Btrfs: stop the readahead threads on failed mount
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / gadget / pch_udc.c
blobf96615ab6b773eaad3f55bd97c962c9f8042c36d
1 /*
2 * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; version 2 of the License.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/list.h>
24 #include <linux/interrupt.h>
25 #include <linux/usb/ch9.h>
26 #include <linux/usb/gadget.h>
28 /* Address offset of Registers */
29 #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
31 #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
32 #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
33 #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
34 #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
35 #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
36 #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
37 #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
39 #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
40 #define UDC_DEVCTL_ADDR 0x404 /* Device control */
41 #define UDC_DEVSTS_ADDR 0x408 /* Device status */
42 #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
43 #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
44 #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
45 #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
46 #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
47 #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
48 #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
49 #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
51 /* Endpoint control register */
52 /* Bit position */
53 #define UDC_EPCTL_MRXFLUSH (1 << 12)
54 #define UDC_EPCTL_RRDY (1 << 9)
55 #define UDC_EPCTL_CNAK (1 << 8)
56 #define UDC_EPCTL_SNAK (1 << 7)
57 #define UDC_EPCTL_NAK (1 << 6)
58 #define UDC_EPCTL_P (1 << 3)
59 #define UDC_EPCTL_F (1 << 1)
60 #define UDC_EPCTL_S (1 << 0)
61 #define UDC_EPCTL_ET_SHIFT 4
62 /* Mask patern */
63 #define UDC_EPCTL_ET_MASK 0x00000030
64 /* Value for ET field */
65 #define UDC_EPCTL_ET_CONTROL 0
66 #define UDC_EPCTL_ET_ISO 1
67 #define UDC_EPCTL_ET_BULK 2
68 #define UDC_EPCTL_ET_INTERRUPT 3
70 /* Endpoint status register */
71 /* Bit position */
72 #define UDC_EPSTS_XFERDONE (1 << 27)
73 #define UDC_EPSTS_RSS (1 << 26)
74 #define UDC_EPSTS_RCS (1 << 25)
75 #define UDC_EPSTS_TXEMPTY (1 << 24)
76 #define UDC_EPSTS_TDC (1 << 10)
77 #define UDC_EPSTS_HE (1 << 9)
78 #define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
79 #define UDC_EPSTS_BNA (1 << 7)
80 #define UDC_EPSTS_IN (1 << 6)
81 #define UDC_EPSTS_OUT_SHIFT 4
82 /* Mask patern */
83 #define UDC_EPSTS_OUT_MASK 0x00000030
84 #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
85 /* Value for OUT field */
86 #define UDC_EPSTS_OUT_SETUP 2
87 #define UDC_EPSTS_OUT_DATA 1
89 /* Device configuration register */
90 /* Bit position */
91 #define UDC_DEVCFG_CSR_PRG (1 << 17)
92 #define UDC_DEVCFG_SP (1 << 3)
93 /* SPD Valee */
94 #define UDC_DEVCFG_SPD_HS 0x0
95 #define UDC_DEVCFG_SPD_FS 0x1
96 #define UDC_DEVCFG_SPD_LS 0x2
98 /* Device control register */
99 /* Bit position */
100 #define UDC_DEVCTL_THLEN_SHIFT 24
101 #define UDC_DEVCTL_BRLEN_SHIFT 16
102 #define UDC_DEVCTL_CSR_DONE (1 << 13)
103 #define UDC_DEVCTL_SD (1 << 10)
104 #define UDC_DEVCTL_MODE (1 << 9)
105 #define UDC_DEVCTL_BREN (1 << 8)
106 #define UDC_DEVCTL_THE (1 << 7)
107 #define UDC_DEVCTL_DU (1 << 4)
108 #define UDC_DEVCTL_TDE (1 << 3)
109 #define UDC_DEVCTL_RDE (1 << 2)
110 #define UDC_DEVCTL_RES (1 << 0)
112 /* Device status register */
113 /* Bit position */
114 #define UDC_DEVSTS_TS_SHIFT 18
115 #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
116 #define UDC_DEVSTS_ALT_SHIFT 8
117 #define UDC_DEVSTS_INTF_SHIFT 4
118 #define UDC_DEVSTS_CFG_SHIFT 0
119 /* Mask patern */
120 #define UDC_DEVSTS_TS_MASK 0xfffc0000
121 #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
122 #define UDC_DEVSTS_ALT_MASK 0x00000f00
123 #define UDC_DEVSTS_INTF_MASK 0x000000f0
124 #define UDC_DEVSTS_CFG_MASK 0x0000000f
125 /* value for maximum speed for SPEED field */
126 #define UDC_DEVSTS_ENUM_SPEED_FULL 1
127 #define UDC_DEVSTS_ENUM_SPEED_HIGH 0
128 #define UDC_DEVSTS_ENUM_SPEED_LOW 2
129 #define UDC_DEVSTS_ENUM_SPEED_FULLX 3
131 /* Device irq register */
132 /* Bit position */
133 #define UDC_DEVINT_RWKP (1 << 7)
134 #define UDC_DEVINT_ENUM (1 << 6)
135 #define UDC_DEVINT_SOF (1 << 5)
136 #define UDC_DEVINT_US (1 << 4)
137 #define UDC_DEVINT_UR (1 << 3)
138 #define UDC_DEVINT_ES (1 << 2)
139 #define UDC_DEVINT_SI (1 << 1)
140 #define UDC_DEVINT_SC (1 << 0)
141 /* Mask patern */
142 #define UDC_DEVINT_MSK 0x7f
144 /* Endpoint irq register */
145 /* Bit position */
146 #define UDC_EPINT_IN_SHIFT 0
147 #define UDC_EPINT_OUT_SHIFT 16
148 #define UDC_EPINT_IN_EP0 (1 << 0)
149 #define UDC_EPINT_OUT_EP0 (1 << 16)
150 /* Mask patern */
151 #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
153 /* UDC_CSR_BUSY Status register */
154 /* Bit position */
155 #define UDC_CSR_BUSY (1 << 0)
157 /* SOFT RESET register */
158 /* Bit position */
159 #define UDC_PSRST (1 << 1)
160 #define UDC_SRST (1 << 0)
162 /* USB_DEVICE endpoint register */
163 /* Bit position */
164 #define UDC_CSR_NE_NUM_SHIFT 0
165 #define UDC_CSR_NE_DIR_SHIFT 4
166 #define UDC_CSR_NE_TYPE_SHIFT 5
167 #define UDC_CSR_NE_CFG_SHIFT 7
168 #define UDC_CSR_NE_INTF_SHIFT 11
169 #define UDC_CSR_NE_ALT_SHIFT 15
170 #define UDC_CSR_NE_MAX_PKT_SHIFT 19
171 /* Mask patern */
172 #define UDC_CSR_NE_NUM_MASK 0x0000000f
173 #define UDC_CSR_NE_DIR_MASK 0x00000010
174 #define UDC_CSR_NE_TYPE_MASK 0x00000060
175 #define UDC_CSR_NE_CFG_MASK 0x00000780
176 #define UDC_CSR_NE_INTF_MASK 0x00007800
177 #define UDC_CSR_NE_ALT_MASK 0x00078000
178 #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
180 #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
181 #define PCH_UDC_EPINT(in, num)\
182 (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
184 /* Index of endpoint */
185 #define UDC_EP0IN_IDX 0
186 #define UDC_EP0OUT_IDX 1
187 #define UDC_EPIN_IDX(ep) (ep * 2)
188 #define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
189 #define PCH_UDC_EP0 0
190 #define PCH_UDC_EP1 1
191 #define PCH_UDC_EP2 2
192 #define PCH_UDC_EP3 3
194 /* Number of endpoint */
195 #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
196 #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
197 /* Length Value */
198 #define PCH_UDC_BRLEN 0x0F /* Burst length */
199 #define PCH_UDC_THLEN 0x1F /* Threshold length */
200 /* Value of EP Buffer Size */
201 #define UDC_EP0IN_BUFF_SIZE 16
202 #define UDC_EPIN_BUFF_SIZE 256
203 #define UDC_EP0OUT_BUFF_SIZE 16
204 #define UDC_EPOUT_BUFF_SIZE 256
205 /* Value of EP maximum packet size */
206 #define UDC_EP0IN_MAX_PKT_SIZE 64
207 #define UDC_EP0OUT_MAX_PKT_SIZE 64
208 #define UDC_BULK_MAX_PKT_SIZE 512
210 /* DMA */
211 #define DMA_DIR_RX 1 /* DMA for data receive */
212 #define DMA_DIR_TX 2 /* DMA for data transmit */
213 #define DMA_ADDR_INVALID (~(dma_addr_t)0)
214 #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
217 * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
218 * for data
219 * @status: Status quadlet
220 * @reserved: Reserved
221 * @dataptr: Buffer descriptor
222 * @next: Next descriptor
224 struct pch_udc_data_dma_desc {
225 u32 status;
226 u32 reserved;
227 u32 dataptr;
228 u32 next;
232 * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
233 * for control data
234 * @status: Status
235 * @reserved: Reserved
236 * @data12: First setup word
237 * @data34: Second setup word
239 struct pch_udc_stp_dma_desc {
240 u32 status;
241 u32 reserved;
242 struct usb_ctrlrequest request;
243 } __attribute((packed));
245 /* DMA status definitions */
246 /* Buffer status */
247 #define PCH_UDC_BUFF_STS 0xC0000000
248 #define PCH_UDC_BS_HST_RDY 0x00000000
249 #define PCH_UDC_BS_DMA_BSY 0x40000000
250 #define PCH_UDC_BS_DMA_DONE 0x80000000
251 #define PCH_UDC_BS_HST_BSY 0xC0000000
252 /* Rx/Tx Status */
253 #define PCH_UDC_RXTX_STS 0x30000000
254 #define PCH_UDC_RTS_SUCC 0x00000000
255 #define PCH_UDC_RTS_DESERR 0x10000000
256 #define PCH_UDC_RTS_BUFERR 0x30000000
257 /* Last Descriptor Indication */
258 #define PCH_UDC_DMA_LAST 0x08000000
259 /* Number of Rx/Tx Bytes Mask */
260 #define PCH_UDC_RXTX_BYTES 0x0000ffff
263 * struct pch_udc_cfg_data - Structure to hold current configuration
264 * and interface information
265 * @cur_cfg: current configuration in use
266 * @cur_intf: current interface in use
267 * @cur_alt: current alt interface in use
269 struct pch_udc_cfg_data {
270 u16 cur_cfg;
271 u16 cur_intf;
272 u16 cur_alt;
276 * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
277 * @ep: embedded ep request
278 * @td_stp_phys: for setup request
279 * @td_data_phys: for data request
280 * @td_stp: for setup request
281 * @td_data: for data request
282 * @dev: reference to device struct
283 * @offset_addr: offset address of ep register
284 * @desc: for this ep
285 * @queue: queue for requests
286 * @num: endpoint number
287 * @in: endpoint is IN
288 * @halted: endpoint halted?
289 * @epsts: Endpoint status
291 struct pch_udc_ep {
292 struct usb_ep ep;
293 dma_addr_t td_stp_phys;
294 dma_addr_t td_data_phys;
295 struct pch_udc_stp_dma_desc *td_stp;
296 struct pch_udc_data_dma_desc *td_data;
297 struct pch_udc_dev *dev;
298 unsigned long offset_addr;
299 const struct usb_endpoint_descriptor *desc;
300 struct list_head queue;
301 unsigned num:5,
302 in:1,
303 halted:1;
304 unsigned long epsts;
308 * struct pch_udc_dev - Structure holding complete information
309 * of the PCH USB device
310 * @gadget: gadget driver data
311 * @driver: reference to gadget driver bound
312 * @pdev: reference to the PCI device
313 * @ep: array of endpoints
314 * @lock: protects all state
315 * @active: enabled the PCI device
316 * @stall: stall requested
317 * @prot_stall: protcol stall requested
318 * @irq_registered: irq registered with system
319 * @mem_region: device memory mapped
320 * @registered: driver regsitered with system
321 * @suspended: driver in suspended state
322 * @connected: gadget driver associated
323 * @set_cfg_not_acked: pending acknowledgement 4 setup
324 * @waiting_zlp_ack: pending acknowledgement 4 ZLP
325 * @data_requests: DMA pool for data requests
326 * @stp_requests: DMA pool for setup requests
327 * @dma_addr: DMA pool for received
328 * @ep0out_buf: Buffer for DMA
329 * @setup_data: Received setup data
330 * @phys_addr: of device memory
331 * @base_addr: for mapped device memory
332 * @irq: IRQ line for the device
333 * @cfg_data: current cfg, intf, and alt in use
335 struct pch_udc_dev {
336 struct usb_gadget gadget;
337 struct usb_gadget_driver *driver;
338 struct pci_dev *pdev;
339 struct pch_udc_ep ep[PCH_UDC_EP_NUM];
340 spinlock_t lock; /* protects all state */
341 unsigned active:1,
342 stall:1,
343 prot_stall:1,
344 irq_registered:1,
345 mem_region:1,
346 registered:1,
347 suspended:1,
348 connected:1,
349 set_cfg_not_acked:1,
350 waiting_zlp_ack:1;
351 struct pci_pool *data_requests;
352 struct pci_pool *stp_requests;
353 dma_addr_t dma_addr;
354 void *ep0out_buf;
355 struct usb_ctrlrequest setup_data;
356 unsigned long phys_addr;
357 void __iomem *base_addr;
358 unsigned irq;
359 struct pch_udc_cfg_data cfg_data;
362 #define PCH_UDC_PCI_BAR 1
363 #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
364 #define PCI_VENDOR_ID_ROHM 0x10DB
365 #define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
367 static const char ep0_string[] = "ep0in";
368 static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
369 struct pch_udc_dev *pch_udc; /* pointer to device object */
370 static int speed_fs;
371 module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
372 MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
375 * struct pch_udc_request - Structure holding a PCH USB device request packet
376 * @req: embedded ep request
377 * @td_data_phys: phys. address
378 * @td_data: first dma desc. of chain
379 * @td_data_last: last dma desc. of chain
380 * @queue: associated queue
381 * @dma_going: DMA in progress for request
382 * @dma_mapped: DMA memory mapped for request
383 * @dma_done: DMA completed for request
384 * @chain_len: chain length
385 * @buf: Buffer memory for align adjustment
386 * @dma: DMA memory for align adjustment
388 struct pch_udc_request {
389 struct usb_request req;
390 dma_addr_t td_data_phys;
391 struct pch_udc_data_dma_desc *td_data;
392 struct pch_udc_data_dma_desc *td_data_last;
393 struct list_head queue;
394 unsigned dma_going:1,
395 dma_mapped:1,
396 dma_done:1;
397 unsigned chain_len;
398 void *buf;
399 dma_addr_t dma;
402 static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
404 return ioread32(dev->base_addr + reg);
407 static inline void pch_udc_writel(struct pch_udc_dev *dev,
408 unsigned long val, unsigned long reg)
410 iowrite32(val, dev->base_addr + reg);
413 static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
414 unsigned long reg,
415 unsigned long bitmask)
417 pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
420 static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
421 unsigned long reg,
422 unsigned long bitmask)
424 pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
427 static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
429 return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
432 static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
433 unsigned long val, unsigned long reg)
435 iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
438 static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
439 unsigned long reg,
440 unsigned long bitmask)
442 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
445 static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
446 unsigned long reg,
447 unsigned long bitmask)
449 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
453 * pch_udc_csr_busy() - Wait till idle.
454 * @dev: Reference to pch_udc_dev structure
456 static void pch_udc_csr_busy(struct pch_udc_dev *dev)
458 unsigned int count = 200;
460 /* Wait till idle */
461 while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
462 && --count)
463 cpu_relax();
464 if (!count)
465 dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
469 * pch_udc_write_csr() - Write the command and status registers.
470 * @dev: Reference to pch_udc_dev structure
471 * @val: value to be written to CSR register
472 * @addr: address of CSR register
474 static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
475 unsigned int ep)
477 unsigned long reg = PCH_UDC_CSR(ep);
479 pch_udc_csr_busy(dev); /* Wait till idle */
480 pch_udc_writel(dev, val, reg);
481 pch_udc_csr_busy(dev); /* Wait till idle */
485 * pch_udc_read_csr() - Read the command and status registers.
486 * @dev: Reference to pch_udc_dev structure
487 * @addr: address of CSR register
489 * Return codes: content of CSR register
491 static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
493 unsigned long reg = PCH_UDC_CSR(ep);
495 pch_udc_csr_busy(dev); /* Wait till idle */
496 pch_udc_readl(dev, reg); /* Dummy read */
497 pch_udc_csr_busy(dev); /* Wait till idle */
498 return pch_udc_readl(dev, reg);
502 * pch_udc_rmt_wakeup() - Initiate for remote wakeup
503 * @dev: Reference to pch_udc_dev structure
505 static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
507 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
508 mdelay(1);
509 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
513 * pch_udc_get_frame() - Get the current frame from device status register
514 * @dev: Reference to pch_udc_dev structure
515 * Retern current frame
517 static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
519 u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
520 return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
524 * pch_udc_clear_selfpowered() - Clear the self power control
525 * @dev: Reference to pch_udc_regs structure
527 static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
529 pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
533 * pch_udc_set_selfpowered() - Set the self power control
534 * @dev: Reference to pch_udc_regs structure
536 static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
538 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
542 * pch_udc_set_disconnect() - Set the disconnect status.
543 * @dev: Reference to pch_udc_regs structure
545 static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
547 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
551 * pch_udc_clear_disconnect() - Clear the disconnect status.
552 * @dev: Reference to pch_udc_regs structure
554 static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
556 /* Clear the disconnect */
557 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
558 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
559 mdelay(1);
560 /* Resume USB signalling */
561 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
565 * pch_udc_vbus_session() - set or clearr the disconnect status.
566 * @dev: Reference to pch_udc_regs structure
567 * @is_active: Parameter specifying the action
568 * 0: indicating VBUS power is ending
569 * !0: indicating VBUS power is starting
571 static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
572 int is_active)
574 if (is_active)
575 pch_udc_clear_disconnect(dev);
576 else
577 pch_udc_set_disconnect(dev);
581 * pch_udc_ep_set_stall() - Set the stall of endpoint
582 * @ep: Reference to structure of type pch_udc_ep_regs
584 static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
586 if (ep->in) {
587 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
588 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
589 } else {
590 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
595 * pch_udc_ep_clear_stall() - Clear the stall of endpoint
596 * @ep: Reference to structure of type pch_udc_ep_regs
598 static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
600 /* Clear the stall */
601 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
602 /* Clear NAK by writing CNAK */
603 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
607 * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
608 * @ep: Reference to structure of type pch_udc_ep_regs
609 * @type: Type of endpoint
611 static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
612 u8 type)
614 pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
615 UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
619 * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
620 * @ep: Reference to structure of type pch_udc_ep_regs
621 * @buf_size: The buffer word size
623 static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
624 u32 buf_size, u32 ep_in)
626 u32 data;
627 if (ep_in) {
628 data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
629 data = (data & 0xffff0000) | (buf_size & 0xffff);
630 pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
631 } else {
632 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
633 data = (buf_size << 16) | (data & 0xffff);
634 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
639 * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
640 * @ep: Reference to structure of type pch_udc_ep_regs
641 * @pkt_size: The packet byte size
643 static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
645 u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
646 data = (data & 0xffff0000) | (pkt_size & 0xffff);
647 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
651 * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
652 * @ep: Reference to structure of type pch_udc_ep_regs
653 * @addr: Address of the register
655 static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
657 pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
661 * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
662 * @ep: Reference to structure of type pch_udc_ep_regs
663 * @addr: Address of the register
665 static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
667 pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
671 * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
672 * @ep: Reference to structure of type pch_udc_ep_regs
674 static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
676 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
680 * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
681 * @ep: Reference to structure of type pch_udc_ep_regs
683 static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
685 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
689 * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
690 * @ep: Reference to structure of type pch_udc_ep_regs
692 static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
694 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
698 * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
699 * register depending on the direction specified
700 * @dev: Reference to structure of type pch_udc_regs
701 * @dir: whether Tx or Rx
702 * DMA_DIR_RX: Receive
703 * DMA_DIR_TX: Transmit
705 static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
707 if (dir == DMA_DIR_RX)
708 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
709 else if (dir == DMA_DIR_TX)
710 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
714 * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
715 * register depending on the direction specified
716 * @dev: Reference to structure of type pch_udc_regs
717 * @dir: Whether Tx or Rx
718 * DMA_DIR_RX: Receive
719 * DMA_DIR_TX: Transmit
721 static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
723 if (dir == DMA_DIR_RX)
724 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
725 else if (dir == DMA_DIR_TX)
726 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
730 * pch_udc_set_csr_done() - Set the device control register
731 * CSR done field (bit 13)
732 * @dev: reference to structure of type pch_udc_regs
734 static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
736 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
740 * pch_udc_disable_interrupts() - Disables the specified interrupts
741 * @dev: Reference to structure of type pch_udc_regs
742 * @mask: Mask to disable interrupts
744 static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
745 u32 mask)
747 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
751 * pch_udc_enable_interrupts() - Enable the specified interrupts
752 * @dev: Reference to structure of type pch_udc_regs
753 * @mask: Mask to enable interrupts
755 static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
756 u32 mask)
758 pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
762 * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
763 * @dev: Reference to structure of type pch_udc_regs
764 * @mask: Mask to disable interrupts
766 static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
767 u32 mask)
769 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
773 * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
774 * @dev: Reference to structure of type pch_udc_regs
775 * @mask: Mask to enable interrupts
777 static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
778 u32 mask)
780 pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
784 * pch_udc_read_device_interrupts() - Read the device interrupts
785 * @dev: Reference to structure of type pch_udc_regs
786 * Retern The device interrupts
788 static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
790 return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
794 * pch_udc_write_device_interrupts() - Write device interrupts
795 * @dev: Reference to structure of type pch_udc_regs
796 * @val: The value to be written to interrupt register
798 static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
799 u32 val)
801 pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
805 * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
806 * @dev: Reference to structure of type pch_udc_regs
807 * Retern The endpoint interrupt
809 static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
811 return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
815 * pch_udc_write_ep_interrupts() - Clear endpoint interupts
816 * @dev: Reference to structure of type pch_udc_regs
817 * @val: The value to be written to interrupt register
819 static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
820 u32 val)
822 pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
826 * pch_udc_read_device_status() - Read the device status
827 * @dev: Reference to structure of type pch_udc_regs
828 * Retern The device status
830 static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
832 return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
836 * pch_udc_read_ep_control() - Read the endpoint control
837 * @ep: Reference to structure of type pch_udc_ep_regs
838 * Retern The endpoint control register value
840 static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
842 return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
846 * pch_udc_clear_ep_control() - Clear the endpoint control register
847 * @ep: Reference to structure of type pch_udc_ep_regs
848 * Retern The endpoint control register value
850 static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
852 return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
856 * pch_udc_read_ep_status() - Read the endpoint status
857 * @ep: Reference to structure of type pch_udc_ep_regs
858 * Retern The endpoint status
860 static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
862 return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
866 * pch_udc_clear_ep_status() - Clear the endpoint status
867 * @ep: Reference to structure of type pch_udc_ep_regs
868 * @stat: Endpoint status
870 static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
871 u32 stat)
873 return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
877 * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
878 * of the endpoint control register
879 * @ep: Reference to structure of type pch_udc_ep_regs
881 static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
883 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
887 * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
888 * of the endpoint control register
889 * @ep: reference to structure of type pch_udc_ep_regs
891 static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
893 unsigned int loopcnt = 0;
894 struct pch_udc_dev *dev = ep->dev;
896 if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
897 return;
898 if (!ep->in) {
899 loopcnt = 10000;
900 while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
901 --loopcnt)
902 udelay(5);
903 if (!loopcnt)
904 dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
905 __func__);
907 loopcnt = 10000;
908 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
909 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
910 udelay(5);
912 if (!loopcnt)
913 dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
914 __func__, ep->num, (ep->in ? "in" : "out"));
918 * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
919 * @ep: reference to structure of type pch_udc_ep_regs
920 * @dir: direction of endpoint
921 * 0: endpoint is OUT
922 * !0: endpoint is IN
924 static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
926 if (dir) { /* IN ep */
927 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
928 return;
933 * pch_udc_ep_enable() - This api enables endpoint
934 * @regs: Reference to structure pch_udc_ep_regs
935 * @desc: endpoint descriptor
937 static void pch_udc_ep_enable(struct pch_udc_ep *ep,
938 struct pch_udc_cfg_data *cfg,
939 const struct usb_endpoint_descriptor *desc)
941 u32 val = 0;
942 u32 buff_size = 0;
944 pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
945 if (ep->in)
946 buff_size = UDC_EPIN_BUFF_SIZE;
947 else
948 buff_size = UDC_EPOUT_BUFF_SIZE;
949 pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
950 pch_udc_ep_set_maxpkt(ep, le16_to_cpu(desc->wMaxPacketSize));
951 pch_udc_ep_set_nak(ep);
952 pch_udc_ep_fifo_flush(ep, ep->in);
953 /* Configure the endpoint */
954 val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
955 ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
956 UDC_CSR_NE_TYPE_SHIFT) |
957 (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
958 (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
959 (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
960 le16_to_cpu(desc->wMaxPacketSize) << UDC_CSR_NE_MAX_PKT_SHIFT;
962 if (ep->in)
963 pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
964 else
965 pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
969 * pch_udc_ep_disable() - This api disables endpoint
970 * @regs: Reference to structure pch_udc_ep_regs
972 static void pch_udc_ep_disable(struct pch_udc_ep *ep)
974 if (ep->in) {
975 /* flush the fifo */
976 pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
977 /* set NAK */
978 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
979 pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
980 } else {
981 /* set NAK */
982 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
984 /* reset desc pointer */
985 pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
989 * pch_udc_wait_ep_stall() - Wait EP stall.
990 * @dev: Reference to pch_udc_dev structure
992 static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
994 unsigned int count = 10000;
996 /* Wait till idle */
997 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
998 udelay(5);
999 if (!count)
1000 dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
1004 * pch_udc_init() - This API initializes usb device controller
1005 * @dev: Rreference to pch_udc_regs structure
1007 static void pch_udc_init(struct pch_udc_dev *dev)
1009 if (NULL == dev) {
1010 pr_err("%s: Invalid address\n", __func__);
1011 return;
1013 /* Soft Reset and Reset PHY */
1014 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1015 pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
1016 mdelay(1);
1017 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1018 pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
1019 mdelay(1);
1020 /* mask and clear all device interrupts */
1021 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1022 pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
1024 /* mask and clear all ep interrupts */
1025 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1026 pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1028 /* enable dynamic CSR programmingi, self powered and device speed */
1029 if (speed_fs)
1030 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1031 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
1032 else /* defaul high speed */
1033 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1034 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
1035 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
1036 (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
1037 (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
1038 UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
1039 UDC_DEVCTL_THE);
1043 * pch_udc_exit() - This API exit usb device controller
1044 * @dev: Reference to pch_udc_regs structure
1046 static void pch_udc_exit(struct pch_udc_dev *dev)
1048 /* mask all device interrupts */
1049 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1050 /* mask all ep interrupts */
1051 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1052 /* put device in disconnected state */
1053 pch_udc_set_disconnect(dev);
1057 * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
1058 * @gadget: Reference to the gadget driver
1060 * Return codes:
1061 * 0: Success
1062 * -EINVAL: If the gadget passed is NULL
1064 static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
1066 struct pch_udc_dev *dev;
1068 if (!gadget)
1069 return -EINVAL;
1070 dev = container_of(gadget, struct pch_udc_dev, gadget);
1071 return pch_udc_get_frame(dev);
1075 * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
1076 * @gadget: Reference to the gadget driver
1078 * Return codes:
1079 * 0: Success
1080 * -EINVAL: If the gadget passed is NULL
1082 static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
1084 struct pch_udc_dev *dev;
1085 unsigned long flags;
1087 if (!gadget)
1088 return -EINVAL;
1089 dev = container_of(gadget, struct pch_udc_dev, gadget);
1090 spin_lock_irqsave(&dev->lock, flags);
1091 pch_udc_rmt_wakeup(dev);
1092 spin_unlock_irqrestore(&dev->lock, flags);
1093 return 0;
1097 * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
1098 * is self powered or not
1099 * @gadget: Reference to the gadget driver
1100 * @value: Specifies self powered or not
1102 * Return codes:
1103 * 0: Success
1104 * -EINVAL: If the gadget passed is NULL
1106 static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
1108 struct pch_udc_dev *dev;
1110 if (!gadget)
1111 return -EINVAL;
1112 dev = container_of(gadget, struct pch_udc_dev, gadget);
1113 if (value)
1114 pch_udc_set_selfpowered(dev);
1115 else
1116 pch_udc_clear_selfpowered(dev);
1117 return 0;
1121 * pch_udc_pcd_pullup() - This API is invoked to make the device
1122 * visible/invisible to the host
1123 * @gadget: Reference to the gadget driver
1124 * @is_on: Specifies whether the pull up is made active or inactive
1126 * Return codes:
1127 * 0: Success
1128 * -EINVAL: If the gadget passed is NULL
1130 static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
1132 struct pch_udc_dev *dev;
1134 if (!gadget)
1135 return -EINVAL;
1136 dev = container_of(gadget, struct pch_udc_dev, gadget);
1137 pch_udc_vbus_session(dev, is_on);
1138 return 0;
1142 * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
1143 * transceiver (or GPIO) that
1144 * detects a VBUS power session starting/ending
1145 * @gadget: Reference to the gadget driver
1146 * @is_active: specifies whether the session is starting or ending
1148 * Return codes:
1149 * 0: Success
1150 * -EINVAL: If the gadget passed is NULL
1152 static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
1154 struct pch_udc_dev *dev;
1156 if (!gadget)
1157 return -EINVAL;
1158 dev = container_of(gadget, struct pch_udc_dev, gadget);
1159 pch_udc_vbus_session(dev, is_active);
1160 return 0;
1164 * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
1165 * SET_CONFIGURATION calls to
1166 * specify how much power the device can consume
1167 * @gadget: Reference to the gadget driver
1168 * @mA: specifies the current limit in 2mA unit
1170 * Return codes:
1171 * -EINVAL: If the gadget passed is NULL
1172 * -EOPNOTSUPP:
1174 static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
1176 return -EOPNOTSUPP;
1179 static int pch_udc_start(struct usb_gadget_driver *driver,
1180 int (*bind)(struct usb_gadget *));
1181 static int pch_udc_stop(struct usb_gadget_driver *driver);
1182 static const struct usb_gadget_ops pch_udc_ops = {
1183 .get_frame = pch_udc_pcd_get_frame,
1184 .wakeup = pch_udc_pcd_wakeup,
1185 .set_selfpowered = pch_udc_pcd_selfpowered,
1186 .pullup = pch_udc_pcd_pullup,
1187 .vbus_session = pch_udc_pcd_vbus_session,
1188 .vbus_draw = pch_udc_pcd_vbus_draw,
1189 .start = pch_udc_start,
1190 .stop = pch_udc_stop,
1194 * complete_req() - This API is invoked from the driver when processing
1195 * of a request is complete
1196 * @ep: Reference to the endpoint structure
1197 * @req: Reference to the request structure
1198 * @status: Indicates the success/failure of completion
1200 static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
1201 int status)
1203 struct pch_udc_dev *dev;
1204 unsigned halted = ep->halted;
1206 list_del_init(&req->queue);
1208 /* set new status if pending */
1209 if (req->req.status == -EINPROGRESS)
1210 req->req.status = status;
1211 else
1212 status = req->req.status;
1214 dev = ep->dev;
1215 if (req->dma_mapped) {
1216 if (req->dma == DMA_ADDR_INVALID) {
1217 if (ep->in)
1218 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1219 req->req.length,
1220 DMA_TO_DEVICE);
1221 else
1222 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1223 req->req.length,
1224 DMA_FROM_DEVICE);
1225 req->req.dma = DMA_ADDR_INVALID;
1226 } else {
1227 if (ep->in)
1228 dma_unmap_single(&dev->pdev->dev, req->dma,
1229 req->req.length,
1230 DMA_TO_DEVICE);
1231 else {
1232 dma_unmap_single(&dev->pdev->dev, req->dma,
1233 req->req.length,
1234 DMA_FROM_DEVICE);
1235 memcpy(req->req.buf, req->buf, req->req.length);
1237 kfree(req->buf);
1238 req->dma = DMA_ADDR_INVALID;
1240 req->dma_mapped = 0;
1242 ep->halted = 1;
1243 spin_unlock(&dev->lock);
1244 if (!ep->in)
1245 pch_udc_ep_clear_rrdy(ep);
1246 req->req.complete(&ep->ep, &req->req);
1247 spin_lock(&dev->lock);
1248 ep->halted = halted;
1252 * empty_req_queue() - This API empties the request queue of an endpoint
1253 * @ep: Reference to the endpoint structure
1255 static void empty_req_queue(struct pch_udc_ep *ep)
1257 struct pch_udc_request *req;
1259 ep->halted = 1;
1260 while (!list_empty(&ep->queue)) {
1261 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1262 complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
1267 * pch_udc_free_dma_chain() - This function frees the DMA chain created
1268 * for the request
1269 * @dev Reference to the driver structure
1270 * @req Reference to the request to be freed
1272 * Return codes:
1273 * 0: Success
1275 static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
1276 struct pch_udc_request *req)
1278 struct pch_udc_data_dma_desc *td = req->td_data;
1279 unsigned i = req->chain_len;
1281 dma_addr_t addr2;
1282 dma_addr_t addr = (dma_addr_t)td->next;
1283 td->next = 0x00;
1284 for (; i > 1; --i) {
1285 /* do not free first desc., will be done by free for request */
1286 td = phys_to_virt(addr);
1287 addr2 = (dma_addr_t)td->next;
1288 pci_pool_free(dev->data_requests, td, addr);
1289 td->next = 0x00;
1290 addr = addr2;
1292 req->chain_len = 1;
1296 * pch_udc_create_dma_chain() - This function creates or reinitializes
1297 * a DMA chain
1298 * @ep: Reference to the endpoint structure
1299 * @req: Reference to the request
1300 * @buf_len: The buffer length
1301 * @gfp_flags: Flags to be used while mapping the data buffer
1303 * Return codes:
1304 * 0: success,
1305 * -ENOMEM: pci_pool_alloc invocation fails
1307 static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
1308 struct pch_udc_request *req,
1309 unsigned long buf_len,
1310 gfp_t gfp_flags)
1312 struct pch_udc_data_dma_desc *td = req->td_data, *last;
1313 unsigned long bytes = req->req.length, i = 0;
1314 dma_addr_t dma_addr;
1315 unsigned len = 1;
1317 if (req->chain_len > 1)
1318 pch_udc_free_dma_chain(ep->dev, req);
1320 if (req->dma == DMA_ADDR_INVALID)
1321 td->dataptr = req->req.dma;
1322 else
1323 td->dataptr = req->dma;
1325 td->status = PCH_UDC_BS_HST_BSY;
1326 for (; ; bytes -= buf_len, ++len) {
1327 td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
1328 if (bytes <= buf_len)
1329 break;
1330 last = td;
1331 td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
1332 &dma_addr);
1333 if (!td)
1334 goto nomem;
1335 i += buf_len;
1336 td->dataptr = req->td_data->dataptr + i;
1337 last->next = dma_addr;
1340 req->td_data_last = td;
1341 td->status |= PCH_UDC_DMA_LAST;
1342 td->next = req->td_data_phys;
1343 req->chain_len = len;
1344 return 0;
1346 nomem:
1347 if (len > 1) {
1348 req->chain_len = len;
1349 pch_udc_free_dma_chain(ep->dev, req);
1351 req->chain_len = 1;
1352 return -ENOMEM;
1356 * prepare_dma() - This function creates and initializes the DMA chain
1357 * for the request
1358 * @ep: Reference to the endpoint structure
1359 * @req: Reference to the request
1360 * @gfp: Flag to be used while mapping the data buffer
1362 * Return codes:
1363 * 0: Success
1364 * Other 0: linux error number on failure
1366 static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
1367 gfp_t gfp)
1369 int retval;
1371 /* Allocate and create a DMA chain */
1372 retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
1373 if (retval) {
1374 pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
1375 return retval;
1377 if (ep->in)
1378 req->td_data->status = (req->td_data->status &
1379 ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
1380 return 0;
1384 * process_zlp() - This function process zero length packets
1385 * from the gadget driver
1386 * @ep: Reference to the endpoint structure
1387 * @req: Reference to the request
1389 static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
1391 struct pch_udc_dev *dev = ep->dev;
1393 /* IN zlp's are handled by hardware */
1394 complete_req(ep, req, 0);
1396 /* if set_config or set_intf is waiting for ack by zlp
1397 * then set CSR_DONE
1399 if (dev->set_cfg_not_acked) {
1400 pch_udc_set_csr_done(dev);
1401 dev->set_cfg_not_acked = 0;
1403 /* setup command is ACK'ed now by zlp */
1404 if (!dev->stall && dev->waiting_zlp_ack) {
1405 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
1406 dev->waiting_zlp_ack = 0;
1411 * pch_udc_start_rxrequest() - This function starts the receive requirement.
1412 * @ep: Reference to the endpoint structure
1413 * @req: Reference to the request structure
1415 static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
1416 struct pch_udc_request *req)
1418 struct pch_udc_data_dma_desc *td_data;
1420 pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
1421 td_data = req->td_data;
1422 /* Set the status bits for all descriptors */
1423 while (1) {
1424 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
1425 PCH_UDC_BS_HST_RDY;
1426 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
1427 break;
1428 td_data = phys_to_virt(td_data->next);
1430 /* Write the descriptor pointer */
1431 pch_udc_ep_set_ddptr(ep, req->td_data_phys);
1432 req->dma_going = 1;
1433 pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
1434 pch_udc_set_dma(ep->dev, DMA_DIR_RX);
1435 pch_udc_ep_clear_nak(ep);
1436 pch_udc_ep_set_rrdy(ep);
1440 * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
1441 * from gadget driver
1442 * @usbep: Reference to the USB endpoint structure
1443 * @desc: Reference to the USB endpoint descriptor structure
1445 * Return codes:
1446 * 0: Success
1447 * -EINVAL:
1448 * -ESHUTDOWN:
1450 static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
1451 const struct usb_endpoint_descriptor *desc)
1453 struct pch_udc_ep *ep;
1454 struct pch_udc_dev *dev;
1455 unsigned long iflags;
1457 if (!usbep || (usbep->name == ep0_string) || !desc ||
1458 (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
1459 return -EINVAL;
1461 ep = container_of(usbep, struct pch_udc_ep, ep);
1462 dev = ep->dev;
1463 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1464 return -ESHUTDOWN;
1465 spin_lock_irqsave(&dev->lock, iflags);
1466 ep->desc = desc;
1467 ep->halted = 0;
1468 pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
1469 ep->ep.maxpacket = le16_to_cpu(desc->wMaxPacketSize);
1470 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1471 spin_unlock_irqrestore(&dev->lock, iflags);
1472 return 0;
1476 * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
1477 * from gadget driver
1478 * @usbep Reference to the USB endpoint structure
1480 * Return codes:
1481 * 0: Success
1482 * -EINVAL:
1484 static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
1486 struct pch_udc_ep *ep;
1487 struct pch_udc_dev *dev;
1488 unsigned long iflags;
1490 if (!usbep)
1491 return -EINVAL;
1493 ep = container_of(usbep, struct pch_udc_ep, ep);
1494 dev = ep->dev;
1495 if ((usbep->name == ep0_string) || !ep->desc)
1496 return -EINVAL;
1498 spin_lock_irqsave(&ep->dev->lock, iflags);
1499 empty_req_queue(ep);
1500 ep->halted = 1;
1501 pch_udc_ep_disable(ep);
1502 pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1503 ep->desc = NULL;
1504 INIT_LIST_HEAD(&ep->queue);
1505 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1506 return 0;
1510 * pch_udc_alloc_request() - This function allocates request structure.
1511 * It is called by gadget driver
1512 * @usbep: Reference to the USB endpoint structure
1513 * @gfp: Flag to be used while allocating memory
1515 * Return codes:
1516 * NULL: Failure
1517 * Allocated address: Success
1519 static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
1520 gfp_t gfp)
1522 struct pch_udc_request *req;
1523 struct pch_udc_ep *ep;
1524 struct pch_udc_data_dma_desc *dma_desc;
1525 struct pch_udc_dev *dev;
1527 if (!usbep)
1528 return NULL;
1529 ep = container_of(usbep, struct pch_udc_ep, ep);
1530 dev = ep->dev;
1531 req = kzalloc(sizeof *req, gfp);
1532 if (!req)
1533 return NULL;
1534 req->req.dma = DMA_ADDR_INVALID;
1535 req->dma = DMA_ADDR_INVALID;
1536 INIT_LIST_HEAD(&req->queue);
1537 if (!ep->dev->dma_addr)
1538 return &req->req;
1539 /* ep0 in requests are allocated from data pool here */
1540 dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
1541 &req->td_data_phys);
1542 if (NULL == dma_desc) {
1543 kfree(req);
1544 return NULL;
1546 /* prevent from using desc. - set HOST BUSY */
1547 dma_desc->status |= PCH_UDC_BS_HST_BSY;
1548 dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID);
1549 req->td_data = dma_desc;
1550 req->td_data_last = dma_desc;
1551 req->chain_len = 1;
1552 return &req->req;
1556 * pch_udc_free_request() - This function frees request structure.
1557 * It is called by gadget driver
1558 * @usbep: Reference to the USB endpoint structure
1559 * @usbreq: Reference to the USB request
1561 static void pch_udc_free_request(struct usb_ep *usbep,
1562 struct usb_request *usbreq)
1564 struct pch_udc_ep *ep;
1565 struct pch_udc_request *req;
1566 struct pch_udc_dev *dev;
1568 if (!usbep || !usbreq)
1569 return;
1570 ep = container_of(usbep, struct pch_udc_ep, ep);
1571 req = container_of(usbreq, struct pch_udc_request, req);
1572 dev = ep->dev;
1573 if (!list_empty(&req->queue))
1574 dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
1575 __func__, usbep->name, req);
1576 if (req->td_data != NULL) {
1577 if (req->chain_len > 1)
1578 pch_udc_free_dma_chain(ep->dev, req);
1579 pci_pool_free(ep->dev->data_requests, req->td_data,
1580 req->td_data_phys);
1582 kfree(req);
1586 * pch_udc_pcd_queue() - This function queues a request packet. It is called
1587 * by gadget driver
1588 * @usbep: Reference to the USB endpoint structure
1589 * @usbreq: Reference to the USB request
1590 * @gfp: Flag to be used while mapping the data buffer
1592 * Return codes:
1593 * 0: Success
1594 * linux error number: Failure
1596 static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
1597 gfp_t gfp)
1599 int retval = 0;
1600 struct pch_udc_ep *ep;
1601 struct pch_udc_dev *dev;
1602 struct pch_udc_request *req;
1603 unsigned long iflags;
1605 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
1606 return -EINVAL;
1607 ep = container_of(usbep, struct pch_udc_ep, ep);
1608 dev = ep->dev;
1609 if (!ep->desc && ep->num)
1610 return -EINVAL;
1611 req = container_of(usbreq, struct pch_udc_request, req);
1612 if (!list_empty(&req->queue))
1613 return -EINVAL;
1614 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1615 return -ESHUTDOWN;
1616 spin_lock_irqsave(&dev->lock, iflags);
1617 /* map the buffer for dma */
1618 if (usbreq->length &&
1619 ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
1620 if (!((unsigned long)(usbreq->buf) & 0x03)) {
1621 if (ep->in)
1622 usbreq->dma = dma_map_single(&dev->pdev->dev,
1623 usbreq->buf,
1624 usbreq->length,
1625 DMA_TO_DEVICE);
1626 else
1627 usbreq->dma = dma_map_single(&dev->pdev->dev,
1628 usbreq->buf,
1629 usbreq->length,
1630 DMA_FROM_DEVICE);
1631 } else {
1632 req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
1633 if (!req->buf) {
1634 retval = -ENOMEM;
1635 goto probe_end;
1637 if (ep->in) {
1638 memcpy(req->buf, usbreq->buf, usbreq->length);
1639 req->dma = dma_map_single(&dev->pdev->dev,
1640 req->buf,
1641 usbreq->length,
1642 DMA_TO_DEVICE);
1643 } else
1644 req->dma = dma_map_single(&dev->pdev->dev,
1645 req->buf,
1646 usbreq->length,
1647 DMA_FROM_DEVICE);
1649 req->dma_mapped = 1;
1651 if (usbreq->length > 0) {
1652 retval = prepare_dma(ep, req, GFP_ATOMIC);
1653 if (retval)
1654 goto probe_end;
1656 usbreq->actual = 0;
1657 usbreq->status = -EINPROGRESS;
1658 req->dma_done = 0;
1659 if (list_empty(&ep->queue) && !ep->halted) {
1660 /* no pending transfer, so start this req */
1661 if (!usbreq->length) {
1662 process_zlp(ep, req);
1663 retval = 0;
1664 goto probe_end;
1666 if (!ep->in) {
1667 pch_udc_start_rxrequest(ep, req);
1668 } else {
1670 * For IN trfr the descriptors will be programmed and
1671 * P bit will be set when
1672 * we get an IN token
1674 pch_udc_wait_ep_stall(ep);
1675 pch_udc_ep_clear_nak(ep);
1676 pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
1679 /* Now add this request to the ep's pending requests */
1680 if (req != NULL)
1681 list_add_tail(&req->queue, &ep->queue);
1683 probe_end:
1684 spin_unlock_irqrestore(&dev->lock, iflags);
1685 return retval;
1689 * pch_udc_pcd_dequeue() - This function de-queues a request packet.
1690 * It is called by gadget driver
1691 * @usbep: Reference to the USB endpoint structure
1692 * @usbreq: Reference to the USB request
1694 * Return codes:
1695 * 0: Success
1696 * linux error number: Failure
1698 static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
1699 struct usb_request *usbreq)
1701 struct pch_udc_ep *ep;
1702 struct pch_udc_request *req;
1703 struct pch_udc_dev *dev;
1704 unsigned long flags;
1705 int ret = -EINVAL;
1707 ep = container_of(usbep, struct pch_udc_ep, ep);
1708 dev = ep->dev;
1709 if (!usbep || !usbreq || (!ep->desc && ep->num))
1710 return ret;
1711 req = container_of(usbreq, struct pch_udc_request, req);
1712 spin_lock_irqsave(&ep->dev->lock, flags);
1713 /* make sure it's still queued on this endpoint */
1714 list_for_each_entry(req, &ep->queue, queue) {
1715 if (&req->req == usbreq) {
1716 pch_udc_ep_set_nak(ep);
1717 if (!list_empty(&req->queue))
1718 complete_req(ep, req, -ECONNRESET);
1719 ret = 0;
1720 break;
1723 spin_unlock_irqrestore(&ep->dev->lock, flags);
1724 return ret;
1728 * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
1729 * feature
1730 * @usbep: Reference to the USB endpoint structure
1731 * @halt: Specifies whether to set or clear the feature
1733 * Return codes:
1734 * 0: Success
1735 * linux error number: Failure
1737 static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
1739 struct pch_udc_ep *ep;
1740 struct pch_udc_dev *dev;
1741 unsigned long iflags;
1742 int ret;
1744 if (!usbep)
1745 return -EINVAL;
1746 ep = container_of(usbep, struct pch_udc_ep, ep);
1747 dev = ep->dev;
1748 if (!ep->desc && !ep->num)
1749 return -EINVAL;
1750 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
1751 return -ESHUTDOWN;
1752 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1753 if (list_empty(&ep->queue)) {
1754 if (halt) {
1755 if (ep->num == PCH_UDC_EP0)
1756 ep->dev->stall = 1;
1757 pch_udc_ep_set_stall(ep);
1758 pch_udc_enable_ep_interrupts(ep->dev,
1759 PCH_UDC_EPINT(ep->in,
1760 ep->num));
1761 } else {
1762 pch_udc_ep_clear_stall(ep);
1764 ret = 0;
1765 } else {
1766 ret = -EAGAIN;
1768 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1769 return ret;
1773 * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
1774 * halt feature
1775 * @usbep: Reference to the USB endpoint structure
1776 * @halt: Specifies whether to set or clear the feature
1778 * Return codes:
1779 * 0: Success
1780 * linux error number: Failure
1782 static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
1784 struct pch_udc_ep *ep;
1785 struct pch_udc_dev *dev;
1786 unsigned long iflags;
1787 int ret;
1789 if (!usbep)
1790 return -EINVAL;
1791 ep = container_of(usbep, struct pch_udc_ep, ep);
1792 dev = ep->dev;
1793 if (!ep->desc && !ep->num)
1794 return -EINVAL;
1795 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
1796 return -ESHUTDOWN;
1797 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1798 if (!list_empty(&ep->queue)) {
1799 ret = -EAGAIN;
1800 } else {
1801 if (ep->num == PCH_UDC_EP0)
1802 ep->dev->stall = 1;
1803 pch_udc_ep_set_stall(ep);
1804 pch_udc_enable_ep_interrupts(ep->dev,
1805 PCH_UDC_EPINT(ep->in, ep->num));
1806 ep->dev->prot_stall = 1;
1807 ret = 0;
1809 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1810 return ret;
1814 * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
1815 * @usbep: Reference to the USB endpoint structure
1817 static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
1819 struct pch_udc_ep *ep;
1821 if (!usbep)
1822 return;
1824 ep = container_of(usbep, struct pch_udc_ep, ep);
1825 if (ep->desc || !ep->num)
1826 pch_udc_ep_fifo_flush(ep, ep->in);
1829 static const struct usb_ep_ops pch_udc_ep_ops = {
1830 .enable = pch_udc_pcd_ep_enable,
1831 .disable = pch_udc_pcd_ep_disable,
1832 .alloc_request = pch_udc_alloc_request,
1833 .free_request = pch_udc_free_request,
1834 .queue = pch_udc_pcd_queue,
1835 .dequeue = pch_udc_pcd_dequeue,
1836 .set_halt = pch_udc_pcd_set_halt,
1837 .set_wedge = pch_udc_pcd_set_wedge,
1838 .fifo_status = NULL,
1839 .fifo_flush = pch_udc_pcd_fifo_flush,
1843 * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
1844 * @td_stp: Reference to the SETP buffer structure
1846 static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
1848 static u32 pky_marker;
1850 if (!td_stp)
1851 return;
1852 td_stp->reserved = ++pky_marker;
1853 memset(&td_stp->request, 0xFF, sizeof td_stp->request);
1854 td_stp->status = PCH_UDC_BS_HST_RDY;
1858 * pch_udc_start_next_txrequest() - This function starts
1859 * the next transmission requirement
1860 * @ep: Reference to the endpoint structure
1862 static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
1864 struct pch_udc_request *req;
1865 struct pch_udc_data_dma_desc *td_data;
1867 if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
1868 return;
1870 if (list_empty(&ep->queue))
1871 return;
1873 /* next request */
1874 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1875 if (req->dma_going)
1876 return;
1877 if (!req->td_data)
1878 return;
1879 pch_udc_wait_ep_stall(ep);
1880 req->dma_going = 1;
1881 pch_udc_ep_set_ddptr(ep, 0);
1882 td_data = req->td_data;
1883 while (1) {
1884 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
1885 PCH_UDC_BS_HST_RDY;
1886 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
1887 break;
1888 td_data = phys_to_virt(td_data->next);
1890 pch_udc_ep_set_ddptr(ep, req->td_data_phys);
1891 pch_udc_set_dma(ep->dev, DMA_DIR_TX);
1892 pch_udc_ep_set_pd(ep);
1893 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1894 pch_udc_ep_clear_nak(ep);
1898 * pch_udc_complete_transfer() - This function completes a transfer
1899 * @ep: Reference to the endpoint structure
1901 static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
1903 struct pch_udc_request *req;
1904 struct pch_udc_dev *dev = ep->dev;
1906 if (list_empty(&ep->queue))
1907 return;
1908 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1909 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
1910 PCH_UDC_BS_DMA_DONE)
1911 return;
1912 if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
1913 PCH_UDC_RTS_SUCC) {
1914 dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
1915 "epstatus=0x%08x\n",
1916 (req->td_data_last->status & PCH_UDC_RXTX_STS),
1917 (int)(ep->epsts));
1918 return;
1921 req->req.actual = req->req.length;
1922 req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
1923 req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
1924 complete_req(ep, req, 0);
1925 req->dma_going = 0;
1926 if (!list_empty(&ep->queue)) {
1927 pch_udc_wait_ep_stall(ep);
1928 pch_udc_ep_clear_nak(ep);
1929 pch_udc_enable_ep_interrupts(ep->dev,
1930 PCH_UDC_EPINT(ep->in, ep->num));
1931 } else {
1932 pch_udc_disable_ep_interrupts(ep->dev,
1933 PCH_UDC_EPINT(ep->in, ep->num));
1938 * pch_udc_complete_receiver() - This function completes a receiver
1939 * @ep: Reference to the endpoint structure
1941 static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
1943 struct pch_udc_request *req;
1944 struct pch_udc_dev *dev = ep->dev;
1945 unsigned int count;
1946 struct pch_udc_data_dma_desc *td;
1947 dma_addr_t addr;
1949 if (list_empty(&ep->queue))
1950 return;
1951 /* next request */
1952 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1953 pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
1954 pch_udc_ep_set_ddptr(ep, 0);
1955 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
1956 PCH_UDC_BS_DMA_DONE)
1957 td = req->td_data_last;
1958 else
1959 td = req->td_data;
1961 while (1) {
1962 if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
1963 dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
1964 "epstatus=0x%08x\n",
1965 (req->td_data->status & PCH_UDC_RXTX_STS),
1966 (int)(ep->epsts));
1967 return;
1969 if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
1970 if (td->status | PCH_UDC_DMA_LAST) {
1971 count = td->status & PCH_UDC_RXTX_BYTES;
1972 break;
1974 if (td == req->td_data_last) {
1975 dev_err(&dev->pdev->dev, "Not complete RX descriptor");
1976 return;
1978 addr = (dma_addr_t)td->next;
1979 td = phys_to_virt(addr);
1981 /* on 64k packets the RXBYTES field is zero */
1982 if (!count && (req->req.length == UDC_DMA_MAXPACKET))
1983 count = UDC_DMA_MAXPACKET;
1984 req->td_data->status |= PCH_UDC_DMA_LAST;
1985 td->status |= PCH_UDC_BS_HST_BSY;
1987 req->dma_going = 0;
1988 req->req.actual = count;
1989 complete_req(ep, req, 0);
1990 /* If there is a new/failed requests try that now */
1991 if (!list_empty(&ep->queue)) {
1992 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1993 pch_udc_start_rxrequest(ep, req);
1998 * pch_udc_svc_data_in() - This function process endpoint interrupts
1999 * for IN endpoints
2000 * @dev: Reference to the device structure
2001 * @ep_num: Endpoint that generated the interrupt
2003 static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
2005 u32 epsts;
2006 struct pch_udc_ep *ep;
2008 ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2009 epsts = ep->epsts;
2010 ep->epsts = 0;
2012 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2013 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2014 UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
2015 return;
2016 if ((epsts & UDC_EPSTS_BNA))
2017 return;
2018 if (epsts & UDC_EPSTS_HE)
2019 return;
2020 if (epsts & UDC_EPSTS_RSS) {
2021 pch_udc_ep_set_stall(ep);
2022 pch_udc_enable_ep_interrupts(ep->dev,
2023 PCH_UDC_EPINT(ep->in, ep->num));
2025 if (epsts & UDC_EPSTS_RCS) {
2026 if (!dev->prot_stall) {
2027 pch_udc_ep_clear_stall(ep);
2028 } else {
2029 pch_udc_ep_set_stall(ep);
2030 pch_udc_enable_ep_interrupts(ep->dev,
2031 PCH_UDC_EPINT(ep->in, ep->num));
2034 if (epsts & UDC_EPSTS_TDC)
2035 pch_udc_complete_transfer(ep);
2036 /* On IN interrupt, provide data if we have any */
2037 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
2038 !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
2039 pch_udc_start_next_txrequest(ep);
2043 * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
2044 * @dev: Reference to the device structure
2045 * @ep_num: Endpoint that generated the interrupt
2047 static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
2049 u32 epsts;
2050 struct pch_udc_ep *ep;
2051 struct pch_udc_request *req = NULL;
2053 ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
2054 epsts = ep->epsts;
2055 ep->epsts = 0;
2057 if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
2058 /* next request */
2059 req = list_entry(ep->queue.next, struct pch_udc_request,
2060 queue);
2061 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2062 PCH_UDC_BS_DMA_DONE) {
2063 if (!req->dma_going)
2064 pch_udc_start_rxrequest(ep, req);
2065 return;
2068 if (epsts & UDC_EPSTS_HE)
2069 return;
2070 if (epsts & UDC_EPSTS_RSS) {
2071 pch_udc_ep_set_stall(ep);
2072 pch_udc_enable_ep_interrupts(ep->dev,
2073 PCH_UDC_EPINT(ep->in, ep->num));
2075 if (epsts & UDC_EPSTS_RCS) {
2076 if (!dev->prot_stall) {
2077 pch_udc_ep_clear_stall(ep);
2078 } else {
2079 pch_udc_ep_set_stall(ep);
2080 pch_udc_enable_ep_interrupts(ep->dev,
2081 PCH_UDC_EPINT(ep->in, ep->num));
2084 if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2085 UDC_EPSTS_OUT_DATA) {
2086 if (ep->dev->prot_stall == 1) {
2087 pch_udc_ep_set_stall(ep);
2088 pch_udc_enable_ep_interrupts(ep->dev,
2089 PCH_UDC_EPINT(ep->in, ep->num));
2090 } else {
2091 pch_udc_complete_receiver(ep);
2094 if (list_empty(&ep->queue))
2095 pch_udc_set_dma(dev, DMA_DIR_RX);
2099 * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
2100 * @dev: Reference to the device structure
2102 static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
2104 u32 epsts;
2105 struct pch_udc_ep *ep;
2106 struct pch_udc_ep *ep_out;
2108 ep = &dev->ep[UDC_EP0IN_IDX];
2109 ep_out = &dev->ep[UDC_EP0OUT_IDX];
2110 epsts = ep->epsts;
2111 ep->epsts = 0;
2113 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2114 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2115 UDC_EPSTS_XFERDONE)))
2116 return;
2117 if ((epsts & UDC_EPSTS_BNA))
2118 return;
2119 if (epsts & UDC_EPSTS_HE)
2120 return;
2121 if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
2122 pch_udc_complete_transfer(ep);
2123 pch_udc_clear_dma(dev, DMA_DIR_RX);
2124 ep_out->td_data->status = (ep_out->td_data->status &
2125 ~PCH_UDC_BUFF_STS) |
2126 PCH_UDC_BS_HST_RDY;
2127 pch_udc_ep_clear_nak(ep_out);
2128 pch_udc_set_dma(dev, DMA_DIR_RX);
2129 pch_udc_ep_set_rrdy(ep_out);
2131 /* On IN interrupt, provide data if we have any */
2132 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
2133 !(epsts & UDC_EPSTS_TXEMPTY))
2134 pch_udc_start_next_txrequest(ep);
2138 * pch_udc_svc_control_out() - Routine that handle Control
2139 * OUT endpoint interrupts
2140 * @dev: Reference to the device structure
2142 static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
2144 u32 stat;
2145 int setup_supported;
2146 struct pch_udc_ep *ep;
2148 ep = &dev->ep[UDC_EP0OUT_IDX];
2149 stat = ep->epsts;
2150 ep->epsts = 0;
2152 /* If setup data */
2153 if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2154 UDC_EPSTS_OUT_SETUP) {
2155 dev->stall = 0;
2156 dev->ep[UDC_EP0IN_IDX].halted = 0;
2157 dev->ep[UDC_EP0OUT_IDX].halted = 0;
2158 dev->setup_data = ep->td_stp->request;
2159 pch_udc_init_setup_buff(ep->td_stp);
2160 pch_udc_clear_dma(dev, DMA_DIR_RX);
2161 pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
2162 dev->ep[UDC_EP0IN_IDX].in);
2163 if ((dev->setup_data.bRequestType & USB_DIR_IN))
2164 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2165 else /* OUT */
2166 dev->gadget.ep0 = &ep->ep;
2167 spin_unlock(&dev->lock);
2168 /* If Mass storage Reset */
2169 if ((dev->setup_data.bRequestType == 0x21) &&
2170 (dev->setup_data.bRequest == 0xFF))
2171 dev->prot_stall = 0;
2172 /* call gadget with setup data received */
2173 setup_supported = dev->driver->setup(&dev->gadget,
2174 &dev->setup_data);
2175 spin_lock(&dev->lock);
2177 if (dev->setup_data.bRequestType & USB_DIR_IN) {
2178 ep->td_data->status = (ep->td_data->status &
2179 ~PCH_UDC_BUFF_STS) |
2180 PCH_UDC_BS_HST_RDY;
2181 pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2183 /* ep0 in returns data on IN phase */
2184 if (setup_supported >= 0 && setup_supported <
2185 UDC_EP0IN_MAX_PKT_SIZE) {
2186 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
2187 /* Gadget would have queued a request when
2188 * we called the setup */
2189 if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
2190 pch_udc_set_dma(dev, DMA_DIR_RX);
2191 pch_udc_ep_clear_nak(ep);
2193 } else if (setup_supported < 0) {
2194 /* if unsupported request, then stall */
2195 pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
2196 pch_udc_enable_ep_interrupts(ep->dev,
2197 PCH_UDC_EPINT(ep->in, ep->num));
2198 dev->stall = 0;
2199 pch_udc_set_dma(dev, DMA_DIR_RX);
2200 } else {
2201 dev->waiting_zlp_ack = 1;
2203 } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2204 UDC_EPSTS_OUT_DATA) && !dev->stall) {
2205 pch_udc_clear_dma(dev, DMA_DIR_RX);
2206 pch_udc_ep_set_ddptr(ep, 0);
2207 if (!list_empty(&ep->queue)) {
2208 ep->epsts = stat;
2209 pch_udc_svc_data_out(dev, PCH_UDC_EP0);
2211 pch_udc_set_dma(dev, DMA_DIR_RX);
2213 pch_udc_ep_set_rrdy(ep);
2218 * pch_udc_postsvc_epinters() - This function enables end point interrupts
2219 * and clears NAK status
2220 * @dev: Reference to the device structure
2221 * @ep_num: End point number
2223 static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
2225 struct pch_udc_ep *ep;
2226 struct pch_udc_request *req;
2228 ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2229 if (!list_empty(&ep->queue)) {
2230 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2231 pch_udc_enable_ep_interrupts(ep->dev,
2232 PCH_UDC_EPINT(ep->in, ep->num));
2233 pch_udc_ep_clear_nak(ep);
2238 * pch_udc_read_all_epstatus() - This function read all endpoint status
2239 * @dev: Reference to the device structure
2240 * @ep_intr: Status of endpoint interrupt
2242 static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
2244 int i;
2245 struct pch_udc_ep *ep;
2247 for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
2248 /* IN */
2249 if (ep_intr & (0x1 << i)) {
2250 ep = &dev->ep[UDC_EPIN_IDX(i)];
2251 ep->epsts = pch_udc_read_ep_status(ep);
2252 pch_udc_clear_ep_status(ep, ep->epsts);
2254 /* OUT */
2255 if (ep_intr & (0x10000 << i)) {
2256 ep = &dev->ep[UDC_EPOUT_IDX(i)];
2257 ep->epsts = pch_udc_read_ep_status(ep);
2258 pch_udc_clear_ep_status(ep, ep->epsts);
2264 * pch_udc_activate_control_ep() - This function enables the control endpoints
2265 * for traffic after a reset
2266 * @dev: Reference to the device structure
2268 static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
2270 struct pch_udc_ep *ep;
2271 u32 val;
2273 /* Setup the IN endpoint */
2274 ep = &dev->ep[UDC_EP0IN_IDX];
2275 pch_udc_clear_ep_control(ep);
2276 pch_udc_ep_fifo_flush(ep, ep->in);
2277 pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
2278 pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
2279 /* Initialize the IN EP Descriptor */
2280 ep->td_data = NULL;
2281 ep->td_stp = NULL;
2282 ep->td_data_phys = 0;
2283 ep->td_stp_phys = 0;
2285 /* Setup the OUT endpoint */
2286 ep = &dev->ep[UDC_EP0OUT_IDX];
2287 pch_udc_clear_ep_control(ep);
2288 pch_udc_ep_fifo_flush(ep, ep->in);
2289 pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
2290 pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
2291 val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
2292 pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
2294 /* Initialize the SETUP buffer */
2295 pch_udc_init_setup_buff(ep->td_stp);
2296 /* Write the pointer address of dma descriptor */
2297 pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
2298 /* Write the pointer address of Setup descriptor */
2299 pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2301 /* Initialize the dma descriptor */
2302 ep->td_data->status = PCH_UDC_DMA_LAST;
2303 ep->td_data->dataptr = dev->dma_addr;
2304 ep->td_data->next = ep->td_data_phys;
2306 pch_udc_ep_clear_nak(ep);
2311 * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
2312 * @dev: Reference to driver structure
2314 static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
2316 struct pch_udc_ep *ep;
2317 int i;
2319 pch_udc_clear_dma(dev, DMA_DIR_TX);
2320 pch_udc_clear_dma(dev, DMA_DIR_RX);
2321 /* Mask all endpoint interrupts */
2322 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2323 /* clear all endpoint interrupts */
2324 pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2326 for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2327 ep = &dev->ep[i];
2328 pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
2329 pch_udc_clear_ep_control(ep);
2330 pch_udc_ep_set_ddptr(ep, 0);
2331 pch_udc_write_csr(ep->dev, 0x00, i);
2333 dev->stall = 0;
2334 dev->prot_stall = 0;
2335 dev->waiting_zlp_ack = 0;
2336 dev->set_cfg_not_acked = 0;
2338 /* disable ep to empty req queue. Skip the control EP's */
2339 for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
2340 ep = &dev->ep[i];
2341 pch_udc_ep_set_nak(ep);
2342 pch_udc_ep_fifo_flush(ep, ep->in);
2343 /* Complete request queue */
2344 empty_req_queue(ep);
2346 if (dev->driver && dev->driver->disconnect)
2347 dev->driver->disconnect(&dev->gadget);
2351 * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
2352 * done interrupt
2353 * @dev: Reference to driver structure
2355 static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
2357 u32 dev_stat, dev_speed;
2358 u32 speed = USB_SPEED_FULL;
2360 dev_stat = pch_udc_read_device_status(dev);
2361 dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
2362 UDC_DEVSTS_ENUM_SPEED_SHIFT;
2363 switch (dev_speed) {
2364 case UDC_DEVSTS_ENUM_SPEED_HIGH:
2365 speed = USB_SPEED_HIGH;
2366 break;
2367 case UDC_DEVSTS_ENUM_SPEED_FULL:
2368 speed = USB_SPEED_FULL;
2369 break;
2370 case UDC_DEVSTS_ENUM_SPEED_LOW:
2371 speed = USB_SPEED_LOW;
2372 break;
2373 default:
2374 BUG();
2376 dev->gadget.speed = speed;
2377 pch_udc_activate_control_ep(dev);
2378 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
2379 pch_udc_set_dma(dev, DMA_DIR_TX);
2380 pch_udc_set_dma(dev, DMA_DIR_RX);
2381 pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
2385 * pch_udc_svc_intf_interrupt() - This function handles a set interface
2386 * interrupt
2387 * @dev: Reference to driver structure
2389 static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
2391 u32 reg, dev_stat = 0;
2392 int i, ret;
2394 dev_stat = pch_udc_read_device_status(dev);
2395 dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
2396 UDC_DEVSTS_INTF_SHIFT;
2397 dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
2398 UDC_DEVSTS_ALT_SHIFT;
2399 dev->set_cfg_not_acked = 1;
2400 /* Construct the usb request for gadget driver and inform it */
2401 memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2402 dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
2403 dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
2404 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
2405 dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
2406 /* programm the Endpoint Cfg registers */
2407 /* Only one end point cfg register */
2408 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2409 reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
2410 (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
2411 reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
2412 (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
2413 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2414 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2415 /* clear stall bits */
2416 pch_udc_ep_clear_stall(&(dev->ep[i]));
2417 dev->ep[i].halted = 0;
2419 dev->stall = 0;
2420 spin_unlock(&dev->lock);
2421 ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
2422 spin_lock(&dev->lock);
2426 * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
2427 * interrupt
2428 * @dev: Reference to driver structure
2430 static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
2432 int i, ret;
2433 u32 reg, dev_stat = 0;
2435 dev_stat = pch_udc_read_device_status(dev);
2436 dev->set_cfg_not_acked = 1;
2437 dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
2438 UDC_DEVSTS_CFG_SHIFT;
2439 /* make usb request for gadget driver */
2440 memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2441 dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
2442 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
2443 /* program the NE registers */
2444 /* Only one end point cfg register */
2445 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2446 reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
2447 (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
2448 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2449 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2450 /* clear stall bits */
2451 pch_udc_ep_clear_stall(&(dev->ep[i]));
2452 dev->ep[i].halted = 0;
2454 dev->stall = 0;
2456 /* call gadget zero with setup data received */
2457 spin_unlock(&dev->lock);
2458 ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
2459 spin_lock(&dev->lock);
2463 * pch_udc_dev_isr() - This function services device interrupts
2464 * by invoking appropriate routines.
2465 * @dev: Reference to the device structure
2466 * @dev_intr: The Device interrupt status.
2468 static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
2470 /* USB Reset Interrupt */
2471 if (dev_intr & UDC_DEVINT_UR)
2472 pch_udc_svc_ur_interrupt(dev);
2473 /* Enumeration Done Interrupt */
2474 if (dev_intr & UDC_DEVINT_ENUM)
2475 pch_udc_svc_enum_interrupt(dev);
2476 /* Set Interface Interrupt */
2477 if (dev_intr & UDC_DEVINT_SI)
2478 pch_udc_svc_intf_interrupt(dev);
2479 /* Set Config Interrupt */
2480 if (dev_intr & UDC_DEVINT_SC)
2481 pch_udc_svc_cfg_interrupt(dev);
2482 /* USB Suspend interrupt */
2483 if (dev_intr & UDC_DEVINT_US)
2484 dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
2485 /* Clear the SOF interrupt, if enabled */
2486 if (dev_intr & UDC_DEVINT_SOF)
2487 dev_dbg(&dev->pdev->dev, "SOF\n");
2488 /* ES interrupt, IDLE > 3ms on the USB */
2489 if (dev_intr & UDC_DEVINT_ES)
2490 dev_dbg(&dev->pdev->dev, "ES\n");
2491 /* RWKP interrupt */
2492 if (dev_intr & UDC_DEVINT_RWKP)
2493 dev_dbg(&dev->pdev->dev, "RWKP\n");
2497 * pch_udc_isr() - This function handles interrupts from the PCH USB Device
2498 * @irq: Interrupt request number
2499 * @dev: Reference to the device structure
2501 static irqreturn_t pch_udc_isr(int irq, void *pdev)
2503 struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
2504 u32 dev_intr, ep_intr;
2505 int i;
2507 dev_intr = pch_udc_read_device_interrupts(dev);
2508 ep_intr = pch_udc_read_ep_interrupts(dev);
2510 if (dev_intr)
2511 /* Clear device interrupts */
2512 pch_udc_write_device_interrupts(dev, dev_intr);
2513 if (ep_intr)
2514 /* Clear ep interrupts */
2515 pch_udc_write_ep_interrupts(dev, ep_intr);
2516 if (!dev_intr && !ep_intr)
2517 return IRQ_NONE;
2518 spin_lock(&dev->lock);
2519 if (dev_intr)
2520 pch_udc_dev_isr(dev, dev_intr);
2521 if (ep_intr) {
2522 pch_udc_read_all_epstatus(dev, ep_intr);
2523 /* Process Control In interrupts, if present */
2524 if (ep_intr & UDC_EPINT_IN_EP0) {
2525 pch_udc_svc_control_in(dev);
2526 pch_udc_postsvc_epinters(dev, 0);
2528 /* Process Control Out interrupts, if present */
2529 if (ep_intr & UDC_EPINT_OUT_EP0)
2530 pch_udc_svc_control_out(dev);
2531 /* Process data in end point interrupts */
2532 for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
2533 if (ep_intr & (1 << i)) {
2534 pch_udc_svc_data_in(dev, i);
2535 pch_udc_postsvc_epinters(dev, i);
2538 /* Process data out end point interrupts */
2539 for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
2540 PCH_UDC_USED_EP_NUM); i++)
2541 if (ep_intr & (1 << i))
2542 pch_udc_svc_data_out(dev, i -
2543 UDC_EPINT_OUT_SHIFT);
2545 spin_unlock(&dev->lock);
2546 return IRQ_HANDLED;
2550 * pch_udc_setup_ep0() - This function enables control endpoint for traffic
2551 * @dev: Reference to the device structure
2553 static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
2555 /* enable ep0 interrupts */
2556 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
2557 UDC_EPINT_OUT_EP0);
2558 /* enable device interrupts */
2559 pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2560 UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2561 UDC_DEVINT_SI | UDC_DEVINT_SC);
2565 * gadget_release() - Free the gadget driver private data
2566 * @pdev reference to struct pci_dev
2568 static void gadget_release(struct device *pdev)
2570 struct pch_udc_dev *dev = dev_get_drvdata(pdev);
2572 kfree(dev);
2576 * pch_udc_pcd_reinit() - This API initializes the endpoint structures
2577 * @dev: Reference to the driver structure
2579 static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
2581 const char *const ep_string[] = {
2582 ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
2583 "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
2584 "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
2585 "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
2586 "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
2587 "ep15in", "ep15out",
2589 int i;
2591 dev->gadget.speed = USB_SPEED_UNKNOWN;
2592 INIT_LIST_HEAD(&dev->gadget.ep_list);
2594 /* Initialize the endpoints structures */
2595 memset(dev->ep, 0, sizeof dev->ep);
2596 for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2597 struct pch_udc_ep *ep = &dev->ep[i];
2598 ep->dev = dev;
2599 ep->halted = 1;
2600 ep->num = i / 2;
2601 ep->in = ~i & 1;
2602 ep->ep.name = ep_string[i];
2603 ep->ep.ops = &pch_udc_ep_ops;
2604 if (ep->in)
2605 ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
2606 else
2607 ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
2608 UDC_EP_REG_SHIFT;
2609 /* need to set ep->ep.maxpacket and set Default Configuration?*/
2610 ep->ep.maxpacket = UDC_BULK_MAX_PKT_SIZE;
2611 list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
2612 INIT_LIST_HEAD(&ep->queue);
2614 dev->ep[UDC_EP0IN_IDX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
2615 dev->ep[UDC_EP0OUT_IDX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
2617 /* remove ep0 in and out from the list. They have own pointer */
2618 list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
2619 list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
2621 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2622 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
2626 * pch_udc_pcd_init() - This API initializes the driver structure
2627 * @dev: Reference to the driver structure
2629 * Return codes:
2630 * 0: Success
2632 static int pch_udc_pcd_init(struct pch_udc_dev *dev)
2634 pch_udc_init(dev);
2635 pch_udc_pcd_reinit(dev);
2636 return 0;
2640 * init_dma_pools() - create dma pools during initialization
2641 * @pdev: reference to struct pci_dev
2643 static int init_dma_pools(struct pch_udc_dev *dev)
2645 struct pch_udc_stp_dma_desc *td_stp;
2646 struct pch_udc_data_dma_desc *td_data;
2648 /* DMA setup */
2649 dev->data_requests = pci_pool_create("data_requests", dev->pdev,
2650 sizeof(struct pch_udc_data_dma_desc), 0, 0);
2651 if (!dev->data_requests) {
2652 dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
2653 __func__);
2654 return -ENOMEM;
2657 /* dma desc for setup data */
2658 dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
2659 sizeof(struct pch_udc_stp_dma_desc), 0, 0);
2660 if (!dev->stp_requests) {
2661 dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
2662 __func__);
2663 return -ENOMEM;
2665 /* setup */
2666 td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
2667 &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
2668 if (!td_stp) {
2669 dev_err(&dev->pdev->dev,
2670 "%s: can't allocate setup dma descriptor\n", __func__);
2671 return -ENOMEM;
2673 dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
2675 /* data: 0 packets !? */
2676 td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
2677 &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
2678 if (!td_data) {
2679 dev_err(&dev->pdev->dev,
2680 "%s: can't allocate data dma descriptor\n", __func__);
2681 return -ENOMEM;
2683 dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
2684 dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
2685 dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
2686 dev->ep[UDC_EP0IN_IDX].td_data = NULL;
2687 dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
2689 dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL);
2690 if (!dev->ep0out_buf)
2691 return -ENOMEM;
2692 dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf,
2693 UDC_EP0OUT_BUFF_SIZE * 4,
2694 DMA_FROM_DEVICE);
2695 return 0;
2698 static int pch_udc_start(struct usb_gadget_driver *driver,
2699 int (*bind)(struct usb_gadget *))
2701 struct pch_udc_dev *dev = pch_udc;
2702 int retval;
2704 if (!driver || (driver->speed == USB_SPEED_UNKNOWN) || !bind ||
2705 !driver->setup || !driver->unbind || !driver->disconnect) {
2706 dev_err(&dev->pdev->dev,
2707 "%s: invalid driver parameter\n", __func__);
2708 return -EINVAL;
2711 if (!dev)
2712 return -ENODEV;
2714 if (dev->driver) {
2715 dev_err(&dev->pdev->dev, "%s: already bound\n", __func__);
2716 return -EBUSY;
2718 driver->driver.bus = NULL;
2719 dev->driver = driver;
2720 dev->gadget.dev.driver = &driver->driver;
2722 /* Invoke the bind routine of the gadget driver */
2723 retval = bind(&dev->gadget);
2725 if (retval) {
2726 dev_err(&dev->pdev->dev, "%s: binding to %s returning %d\n",
2727 __func__, driver->driver.name, retval);
2728 dev->driver = NULL;
2729 dev->gadget.dev.driver = NULL;
2730 return retval;
2732 /* get ready for ep0 traffic */
2733 pch_udc_setup_ep0(dev);
2735 /* clear SD */
2736 pch_udc_clear_disconnect(dev);
2738 dev->connected = 1;
2739 return 0;
2742 static int pch_udc_stop(struct usb_gadget_driver *driver)
2744 struct pch_udc_dev *dev = pch_udc;
2746 if (!dev)
2747 return -ENODEV;
2749 if (!driver || (driver != dev->driver)) {
2750 dev_err(&dev->pdev->dev,
2751 "%s: invalid driver parameter\n", __func__);
2752 return -EINVAL;
2755 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2757 /* Assures that there are no pending requests with this driver */
2758 driver->disconnect(&dev->gadget);
2759 driver->unbind(&dev->gadget);
2760 dev->gadget.dev.driver = NULL;
2761 dev->driver = NULL;
2762 dev->connected = 0;
2764 /* set SD */
2765 pch_udc_set_disconnect(dev);
2766 return 0;
2769 static void pch_udc_shutdown(struct pci_dev *pdev)
2771 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
2773 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2774 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2776 /* disable the pullup so the host will think we're gone */
2777 pch_udc_set_disconnect(dev);
2780 static void pch_udc_remove(struct pci_dev *pdev)
2782 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
2784 usb_del_gadget_udc(&dev->gadget);
2786 /* gadget driver must not be registered */
2787 if (dev->driver)
2788 dev_err(&pdev->dev,
2789 "%s: gadget driver still bound!!!\n", __func__);
2790 /* dma pool cleanup */
2791 if (dev->data_requests)
2792 pci_pool_destroy(dev->data_requests);
2794 if (dev->stp_requests) {
2795 /* cleanup DMA desc's for ep0in */
2796 if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
2797 pci_pool_free(dev->stp_requests,
2798 dev->ep[UDC_EP0OUT_IDX].td_stp,
2799 dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
2801 if (dev->ep[UDC_EP0OUT_IDX].td_data) {
2802 pci_pool_free(dev->stp_requests,
2803 dev->ep[UDC_EP0OUT_IDX].td_data,
2804 dev->ep[UDC_EP0OUT_IDX].td_data_phys);
2806 pci_pool_destroy(dev->stp_requests);
2809 if (dev->dma_addr)
2810 dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
2811 UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
2812 kfree(dev->ep0out_buf);
2814 pch_udc_exit(dev);
2816 if (dev->irq_registered)
2817 free_irq(pdev->irq, dev);
2818 if (dev->base_addr)
2819 iounmap(dev->base_addr);
2820 if (dev->mem_region)
2821 release_mem_region(dev->phys_addr,
2822 pci_resource_len(pdev, PCH_UDC_PCI_BAR));
2823 if (dev->active)
2824 pci_disable_device(pdev);
2825 if (dev->registered)
2826 device_unregister(&dev->gadget.dev);
2827 kfree(dev);
2828 pci_set_drvdata(pdev, NULL);
2831 #ifdef CONFIG_PM
2832 static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state)
2834 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
2836 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2837 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2839 pci_disable_device(pdev);
2840 pci_enable_wake(pdev, PCI_D3hot, 0);
2842 if (pci_save_state(pdev)) {
2843 dev_err(&pdev->dev,
2844 "%s: could not save PCI config state\n", __func__);
2845 return -ENOMEM;
2847 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2848 return 0;
2851 static int pch_udc_resume(struct pci_dev *pdev)
2853 int ret;
2855 pci_set_power_state(pdev, PCI_D0);
2856 pci_restore_state(pdev);
2857 ret = pci_enable_device(pdev);
2858 if (ret) {
2859 dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__);
2860 return ret;
2862 pci_enable_wake(pdev, PCI_D3hot, 0);
2863 return 0;
2865 #else
2866 #define pch_udc_suspend NULL
2867 #define pch_udc_resume NULL
2868 #endif /* CONFIG_PM */
2870 static int pch_udc_probe(struct pci_dev *pdev,
2871 const struct pci_device_id *id)
2873 unsigned long resource;
2874 unsigned long len;
2875 int retval;
2876 struct pch_udc_dev *dev;
2878 /* one udc only */
2879 if (pch_udc) {
2880 pr_err("%s: already probed\n", __func__);
2881 return -EBUSY;
2883 /* init */
2884 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2885 if (!dev) {
2886 pr_err("%s: no memory for device structure\n", __func__);
2887 return -ENOMEM;
2889 /* pci setup */
2890 if (pci_enable_device(pdev) < 0) {
2891 kfree(dev);
2892 pr_err("%s: pci_enable_device failed\n", __func__);
2893 return -ENODEV;
2895 dev->active = 1;
2896 pci_set_drvdata(pdev, dev);
2898 /* PCI resource allocation */
2899 resource = pci_resource_start(pdev, 1);
2900 len = pci_resource_len(pdev, 1);
2902 if (!request_mem_region(resource, len, KBUILD_MODNAME)) {
2903 dev_err(&pdev->dev, "%s: pci device used already\n", __func__);
2904 retval = -EBUSY;
2905 goto finished;
2907 dev->phys_addr = resource;
2908 dev->mem_region = 1;
2910 dev->base_addr = ioremap_nocache(resource, len);
2911 if (!dev->base_addr) {
2912 pr_err("%s: device memory cannot be mapped\n", __func__);
2913 retval = -ENOMEM;
2914 goto finished;
2916 if (!pdev->irq) {
2917 dev_err(&pdev->dev, "%s: irq not set\n", __func__);
2918 retval = -ENODEV;
2919 goto finished;
2921 pch_udc = dev;
2922 /* initialize the hardware */
2923 if (pch_udc_pcd_init(dev))
2924 goto finished;
2925 if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME,
2926 dev)) {
2927 dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
2928 pdev->irq);
2929 retval = -ENODEV;
2930 goto finished;
2932 dev->irq = pdev->irq;
2933 dev->irq_registered = 1;
2935 pci_set_master(pdev);
2936 pci_try_set_mwi(pdev);
2938 /* device struct setup */
2939 spin_lock_init(&dev->lock);
2940 dev->pdev = pdev;
2941 dev->gadget.ops = &pch_udc_ops;
2943 retval = init_dma_pools(dev);
2944 if (retval)
2945 goto finished;
2947 dev_set_name(&dev->gadget.dev, "gadget");
2948 dev->gadget.dev.parent = &pdev->dev;
2949 dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
2950 dev->gadget.dev.release = gadget_release;
2951 dev->gadget.name = KBUILD_MODNAME;
2952 dev->gadget.is_dualspeed = 1;
2954 retval = device_register(&dev->gadget.dev);
2955 if (retval)
2956 goto finished;
2957 dev->registered = 1;
2959 /* Put the device in disconnected state till a driver is bound */
2960 pch_udc_set_disconnect(dev);
2961 retval = usb_add_gadget_udc(&pdev->dev, &dev->gadget);
2962 if (retval)
2963 goto finished;
2964 return 0;
2966 finished:
2967 pch_udc_remove(pdev);
2968 return retval;
2971 static DEFINE_PCI_DEVICE_TABLE(pch_udc_pcidev_id) = {
2973 PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
2974 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
2975 .class_mask = 0xffffffff,
2978 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
2979 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
2980 .class_mask = 0xffffffff,
2982 { 0 },
2985 MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
2988 static struct pci_driver pch_udc_driver = {
2989 .name = KBUILD_MODNAME,
2990 .id_table = pch_udc_pcidev_id,
2991 .probe = pch_udc_probe,
2992 .remove = pch_udc_remove,
2993 .suspend = pch_udc_suspend,
2994 .resume = pch_udc_resume,
2995 .shutdown = pch_udc_shutdown,
2998 static int __init pch_udc_pci_init(void)
3000 return pci_register_driver(&pch_udc_driver);
3002 module_init(pch_udc_pci_init);
3004 static void __exit pch_udc_pci_exit(void)
3006 pci_unregister_driver(&pch_udc_driver);
3008 module_exit(pch_udc_pci_exit);
3010 MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
3011 MODULE_AUTHOR("OKI SEMICONDUCTOR, <toshiharu-linux@dsn.okisemi.com>");
3012 MODULE_LICENSE("GPL");