3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
7 * Filesystem Meta Information Block Cache (mbcache)
9 * The mbcache caches blocks of block devices that need to be located
10 * by their device/block number, as well as by other criteria (such
11 * as the block's contents).
13 * There can only be one cache entry in a cache per device and block number.
14 * Additional indexes need not be unique in this sense. The number of
15 * additional indexes (=other criteria) can be hardwired at compile time
16 * or specified at cache create time.
18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
19 * in the cache. A valid entry is in the main hash tables of the cache,
20 * and may also be in the lru list. An invalid entry is not in any hashes
23 * A valid cache entry is only in the lru list if no handles refer to it.
24 * Invalid cache entries will be freed when the last handle to the cache
25 * entry is released. Entries that cannot be freed immediately are put
26 * back on the lru list.
29 #include <linux/kernel.h>
30 #include <linux/module.h>
32 #include <linux/hash.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/init.h>
38 #include <linux/mbcache.h>
42 # define mb_debug(f...) do { \
43 printk(KERN_DEBUG f); \
46 #define mb_assert(c) do { if (!(c)) \
47 printk(KERN_ERR "assertion " #c " failed\n"); \
50 # define mb_debug(f...) do { } while(0)
51 # define mb_assert(c) do { } while(0)
53 #define mb_error(f...) do { \
58 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
60 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue
);
62 MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
63 MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
64 MODULE_LICENSE("GPL");
66 EXPORT_SYMBOL(mb_cache_create
);
67 EXPORT_SYMBOL(mb_cache_shrink
);
68 EXPORT_SYMBOL(mb_cache_destroy
);
69 EXPORT_SYMBOL(mb_cache_entry_alloc
);
70 EXPORT_SYMBOL(mb_cache_entry_insert
);
71 EXPORT_SYMBOL(mb_cache_entry_release
);
72 EXPORT_SYMBOL(mb_cache_entry_free
);
73 EXPORT_SYMBOL(mb_cache_entry_get
);
74 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
75 EXPORT_SYMBOL(mb_cache_entry_find_first
);
76 EXPORT_SYMBOL(mb_cache_entry_find_next
);
80 * Global data: list of all mbcache's, lru list, and a spinlock for
81 * accessing cache data structures on SMP machines. The lru list is
82 * global across all mbcaches.
85 static LIST_HEAD(mb_cache_list
);
86 static LIST_HEAD(mb_cache_lru_list
);
87 static DEFINE_SPINLOCK(mb_cache_spinlock
);
90 * What the mbcache registers as to get shrunk dynamically.
93 static int mb_cache_shrink_fn(struct shrinker
*shrink
,
94 struct shrink_control
*sc
);
96 static struct shrinker mb_cache_shrinker
= {
97 .shrink
= mb_cache_shrink_fn
,
98 .seeks
= DEFAULT_SEEKS
,
102 __mb_cache_entry_is_hashed(struct mb_cache_entry
*ce
)
104 return !list_empty(&ce
->e_block_list
);
109 __mb_cache_entry_unhash(struct mb_cache_entry
*ce
)
111 if (__mb_cache_entry_is_hashed(ce
)) {
112 list_del_init(&ce
->e_block_list
);
113 list_del(&ce
->e_index
.o_list
);
119 __mb_cache_entry_forget(struct mb_cache_entry
*ce
, gfp_t gfp_mask
)
121 struct mb_cache
*cache
= ce
->e_cache
;
123 mb_assert(!(ce
->e_used
|| ce
->e_queued
));
124 kmem_cache_free(cache
->c_entry_cache
, ce
);
125 atomic_dec(&cache
->c_entry_count
);
130 __mb_cache_entry_release_unlock(struct mb_cache_entry
*ce
)
131 __releases(mb_cache_spinlock
)
133 /* Wake up all processes queuing for this cache entry. */
135 wake_up_all(&mb_cache_queue
);
136 if (ce
->e_used
>= MB_CACHE_WRITER
)
137 ce
->e_used
-= MB_CACHE_WRITER
;
139 if (!(ce
->e_used
|| ce
->e_queued
)) {
140 if (!__mb_cache_entry_is_hashed(ce
))
142 mb_assert(list_empty(&ce
->e_lru_list
));
143 list_add_tail(&ce
->e_lru_list
, &mb_cache_lru_list
);
145 spin_unlock(&mb_cache_spinlock
);
148 spin_unlock(&mb_cache_spinlock
);
149 __mb_cache_entry_forget(ce
, GFP_KERNEL
);
154 * mb_cache_shrink_fn() memory pressure callback
156 * This function is called by the kernel memory management when memory
160 * @sc: shrink_control passed from reclaim
162 * Returns the number of objects which are present in the cache.
165 mb_cache_shrink_fn(struct shrinker
*shrink
, struct shrink_control
*sc
)
167 LIST_HEAD(free_list
);
168 struct mb_cache
*cache
;
169 struct mb_cache_entry
*entry
, *tmp
;
171 int nr_to_scan
= sc
->nr_to_scan
;
172 gfp_t gfp_mask
= sc
->gfp_mask
;
174 mb_debug("trying to free %d entries", nr_to_scan
);
175 spin_lock(&mb_cache_spinlock
);
176 while (nr_to_scan
-- && !list_empty(&mb_cache_lru_list
)) {
177 struct mb_cache_entry
*ce
=
178 list_entry(mb_cache_lru_list
.next
,
179 struct mb_cache_entry
, e_lru_list
);
180 list_move_tail(&ce
->e_lru_list
, &free_list
);
181 __mb_cache_entry_unhash(ce
);
183 list_for_each_entry(cache
, &mb_cache_list
, c_cache_list
) {
184 mb_debug("cache %s (%d)", cache
->c_name
,
185 atomic_read(&cache
->c_entry_count
));
186 count
+= atomic_read(&cache
->c_entry_count
);
188 spin_unlock(&mb_cache_spinlock
);
189 list_for_each_entry_safe(entry
, tmp
, &free_list
, e_lru_list
) {
190 __mb_cache_entry_forget(entry
, gfp_mask
);
192 return (count
/ 100) * sysctl_vfs_cache_pressure
;
197 * mb_cache_create() create a new cache
199 * All entries in one cache are equal size. Cache entries may be from
200 * multiple devices. If this is the first mbcache created, registers
201 * the cache with kernel memory management. Returns NULL if no more
202 * memory was available.
204 * @name: name of the cache (informal)
205 * @bucket_bits: log2(number of hash buckets)
208 mb_cache_create(const char *name
, int bucket_bits
)
210 int n
, bucket_count
= 1 << bucket_bits
;
211 struct mb_cache
*cache
= NULL
;
213 cache
= kmalloc(sizeof(struct mb_cache
), GFP_KERNEL
);
216 cache
->c_name
= name
;
217 atomic_set(&cache
->c_entry_count
, 0);
218 cache
->c_bucket_bits
= bucket_bits
;
219 cache
->c_block_hash
= kmalloc(bucket_count
* sizeof(struct list_head
),
221 if (!cache
->c_block_hash
)
223 for (n
=0; n
<bucket_count
; n
++)
224 INIT_LIST_HEAD(&cache
->c_block_hash
[n
]);
225 cache
->c_index_hash
= kmalloc(bucket_count
* sizeof(struct list_head
),
227 if (!cache
->c_index_hash
)
229 for (n
=0; n
<bucket_count
; n
++)
230 INIT_LIST_HEAD(&cache
->c_index_hash
[n
]);
231 cache
->c_entry_cache
= kmem_cache_create(name
,
232 sizeof(struct mb_cache_entry
), 0,
233 SLAB_RECLAIM_ACCOUNT
|SLAB_MEM_SPREAD
, NULL
);
234 if (!cache
->c_entry_cache
)
238 * Set an upper limit on the number of cache entries so that the hash
239 * chains won't grow too long.
241 cache
->c_max_entries
= bucket_count
<< 4;
243 spin_lock(&mb_cache_spinlock
);
244 list_add(&cache
->c_cache_list
, &mb_cache_list
);
245 spin_unlock(&mb_cache_spinlock
);
249 kfree(cache
->c_index_hash
);
252 kfree(cache
->c_block_hash
);
261 * Removes all cache entries of a device from the cache. All cache entries
262 * currently in use cannot be freed, and thus remain in the cache. All others
265 * @bdev: which device's cache entries to shrink
268 mb_cache_shrink(struct block_device
*bdev
)
270 LIST_HEAD(free_list
);
271 struct list_head
*l
, *ltmp
;
273 spin_lock(&mb_cache_spinlock
);
274 list_for_each_safe(l
, ltmp
, &mb_cache_lru_list
) {
275 struct mb_cache_entry
*ce
=
276 list_entry(l
, struct mb_cache_entry
, e_lru_list
);
277 if (ce
->e_bdev
== bdev
) {
278 list_move_tail(&ce
->e_lru_list
, &free_list
);
279 __mb_cache_entry_unhash(ce
);
282 spin_unlock(&mb_cache_spinlock
);
283 list_for_each_safe(l
, ltmp
, &free_list
) {
284 __mb_cache_entry_forget(list_entry(l
, struct mb_cache_entry
,
285 e_lru_list
), GFP_KERNEL
);
293 * Shrinks the cache to its minimum possible size (hopefully 0 entries),
294 * and then destroys it. If this was the last mbcache, un-registers the
295 * mbcache from kernel memory management.
298 mb_cache_destroy(struct mb_cache
*cache
)
300 LIST_HEAD(free_list
);
301 struct list_head
*l
, *ltmp
;
303 spin_lock(&mb_cache_spinlock
);
304 list_for_each_safe(l
, ltmp
, &mb_cache_lru_list
) {
305 struct mb_cache_entry
*ce
=
306 list_entry(l
, struct mb_cache_entry
, e_lru_list
);
307 if (ce
->e_cache
== cache
) {
308 list_move_tail(&ce
->e_lru_list
, &free_list
);
309 __mb_cache_entry_unhash(ce
);
312 list_del(&cache
->c_cache_list
);
313 spin_unlock(&mb_cache_spinlock
);
315 list_for_each_safe(l
, ltmp
, &free_list
) {
316 __mb_cache_entry_forget(list_entry(l
, struct mb_cache_entry
,
317 e_lru_list
), GFP_KERNEL
);
320 if (atomic_read(&cache
->c_entry_count
) > 0) {
321 mb_error("cache %s: %d orphaned entries",
323 atomic_read(&cache
->c_entry_count
));
326 kmem_cache_destroy(cache
->c_entry_cache
);
328 kfree(cache
->c_index_hash
);
329 kfree(cache
->c_block_hash
);
334 * mb_cache_entry_alloc()
336 * Allocates a new cache entry. The new entry will not be valid initially,
337 * and thus cannot be looked up yet. It should be filled with data, and
338 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
339 * if no more memory was available.
341 struct mb_cache_entry
*
342 mb_cache_entry_alloc(struct mb_cache
*cache
, gfp_t gfp_flags
)
344 struct mb_cache_entry
*ce
= NULL
;
346 if (atomic_read(&cache
->c_entry_count
) >= cache
->c_max_entries
) {
347 spin_lock(&mb_cache_spinlock
);
348 if (!list_empty(&mb_cache_lru_list
)) {
349 ce
= list_entry(mb_cache_lru_list
.next
,
350 struct mb_cache_entry
, e_lru_list
);
351 list_del_init(&ce
->e_lru_list
);
352 __mb_cache_entry_unhash(ce
);
354 spin_unlock(&mb_cache_spinlock
);
357 ce
= kmem_cache_alloc(cache
->c_entry_cache
, gfp_flags
);
360 atomic_inc(&cache
->c_entry_count
);
361 INIT_LIST_HEAD(&ce
->e_lru_list
);
362 INIT_LIST_HEAD(&ce
->e_block_list
);
366 ce
->e_used
= 1 + MB_CACHE_WRITER
;
372 * mb_cache_entry_insert()
374 * Inserts an entry that was allocated using mb_cache_entry_alloc() into
375 * the cache. After this, the cache entry can be looked up, but is not yet
376 * in the lru list as the caller still holds a handle to it. Returns 0 on
377 * success, or -EBUSY if a cache entry for that device + inode exists
378 * already (this may happen after a failed lookup, but when another process
379 * has inserted the same cache entry in the meantime).
381 * @bdev: device the cache entry belongs to
382 * @block: block number
386 mb_cache_entry_insert(struct mb_cache_entry
*ce
, struct block_device
*bdev
,
387 sector_t block
, unsigned int key
)
389 struct mb_cache
*cache
= ce
->e_cache
;
394 bucket
= hash_long((unsigned long)bdev
+ (block
& 0xffffffff),
395 cache
->c_bucket_bits
);
396 spin_lock(&mb_cache_spinlock
);
397 list_for_each_prev(l
, &cache
->c_block_hash
[bucket
]) {
398 struct mb_cache_entry
*ce
=
399 list_entry(l
, struct mb_cache_entry
, e_block_list
);
400 if (ce
->e_bdev
== bdev
&& ce
->e_block
== block
)
403 __mb_cache_entry_unhash(ce
);
406 list_add(&ce
->e_block_list
, &cache
->c_block_hash
[bucket
]);
407 ce
->e_index
.o_key
= key
;
408 bucket
= hash_long(key
, cache
->c_bucket_bits
);
409 list_add(&ce
->e_index
.o_list
, &cache
->c_index_hash
[bucket
]);
412 spin_unlock(&mb_cache_spinlock
);
418 * mb_cache_entry_release()
420 * Release a handle to a cache entry. When the last handle to a cache entry
421 * is released it is either freed (if it is invalid) or otherwise inserted
422 * in to the lru list.
425 mb_cache_entry_release(struct mb_cache_entry
*ce
)
427 spin_lock(&mb_cache_spinlock
);
428 __mb_cache_entry_release_unlock(ce
);
433 * mb_cache_entry_free()
435 * This is equivalent to the sequence mb_cache_entry_takeout() --
436 * mb_cache_entry_release().
439 mb_cache_entry_free(struct mb_cache_entry
*ce
)
441 spin_lock(&mb_cache_spinlock
);
442 mb_assert(list_empty(&ce
->e_lru_list
));
443 __mb_cache_entry_unhash(ce
);
444 __mb_cache_entry_release_unlock(ce
);
449 * mb_cache_entry_get()
451 * Get a cache entry by device / block number. (There can only be one entry
452 * in the cache per device and block.) Returns NULL if no such cache entry
453 * exists. The returned cache entry is locked for exclusive access ("single
456 struct mb_cache_entry
*
457 mb_cache_entry_get(struct mb_cache
*cache
, struct block_device
*bdev
,
462 struct mb_cache_entry
*ce
;
464 bucket
= hash_long((unsigned long)bdev
+ (block
& 0xffffffff),
465 cache
->c_bucket_bits
);
466 spin_lock(&mb_cache_spinlock
);
467 list_for_each(l
, &cache
->c_block_hash
[bucket
]) {
468 ce
= list_entry(l
, struct mb_cache_entry
, e_block_list
);
469 if (ce
->e_bdev
== bdev
&& ce
->e_block
== block
) {
472 if (!list_empty(&ce
->e_lru_list
))
473 list_del_init(&ce
->e_lru_list
);
475 while (ce
->e_used
> 0) {
477 prepare_to_wait(&mb_cache_queue
, &wait
,
478 TASK_UNINTERRUPTIBLE
);
479 spin_unlock(&mb_cache_spinlock
);
481 spin_lock(&mb_cache_spinlock
);
484 finish_wait(&mb_cache_queue
, &wait
);
485 ce
->e_used
+= 1 + MB_CACHE_WRITER
;
487 if (!__mb_cache_entry_is_hashed(ce
)) {
488 __mb_cache_entry_release_unlock(ce
);
497 spin_unlock(&mb_cache_spinlock
);
501 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
503 static struct mb_cache_entry
*
504 __mb_cache_entry_find(struct list_head
*l
, struct list_head
*head
,
505 struct block_device
*bdev
, unsigned int key
)
508 struct mb_cache_entry
*ce
=
509 list_entry(l
, struct mb_cache_entry
, e_index
.o_list
);
510 if (ce
->e_bdev
== bdev
&& ce
->e_index
.o_key
== key
) {
513 if (!list_empty(&ce
->e_lru_list
))
514 list_del_init(&ce
->e_lru_list
);
516 /* Incrementing before holding the lock gives readers
517 priority over writers. */
519 while (ce
->e_used
>= MB_CACHE_WRITER
) {
521 prepare_to_wait(&mb_cache_queue
, &wait
,
522 TASK_UNINTERRUPTIBLE
);
523 spin_unlock(&mb_cache_spinlock
);
525 spin_lock(&mb_cache_spinlock
);
528 finish_wait(&mb_cache_queue
, &wait
);
530 if (!__mb_cache_entry_is_hashed(ce
)) {
531 __mb_cache_entry_release_unlock(ce
);
532 spin_lock(&mb_cache_spinlock
);
533 return ERR_PTR(-EAGAIN
);
544 * mb_cache_entry_find_first()
546 * Find the first cache entry on a given device with a certain key in
547 * an additional index. Additional matches can be found with
548 * mb_cache_entry_find_next(). Returns NULL if no match was found. The
549 * returned cache entry is locked for shared access ("multiple readers").
551 * @cache: the cache to search
552 * @bdev: the device the cache entry should belong to
553 * @key: the key in the index
555 struct mb_cache_entry
*
556 mb_cache_entry_find_first(struct mb_cache
*cache
, struct block_device
*bdev
,
559 unsigned int bucket
= hash_long(key
, cache
->c_bucket_bits
);
561 struct mb_cache_entry
*ce
;
563 spin_lock(&mb_cache_spinlock
);
564 l
= cache
->c_index_hash
[bucket
].next
;
565 ce
= __mb_cache_entry_find(l
, &cache
->c_index_hash
[bucket
], bdev
, key
);
566 spin_unlock(&mb_cache_spinlock
);
572 * mb_cache_entry_find_next()
574 * Find the next cache entry on a given device with a certain key in an
575 * additional index. Returns NULL if no match could be found. The previous
576 * entry is atomatically released, so that mb_cache_entry_find_next() can
577 * be called like this:
579 * entry = mb_cache_entry_find_first();
582 * entry = mb_cache_entry_find_next(entry, ...);
585 * @prev: The previous match
586 * @bdev: the device the cache entry should belong to
587 * @key: the key in the index
589 struct mb_cache_entry
*
590 mb_cache_entry_find_next(struct mb_cache_entry
*prev
,
591 struct block_device
*bdev
, unsigned int key
)
593 struct mb_cache
*cache
= prev
->e_cache
;
594 unsigned int bucket
= hash_long(key
, cache
->c_bucket_bits
);
596 struct mb_cache_entry
*ce
;
598 spin_lock(&mb_cache_spinlock
);
599 l
= prev
->e_index
.o_list
.next
;
600 ce
= __mb_cache_entry_find(l
, &cache
->c_index_hash
[bucket
], bdev
, key
);
601 __mb_cache_entry_release_unlock(prev
);
605 #endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
607 static int __init
init_mbcache(void)
609 register_shrinker(&mb_cache_shrinker
);
613 static void __exit
exit_mbcache(void)
615 unregister_shrinker(&mb_cache_shrinker
);
618 module_init(init_mbcache
)
619 module_exit(exit_mbcache
)