) {
2683 if (map->len == 1 &&
2684 !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2685 tcpu = map->cpus[0];
2686 if (cpu_online(tcpu))
2687 cpu = tcpu;
2688 goto done;
2690 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2691 goto done;
2694 skb_reset_network_header(skb);
2695 if (!skb_get_rxhash(skb))
2696 goto done;
2698 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2699 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2700 if (flow_table && sock_flow_table) {
2701 u16 next_cpu;
2702 struct rps_dev_flow *rflow;
2704 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2705 tcpu = rflow->cpu;
2707 next_cpu = sock_flow_table->ents[skb->rxhash &
2708 sock_flow_table->mask];
2711 * If the desired CPU (where last recvmsg was done) is
2712 * different from current CPU (one in the rx-queue flow
2713 * table entry), switch if one of the following holds:
2714 * - Current CPU is unset (equal to RPS_NO_CPU).
2715 * - Current CPU is offline.
2716 * - The current CPU's queue tail has advanced beyond the
2717 * last packet that was enqueued using this table entry.
2718 * This guarantees that all previous packets for the flow
2719 * have been dequeued, thus preserving in order delivery.
2721 if (unlikely(tcpu != next_cpu) &&
2722 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2723 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2724 rflow->last_qtail)) >= 0))
2725 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2727 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2728 *rflowp = rflow;
2729 cpu = tcpu;
2730 goto done;
2734 if (map) {
2735 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2737 if (cpu_online(tcpu)) {
2738 cpu = tcpu;
2739 goto done;
2743 done:
2744 return cpu;
2747 #ifdef CONFIG_RFS_ACCEL
2750 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2751 * @dev: Device on which the filter was set
2752 * @rxq_index: RX queue index
2753 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2754 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2756 * Drivers that implement ndo_rx_flow_steer() should periodically call
2757 * this function for each installed filter and remove the filters for
2758 * which it returns %true.
2760 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2761 u32 flow_id, u16 filter_id)
2763 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2764 struct rps_dev_flow_table *flow_table;
2765 struct rps_dev_flow *rflow;
2766 bool expire = true;
2767 int cpu;
2769 rcu_read_lock();
2770 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2771 if (flow_table && flow_id <= flow_table->mask) {
2772 rflow = &flow_table->flows[flow_id];
2773 cpu = ACCESS_ONCE(rflow->cpu);
2774 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2775 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2776 rflow->last_qtail) <
2777 (int)(10 * flow_table->mask)))
2778 expire = false;
2780 rcu_read_unlock();
2781 return expire;
2783 EXPORT_SYMBOL(rps_may_expire_flow);
2785 #endif /* CONFIG_RFS_ACCEL */
2787 /* Called from hardirq (IPI) context */
2788 static void rps_trigger_softirq(void *data)
2790 struct softnet_data *sd = data;
2792 ____napi_schedule(sd, &sd->backlog);
2793 sd->received_rps++;
2796 #endif /* CONFIG_RPS */
2799 * Check if this softnet_data structure is another cpu one
2800 * If yes, queue it to our IPI list and return 1
2801 * If no, return 0
2803 static int rps_ipi_queued(struct softnet_data *sd)
2805 #ifdef CONFIG_RPS
2806 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2808 if (sd != mysd) {
2809 sd->rps_ipi_next = mysd->rps_ipi_list;
2810 mysd->rps_ipi_list = sd;
2812 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2813 return 1;
2815 #endif /* CONFIG_RPS */
2816 return 0;
2820 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2821 * queue (may be a remote CPU queue).
2823 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2824 unsigned int *qtail)
2826 struct softnet_data *sd;
2827 unsigned long flags;
2829 sd = &per_cpu(softnet_data, cpu);
2831 local_irq_save(flags);
2833 rps_lock(sd);
2834 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2835 if (skb_queue_len(&sd->input_pkt_queue)) {
2836 enqueue:
2837 __skb_queue_tail(&sd->input_pkt_queue, skb);
2838 input_queue_tail_incr_save(sd, qtail);
2839 rps_unlock(sd);
2840 local_irq_restore(flags);
2841 return NET_RX_SUCCESS;
2844 /* Schedule NAPI for backlog device
2845 * We can use non atomic operation since we own the queue lock
2847 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2848 if (!rps_ipi_queued(sd))
2849 ____napi_schedule(sd, &sd->backlog);
2851 goto enqueue;
2854 sd->dropped++;
2855 rps_unlock(sd);
2857 local_irq_restore(flags);
2859 atomic_long_inc(&skb->dev->rx_dropped);
2860 kfree_skb(skb);
2861 return NET_RX_DROP;
2865 * netif_rx - post buffer to the network code
2866 * @skb: buffer to post
2868 * This function receives a packet from a device driver and queues it for
2869 * the upper (protocol) levels to process. It always succeeds. The buffer
2870 * may be dropped during processing for congestion control or by the
2871 * protocol layers.
2873 * return values:
2874 * NET_RX_SUCCESS (no congestion)
2875 * NET_RX_DROP (packet was dropped)
2879 int netif_rx(struct sk_buff *skb)
2881 int ret;
2883 /* if netpoll wants it, pretend we never saw it */
2884 if (netpoll_rx(skb))
2885 return NET_RX_DROP;
2887 if (netdev_tstamp_prequeue)
2888 net_timestamp_check(skb);
2890 trace_netif_rx(skb);
2891 #ifdef CONFIG_RPS
2893 struct rps_dev_flow voidflow, *rflow = &voidflow;
2894 int cpu;
2896 preempt_disable();
2897 rcu_read_lock();
2899 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2900 if (cpu < 0)
2901 cpu = smp_processor_id();
2903 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2905 rcu_read_unlock();
2906 preempt_enable();
2908 #else
2910 unsigned int qtail;
2911 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2912 put_cpu();
2914 #endif
2915 return ret;
2917 EXPORT_SYMBOL(netif_rx);
2919 int netif_rx_ni(struct sk_buff *skb)
2921 int err;
2923 preempt_disable();
2924 err = netif_rx(skb);
2925 if (local_softirq_pending())
2926 do_softirq();
2927 preempt_enable();
2929 return err;
2931 EXPORT_SYMBOL(netif_rx_ni);
2933 static void net_tx_action(struct softirq_action *h)
2935 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2937 if (sd->completion_queue) {
2938 struct sk_buff *clist;
2940 local_irq_disable();
2941 clist = sd->completion_queue;
2942 sd->completion_queue = NULL;
2943 local_irq_enable();
2945 while (clist) {
2946 struct sk_buff *skb = clist;
2947 clist = clist->next;
2949 WARN_ON(atomic_read(&skb->users));
2950 trace_kfree_skb(skb, net_tx_action);
2951 __kfree_skb(skb);
2955 if (sd->output_queue) {
2956 struct Qdisc *head;
2958 local_irq_disable();
2959 head = sd->output_queue;
2960 sd->output_queue = NULL;
2961 sd->output_queue_tailp = &sd->output_queue;
2962 local_irq_enable();
2964 while (head) {
2965 struct Qdisc *q = head;
2966 spinlock_t *root_lock;
2968 head = head->next_sched;
2970 root_lock = qdisc_lock(q);
2971 if (spin_trylock(root_lock)) {
2972 smp_mb__before_clear_bit();
2973 clear_bit(__QDISC_STATE_SCHED,
2974 &q->state);
2975 qdisc_run(q);
2976 spin_unlock(root_lock);
2977 } else {
2978 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2979 &q->state)) {
2980 __netif_reschedule(q);
2981 } else {
2982 smp_mb__before_clear_bit();
2983 clear_bit(__QDISC_STATE_SCHED,
2984 &q->state);
2991 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2992 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2993 /* This hook is defined here for ATM LANE */
2994 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2995 unsigned char *addr) __read_mostly;
2996 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2997 #endif
2999 #ifdef CONFIG_NET_CLS_ACT
3000 /* TODO: Maybe we should just force sch_ingress to be compiled in
3001 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3002 * a compare and 2 stores extra right now if we dont have it on
3003 * but have CONFIG_NET_CLS_ACT
3004 * NOTE: This doesn't stop any functionality; if you dont have
3005 * the ingress scheduler, you just can't add policies on ingress.
3008 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3010 struct net_device *dev = skb->dev;
3011 u32 ttl = G_TC_RTTL(skb->tc_verd);
3012 int result = TC_ACT_OK;
3013 struct Qdisc *q;
3015 if (unlikely(MAX_RED_LOOP < ttl++)) {
3016 if (net_ratelimit())
3017 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3018 skb->skb_iif, dev->ifindex);
3019 return TC_ACT_SHOT;
3022 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3023 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3025 q = rxq->qdisc;
3026 if (q != &noop_qdisc) {
3027 spin_lock(qdisc_lock(q));
3028 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3029 result = qdisc_enqueue_root(skb, q);
3030 spin_unlock(qdisc_lock(q));
3033 return result;
3036 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3037 struct packet_type **pt_prev,
3038 int *ret, struct net_device *orig_dev)
3040 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3042 if (!rxq || rxq->qdisc == &noop_qdisc)
3043 goto out;
3045 if (*pt_prev) {
3046 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3047 *pt_prev = NULL;
3050 switch (ing_filter(skb, rxq)) {
3051 case TC_ACT_SHOT:
3052 case TC_ACT_STOLEN:
3053 kfree_skb(skb);
3054 return NULL;
3057 out:
3058 skb->tc_verd = 0;
3059 return skb;
3061 #endif
3064 * netdev_rx_handler_register - register receive handler
3065 * @dev: device to register a handler for
3066 * @rx_handler: receive handler to register
3067 * @rx_handler_data: data pointer that is used by rx handler
3069 * Register a receive hander for a device. This handler will then be
3070 * called from __netif_receive_skb. A negative errno code is returned
3071 * on a failure.
3073 * The caller must hold the rtnl_mutex.
3075 * For a general description of rx_handler, see enum rx_handler_result.
3077 int netdev_rx_handler_register(struct net_device *dev,
3078 rx_handler_func_t *rx_handler,
3079 void *rx_handler_data)
3081 ASSERT_RTNL();
3083 if (dev->rx_handler)
3084 return -EBUSY;
3086 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3087 rcu_assign_pointer(dev->rx_handler, rx_handler);
3089 return 0;
3091 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3094 * netdev_rx_handler_unregister - unregister receive handler
3095 * @dev: device to unregister a handler from
3097 * Unregister a receive hander from a device.
3099 * The caller must hold the rtnl_mutex.
3101 void netdev_rx_handler_unregister(struct net_device *dev)
3104 ASSERT_RTNL();
3105 rcu_assign_pointer(dev->rx_handler, NULL);
3106 rcu_assign_pointer(dev->rx_handler_data, NULL);
3108 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3110 static int __netif_receive_skb(struct sk_buff *skb)
3112 struct packet_type *ptype, *pt_prev;
3113 rx_handler_func_t *rx_handler;
3114 struct net_device *orig_dev;
3115 struct net_device *null_or_dev;
3116 bool deliver_exact = false;
3117 int ret = NET_RX_DROP;
3118 __be16 type;
3120 if (!netdev_tstamp_prequeue)
3121 net_timestamp_check(skb);
3123 trace_netif_receive_skb(skb);
3125 /* if we've gotten here through NAPI, check netpoll */
3126 if (netpoll_receive_skb(skb))
3127 return NET_RX_DROP;
3129 if (!skb->skb_iif)
3130 skb->skb_iif = skb->dev->ifindex;
3131 orig_dev = skb->dev;
3133 skb_reset_network_header(skb);
3134 skb_reset_transport_header(skb);
3135 skb_reset_mac_len(skb);
3137 pt_prev = NULL;
3139 rcu_read_lock();
3141 another_round:
3143 __this_cpu_inc(softnet_data.processed);
3145 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3146 skb = vlan_untag(skb);
3147 if (unlikely(!skb))
3148 goto out;
3151 #ifdef CONFIG_NET_CLS_ACT
3152 if (skb->tc_verd & TC_NCLS) {
3153 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3154 goto ncls;
3156 #endif
3158 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3159 if (!ptype->dev || ptype->dev == skb->dev) {
3160 if (pt_prev)
3161 ret = deliver_skb(skb, pt_prev, orig_dev);
3162 pt_prev = ptype;
3166 #ifdef CONFIG_NET_CLS_ACT
3167 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3168 if (!skb)
3169 goto out;
3170 ncls:
3171 #endif
3173 rx_handler = rcu_dereference(skb->dev->rx_handler);
3174 if (rx_handler) {
3175 if (pt_prev) {
3176 ret = deliver_skb(skb, pt_prev, orig_dev);
3177 pt_prev = NULL;
3179 switch (rx_handler(&skb)) {
3180 case RX_HANDLER_CONSUMED:
3181 goto out;
3182 case RX_HANDLER_ANOTHER:
3183 goto another_round;
3184 case RX_HANDLER_EXACT:
3185 deliver_exact = true;
3186 case RX_HANDLER_PASS:
3187 break;
3188 default:
3189 BUG();
3193 if (vlan_tx_tag_present(skb)) {
3194 if (pt_prev) {
3195 ret = deliver_skb(skb, pt_prev, orig_dev);
3196 pt_prev = NULL;
3198 if (vlan_do_receive(&skb)) {
3199 ret = __netif_receive_skb(skb);
3200 goto out;
3201 } else if (unlikely(!skb))
3202 goto out;
3205 /* deliver only exact match when indicated */
3206 null_or_dev = deliver_exact ? skb->dev : NULL;
3208 type = skb->protocol;
3209 list_for_each_entry_rcu(ptype,
3210 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3211 if (ptype->type == type &&
3212 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3213 ptype->dev == orig_dev)) {
3214 if (pt_prev)
3215 ret = deliver_skb(skb, pt_prev, orig_dev);
3216 pt_prev = ptype;
3220 if (pt_prev) {
3221 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3222 } else {
3223 atomic_long_inc(&skb->dev->rx_dropped);
3224 kfree_skb(skb);
3225 /* Jamal, now you will not able to escape explaining
3226 * me how you were going to use this. :-)
3228 ret = NET_RX_DROP;
3231 out:
3232 rcu_read_unlock();
3233 return ret;
3237 * netif_receive_skb - process receive buffer from network
3238 * @skb: buffer to process
3240 * netif_receive_skb() is the main receive data processing function.
3241 * It always succeeds. The buffer may be dropped during processing
3242 * for congestion control or by the protocol layers.
3244 * This function may only be called from softirq context and interrupts
3245 * should be enabled.
3247 * Return values (usually ignored):
3248 * NET_RX_SUCCESS: no congestion
3249 * NET_RX_DROP: packet was dropped
3251 int netif_receive_skb(struct sk_buff *skb)
3253 if (netdev_tstamp_prequeue)
3254 net_timestamp_check(skb);
3256 if (skb_defer_rx_timestamp(skb))
3257 return NET_RX_SUCCESS;
3259 #ifdef CONFIG_RPS
3261 struct rps_dev_flow voidflow, *rflow = &voidflow;
3262 int cpu, ret;
3264 rcu_read_lock();
3266 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3268 if (cpu >= 0) {
3269 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3270 rcu_read_unlock();
3271 } else {
3272 rcu_read_unlock();
3273 ret = __netif_receive_skb(skb);
3276 return ret;
3278 #else
3279 return __netif_receive_skb(skb);
3280 #endif
3282 EXPORT_SYMBOL(netif_receive_skb);
3284 /* Network device is going away, flush any packets still pending
3285 * Called with irqs disabled.
3287 static void flush_backlog(void *arg)
3289 struct net_device *dev = arg;
3290 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3291 struct sk_buff *skb, *tmp;
3293 rps_lock(sd);
3294 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3295 if (skb->dev == dev) {
3296 __skb_unlink(skb, &sd->input_pkt_queue);
3297 kfree_skb(skb);
3298 input_queue_head_incr(sd);
3301 rps_unlock(sd);
3303 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3304 if (skb->dev == dev) {
3305 __skb_unlink(skb, &sd->process_queue);
3306 kfree_skb(skb);
3307 input_queue_head_incr(sd);
3312 static int napi_gro_complete(struct sk_buff *skb)
3314 struct packet_type *ptype;
3315 __be16 type = skb->protocol;
3316 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3317 int err = -ENOENT;
3319 if (NAPI_GRO_CB(skb)->count == 1) {
3320 skb_shinfo(skb)->gso_size = 0;
3321 goto out;
3324 rcu_read_lock();
3325 list_for_each_entry_rcu(ptype, head, list) {
3326 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3327 continue;
3329 err = ptype->gro_complete(skb);
3330 break;
3332 rcu_read_unlock();
3334 if (err) {
3335 WARN_ON(&ptype->list == head);
3336 kfree_skb(skb);
3337 return NET_RX_SUCCESS;
3340 out:
3341 return netif_receive_skb(skb);
3344 inline void napi_gro_flush(struct napi_struct *napi)
3346 struct sk_buff *skb, *next;
3348 for (skb = napi->gro_list; skb; skb = next) {
3349 next = skb->next;
3350 skb->next = NULL;
3351 napi_gro_complete(skb);
3354 napi->gro_count = 0;
3355 napi->gro_list = NULL;
3357 EXPORT_SYMBOL(napi_gro_flush);
3359 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3361 struct sk_buff **pp = NULL;
3362 struct packet_type *ptype;
3363 __be16 type = skb->protocol;
3364 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3365 int same_flow;
3366 int mac_len;
3367 enum gro_result ret;
3369 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3370 goto normal;
3372 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3373 goto normal;
3375 rcu_read_lock();
3376 list_for_each_entry_rcu(ptype, head, list) {
3377 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3378 continue;
3380 skb_set_network_header(skb, skb_gro_offset(skb));
3381 mac_len = skb->network_header - skb->mac_header;
3382 skb->mac_len = mac_len;
3383 NAPI_GRO_CB(skb)->same_flow = 0;
3384 NAPI_GRO_CB(skb)->flush = 0;
3385 NAPI_GRO_CB(skb)->free = 0;
3387 pp = ptype->gro_receive(&napi->gro_list, skb);
3388 break;
3390 rcu_read_unlock();
3392 if (&ptype->list == head)
3393 goto normal;
3395 same_flow = NAPI_GRO_CB(skb)->same_flow;
3396 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3398 if (pp) {
3399 struct sk_buff *nskb = *pp;
3401 *pp = nskb->next;
3402 nskb->next = NULL;
3403 napi_gro_complete(nskb);
3404 napi->gro_count--;
3407 if (same_flow)
3408 goto ok;
3410 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3411 goto normal;
3413 napi->gro_count++;
3414 NAPI_GRO_CB(skb)->count = 1;
3415 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3416 skb->next = napi->gro_list;
3417 napi->gro_list = skb;
3418 ret = GRO_HELD;
3420 pull:
3421 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3422 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3424 BUG_ON(skb->end - skb->tail < grow);
3426 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3428 skb->tail += grow;
3429 skb->data_len -= grow;
3431 skb_shinfo(skb)->frags[0].page_offset += grow;
3432 skb_shinfo(skb)->frags[0].size -= grow;
3434 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3435 put_page(skb_shinfo(skb)->frags[0].page);
3436 memmove(skb_shinfo(skb)->frags,
3437 skb_shinfo(skb)->frags + 1,
3438 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3443 return ret;
3445 normal:
3446 ret = GRO_NORMAL;
3447 goto pull;
3449 EXPORT_SYMBOL(dev_gro_receive);
3451 static inline gro_result_t
3452 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3454 struct sk_buff *p;
3456 for (p = napi->gro_list; p; p = p->next) {
3457 unsigned long diffs;
3459 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3460 diffs |= p->vlan_tci ^ skb->vlan_tci;
3461 diffs |= compare_ether_header(skb_mac_header(p),
3462 skb_gro_mac_header(skb));
3463 NAPI_GRO_CB(p)->same_flow = !diffs;
3464 NAPI_GRO_CB(p)->flush = 0;
3467 return dev_gro_receive(napi, skb);
3470 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3472 switch (ret) {
3473 case GRO_NORMAL:
3474 if (netif_receive_skb(skb))
3475 ret = GRO_DROP;
3476 break;
3478 case GRO_DROP:
3479 case GRO_MERGED_FREE:
3480 kfree_skb(skb);
3481 break;
3483 case GRO_HELD:
3484 case GRO_MERGED:
3485 break;
3488 return ret;
3490 EXPORT_SYMBOL(napi_skb_finish);
3492 void skb_gro_reset_offset(struct sk_buff *skb)
3494 NAPI_GRO_CB(skb)->data_offset = 0;
3495 NAPI_GRO_CB(skb)->frag0 = NULL;
3496 NAPI_GRO_CB(skb)->frag0_len = 0;
3498 if (skb->mac_header == skb->tail &&
3499 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3500 NAPI_GRO_CB(skb)->frag0 =
3501 page_address(skb_shinfo(skb)->frags[0].page) +
3502 skb_shinfo(skb)->frags[0].page_offset;
3503 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3506 EXPORT_SYMBOL(skb_gro_reset_offset);
3508 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3510 skb_gro_reset_offset(skb);
3512 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3514 EXPORT_SYMBOL(napi_gro_receive);
3516 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3518 __skb_pull(skb, skb_headlen(skb));
3519 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3520 skb->vlan_tci = 0;
3521 skb->dev = napi->dev;
3522 skb->skb_iif = 0;
3524 napi->skb = skb;
3527 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3529 struct sk_buff *skb = napi->skb;
3531 if (!skb) {
3532 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3533 if (skb)
3534 napi->skb = skb;
3536 return skb;
3538 EXPORT_SYMBOL(napi_get_frags);
3540 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3541 gro_result_t ret)
3543 switch (ret) {
3544 case GRO_NORMAL:
3545 case GRO_HELD:
3546 skb->protocol = eth_type_trans(skb, skb->dev);
3548 if (ret == GRO_HELD)
3549 skb_gro_pull(skb, -ETH_HLEN);
3550 else if (netif_receive_skb(skb))
3551 ret = GRO_DROP;
3552 break;
3554 case GRO_DROP:
3555 case GRO_MERGED_FREE:
3556 napi_reuse_skb(napi, skb);
3557 break;
3559 case GRO_MERGED:
3560 break;
3563 return ret;
3565 EXPORT_SYMBOL(napi_frags_finish);
3567 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3569 struct sk_buff *skb = napi->skb;
3570 struct ethhdr *eth;
3571 unsigned int hlen;
3572 unsigned int off;
3574 napi->skb = NULL;
3576 skb_reset_mac_header(skb);
3577 skb_gro_reset_offset(skb);
3579 off = skb_gro_offset(skb);
3580 hlen = off + sizeof(*eth);
3581 eth = skb_gro_header_fast(skb, off);
3582 if (skb_gro_header_hard(skb, hlen)) {
3583 eth = skb_gro_header_slow(skb, hlen, off);
3584 if (unlikely(!eth)) {
3585 napi_reuse_skb(napi, skb);
3586 skb = NULL;
3587 goto out;
3591 skb_gro_pull(skb, sizeof(*eth));
3594 * This works because the only protocols we care about don't require
3595 * special handling. We'll fix it up properly at the end.
3597 skb->protocol = eth->h_proto;
3599 out:
3600 return skb;
3602 EXPORT_SYMBOL(napi_frags_skb);
3604 gro_result_t napi_gro_frags(struct napi_struct *napi)
3606 struct sk_buff *skb = napi_frags_skb(napi);
3608 if (!skb)
3609 return GRO_DROP;
3611 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3613 EXPORT_SYMBOL(napi_gro_frags);
3616 * net_rps_action sends any pending IPI's for rps.
3617 * Note: called with local irq disabled, but exits with local irq enabled.
3619 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3621 #ifdef CONFIG_RPS
3622 struct softnet_data *remsd = sd->rps_ipi_list;
3624 if (remsd) {
3625 sd->rps_ipi_list = NULL;
3627 local_irq_enable();
3629 /* Send pending IPI's to kick RPS processing on remote cpus. */
3630 while (remsd) {
3631 struct softnet_data *next = remsd->rps_ipi_next;
3633 if (cpu_online(remsd->cpu))
3634 __smp_call_function_single(remsd->cpu,
3635 &remsd->csd, 0);
3636 remsd = next;
3638 } else
3639 #endif
3640 local_irq_enable();
3643 static int process_backlog(struct napi_struct *napi, int quota)
3645 int work = 0;
3646 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3648 #ifdef CONFIG_RPS
3649 /* Check if we have pending ipi, its better to send them now,
3650 * not waiting net_rx_action() end.
3652 if (sd->rps_ipi_list) {
3653 local_irq_disable();
3654 net_rps_action_and_irq_enable(sd);
3656 #endif
3657 napi->weight = weight_p;
3658 local_irq_disable();
3659 while (work < quota) {
3660 struct sk_buff *skb;
3661 unsigned int qlen;
3663 while ((skb = __skb_dequeue(&sd->process_queue))) {
3664 local_irq_enable();
3665 __netif_receive_skb(skb);
3666 local_irq_disable();
3667 input_queue_head_incr(sd);
3668 if (++work >= quota) {
3669 local_irq_enable();
3670 return work;
3674 rps_lock(sd);
3675 qlen = skb_queue_len(&sd->input_pkt_queue);
3676 if (qlen)
3677 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3678 &sd->process_queue);
3680 if (qlen < quota - work) {
3682 * Inline a custom version of __napi_complete().
3683 * only current cpu owns and manipulates this napi,
3684 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3685 * we can use a plain write instead of clear_bit(),
3686 * and we dont need an smp_mb() memory barrier.
3688 list_del(&napi->poll_list);
3689 napi->state = 0;
3691 quota = work + qlen;
3693 rps_unlock(sd);
3695 local_irq_enable();
3697 return work;
3701 * __napi_schedule - schedule for receive
3702 * @n: entry to schedule
3704 * The entry's receive function will be scheduled to run
3706 void __napi_schedule(struct napi_struct *n)
3708 unsigned long flags;
3710 local_irq_save(flags);
3711 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3712 local_irq_restore(flags);
3714 EXPORT_SYMBOL(__napi_schedule);
3716 void __napi_complete(struct napi_struct *n)
3718 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3719 BUG_ON(n->gro_list);
3721 list_del(&n->poll_list);
3722 smp_mb__before_clear_bit();
3723 clear_bit(NAPI_STATE_SCHED, &n->state);
3725 EXPORT_SYMBOL(__napi_complete);
3727 void napi_complete(struct napi_struct *n)
3729 unsigned long flags;
3732 * don't let napi dequeue from the cpu poll list
3733 * just in case its running on a different cpu
3735 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3736 return;
3738 napi_gro_flush(n);
3739 local_irq_save(flags);
3740 __napi_complete(n);
3741 local_irq_restore(flags);
3743 EXPORT_SYMBOL(napi_complete);
3745 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3746 int (*poll)(struct napi_struct *, int), int weight)
3748 INIT_LIST_HEAD(&napi->poll_list);
3749 napi->gro_count = 0;
3750 napi->gro_list = NULL;
3751 napi->skb = NULL;
3752 napi->poll = poll;
3753 napi->weight = weight;
3754 list_add(&napi->dev_list, &dev->napi_list);
3755 napi->dev = dev;
3756 #ifdef CONFIG_NETPOLL
3757 spin_lock_init(&napi->poll_lock);
3758 napi->poll_owner = -1;
3759 #endif
3760 set_bit(NAPI_STATE_SCHED, &napi->state);
3762 EXPORT_SYMBOL(netif_napi_add);
3764 void netif_napi_del(struct napi_struct *napi)
3766 struct sk_buff *skb, *next;
3768 list_del_init(&napi->dev_list);
3769 napi_free_frags(napi);
3771 for (skb = napi->gro_list; skb; skb = next) {
3772 next = skb->next;
3773 skb->next = NULL;
3774 kfree_skb(skb);
3777 napi->gro_list = NULL;
3778 napi->gro_count = 0;
3780 EXPORT_SYMBOL(netif_napi_del);
3782 static void net_rx_action(struct softirq_action *h)
3784 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3785 unsigned long time_limit = jiffies + 2;
3786 int budget = netdev_budget;
3787 void *have;
3789 local_irq_disable();
3791 while (!list_empty(&sd->poll_list)) {
3792 struct napi_struct *n;
3793 int work, weight;
3795 /* If softirq window is exhuasted then punt.
3796 * Allow this to run for 2 jiffies since which will allow
3797 * an average latency of 1.5/HZ.
3799 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3800 goto softnet_break;
3802 local_irq_enable();
3804 /* Even though interrupts have been re-enabled, this
3805 * access is safe because interrupts can only add new
3806 * entries to the tail of this list, and only ->poll()
3807 * calls can remove this head entry from the list.
3809 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3811 have = netpoll_poll_lock(n);
3813 weight = n->weight;
3815 /* This NAPI_STATE_SCHED test is for avoiding a race
3816 * with netpoll's poll_napi(). Only the entity which
3817 * obtains the lock and sees NAPI_STATE_SCHED set will
3818 * actually make the ->poll() call. Therefore we avoid
3819 * accidentally calling ->poll() when NAPI is not scheduled.
3821 work = 0;
3822 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3823 work = n->poll(n, weight);
3824 trace_napi_poll(n);
3827 WARN_ON_ONCE(work > weight);
3829 budget -= work;
3831 local_irq_disable();
3833 /* Drivers must not modify the NAPI state if they
3834 * consume the entire weight. In such cases this code
3835 * still "owns" the NAPI instance and therefore can
3836 * move the instance around on the list at-will.
3838 if (unlikely(work == weight)) {
3839 if (unlikely(napi_disable_pending(n))) {
3840 local_irq_enable();
3841 napi_complete(n);
3842 local_irq_disable();
3843 } else
3844 list_move_tail(&n->poll_list, &sd->poll_list);
3847 netpoll_poll_unlock(have);
3849 out:
3850 net_rps_action_and_irq_enable(sd);
3852 #ifdef CONFIG_NET_DMA
3854 * There may not be any more sk_buffs coming right now, so push
3855 * any pending DMA copies to hardware
3857 dma_issue_pending_all();
3858 #endif
3860 return;
3862 softnet_break:
3863 sd->time_squeeze++;
3864 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3865 goto out;
3868 static gifconf_func_t *gifconf_list[NPROTO];
3871 * register_gifconf - register a SIOCGIF handler
3872 * @family: Address family
3873 * @gifconf: Function handler
3875 * Register protocol dependent address dumping routines. The handler
3876 * that is passed must not be freed or reused until it has been replaced
3877 * by another handler.
3879 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3881 if (family >= NPROTO)
3882 return -EINVAL;
3883 gifconf_list[family] = gifconf;
3884 return 0;
3886 EXPORT_SYMBOL(register_gifconf);
3890 * Map an interface index to its name (SIOCGIFNAME)
3894 * We need this ioctl for efficient implementation of the
3895 * if_indextoname() function required by the IPv6 API. Without
3896 * it, we would have to search all the interfaces to find a
3897 * match. --pb
3900 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3902 struct net_device *dev;
3903 struct ifreq ifr;
3906 * Fetch the caller's info block.
3909 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3910 return -EFAULT;
3912 rcu_read_lock();
3913 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3914 if (!dev) {
3915 rcu_read_unlock();
3916 return -ENODEV;
3919 strcpy(ifr.ifr_name, dev->name);
3920 rcu_read_unlock();
3922 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3923 return -EFAULT;
3924 return 0;
3928 * Perform a SIOCGIFCONF call. This structure will change
3929 * size eventually, and there is nothing I can do about it.
3930 * Thus we will need a 'compatibility mode'.
3933 static int dev_ifconf(struct net *net, char __user *arg)
3935 struct ifconf ifc;
3936 struct net_device *dev;
3937 char __user *pos;
3938 int len;
3939 int total;
3940 int i;
3943 * Fetch the caller's info block.
3946 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3947 return -EFAULT;
3949 pos = ifc.ifc_buf;
3950 len = ifc.ifc_len;
3953 * Loop over the interfaces, and write an info block for each.
3956 total = 0;
3957 for_each_netdev(net, dev) {
3958 for (i = 0; i < NPROTO; i++) {
3959 if (gifconf_list[i]) {
3960 int done;
3961 if (!pos)
3962 done = gifconf_list[i](dev, NULL, 0);
3963 else
3964 done = gifconf_list[i](dev, pos + total,
3965 len - total);
3966 if (done < 0)
3967 return -EFAULT;
3968 total += done;
3974 * All done. Write the updated control block back to the caller.
3976 ifc.ifc_len = total;
3979 * Both BSD and Solaris return 0 here, so we do too.
3981 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3984 #ifdef CONFIG_PROC_FS
3986 * This is invoked by the /proc filesystem handler to display a device
3987 * in detail.
3989 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3990 __acquires(RCU)
3992 struct net *net = seq_file_net(seq);
3993 loff_t off;
3994 struct net_device *dev;
3996 rcu_read_lock();
3997 if (!*pos)
3998 return SEQ_START_TOKEN;
4000 off = 1;
4001 for_each_netdev_rcu(net, dev)
4002 if (off++ == *pos)
4003 return dev;
4005 return NULL;
4008 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4010 struct net_device *dev = v;
4012 if (v == SEQ_START_TOKEN)
4013 dev = first_net_device_rcu(seq_file_net(seq));
4014 else
4015 dev = next_net_device_rcu(dev);
4017 ++*pos;
4018 return dev;
4021 void dev_seq_stop(struct seq_file *seq, void *v)
4022 __releases(RCU)
4024 rcu_read_unlock();
4027 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4029 struct rtnl_link_stats64 temp;
4030 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4032 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4033 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4034 dev->name, stats->rx_bytes, stats->rx_packets,
4035 stats->rx_errors,
4036 stats->rx_dropped + stats->rx_missed_errors,
4037 stats->rx_fifo_errors,
4038 stats->rx_length_errors + stats->rx_over_errors +
4039 stats->rx_crc_errors + stats->rx_frame_errors,
4040 stats->rx_compressed, stats->multicast,
4041 stats->tx_bytes, stats->tx_packets,
4042 stats->tx_errors, stats->tx_dropped,
4043 stats->tx_fifo_errors, stats->collisions,
4044 stats->tx_carrier_errors +
4045 stats->tx_aborted_errors +
4046 stats->tx_window_errors +
4047 stats->tx_heartbeat_errors,
4048 stats->tx_compressed);
4052 * Called from the PROCfs module. This now uses the new arbitrary sized
4053 * /proc/net interface to create /proc/net/dev
4055 static int dev_seq_show(struct seq_file *seq, void *v)
4057 if (v == SEQ_START_TOKEN)
4058 seq_puts(seq, "Inter-| Receive "
4059 " | Transmit\n"
4060 " face |bytes packets errs drop fifo frame "
4061 "compressed multicast|bytes packets errs "
4062 "drop fifo colls carrier compressed\n");
4063 else
4064 dev_seq_printf_stats(seq, v);
4065 return 0;
4068 static struct softnet_data *softnet_get_online(loff_t *pos)
4070 struct softnet_data *sd = NULL;
4072 while (*pos < nr_cpu_ids)
4073 if (cpu_online(*pos)) {
4074 sd = &per_cpu(softnet_data, *pos);
4075 break;
4076 } else
4077 ++*pos;
4078 return sd;
4081 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4083 return softnet_get_online(pos);
4086 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4088 ++*pos;
4089 return softnet_get_online(pos);
4092 static void softnet_seq_stop(struct seq_file *seq, void *v)
4096 static int softnet_seq_show(struct seq_file *seq, void *v)
4098 struct softnet_data *sd = v;
4100 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4101 sd->processed, sd->dropped, sd->time_squeeze, 0,
4102 0, 0, 0, 0, /* was fastroute */
4103 sd->cpu_collision, sd->received_rps);
4104 return 0;
4107 static const struct seq_operations dev_seq_ops = {
4108 .start = dev_seq_start,
4109 .next = dev_seq_next,
4110 .stop = dev_seq_stop,
4111 .show = dev_seq_show,
4114 static int dev_seq_open(struct inode *inode, struct file *file)
4116 return seq_open_net(inode, file, &dev_seq_ops,
4117 sizeof(struct seq_net_private));
4120 static const struct file_operations dev_seq_fops = {
4121 .owner = THIS_MODULE,
4122 .open = dev_seq_open,
4123 .read = seq_read,
4124 .llseek = seq_lseek,
4125 .release = seq_release_net,
4128 static const struct seq_operations softnet_seq_ops = {
4129 .start = softnet_seq_start,
4130 .next = softnet_seq_next,
4131 .stop = softnet_seq_stop,
4132 .show = softnet_seq_show,
4135 static int softnet_seq_open(struct inode *inode, struct file *file)
4137 return seq_open(file, &softnet_seq_ops);
4140 static const struct file_operations softnet_seq_fops = {
4141 .owner = THIS_MODULE,
4142 .open = softnet_seq_open,
4143 .read = seq_read,
4144 .llseek = seq_lseek,
4145 .release = seq_release,
4148 static void *ptype_get_idx(loff_t pos)
4150 struct packet_type *pt = NULL;
4151 loff_t i = 0;
4152 int t;
4154 list_for_each_entry_rcu(pt, &ptype_all, list) {
4155 if (i == pos)
4156 return pt;
4157 ++i;
4160 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4161 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4162 if (i == pos)
4163 return pt;
4164 ++i;
4167 return NULL;
4170 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4171 __acquires(RCU)
4173 rcu_read_lock();
4174 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4177 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4179 struct packet_type *pt;
4180 struct list_head *nxt;
4181 int hash;
4183 ++*pos;
4184 if (v == SEQ_START_TOKEN)
4185 return ptype_get_idx(0);
4187 pt = v;
4188 nxt = pt->list.next;
4189 if (pt->type == htons(ETH_P_ALL)) {
4190 if (nxt != &ptype_all)
4191 goto found;
4192 hash = 0;
4193 nxt = ptype_base[0].next;
4194 } else
4195 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4197 while (nxt == &ptype_base[hash]) {
4198 if (++hash >= PTYPE_HASH_SIZE)
4199 return NULL;
4200 nxt = ptype_base[hash].next;
4202 found:
4203 return list_entry(nxt, struct packet_type, list);
4206 static void ptype_seq_stop(struct seq_file *seq, void *v)
4207 __releases(RCU)
4209 rcu_read_unlock();
4212 static int ptype_seq_show(struct seq_file *seq, void *v)
4214 struct packet_type *pt = v;
4216 if (v == SEQ_START_TOKEN)
4217 seq_puts(seq, "Type Device Function\n");
4218 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4219 if (pt->type == htons(ETH_P_ALL))
4220 seq_puts(seq, "ALL ");
4221 else
4222 seq_printf(seq, "%04x", ntohs(pt->type));
4224 seq_printf(seq, " %-8s %pF\n",
4225 pt->dev ? pt->dev->name : "", pt->func);
4228 return 0;
4231 static const struct seq_operations ptype_seq_ops = {
4232 .start = ptype_seq_start,
4233 .next = ptype_seq_next,
4234 .stop = ptype_seq_stop,
4235 .show = ptype_seq_show,
4238 static int ptype_seq_open(struct inode *inode, struct file *file)
4240 return seq_open_net(inode, file, &ptype_seq_ops,
4241 sizeof(struct seq_net_private));
4244 static const struct file_operations ptype_seq_fops = {
4245 .owner = THIS_MODULE,
4246 .open = ptype_seq_open,
4247 .read = seq_read,
4248 .llseek = seq_lseek,
4249 .release = seq_release_net,
4253 static int __net_init dev_proc_net_init(struct net *net)
4255 int rc = -ENOMEM;
4257 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4258 goto out;
4259 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4260 goto out_dev;
4261 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4262 goto out_softnet;
4264 if (wext_proc_init(net))
4265 goto out_ptype;
4266 rc = 0;
4267 out:
4268 return rc;
4269 out_ptype:
4270 proc_net_remove(net, "ptype");
4271 out_softnet:
4272 proc_net_remove(net, "softnet_stat");
4273 out_dev:
4274 proc_net_remove(net, "dev");
4275 goto out;
4278 static void __net_exit dev_proc_net_exit(struct net *net)
4280 wext_proc_exit(net);
4282 proc_net_remove(net, "ptype");
4283 proc_net_remove(net, "softnet_stat");
4284 proc_net_remove(net, "dev");
4287 static struct pernet_operations __net_initdata dev_proc_ops = {
4288 .init = dev_proc_net_init,
4289 .exit = dev_proc_net_exit,
4292 static int __init dev_proc_init(void)
4294 return register_pernet_subsys(&dev_proc_ops);
4296 #else
4297 #define dev_proc_init() 0
4298 #endif /* CONFIG_PROC_FS */
4302 * netdev_set_master - set up master pointer
4303 * @slave: slave device
4304 * @master: new master device
4306 * Changes the master device of the slave. Pass %NULL to break the
4307 * bonding. The caller must hold the RTNL semaphore. On a failure
4308 * a negative errno code is returned. On success the reference counts
4309 * are adjusted and the function returns zero.
4311 int netdev_set_master(struct net_device *slave, struct net_device *master)
4313 struct net_device *old = slave->master;
4315 ASSERT_RTNL();
4317 if (master) {
4318 if (old)
4319 return -EBUSY;
4320 dev_hold(master);
4323 slave->master = master;
4325 if (old)
4326 dev_put(old);
4327 return 0;
4329 EXPORT_SYMBOL(netdev_set_master);
4332 * netdev_set_bond_master - set up bonding master/slave pair
4333 * @slave: slave device
4334 * @master: new master device
4336 * Changes the master device of the slave. Pass %NULL to break the
4337 * bonding. The caller must hold the RTNL semaphore. On a failure
4338 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4339 * to the routing socket and the function returns zero.
4341 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4343 int err;
4345 ASSERT_RTNL();
4347 err = netdev_set_master(slave, master);
4348 if (err)
4349 return err;
4350 if (master)
4351 slave->flags |= IFF_SLAVE;
4352 else
4353 slave->flags &= ~IFF_SLAVE;
4355 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4356 return 0;
4358 EXPORT_SYMBOL(netdev_set_bond_master);
4360 static void dev_change_rx_flags(struct net_device *dev, int flags)
4362 const struct net_device_ops *ops = dev->netdev_ops;
4364 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4365 ops->ndo_change_rx_flags(dev, flags);
4368 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4370 unsigned short old_flags = dev->flags;
4371 uid_t uid;
4372 gid_t gid;
4374 ASSERT_RTNL();
4376 dev->flags |= IFF_PROMISC;
4377 dev->promiscuity += inc;
4378 if (dev->promiscuity == 0) {
4380 * Avoid overflow.
4381 * If inc causes overflow, untouch promisc and return error.
4383 if (inc < 0)
4384 dev->flags &= ~IFF_PROMISC;
4385 else {
4386 dev->promiscuity -= inc;
4387 printk(KERN_WARNING "%s: promiscuity touches roof, "
4388 "set promiscuity failed, promiscuity feature "
4389 "of device might be broken.\n", dev->name);
4390 return -EOVERFLOW;
4393 if (dev->flags != old_flags) {
4394 printk(KERN_INFO "device %s %s promiscuous mode\n",
4395 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4396 "left");
4397 if (audit_enabled) {
4398 current_uid_gid(&uid, &gid);
4399 audit_log(current->audit_context, GFP_ATOMIC,
4400 AUDIT_ANOM_PROMISCUOUS,
4401 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4402 dev->name, (dev->flags & IFF_PROMISC),
4403 (old_flags & IFF_PROMISC),
4404 audit_get_loginuid(current),
4405 uid, gid,
4406 audit_get_sessionid(current));
4409 dev_change_rx_flags(dev, IFF_PROMISC);
4411 return 0;
4415 * dev_set_promiscuity - update promiscuity count on a device
4416 * @dev: device
4417 * @inc: modifier
4419 * Add or remove promiscuity from a device. While the count in the device
4420 * remains above zero the interface remains promiscuous. Once it hits zero
4421 * the device reverts back to normal filtering operation. A negative inc
4422 * value is used to drop promiscuity on the device.
4423 * Return 0 if successful or a negative errno code on error.
4425 int dev_set_promiscuity(struct net_device *dev, int inc)
4427 unsigned short old_flags = dev->flags;
4428 int err;
4430 err = __dev_set_promiscuity(dev, inc);
4431 if (err < 0)
4432 return err;
4433 if (dev->flags != old_flags)
4434 dev_set_rx_mode(dev);
4435 return err;
4437 EXPORT_SYMBOL(dev_set_promiscuity);
4440 * dev_set_allmulti - update allmulti count on a device
4441 * @dev: device
4442 * @inc: modifier
4444 * Add or remove reception of all multicast frames to a device. While the
4445 * count in the device remains above zero the interface remains listening
4446 * to all interfaces. Once it hits zero the device reverts back to normal
4447 * filtering operation. A negative @inc value is used to drop the counter
4448 * when releasing a resource needing all multicasts.
4449 * Return 0 if successful or a negative errno code on error.
4452 int dev_set_allmulti(struct net_device *dev, int inc)
4454 unsigned short old_flags = dev->flags;
4456 ASSERT_RTNL();
4458 dev->flags |= IFF_ALLMULTI;
4459 dev->allmulti += inc;
4460 if (dev->allmulti == 0) {
4462 * Avoid overflow.
4463 * If inc causes overflow, untouch allmulti and return error.
4465 if (inc < 0)
4466 dev->flags &= ~IFF_ALLMULTI;
4467 else {
4468 dev->allmulti -= inc;
4469 printk(KERN_WARNING "%s: allmulti touches roof, "
4470 "set allmulti failed, allmulti feature of "
4471 "device might be broken.\n", dev->name);
4472 return -EOVERFLOW;
4475 if (dev->flags ^ old_flags) {
4476 dev_change_rx_flags(dev, IFF_ALLMULTI);
4477 dev_set_rx_mode(dev);
4479 return 0;
4481 EXPORT_SYMBOL(dev_set_allmulti);
4484 * Upload unicast and multicast address lists to device and
4485 * configure RX filtering. When the device doesn't support unicast
4486 * filtering it is put in promiscuous mode while unicast addresses
4487 * are present.
4489 void __dev_set_rx_mode(struct net_device *dev)
4491 const struct net_device_ops *ops = dev->netdev_ops;
4493 /* dev_open will call this function so the list will stay sane. */
4494 if (!(dev->flags&IFF_UP))
4495 return;
4497 if (!netif_device_present(dev))
4498 return;
4500 if (ops->ndo_set_rx_mode)
4501 ops->ndo_set_rx_mode(dev);
4502 else {
4503 /* Unicast addresses changes may only happen under the rtnl,
4504 * therefore calling __dev_set_promiscuity here is safe.
4506 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4507 __dev_set_promiscuity(dev, 1);
4508 dev->uc_promisc = true;
4509 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4510 __dev_set_promiscuity(dev, -1);
4511 dev->uc_promisc = false;
4514 if (ops->ndo_set_multicast_list)
4515 ops->ndo_set_multicast_list(dev);
4519 void dev_set_rx_mode(struct net_device *dev)
4521 netif_addr_lock_bh(dev);
4522 __dev_set_rx_mode(dev);
4523 netif_addr_unlock_bh(dev);
4527 * dev_ethtool_get_settings - call device's ethtool_ops::get_settings()
4528 * @dev: device
4529 * @cmd: memory area for ethtool_ops::get_settings() result
4531 * The cmd arg is initialized properly (cleared and
4532 * ethtool_cmd::cmd field set to ETHTOOL_GSET).
4534 * Return device's ethtool_ops::get_settings() result value or
4535 * -EOPNOTSUPP when device doesn't expose
4536 * ethtool_ops::get_settings() operation.
4538 int dev_ethtool_get_settings(struct net_device *dev,
4539 struct ethtool_cmd *cmd)
4541 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings)
4542 return -EOPNOTSUPP;
4544 memset(cmd, 0, sizeof(struct ethtool_cmd));
4545 cmd->cmd = ETHTOOL_GSET;
4546 return dev->ethtool_ops->get_settings(dev, cmd);
4548 EXPORT_SYMBOL(dev_ethtool_get_settings);
4551 * dev_get_flags - get flags reported to userspace
4552 * @dev: device
4554 * Get the combination of flag bits exported through APIs to userspace.
4556 unsigned dev_get_flags(const struct net_device *dev)
4558 unsigned flags;
4560 flags = (dev->flags & ~(IFF_PROMISC |
4561 IFF_ALLMULTI |
4562 IFF_RUNNING |
4563 IFF_LOWER_UP |
4564 IFF_DORMANT)) |
4565 (dev->gflags & (IFF_PROMISC |
4566 IFF_ALLMULTI));
4568 if (netif_running(dev)) {
4569 if (netif_oper_up(dev))
4570 flags |= IFF_RUNNING;
4571 if (netif_carrier_ok(dev))
4572 flags |= IFF_LOWER_UP;
4573 if (netif_dormant(dev))
4574 flags |= IFF_DORMANT;
4577 return flags;
4579 EXPORT_SYMBOL(dev_get_flags);
4581 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4583 int old_flags = dev->flags;
4584 int ret;
4586 ASSERT_RTNL();
4589 * Set the flags on our device.
4592 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4593 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4594 IFF_AUTOMEDIA)) |
4595 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4596 IFF_ALLMULTI));
4599 * Load in the correct multicast list now the flags have changed.
4602 if ((old_flags ^ flags) & IFF_MULTICAST)
4603 dev_change_rx_flags(dev, IFF_MULTICAST);
4605 dev_set_rx_mode(dev);
4608 * Have we downed the interface. We handle IFF_UP ourselves
4609 * according to user attempts to set it, rather than blindly
4610 * setting it.
4613 ret = 0;
4614 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4615 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4617 if (!ret)
4618 dev_set_rx_mode(dev);
4621 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4622 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4624 dev->gflags ^= IFF_PROMISC;
4625 dev_set_promiscuity(dev, inc);
4628 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4629 is important. Some (broken) drivers set IFF_PROMISC, when
4630 IFF_ALLMULTI is requested not asking us and not reporting.
4632 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4633 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4635 dev->gflags ^= IFF_ALLMULTI;
4636 dev_set_allmulti(dev, inc);
4639 return ret;
4642 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4644 unsigned int changes = dev->flags ^ old_flags;
4646 if (changes & IFF_UP) {
4647 if (dev->flags & IFF_UP)
4648 call_netdevice_notifiers(NETDEV_UP, dev);
4649 else
4650 call_netdevice_notifiers(NETDEV_DOWN, dev);
4653 if (dev->flags & IFF_UP &&
4654 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4655 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4659 * dev_change_flags - change device settings
4660 * @dev: device
4661 * @flags: device state flags
4663 * Change settings on device based state flags. The flags are
4664 * in the userspace exported format.
4666 int dev_change_flags(struct net_device *dev, unsigned flags)
4668 int ret, changes;
4669 int old_flags = dev->flags;
4671 ret = __dev_change_flags(dev, flags);
4672 if (ret < 0)
4673 return ret;
4675 changes = old_flags ^ dev->flags;
4676 if (changes)
4677 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4679 __dev_notify_flags(dev, old_flags);
4680 return ret;
4682 EXPORT_SYMBOL(dev_change_flags);
4685 * dev_set_mtu - Change maximum transfer unit
4686 * @dev: device
4687 * @new_mtu: new transfer unit
4689 * Change the maximum transfer size of the network device.
4691 int dev_set_mtu(struct net_device *dev, int new_mtu)
4693 const struct net_device_ops *ops = dev->netdev_ops;
4694 int err;
4696 if (new_mtu == dev->mtu)
4697 return 0;
4699 /* MTU must be positive. */
4700 if (new_mtu < 0)
4701 return -EINVAL;
4703 if (!netif_device_present(dev))
4704 return -ENODEV;
4706 err = 0;
4707 if (ops->ndo_change_mtu)
4708 err = ops->ndo_change_mtu(dev, new_mtu);
4709 else
4710 dev->mtu = new_mtu;
4712 if (!err && dev->flags & IFF_UP)
4713 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4714 return err;
4716 EXPORT_SYMBOL(dev_set_mtu);
4719 * dev_set_group - Change group this device belongs to
4720 * @dev: device
4721 * @new_group: group this device should belong to
4723 void dev_set_group(struct net_device *dev, int new_group)
4725 dev->group = new_group;
4727 EXPORT_SYMBOL(dev_set_group);
4730 * dev_set_mac_address - Change Media Access Control Address
4731 * @dev: device
4732 * @sa: new address
4734 * Change the hardware (MAC) address of the device
4736 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4738 const struct net_device_ops *ops = dev->netdev_ops;
4739 int err;
4741 if (!ops->ndo_set_mac_address)
4742 return -EOPNOTSUPP;
4743 if (sa->sa_family != dev->type)
4744 return -EINVAL;
4745 if (!netif_device_present(dev))
4746 return -ENODEV;
4747 err = ops->ndo_set_mac_address(dev, sa);
4748 if (!err)
4749 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4750 return err;
4752 EXPORT_SYMBOL(dev_set_mac_address);
4755 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4757 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4759 int err;
4760 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4762 if (!dev)
4763 return -ENODEV;
4765 switch (cmd) {
4766 case SIOCGIFFLAGS: /* Get interface flags */
4767 ifr->ifr_flags = (short) dev_get_flags(dev);
4768 return 0;
4770 case SIOCGIFMETRIC: /* Get the metric on the interface
4771 (currently unused) */
4772 ifr->ifr_metric = 0;
4773 return 0;
4775 case SIOCGIFMTU: /* Get the MTU of a device */
4776 ifr->ifr_mtu = dev->mtu;
4777 return 0;
4779 case SIOCGIFHWADDR:
4780 if (!dev->addr_len)
4781 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4782 else
4783 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4784 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4785 ifr->ifr_hwaddr.sa_family = dev->type;
4786 return 0;
4788 case SIOCGIFSLAVE:
4789 err = -EINVAL;
4790 break;
4792 case SIOCGIFMAP:
4793 ifr->ifr_map.mem_start = dev->mem_start;
4794 ifr->ifr_map.mem_end = dev->mem_end;
4795 ifr->ifr_map.base_addr = dev->base_addr;
4796 ifr->ifr_map.irq = dev->irq;
4797 ifr->ifr_map.dma = dev->dma;
4798 ifr->ifr_map.port = dev->if_port;
4799 return 0;
4801 case SIOCGIFINDEX:
4802 ifr->ifr_ifindex = dev->ifindex;
4803 return 0;
4805 case SIOCGIFTXQLEN:
4806 ifr->ifr_qlen = dev->tx_queue_len;
4807 return 0;
4809 default:
4810 /* dev_ioctl() should ensure this case
4811 * is never reached
4813 WARN_ON(1);
4814 err = -ENOTTY;
4815 break;
4818 return err;
4822 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4824 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4826 int err;
4827 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4828 const struct net_device_ops *ops;
4830 if (!dev)
4831 return -ENODEV;
4833 ops = dev->netdev_ops;
4835 switch (cmd) {
4836 case SIOCSIFFLAGS: /* Set interface flags */
4837 return dev_change_flags(dev, ifr->ifr_flags);
4839 case SIOCSIFMETRIC: /* Set the metric on the interface
4840 (currently unused) */
4841 return -EOPNOTSUPP;
4843 case SIOCSIFMTU: /* Set the MTU of a device */
4844 return dev_set_mtu(dev, ifr->ifr_mtu);
4846 case SIOCSIFHWADDR:
4847 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4849 case SIOCSIFHWBROADCAST:
4850 if (ifr->ifr_hwaddr.sa_family != dev->type)
4851 return -EINVAL;
4852 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4853 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4854 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4855 return 0;
4857 case SIOCSIFMAP:
4858 if (ops->ndo_set_config) {
4859 if (!netif_device_present(dev))
4860 return -ENODEV;
4861 return ops->ndo_set_config(dev, &ifr->ifr_map);
4863 return -EOPNOTSUPP;
4865 case SIOCADDMULTI:
4866 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4867 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4868 return -EINVAL;
4869 if (!netif_device_present(dev))
4870 return -ENODEV;
4871 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4873 case SIOCDELMULTI:
4874 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4875 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4876 return -EINVAL;
4877 if (!netif_device_present(dev))
4878 return -ENODEV;
4879 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4881 case SIOCSIFTXQLEN:
4882 if (ifr->ifr_qlen < 0)
4883 return -EINVAL;
4884 dev->tx_queue_len = ifr->ifr_qlen;
4885 return 0;
4887 case SIOCSIFNAME:
4888 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4889 return dev_change_name(dev, ifr->ifr_newname);
4892 * Unknown or private ioctl
4894 default:
4895 if ((cmd >= SIOCDEVPRIVATE &&
4896 cmd <= SIOCDEVPRIVATE + 15) ||
4897 cmd == SIOCBONDENSLAVE ||
4898 cmd == SIOCBONDRELEASE ||
4899 cmd == SIOCBONDSETHWADDR ||
4900 cmd == SIOCBONDSLAVEINFOQUERY ||
4901 cmd == SIOCBONDINFOQUERY ||
4902 cmd == SIOCBONDCHANGEACTIVE ||
4903 cmd == SIOCGMIIPHY ||
4904 cmd == SIOCGMIIREG ||
4905 cmd == SIOCSMIIREG ||
4906 cmd == SIOCBRADDIF ||
4907 cmd == SIOCBRDELIF ||
4908 cmd == SIOCSHWTSTAMP ||
4909 cmd == SIOCWANDEV) {
4910 err = -EOPNOTSUPP;
4911 if (ops->ndo_do_ioctl) {
4912 if (netif_device_present(dev))
4913 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4914 else
4915 err = -ENODEV;
4917 } else
4918 err = -EINVAL;
4921 return err;
4925 * This function handles all "interface"-type I/O control requests. The actual
4926 * 'doing' part of this is dev_ifsioc above.
4930 * dev_ioctl - network device ioctl
4931 * @net: the applicable net namespace
4932 * @cmd: command to issue
4933 * @arg: pointer to a struct ifreq in user space
4935 * Issue ioctl functions to devices. This is normally called by the
4936 * user space syscall interfaces but can sometimes be useful for
4937 * other purposes. The return value is the return from the syscall if
4938 * positive or a negative errno code on error.
4941 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4943 struct ifreq ifr;
4944 int ret;
4945 char *colon;
4947 /* One special case: SIOCGIFCONF takes ifconf argument
4948 and requires shared lock, because it sleeps writing
4949 to user space.
4952 if (cmd == SIOCGIFCONF) {
4953 rtnl_lock();
4954 ret = dev_ifconf(net, (char __user *) arg);
4955 rtnl_unlock();
4956 return ret;
4958 if (cmd == SIOCGIFNAME)
4959 return dev_ifname(net, (struct ifreq __user *)arg);
4961 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4962 return -EFAULT;
4964 ifr.ifr_name[IFNAMSIZ-1] = 0;
4966 colon = strchr(ifr.ifr_name, ':');
4967 if (colon)
4968 *colon = 0;
4971 * See which interface the caller is talking about.
4974 switch (cmd) {
4976 * These ioctl calls:
4977 * - can be done by all.
4978 * - atomic and do not require locking.
4979 * - return a value
4981 case SIOCGIFFLAGS:
4982 case SIOCGIFMETRIC:
4983 case SIOCGIFMTU:
4984 case SIOCGIFHWADDR:
4985 case SIOCGIFSLAVE:
4986 case SIOCGIFMAP:
4987 case SIOCGIFINDEX:
4988 case SIOCGIFTXQLEN:
4989 dev_load(net, ifr.ifr_name);
4990 rcu_read_lock();
4991 ret = dev_ifsioc_locked(net, &ifr, cmd);
4992 rcu_read_unlock();
4993 if (!ret) {
4994 if (colon)
4995 *colon = ':';
4996 if (copy_to_user(arg, &ifr,
4997 sizeof(struct ifreq)))
4998 ret = -EFAULT;
5000 return ret;
5002 case SIOCETHTOOL:
5003 dev_load(net, ifr.ifr_name);
5004 rtnl_lock();
5005 ret = dev_ethtool(net, &ifr);
5006 rtnl_unlock();
5007 if (!ret) {
5008 if (colon)
5009 *colon = ':';
5010 if (copy_to_user(arg, &ifr,
5011 sizeof(struct ifreq)))
5012 ret = -EFAULT;
5014 return ret;
5017 * These ioctl calls:
5018 * - require superuser power.
5019 * - require strict serialization.
5020 * - return a value
5022 case SIOCGMIIPHY:
5023 case SIOCGMIIREG:
5024 case SIOCSIFNAME:
5025 if (!capable(CAP_NET_ADMIN))
5026 return -EPERM;
5027 dev_load(net, ifr.ifr_name);
5028 rtnl_lock();
5029 ret = dev_ifsioc(net, &ifr, cmd);
5030 rtnl_unlock();
5031 if (!ret) {
5032 if (colon)
5033 *colon = ':';
5034 if (copy_to_user(arg, &ifr,
5035 sizeof(struct ifreq)))
5036 ret = -EFAULT;
5038 return ret;
5041 * These ioctl calls:
5042 * - require superuser power.
5043 * - require strict serialization.
5044 * - do not return a value
5046 case SIOCSIFFLAGS:
5047 case SIOCSIFMETRIC:
5048 case SIOCSIFMTU:
5049 case SIOCSIFMAP:
5050 case SIOCSIFHWADDR:
5051 case SIOCSIFSLAVE:
5052 case SIOCADDMULTI:
5053 case SIOCDELMULTI:
5054 case SIOCSIFHWBROADCAST:
5055 case SIOCSIFTXQLEN:
5056 case SIOCSMIIREG:
5057 case SIOCBONDENSLAVE:
5058 case SIOCBONDRELEASE:
5059 case SIOCBONDSETHWADDR:
5060 case SIOCBONDCHANGEACTIVE:
5061 case SIOCBRADDIF:
5062 case SIOCBRDELIF:
5063 case SIOCSHWTSTAMP:
5064 if (!capable(CAP_NET_ADMIN))
5065 return -EPERM;
5066 /* fall through */
5067 case SIOCBONDSLAVEINFOQUERY:
5068 case SIOCBONDINFOQUERY:
5069 dev_load(net, ifr.ifr_name);
5070 rtnl_lock();
5071 ret = dev_ifsioc(net, &ifr, cmd);
5072 rtnl_unlock();
5073 return ret;
5075 case SIOCGIFMEM:
5076 /* Get the per device memory space. We can add this but
5077 * currently do not support it */
5078 case SIOCSIFMEM:
5079 /* Set the per device memory buffer space.
5080 * Not applicable in our case */
5081 case SIOCSIFLINK:
5082 return -ENOTTY;
5085 * Unknown or private ioctl.
5087 default:
5088 if (cmd == SIOCWANDEV ||
5089 (cmd >= SIOCDEVPRIVATE &&
5090 cmd <= SIOCDEVPRIVATE + 15)) {
5091 dev_load(net, ifr.ifr_name);
5092 rtnl_lock();
5093 ret = dev_ifsioc(net, &ifr, cmd);
5094 rtnl_unlock();
5095 if (!ret && copy_to_user(arg, &ifr,
5096 sizeof(struct ifreq)))
5097 ret = -EFAULT;
5098 return ret;
5100 /* Take care of Wireless Extensions */
5101 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5102 return wext_handle_ioctl(net, &ifr, cmd, arg);
5103 return -ENOTTY;
5109 * dev_new_index - allocate an ifindex
5110 * @net: the applicable net namespace
5112 * Returns a suitable unique value for a new device interface
5113 * number. The caller must hold the rtnl semaphore or the
5114 * dev_base_lock to be sure it remains unique.
5116 static int dev_new_index(struct net *net)
5118 static int ifindex;
5119 for (;;) {
5120 if (++ifindex <= 0)
5121 ifindex = 1;
5122 if (!__dev_get_by_index(net, ifindex))
5123 return ifindex;
5127 /* Delayed registration/unregisteration */
5128 static LIST_HEAD(net_todo_list);
5130 static void net_set_todo(struct net_device *dev)
5132 list_add_tail(&dev->todo_list, &net_todo_list);
5135 static void rollback_registered_many(struct list_head *head)
5137 struct net_device *dev, *tmp;
5139 BUG_ON(dev_boot_phase);
5140 ASSERT_RTNL();
5142 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5143 /* Some devices call without registering
5144 * for initialization unwind. Remove those
5145 * devices and proceed with the remaining.
5147 if (dev->reg_state == NETREG_UNINITIALIZED) {
5148 pr_debug("unregister_netdevice: device %s/%p never "
5149 "was registered\n", dev->name, dev);
5151 WARN_ON(1);
5152 list_del(&dev->unreg_list);
5153 continue;
5155 dev->dismantle = true;
5156 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5159 /* If device is running, close it first. */
5160 dev_close_many(head);
5162 list_for_each_entry(dev, head, unreg_list) {
5163 /* And unlink it from device chain. */
5164 unlist_netdevice(dev);
5166 dev->reg_state = NETREG_UNREGISTERING;
5169 synchronize_net();
5171 list_for_each_entry(dev, head, unreg_list) {
5172 /* Shutdown queueing discipline. */
5173 dev_shutdown(dev);
5176 /* Notify protocols, that we are about to destroy
5177 this device. They should clean all the things.
5179 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5181 if (!dev->rtnl_link_ops ||
5182 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5183 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5186 * Flush the unicast and multicast chains
5188 dev_uc_flush(dev);
5189 dev_mc_flush(dev);
5191 if (dev->netdev_ops->ndo_uninit)
5192 dev->netdev_ops->ndo_uninit(dev);
5194 /* Notifier chain MUST detach us from master device. */
5195 WARN_ON(dev->master);
5197 /* Remove entries from kobject tree */
5198 netdev_unregister_kobject(dev);
5201 /* Process any work delayed until the end of the batch */
5202 dev = list_first_entry(head, struct net_device, unreg_list);
5203 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5205 rcu_barrier();
5207 list_for_each_entry(dev, head, unreg_list)
5208 dev_put(dev);
5211 static void rollback_registered(struct net_device *dev)
5213 LIST_HEAD(single);
5215 list_add(&dev->unreg_list, &single);
5216 rollback_registered_many(&single);
5217 list_del(&single);
5220 static u32 netdev_fix_features(struct net_device *dev, u32 features)
5222 /* Fix illegal checksum combinations */
5223 if ((features & NETIF_F_HW_CSUM) &&
5224 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5225 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5226 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5229 if ((features & NETIF_F_NO_CSUM) &&
5230 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5231 netdev_warn(dev, "mixed no checksumming and other settings.\n");
5232 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5235 /* Fix illegal SG+CSUM combinations. */
5236 if ((features & NETIF_F_SG) &&
5237 !(features & NETIF_F_ALL_CSUM)) {
5238 netdev_dbg(dev,
5239 "Dropping NETIF_F_SG since no checksum feature.\n");
5240 features &= ~NETIF_F_SG;
5243 /* TSO requires that SG is present as well. */
5244 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5245 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5246 features &= ~NETIF_F_ALL_TSO;
5249 /* TSO ECN requires that TSO is present as well. */
5250 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5251 features &= ~NETIF_F_TSO_ECN;
5253 /* Software GSO depends on SG. */
5254 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5255 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5256 features &= ~NETIF_F_GSO;
5259 /* UFO needs SG and checksumming */
5260 if (features & NETIF_F_UFO) {
5261 /* maybe split UFO into V4 and V6? */
5262 if (!((features & NETIF_F_GEN_CSUM) ||
5263 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5264 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5265 netdev_dbg(dev,
5266 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5267 features &= ~NETIF_F_UFO;
5270 if (!(features & NETIF_F_SG)) {
5271 netdev_dbg(dev,
5272 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5273 features &= ~NETIF_F_UFO;
5277 return features;
5280 int __netdev_update_features(struct net_device *dev)
5282 u32 features;
5283 int err = 0;
5285 ASSERT_RTNL();
5287 features = netdev_get_wanted_features(dev);
5289 if (dev->netdev_ops->ndo_fix_features)
5290 features = dev->netdev_ops->ndo_fix_features(dev, features);
5292 /* driver might be less strict about feature dependencies */
5293 features = netdev_fix_features(dev, features);
5295 if (dev->features == features)
5296 return 0;
5298 netdev_dbg(dev, "Features changed: 0x%08x -> 0x%08x\n",
5299 dev->features, features);
5301 if (dev->netdev_ops->ndo_set_features)
5302 err = dev->netdev_ops->ndo_set_features(dev, features);
5304 if (unlikely(err < 0)) {
5305 netdev_err(dev,
5306 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5307 err, features, dev->features);
5308 return -1;
5311 if (!err)
5312 dev->features = features;
5314 return 1;
5318 * netdev_update_features - recalculate device features
5319 * @dev: the device to check
5321 * Recalculate dev->features set and send notifications if it
5322 * has changed. Should be called after driver or hardware dependent
5323 * conditions might have changed that influence the features.
5325 void netdev_update_features(struct net_device *dev)
5327 if (__netdev_update_features(dev))
5328 netdev_features_change(dev);
5330 EXPORT_SYMBOL(netdev_update_features);
5333 * netdev_change_features - recalculate device features
5334 * @dev: the device to check
5336 * Recalculate dev->features set and send notifications even
5337 * if they have not changed. Should be called instead of
5338 * netdev_update_features() if also dev->vlan_features might
5339 * have changed to allow the changes to be propagated to stacked
5340 * VLAN devices.
5342 void netdev_change_features(struct net_device *dev)
5344 __netdev_update_features(dev);
5345 netdev_features_change(dev);
5347 EXPORT_SYMBOL(netdev_change_features);
5350 * netif_stacked_transfer_operstate - transfer operstate
5351 * @rootdev: the root or lower level device to transfer state from
5352 * @dev: the device to transfer operstate to
5354 * Transfer operational state from root to device. This is normally
5355 * called when a stacking relationship exists between the root
5356 * device and the device(a leaf device).
5358 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5359 struct net_device *dev)
5361 if (rootdev->operstate == IF_OPER_DORMANT)
5362 netif_dormant_on(dev);
5363 else
5364 netif_dormant_off(dev);
5366 if (netif_carrier_ok(rootdev)) {
5367 if (!netif_carrier_ok(dev))
5368 netif_carrier_on(dev);
5369 } else {
5370 if (netif_carrier_ok(dev))
5371 netif_carrier_off(dev);
5374 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5376 #ifdef CONFIG_RPS
5377 static int netif_alloc_rx_queues(struct net_device *dev)
5379 unsigned int i, count = dev->num_rx_queues;
5380 struct netdev_rx_queue *rx;
5382 BUG_ON(count < 1);
5384 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5385 if (!rx) {
5386 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5387 return -ENOMEM;
5389 dev->_rx = rx;
5391 for (i = 0; i < count; i++)
5392 rx[i].dev = dev;
5393 return 0;
5395 #endif
5397 static void netdev_init_one_queue(struct net_device *dev,
5398 struct netdev_queue *queue, void *_unused)
5400 /* Initialize queue lock */
5401 spin_lock_init(&queue->_xmit_lock);
5402 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5403 queue->xmit_lock_owner = -1;
5404 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5405 queue->dev = dev;
5408 static int netif_alloc_netdev_queues(struct net_device *dev)
5410 unsigned int count = dev->num_tx_queues;
5411 struct netdev_queue *tx;
5413 BUG_ON(count < 1);
5415 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5416 if (!tx) {
5417 pr_err("netdev: Unable to allocate %u tx queues.\n",
5418 count);
5419 return -ENOMEM;
5421 dev->_tx = tx;
5423 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5424 spin_lock_init(&dev->tx_global_lock);
5426 return 0;
5430 * register_netdevice - register a network device
5431 * @dev: device to register
5433 * Take a completed network device structure and add it to the kernel
5434 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5435 * chain. 0 is returned on success. A negative errno code is returned
5436 * on a failure to set up the device, or if the name is a duplicate.
5438 * Callers must hold the rtnl semaphore. You may want
5439 * register_netdev() instead of this.
5441 * BUGS:
5442 * The locking appears insufficient to guarantee two parallel registers
5443 * will not get the same name.
5446 int register_netdevice(struct net_device *dev)
5448 int ret;
5449 struct net *net = dev_net(dev);
5451 BUG_ON(dev_boot_phase);
5452 ASSERT_RTNL();
5454 might_sleep();
5456 /* When net_device's are persistent, this will be fatal. */
5457 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5458 BUG_ON(!net);
5460 spin_lock_init(&dev->addr_list_lock);
5461 netdev_set_addr_lockdep_class(dev);
5463 dev->iflink = -1;
5465 ret = dev_get_valid_name(dev, dev->name);
5466 if (ret < 0)
5467 goto out;
5469 /* Init, if this function is available */
5470 if (dev->netdev_ops->ndo_init) {
5471 ret = dev->netdev_ops->ndo_init(dev);
5472 if (ret) {
5473 if (ret > 0)
5474 ret = -EIO;
5475 goto out;
5479 dev->ifindex = dev_new_index(net);
5480 if (dev->iflink == -1)
5481 dev->iflink = dev->ifindex;
5483 /* Transfer changeable features to wanted_features and enable
5484 * software offloads (GSO and GRO).
5486 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5487 dev->features |= NETIF_F_SOFT_FEATURES;
5488 dev->wanted_features = dev->features & dev->hw_features;
5490 /* Turn on no cache copy if HW is doing checksum */
5491 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5492 if ((dev->features & NETIF_F_ALL_CSUM) &&
5493 !(dev->features & NETIF_F_NO_CSUM)) {
5494 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5495 dev->features |= NETIF_F_NOCACHE_COPY;
5498 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5500 dev->vlan_features |= NETIF_F_HIGHDMA;
5502 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5503 ret = notifier_to_errno(ret);
5504 if (ret)
5505 goto err_uninit;
5507 ret = netdev_register_kobject(dev);
5508 if (ret)
5509 goto err_uninit;
5510 dev->reg_state = NETREG_REGISTERED;
5512 __netdev_update_features(dev);
5515 * Default initial state at registry is that the
5516 * device is present.
5519 set_bit(__LINK_STATE_PRESENT, &dev->state);
5521 dev_init_scheduler(dev);
5522 dev_hold(dev);
5523 list_netdevice(dev);
5525 /* Notify protocols, that a new device appeared. */
5526 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5527 ret = notifier_to_errno(ret);
5528 if (ret) {
5529 rollback_registered(dev);
5530 dev->reg_state = NETREG_UNREGISTERED;
5533 * Prevent userspace races by waiting until the network
5534 * device is fully setup before sending notifications.
5536 if (!dev->rtnl_link_ops ||
5537 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5538 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5540 out:
5541 return ret;
5543 err_uninit:
5544 if (dev->netdev_ops->ndo_uninit)
5545 dev->netdev_ops->ndo_uninit(dev);
5546 goto out;
5548 EXPORT_SYMBOL(register_netdevice);
5551 * init_dummy_netdev - init a dummy network device for NAPI
5552 * @dev: device to init
5554 * This takes a network device structure and initialize the minimum
5555 * amount of fields so it can be used to schedule NAPI polls without
5556 * registering a full blown interface. This is to be used by drivers
5557 * that need to tie several hardware interfaces to a single NAPI
5558 * poll scheduler due to HW limitations.
5560 int init_dummy_netdev(struct net_device *dev)
5562 /* Clear everything. Note we don't initialize spinlocks
5563 * are they aren't supposed to be taken by any of the
5564 * NAPI code and this dummy netdev is supposed to be
5565 * only ever used for NAPI polls
5567 memset(dev, 0, sizeof(struct net_device));
5569 /* make sure we BUG if trying to hit standard
5570 * register/unregister code path
5572 dev->reg_state = NETREG_DUMMY;
5574 /* NAPI wants this */
5575 INIT_LIST_HEAD(&dev->napi_list);
5577 /* a dummy interface is started by default */
5578 set_bit(__LINK_STATE_PRESENT, &dev->state);
5579 set_bit(__LINK_STATE_START, &dev->state);
5581 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5582 * because users of this 'device' dont need to change
5583 * its refcount.
5586 return 0;
5588 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5592 * register_netdev - register a network device
5593 * @dev: device to register
5595 * Take a completed network device structure and add it to the kernel
5596 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5597 * chain. 0 is returned on success. A negative errno code is returned
5598 * on a failure to set up the device, or if the name is a duplicate.
5600 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5601 * and expands the device name if you passed a format string to
5602 * alloc_netdev.
5604 int register_netdev(struct net_device *dev)
5606 int err;
5608 rtnl_lock();
5609 err = register_netdevice(dev);
5610 rtnl_unlock();
5611 return err;
5613 EXPORT_SYMBOL(register_netdev);
5615 int netdev_refcnt_read(const struct net_device *dev)
5617 int i, refcnt = 0;
5619 for_each_possible_cpu(i)
5620 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5621 return refcnt;
5623 EXPORT_SYMBOL(netdev_refcnt_read);
5626 * netdev_wait_allrefs - wait until all references are gone.
5628 * This is called when unregistering network devices.
5630 * Any protocol or device that holds a reference should register
5631 * for netdevice notification, and cleanup and put back the
5632 * reference if they receive an UNREGISTER event.
5633 * We can get stuck here if buggy protocols don't correctly
5634 * call dev_put.
5636 static void netdev_wait_allrefs(struct net_device *dev)
5638 unsigned long rebroadcast_time, warning_time;
5639 int refcnt;
5641 linkwatch_forget_dev(dev);
5643 rebroadcast_time = warning_time = jiffies;
5644 refcnt = netdev_refcnt_read(dev);
5646 while (refcnt != 0) {
5647 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5648 rtnl_lock();
5650 /* Rebroadcast unregister notification */
5651 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5652 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5653 * should have already handle it the first time */
5655 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5656 &dev->state)) {
5657 /* We must not have linkwatch events
5658 * pending on unregister. If this
5659 * happens, we simply run the queue
5660 * unscheduled, resulting in a noop
5661 * for this device.
5663 linkwatch_run_queue();
5666 __rtnl_unlock();
5668 rebroadcast_time = jiffies;
5671 msleep(250);
5673 refcnt = netdev_refcnt_read(dev);
5675 if (time_after(jiffies, warning_time + 10 * HZ)) {
5676 printk(KERN_EMERG "unregister_netdevice: "
5677 "waiting for %s to become free. Usage "
5678 "count = %d\n",
5679 dev->name, refcnt);
5680 warning_time = jiffies;
5685 /* The sequence is:
5687 * rtnl_lock();
5688 * ...
5689 * register_netdevice(x1);
5690 * register_netdevice(x2);
5691 * ...
5692 * unregister_netdevice(y1);
5693 * unregister_netdevice(y2);
5694 * ...
5695 * rtnl_unlock();
5696 * free_netdev(y1);
5697 * free_netdev(y2);
5699 * We are invoked by rtnl_unlock().
5700 * This allows us to deal with problems:
5701 * 1) We can delete sysfs objects which invoke hotplug
5702 * without deadlocking with linkwatch via keventd.
5703 * 2) Since we run with the RTNL semaphore not held, we can sleep
5704 * safely in order to wait for the netdev refcnt to drop to zero.
5706 * We must not return until all unregister events added during
5707 * the interval the lock was held have been completed.
5709 void netdev_run_todo(void)
5711 struct list_head list;
5713 /* Snapshot list, allow later requests */
5714 list_replace_init(&net_todo_list, &list);
5716 __rtnl_unlock();
5718 while (!list_empty(&list)) {
5719 struct net_device *dev
5720 = list_first_entry(&list, struct net_device, todo_list);
5721 list_del(&dev->todo_list);
5723 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5724 printk(KERN_ERR "network todo '%s' but state %d\n",
5725 dev->name, dev->reg_state);
5726 dump_stack();
5727 continue;
5730 dev->reg_state = NETREG_UNREGISTERED;
5732 on_each_cpu(flush_backlog, dev, 1);
5734 netdev_wait_allrefs(dev);
5736 /* paranoia */
5737 BUG_ON(netdev_refcnt_read(dev));
5738 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5739 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5740 WARN_ON(dev->dn_ptr);
5742 if (dev->destructor)
5743 dev->destructor(dev);
5745 /* Free network device */
5746 kobject_put(&dev->dev.kobj);
5750 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5751 * fields in the same order, with only the type differing.
5753 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5754 const struct net_device_stats *netdev_stats)
5756 #if BITS_PER_LONG == 64
5757 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5758 memcpy(stats64, netdev_stats, sizeof(*stats64));
5759 #else
5760 size_t i, n = sizeof(*stats64) / sizeof(u64);
5761 const unsigned long *src = (const unsigned long *)netdev_stats;
5762 u64 *dst = (u64 *)stats64;
5764 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5765 sizeof(*stats64) / sizeof(u64));
5766 for (i = 0; i < n; i++)
5767 dst[i] = src[i];
5768 #endif
5772 * dev_get_stats - get network device statistics
5773 * @dev: device to get statistics from
5774 * @storage: place to store stats
5776 * Get network statistics from device. Return @storage.
5777 * The device driver may provide its own method by setting
5778 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5779 * otherwise the internal statistics structure is used.
5781 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5782 struct rtnl_link_stats64 *storage)
5784 const struct net_device_ops *ops = dev->netdev_ops;
5786 if (ops->ndo_get_stats64) {
5787 memset(storage, 0, sizeof(*storage));
5788 ops->ndo_get_stats64(dev, storage);
5789 } else if (ops->ndo_get_stats) {
5790 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5791 } else {
5792 netdev_stats_to_stats64(storage, &dev->stats);
5794 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5795 return storage;
5797 EXPORT_SYMBOL(dev_get_stats);
5799 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5801 struct netdev_queue *queue = dev_ingress_queue(dev);
5803 #ifdef CONFIG_NET_CLS_ACT
5804 if (queue)
5805 return queue;
5806 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5807 if (!queue)
5808 return NULL;
5809 netdev_init_one_queue(dev, queue, NULL);
5810 queue->qdisc = &noop_qdisc;
5811 queue->qdisc_sleeping = &noop_qdisc;
5812 rcu_assign_pointer(dev->ingress_queue, queue);
5813 #endif
5814 return queue;
5818 * alloc_netdev_mqs - allocate network device
5819 * @sizeof_priv: size of private data to allocate space for
5820 * @name: device name format string
5821 * @setup: callback to initialize device
5822 * @txqs: the number of TX subqueues to allocate
5823 * @rxqs: the number of RX subqueues to allocate
5825 * Allocates a struct net_device with private data area for driver use
5826 * and performs basic initialization. Also allocates subquue structs
5827 * for each queue on the device.
5829 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5830 void (*setup)(struct net_device *),
5831 unsigned int txqs, unsigned int rxqs)
5833 struct net_device *dev;
5834 size_t alloc_size;
5835 struct net_device *p;
5837 BUG_ON(strlen(name) >= sizeof(dev->name));
5839 if (txqs < 1) {
5840 pr_err("alloc_netdev: Unable to allocate device "
5841 "with zero queues.\n");
5842 return NULL;
5845 #ifdef CONFIG_RPS
5846 if (rxqs < 1) {
5847 pr_err("alloc_netdev: Unable to allocate device "
5848 "with zero RX queues.\n");
5849 return NULL;
5851 #endif
5853 alloc_size = sizeof(struct net_device);
5854 if (sizeof_priv) {
5855 /* ensure 32-byte alignment of private area */
5856 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5857 alloc_size += sizeof_priv;
5859 /* ensure 32-byte alignment of whole construct */
5860 alloc_size += NETDEV_ALIGN - 1;
5862 p = kzalloc(alloc_size, GFP_KERNEL);
5863 if (!p) {
5864 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5865 return NULL;
5868 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5869 dev->padded = (char *)dev - (char *)p;
5871 dev->pcpu_refcnt = alloc_percpu(int);
5872 if (!dev->pcpu_refcnt)
5873 goto free_p;
5875 if (dev_addr_init(dev))
5876 goto free_pcpu;
5878 dev_mc_init(dev);
5879 dev_uc_init(dev);
5881 dev_net_set(dev, &init_net);
5883 dev->gso_max_size = GSO_MAX_SIZE;
5885 INIT_LIST_HEAD(&dev->napi_list);
5886 INIT_LIST_HEAD(&dev->unreg_list);
5887 INIT_LIST_HEAD(&dev->link_watch_list);
5888 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5889 setup(dev);
5891 dev->num_tx_queues = txqs;
5892 dev->real_num_tx_queues = txqs;
5893 if (netif_alloc_netdev_queues(dev))
5894 goto free_all;
5896 #ifdef CONFIG_RPS
5897 dev->num_rx_queues = rxqs;
5898 dev->real_num_rx_queues = rxqs;
5899 if (netif_alloc_rx_queues(dev))
5900 goto free_all;
5901 #endif
5903 strcpy(dev->name, name);
5904 dev->group = INIT_NETDEV_GROUP;
5905 return dev;
5907 free_all:
5908 free_netdev(dev);
5909 return NULL;
5911 free_pcpu:
5912 free_percpu(dev->pcpu_refcnt);
5913 kfree(dev->_tx);
5914 #ifdef CONFIG_RPS
5915 kfree(dev->_rx);
5916 #endif
5918 free_p:
5919 kfree(p);
5920 return NULL;
5922 EXPORT_SYMBOL(alloc_netdev_mqs);
5925 * free_netdev - free network device
5926 * @dev: device
5928 * This function does the last stage of destroying an allocated device
5929 * interface. The reference to the device object is released.
5930 * If this is the last reference then it will be freed.
5932 void free_netdev(struct net_device *dev)
5934 struct napi_struct *p, *n;
5936 release_net(dev_net(dev));
5938 kfree(dev->_tx);
5939 #ifdef CONFIG_RPS
5940 kfree(dev->_rx);
5941 #endif
5943 kfree(rcu_dereference_raw(dev->ingress_queue));
5945 /* Flush device addresses */
5946 dev_addr_flush(dev);
5948 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5949 netif_napi_del(p);
5951 free_percpu(dev->pcpu_refcnt);
5952 dev->pcpu_refcnt = NULL;
5954 /* Compatibility with error handling in drivers */
5955 if (dev->reg_state == NETREG_UNINITIALIZED) {
5956 kfree((char *)dev - dev->padded);
5957 return;
5960 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5961 dev->reg_state = NETREG_RELEASED;
5963 /* will free via device release */
5964 put_device(&dev->dev);
5966 EXPORT_SYMBOL(free_netdev);
5969 * synchronize_net - Synchronize with packet receive processing
5971 * Wait for packets currently being received to be done.
5972 * Does not block later packets from starting.
5974 void synchronize_net(void)
5976 might_sleep();
5977 if (rtnl_is_locked())
5978 synchronize_rcu_expedited();
5979 else
5980 synchronize_rcu();
5982 EXPORT_SYMBOL(synchronize_net);
5985 * unregister_netdevice_queue - remove device from the kernel
5986 * @dev: device
5987 * @head: list
5989 * This function shuts down a device interface and removes it
5990 * from the kernel tables.
5991 * If head not NULL, device is queued to be unregistered later.
5993 * Callers must hold the rtnl semaphore. You may want
5994 * unregister_netdev() instead of this.
5997 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5999 ASSERT_RTNL();
6001 if (head) {
6002 list_move_tail(&dev->unreg_list, head);
6003 } else {
6004 rollback_registered(dev);
6005 /* Finish processing unregister after unlock */
6006 net_set_todo(dev);
6009 EXPORT_SYMBOL(unregister_netdevice_queue);
6012 * unregister_netdevice_many - unregister many devices
6013 * @head: list of devices
6015 void unregister_netdevice_many(struct list_head *head)
6017 struct net_device *dev;
6019 if (!list_empty(head)) {
6020 rollback_registered_many(head);
6021 list_for_each_entry(dev, head, unreg_list)
6022 net_set_todo(dev);
6025 EXPORT_SYMBOL(unregister_netdevice_many);
6028 * unregister_netdev - remove device from the kernel
6029 * @dev: device
6031 * This function shuts down a device interface and removes it
6032 * from the kernel tables.
6034 * This is just a wrapper for unregister_netdevice that takes
6035 * the rtnl semaphore. In general you want to use this and not
6036 * unregister_netdevice.
6038 void unregister_netdev(struct net_device *dev)
6040 rtnl_lock();
6041 unregister_netdevice(dev);
6042 rtnl_unlock();
6044 EXPORT_SYMBOL(unregister_netdev);
6047 * dev_change_net_namespace - move device to different nethost namespace
6048 * @dev: device
6049 * @net: network namespace
6050 * @pat: If not NULL name pattern to try if the current device name
6051 * is already taken in the destination network namespace.
6053 * This function shuts down a device interface and moves it
6054 * to a new network namespace. On success 0 is returned, on
6055 * a failure a netagive errno code is returned.
6057 * Callers must hold the rtnl semaphore.
6060 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6062 int err;
6064 ASSERT_RTNL();
6066 /* Don't allow namespace local devices to be moved. */
6067 err = -EINVAL;
6068 if (dev->features & NETIF_F_NETNS_LOCAL)
6069 goto out;
6071 /* Ensure the device has been registrered */
6072 err = -EINVAL;
6073 if (dev->reg_state != NETREG_REGISTERED)
6074 goto out;
6076 /* Get out if there is nothing todo */
6077 err = 0;
6078 if (net_eq(dev_net(dev), net))
6079 goto out;
6081 /* Pick the destination device name, and ensure
6082 * we can use it in the destination network namespace.
6084 err = -EEXIST;
6085 if (__dev_get_by_name(net, dev->name)) {
6086 /* We get here if we can't use the current device name */
6087 if (!pat)
6088 goto out;
6089 if (dev_get_valid_name(dev, pat) < 0)
6090 goto out;
6094 * And now a mini version of register_netdevice unregister_netdevice.
6097 /* If device is running close it first. */
6098 dev_close(dev);
6100 /* And unlink it from device chain */
6101 err = -ENODEV;
6102 unlist_netdevice(dev);
6104 synchronize_net();
6106 /* Shutdown queueing discipline. */
6107 dev_shutdown(dev);
6109 /* Notify protocols, that we are about to destroy
6110 this device. They should clean all the things.
6112 Note that dev->reg_state stays at NETREG_REGISTERED.
6113 This is wanted because this way 8021q and macvlan know
6114 the device is just moving and can keep their slaves up.
6116 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6117 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6120 * Flush the unicast and multicast chains
6122 dev_uc_flush(dev);
6123 dev_mc_flush(dev);
6125 /* Actually switch the network namespace */
6126 dev_net_set(dev, net);
6128 /* If there is an ifindex conflict assign a new one */
6129 if (__dev_get_by_index(net, dev->ifindex)) {
6130 int iflink = (dev->iflink == dev->ifindex);
6131 dev->ifindex = dev_new_index(net);
6132 if (iflink)
6133 dev->iflink = dev->ifindex;
6136 /* Fixup kobjects */
6137 err = device_rename(&dev->dev, dev->name);
6138 WARN_ON(err);
6140 /* Add the device back in the hashes */
6141 list_netdevice(dev);
6143 /* Notify protocols, that a new device appeared. */
6144 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6147 * Prevent userspace races by waiting until the network
6148 * device is fully setup before sending notifications.
6150 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6152 synchronize_net();
6153 err = 0;
6154 out:
6155 return err;
6157 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6159 static int dev_cpu_callback(struct notifier_block *nfb,
6160 unsigned long action,
6161 void *ocpu)
6163 struct sk_buff **list_skb;
6164 struct sk_buff *skb;
6165 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6166 struct softnet_data *sd, *oldsd;
6168 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6169 return NOTIFY_OK;
6171 local_irq_disable();
6172 cpu = smp_processor_id();
6173 sd = &per_cpu(softnet_data, cpu);
6174 oldsd = &per_cpu(softnet_data, oldcpu);
6176 /* Find end of our completion_queue. */
6177 list_skb = &sd->completion_queue;
6178 while (*list_skb)
6179 list_skb = &(*list_skb)->next;
6180 /* Append completion queue from offline CPU. */
6181 *list_skb = oldsd->completion_queue;
6182 oldsd->completion_queue = NULL;
6184 /* Append output queue from offline CPU. */
6185 if (oldsd->output_queue) {
6186 *sd->output_queue_tailp = oldsd->output_queue;
6187 sd->output_queue_tailp = oldsd->output_queue_tailp;
6188 oldsd->output_queue = NULL;
6189 oldsd->output_queue_tailp = &oldsd->output_queue;
6191 /* Append NAPI poll list from offline CPU. */
6192 if (!list_empty(&oldsd->poll_list)) {
6193 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6194 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6197 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6198 local_irq_enable();
6200 /* Process offline CPU's input_pkt_queue */
6201 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6202 netif_rx(skb);
6203 input_queue_head_incr(oldsd);
6205 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6206 netif_rx(skb);
6207 input_queue_head_incr(oldsd);
6210 return NOTIFY_OK;
6215 * netdev_increment_features - increment feature set by one
6216 * @all: current feature set
6217 * @one: new feature set
6218 * @mask: mask feature set
6220 * Computes a new feature set after adding a device with feature set
6221 * @one to the master device with current feature set @all. Will not
6222 * enable anything that is off in @mask. Returns the new feature set.
6224 u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6226 if (mask & NETIF_F_GEN_CSUM)
6227 mask |= NETIF_F_ALL_CSUM;
6228 mask |= NETIF_F_VLAN_CHALLENGED;
6230 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6231 all &= one | ~NETIF_F_ALL_FOR_ALL;
6233 /* If device needs checksumming, downgrade to it. */
6234 if (all & (NETIF_F_ALL_CSUM & ~NETIF_F_NO_CSUM))
6235 all &= ~NETIF_F_NO_CSUM;
6237 /* If one device supports hw checksumming, set for all. */
6238 if (all & NETIF_F_GEN_CSUM)
6239 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6241 return all;
6243 EXPORT_SYMBOL(netdev_increment_features);
6245 static struct hlist_head *netdev_create_hash(void)
6247 int i;
6248 struct hlist_head *hash;
6250 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6251 if (hash != NULL)
6252 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6253 INIT_HLIST_HEAD(&hash[i]);
6255 return hash;
6258 /* Initialize per network namespace state */
6259 static int __net_init netdev_init(struct net *net)
6261 INIT_LIST_HEAD(&net->dev_base_head);
6263 net->dev_name_head = netdev_create_hash();
6264 if (net->dev_name_head == NULL)
6265 goto err_name;
6267 net->dev_index_head = netdev_create_hash();
6268 if (net->dev_index_head == NULL)
6269 goto err_idx;
6271 return 0;
6273 err_idx:
6274 kfree(net->dev_name_head);
6275 err_name:
6276 return -ENOMEM;
6280 * netdev_drivername - network driver for the device
6281 * @dev: network device
6283 * Determine network driver for device.
6285 const char *netdev_drivername(const struct net_device *dev)
6287 const struct device_driver *driver;
6288 const struct device *parent;
6289 const char *empty = "";
6291 parent = dev->dev.parent;
6292 if (!parent)
6293 return empty;
6295 driver = parent->driver;
6296 if (driver && driver->name)
6297 return driver->name;
6298 return empty;
6301 static int __netdev_printk(const char *level, const struct net_device *dev,
6302 struct va_format *vaf)
6304 int r;
6306 if (dev && dev->dev.parent)
6307 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6308 netdev_name(dev), vaf);
6309 else if (dev)
6310 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6311 else
6312 r = printk("%s(NULL net_device): %pV", level, vaf);
6314 return r;
6317 int netdev_printk(const char *level, const struct net_device *dev,
6318 const char *format, ...)
6320 struct va_format vaf;
6321 va_list args;
6322 int r;
6324 va_start(args, format);
6326 vaf.fmt = format;
6327 vaf.va = &args;
6329 r = __netdev_printk(level, dev, &vaf);
6330 va_end(args);
6332 return r;
6334 EXPORT_SYMBOL(netdev_printk);
6336 #define define_netdev_printk_level(func, level) \
6337 int func(const struct net_device *dev, const char *fmt, ...) \
6339 int r; \
6340 struct va_format vaf; \
6341 va_list args; \
6343 va_start(args, fmt); \
6345 vaf.fmt = fmt; \
6346 vaf.va = &args; \
6348 r = __netdev_printk(level, dev, &vaf); \
6349 va_end(args); \
6351 return r; \
6353 EXPORT_SYMBOL(func);
6355 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6356 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6357 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6358 define_netdev_printk_level(netdev_err, KERN_ERR);
6359 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6360 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6361 define_netdev_printk_level(netdev_info, KERN_INFO);
6363 static void __net_exit netdev_exit(struct net *net)
6365 kfree(net->dev_name_head);
6366 kfree(net->dev_index_head);
6369 static struct pernet_operations __net_initdata netdev_net_ops = {
6370 .init = netdev_init,
6371 .exit = netdev_exit,
6374 static void __net_exit default_device_exit(struct net *net)
6376 struct net_device *dev, *aux;
6378 * Push all migratable network devices back to the
6379 * initial network namespace
6381 rtnl_lock();
6382 for_each_netdev_safe(net, dev, aux) {
6383 int err;
6384 char fb_name[IFNAMSIZ];
6386 /* Ignore unmoveable devices (i.e. loopback) */
6387 if (dev->features & NETIF_F_NETNS_LOCAL)
6388 continue;
6390 /* Leave virtual devices for the generic cleanup */
6391 if (dev->rtnl_link_ops)
6392 continue;
6394 /* Push remaining network devices to init_net */
6395 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6396 err = dev_change_net_namespace(dev, &init_net, fb_name);
6397 if (err) {
6398 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6399 __func__, dev->name, err);
6400 BUG();
6403 rtnl_unlock();
6406 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6408 /* At exit all network devices most be removed from a network
6409 * namespace. Do this in the reverse order of registration.
6410 * Do this across as many network namespaces as possible to
6411 * improve batching efficiency.
6413 struct net_device *dev;
6414 struct net *net;
6415 LIST_HEAD(dev_kill_list);
6417 rtnl_lock();
6418 list_for_each_entry(net, net_list, exit_list) {
6419 for_each_netdev_reverse(net, dev) {
6420 if (dev->rtnl_link_ops)
6421 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6422 else
6423 unregister_netdevice_queue(dev, &dev_kill_list);
6426 unregister_netdevice_many(&dev_kill_list);
6427 list_del(&dev_kill_list);
6428 rtnl_unlock();
6431 static struct pernet_operations __net_initdata default_device_ops = {
6432 .exit = default_device_exit,
6433 .exit_batch = default_device_exit_batch,
6437 * Initialize the DEV module. At boot time this walks the device list and
6438 * unhooks any devices that fail to initialise (normally hardware not
6439 * present) and leaves us with a valid list of present and active devices.
6444 * This is called single threaded during boot, so no need
6445 * to take the rtnl semaphore.
6447 static int __init net_dev_init(void)
6449 int i, rc = -ENOMEM;
6451 BUG_ON(!dev_boot_phase);
6453 if (dev_proc_init())
6454 goto out;
6456 if (netdev_kobject_init())
6457 goto out;
6459 INIT_LIST_HEAD(&ptype_all);
6460 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6461 INIT_LIST_HEAD(&ptype_base[i]);
6463 if (register_pernet_subsys(&netdev_net_ops))
6464 goto out;
6467 * Initialise the packet receive queues.
6470 for_each_possible_cpu(i) {
6471 struct softnet_data *sd = &per_cpu(softnet_data, i);
6473 memset(sd, 0, sizeof(*sd));
6474 skb_queue_head_init(&sd->input_pkt_queue);
6475 skb_queue_head_init(&sd->process_queue);
6476 sd->completion_queue = NULL;
6477 INIT_LIST_HEAD(&sd->poll_list);
6478 sd->output_queue = NULL;
6479 sd->output_queue_tailp = &sd->output_queue;
6480 #ifdef CONFIG_RPS
6481 sd->csd.func = rps_trigger_softirq;
6482 sd->csd.info = sd;
6483 sd->csd.flags = 0;
6484 sd->cpu = i;
6485 #endif
6487 sd->backlog.poll = process_backlog;
6488 sd->backlog.weight = weight_p;
6489 sd->backlog.gro_list = NULL;
6490 sd->backlog.gro_count = 0;
6493 dev_boot_phase = 0;
6495 /* The loopback device is special if any other network devices
6496 * is present in a network namespace the loopback device must
6497 * be present. Since we now dynamically allocate and free the
6498 * loopback device ensure this invariant is maintained by
6499 * keeping the loopback device as the first device on the
6500 * list of network devices. Ensuring the loopback devices
6501 * is the first device that appears and the last network device
6502 * that disappears.
6504 if (register_pernet_device(&loopback_net_ops))
6505 goto out;
6507 if (register_pernet_device(&default_device_ops))
6508 goto out;
6510 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6511 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6513 hotcpu_notifier(dev_cpu_callback, 0);
6514 dst_init();
6515 dev_mcast_init();
6516 rc = 0;
6517 out:
6518 return rc;
6521 subsys_initcall(net_dev_init);
6523 static int __init initialize_hashrnd(void)
6525 get_random_bytes(&hashrnd, sizeof(hashrnd));
6526 return 0;
6529 late_initcall_sync(initialize_hashrnd);