rt2x00: Fix MCU_SLEEP arguments
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
blob1db0c3bf2e1f76c5dbbab0a08f9b651a05ef869f
1 /*
2 Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4 Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5 Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6 Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7 Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8 Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9 Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 <http://rt2x00.serialmonkey.com>
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the
24 Free Software Foundation, Inc.,
25 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
29 Module: rt2800pci
30 Abstract: rt2800pci device specific routines.
31 Supported chipsets: RT2800E & RT2800ED.
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
43 #include "rt2x00.h"
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
47 #include "rt2800.h"
48 #include "rt2800pci.h"
51 * Allow hardware encryption to be disabled.
53 static int modparam_nohwcrypt = 0;
54 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
57 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
59 unsigned int i;
60 u32 reg;
63 * SOC devices don't support MCU requests.
65 if (rt2x00_is_soc(rt2x00dev))
66 return;
68 for (i = 0; i < 200; i++) {
69 rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
71 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
72 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
73 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
74 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
75 break;
77 udelay(REGISTER_BUSY_DELAY);
80 if (i == 200)
81 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
83 rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
84 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
87 #ifdef CONFIG_RT2800PCI_SOC
88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
90 u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
92 memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
94 #else
95 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
98 #endif /* CONFIG_RT2800PCI_SOC */
100 #ifdef CONFIG_RT2800PCI_PCI
101 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
103 struct rt2x00_dev *rt2x00dev = eeprom->data;
104 u32 reg;
106 rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
108 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
109 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
110 eeprom->reg_data_clock =
111 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
112 eeprom->reg_chip_select =
113 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
116 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
118 struct rt2x00_dev *rt2x00dev = eeprom->data;
119 u32 reg = 0;
121 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
122 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
123 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
124 !!eeprom->reg_data_clock);
125 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
126 !!eeprom->reg_chip_select);
128 rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
131 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
133 struct eeprom_93cx6 eeprom;
134 u32 reg;
136 rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
138 eeprom.data = rt2x00dev;
139 eeprom.register_read = rt2800pci_eepromregister_read;
140 eeprom.register_write = rt2800pci_eepromregister_write;
141 switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
143 case 0:
144 eeprom.width = PCI_EEPROM_WIDTH_93C46;
145 break;
146 case 1:
147 eeprom.width = PCI_EEPROM_WIDTH_93C66;
148 break;
149 default:
150 eeprom.width = PCI_EEPROM_WIDTH_93C86;
151 break;
153 eeprom.reg_data_in = 0;
154 eeprom.reg_data_out = 0;
155 eeprom.reg_data_clock = 0;
156 eeprom.reg_chip_select = 0;
158 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
159 EEPROM_SIZE / sizeof(u16));
162 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
164 return rt2800_efuse_detect(rt2x00dev);
167 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
169 rt2800_read_eeprom_efuse(rt2x00dev);
171 #else
172 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
176 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
178 return 0;
181 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
184 #endif /* CONFIG_RT2800PCI_PCI */
187 * Firmware functions
189 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
191 return FIRMWARE_RT2860;
194 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
195 const u8 *data, const size_t len)
197 u32 reg;
200 * enable Host program ram write selection
202 reg = 0;
203 rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
204 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
207 * Write firmware to device.
209 rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
210 data, len);
212 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
213 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
215 rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
216 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
218 return 0;
222 * Initialization functions.
224 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
226 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
227 u32 word;
229 if (entry->queue->qid == QID_RX) {
230 rt2x00_desc_read(entry_priv->desc, 1, &word);
232 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
233 } else {
234 rt2x00_desc_read(entry_priv->desc, 1, &word);
236 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
240 static void rt2800pci_clear_entry(struct queue_entry *entry)
242 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
243 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
244 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
245 u32 word;
247 if (entry->queue->qid == QID_RX) {
248 rt2x00_desc_read(entry_priv->desc, 0, &word);
249 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
250 rt2x00_desc_write(entry_priv->desc, 0, word);
252 rt2x00_desc_read(entry_priv->desc, 1, &word);
253 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
254 rt2x00_desc_write(entry_priv->desc, 1, word);
257 * Set RX IDX in register to inform hardware that we have
258 * handled this entry and it is available for reuse again.
260 rt2800_register_write(rt2x00dev, RX_CRX_IDX,
261 entry->entry_idx);
262 } else {
263 rt2x00_desc_read(entry_priv->desc, 1, &word);
264 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
265 rt2x00_desc_write(entry_priv->desc, 1, word);
269 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
271 struct queue_entry_priv_pci *entry_priv;
272 u32 reg;
275 * Initialize registers.
277 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
278 rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
279 rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
280 rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
281 rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
283 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
284 rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
285 rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
286 rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
287 rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
289 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
290 rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
291 rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
292 rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
293 rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
295 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
296 rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
297 rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
298 rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
299 rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
301 entry_priv = rt2x00dev->rx->entries[0].priv_data;
302 rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
303 rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
304 rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
305 rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
308 * Enable global DMA configuration
310 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
311 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
312 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
313 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
314 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
316 rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
318 return 0;
322 * Device state switch handlers.
324 static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
325 enum dev_state state)
327 u32 reg;
329 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
330 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
331 (state == STATE_RADIO_RX_ON) ||
332 (state == STATE_RADIO_RX_ON_LINK));
333 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
336 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
337 enum dev_state state)
339 int mask = (state == STATE_RADIO_IRQ_ON) ||
340 (state == STATE_RADIO_IRQ_ON_ISR);
341 u32 reg;
344 * When interrupts are being enabled, the interrupt registers
345 * should clear the register to assure a clean state.
347 if (state == STATE_RADIO_IRQ_ON) {
348 rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
349 rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
352 rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
353 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, 0);
354 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, 0);
355 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
356 rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, 0);
357 rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, 0);
358 rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, 0);
359 rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, 0);
360 rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, 0);
361 rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, 0);
362 rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, 0);
363 rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, 0);
364 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
365 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
366 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
367 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
368 rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, 0);
369 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, 0);
370 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, 0);
371 rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
374 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
376 u32 reg;
379 * Reset DMA indexes
381 rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
382 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
383 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
384 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
385 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
386 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
387 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
388 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
389 rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
391 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
392 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
394 rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
396 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
397 rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
398 rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
399 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
401 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
403 return 0;
406 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
408 if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
409 rt2800pci_init_queues(rt2x00dev)))
410 return -EIO;
412 return rt2800_enable_radio(rt2x00dev);
415 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
417 u32 reg;
419 rt2800_disable_radio(rt2x00dev);
421 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
423 rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
424 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
425 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
426 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
427 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
428 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
429 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
430 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
431 rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
433 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
434 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
437 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
438 enum dev_state state)
441 * Always put the device to sleep (even when we intend to wakeup!)
442 * if the device is booting and wasn't asleep it will return
443 * failure when attempting to wakeup.
445 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0xff, 2);
447 if (state == STATE_AWAKE) {
448 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
449 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
452 return 0;
455 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
456 enum dev_state state)
458 int retval = 0;
460 switch (state) {
461 case STATE_RADIO_ON:
463 * Before the radio can be enabled, the device first has
464 * to be woken up. After that it needs a bit of time
465 * to be fully awake and then the radio can be enabled.
467 rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
468 msleep(1);
469 retval = rt2800pci_enable_radio(rt2x00dev);
470 break;
471 case STATE_RADIO_OFF:
473 * After the radio has been disabled, the device should
474 * be put to sleep for powersaving.
476 rt2800pci_disable_radio(rt2x00dev);
477 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
478 break;
479 case STATE_RADIO_RX_ON:
480 case STATE_RADIO_RX_ON_LINK:
481 case STATE_RADIO_RX_OFF:
482 case STATE_RADIO_RX_OFF_LINK:
483 rt2800pci_toggle_rx(rt2x00dev, state);
484 break;
485 case STATE_RADIO_IRQ_ON:
486 case STATE_RADIO_IRQ_ON_ISR:
487 case STATE_RADIO_IRQ_OFF:
488 case STATE_RADIO_IRQ_OFF_ISR:
489 rt2800pci_toggle_irq(rt2x00dev, state);
490 break;
491 case STATE_DEEP_SLEEP:
492 case STATE_SLEEP:
493 case STATE_STANDBY:
494 case STATE_AWAKE:
495 retval = rt2800pci_set_state(rt2x00dev, state);
496 break;
497 default:
498 retval = -ENOTSUPP;
499 break;
502 if (unlikely(retval))
503 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
504 state, retval);
506 return retval;
510 * TX descriptor initialization
512 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
514 return (__le32 *) entry->skb->data;
517 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
518 struct txentry_desc *txdesc)
520 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
521 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
522 __le32 *txd = entry_priv->desc;
523 u32 word;
526 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
527 * must contains a TXWI structure + 802.11 header + padding + 802.11
528 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
529 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
530 * data. It means that LAST_SEC0 is always 0.
534 * Initialize TX descriptor
536 rt2x00_desc_read(txd, 0, &word);
537 rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
538 rt2x00_desc_write(txd, 0, word);
540 rt2x00_desc_read(txd, 1, &word);
541 rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
542 rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
543 !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
544 rt2x00_set_field32(&word, TXD_W1_BURST,
545 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
546 rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
547 rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
548 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
549 rt2x00_desc_write(txd, 1, word);
551 rt2x00_desc_read(txd, 2, &word);
552 rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
553 skbdesc->skb_dma + TXWI_DESC_SIZE);
554 rt2x00_desc_write(txd, 2, word);
556 rt2x00_desc_read(txd, 3, &word);
557 rt2x00_set_field32(&word, TXD_W3_WIV,
558 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
559 rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
560 rt2x00_desc_write(txd, 3, word);
563 * Register descriptor details in skb frame descriptor.
565 skbdesc->desc = txd;
566 skbdesc->desc_len = TXD_DESC_SIZE;
570 * TX data initialization
572 static void rt2800pci_kick_tx_queue(struct data_queue *queue)
574 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
575 struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
576 unsigned int qidx;
578 if (queue->qid == QID_MGMT)
579 qidx = 5;
580 else
581 qidx = queue->qid;
583 rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), entry->entry_idx);
586 static void rt2800pci_kill_tx_queue(struct data_queue *queue)
588 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
589 u32 reg;
591 if (queue->qid == QID_BEACON) {
592 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
593 return;
596 rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
597 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (queue->qid == QID_AC_BE));
598 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (queue->qid == QID_AC_BK));
599 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (queue->qid == QID_AC_VI));
600 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (queue->qid == QID_AC_VO));
601 rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
605 * RX control handlers
607 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
608 struct rxdone_entry_desc *rxdesc)
610 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
611 __le32 *rxd = entry_priv->desc;
612 u32 word;
614 rt2x00_desc_read(rxd, 3, &word);
616 if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
617 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
620 * Unfortunately we don't know the cipher type used during
621 * decryption. This prevents us from correct providing
622 * correct statistics through debugfs.
624 rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
626 if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
628 * Hardware has stripped IV/EIV data from 802.11 frame during
629 * decryption. Unfortunately the descriptor doesn't contain
630 * any fields with the EIV/IV data either, so they can't
631 * be restored by rt2x00lib.
633 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
635 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
636 rxdesc->flags |= RX_FLAG_DECRYPTED;
637 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
638 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
641 if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
642 rxdesc->dev_flags |= RXDONE_MY_BSS;
644 if (rt2x00_get_field32(word, RXD_W3_L2PAD))
645 rxdesc->dev_flags |= RXDONE_L2PAD;
648 * Process the RXWI structure that is at the start of the buffer.
650 rt2800_process_rxwi(entry, rxdesc);
654 * Interrupt functions.
656 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
658 struct ieee80211_conf conf = { .flags = 0 };
659 struct rt2x00lib_conf libconf = { .conf = &conf };
661 rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
664 static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
666 struct data_queue *queue;
667 struct queue_entry *entry;
668 u32 status;
669 u8 qid;
671 while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo)) {
672 /* Now remove the tx status from the FIFO */
673 if (kfifo_out(&rt2x00dev->txstatus_fifo, &status,
674 sizeof(status)) != sizeof(status)) {
675 WARN_ON(1);
676 break;
679 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
680 if (qid >= QID_RX) {
682 * Unknown queue, this shouldn't happen. Just drop
683 * this tx status.
685 WARNING(rt2x00dev, "Got TX status report with "
686 "unexpected pid %u, dropping", qid);
687 break;
690 queue = rt2x00queue_get_queue(rt2x00dev, qid);
691 if (unlikely(queue == NULL)) {
693 * The queue is NULL, this shouldn't happen. Stop
694 * processing here and drop the tx status
696 WARNING(rt2x00dev, "Got TX status for an unavailable "
697 "queue %u, dropping", qid);
698 break;
701 if (rt2x00queue_empty(queue)) {
703 * The queue is empty. Stop processing here
704 * and drop the tx status.
706 WARNING(rt2x00dev, "Got TX status for an empty "
707 "queue %u, dropping", qid);
708 break;
711 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
712 rt2800_txdone_entry(entry, status);
716 static void rt2800pci_txstatus_tasklet(unsigned long data)
718 rt2800pci_txdone((struct rt2x00_dev *)data);
721 static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
723 struct rt2x00_dev *rt2x00dev = dev_instance;
724 u32 reg = rt2x00dev->irqvalue[0];
727 * 1 - Pre TBTT interrupt.
729 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
730 rt2x00lib_pretbtt(rt2x00dev);
733 * 2 - Beacondone interrupt.
735 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
736 rt2x00lib_beacondone(rt2x00dev);
739 * 3 - Rx ring done interrupt.
741 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
742 rt2x00pci_rxdone(rt2x00dev);
745 * 4 - Auto wakeup interrupt.
747 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
748 rt2800pci_wakeup(rt2x00dev);
750 /* Enable interrupts again. */
751 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
752 STATE_RADIO_IRQ_ON_ISR);
754 return IRQ_HANDLED;
757 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
759 u32 status;
760 int i;
763 * The TX_FIFO_STATUS interrupt needs special care. We should
764 * read TX_STA_FIFO but we should do it immediately as otherwise
765 * the register can overflow and we would lose status reports.
767 * Hence, read the TX_STA_FIFO register and copy all tx status
768 * reports into a kernel FIFO which is handled in the txstatus
769 * tasklet. We use a tasklet to process the tx status reports
770 * because we can schedule the tasklet multiple times (when the
771 * interrupt fires again during tx status processing).
773 * Furthermore we don't disable the TX_FIFO_STATUS
774 * interrupt here but leave it enabled so that the TX_STA_FIFO
775 * can also be read while the interrupt thread gets executed.
777 * Since we have only one producer and one consumer we don't
778 * need to lock the kfifo.
780 for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
781 rt2800_register_read(rt2x00dev, TX_STA_FIFO, &status);
783 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
784 break;
786 if (kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
787 WARNING(rt2x00dev, "TX status FIFO overrun,"
788 " drop tx status report.\n");
789 break;
792 if (kfifo_in(&rt2x00dev->txstatus_fifo, &status,
793 sizeof(status)) != sizeof(status)) {
794 WARNING(rt2x00dev, "TX status FIFO overrun,"
795 "drop tx status report.\n");
796 break;
800 /* Schedule the tasklet for processing the tx status. */
801 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
804 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
806 struct rt2x00_dev *rt2x00dev = dev_instance;
807 u32 reg;
808 irqreturn_t ret = IRQ_HANDLED;
810 /* Read status and ACK all interrupts */
811 rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
812 rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
814 if (!reg)
815 return IRQ_NONE;
817 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
818 return IRQ_HANDLED;
820 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
821 rt2800pci_txstatus_interrupt(rt2x00dev);
823 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT) ||
824 rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT) ||
825 rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE) ||
826 rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) {
828 * All other interrupts are handled in the interrupt thread.
829 * Store irqvalue for use in the interrupt thread.
831 rt2x00dev->irqvalue[0] = reg;
834 * Disable interrupts, will be enabled again in the
835 * interrupt thread.
837 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
838 STATE_RADIO_IRQ_OFF_ISR);
841 * Leave the TX_FIFO_STATUS interrupt enabled to not lose any
842 * tx status reports.
844 rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
845 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
846 rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
848 ret = IRQ_WAKE_THREAD;
851 return ret;
855 * Device probe functions.
857 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
860 * Read EEPROM into buffer
862 if (rt2x00_is_soc(rt2x00dev))
863 rt2800pci_read_eeprom_soc(rt2x00dev);
864 else if (rt2800pci_efuse_detect(rt2x00dev))
865 rt2800pci_read_eeprom_efuse(rt2x00dev);
866 else
867 rt2800pci_read_eeprom_pci(rt2x00dev);
869 return rt2800_validate_eeprom(rt2x00dev);
872 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
874 int retval;
877 * Allocate eeprom data.
879 retval = rt2800pci_validate_eeprom(rt2x00dev);
880 if (retval)
881 return retval;
883 retval = rt2800_init_eeprom(rt2x00dev);
884 if (retval)
885 return retval;
888 * Initialize hw specifications.
890 retval = rt2800_probe_hw_mode(rt2x00dev);
891 if (retval)
892 return retval;
895 * This device has multiple filters for control frames
896 * and has a separate filter for PS Poll frames.
898 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
899 __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
902 * This device has a pre tbtt interrupt and thus fetches
903 * a new beacon directly prior to transmission.
905 __set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);
908 * This device requires firmware.
910 if (!rt2x00_is_soc(rt2x00dev))
911 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
912 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
913 __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
914 __set_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags);
915 if (!modparam_nohwcrypt)
916 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
917 __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
920 * Set the rssi offset.
922 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
924 return 0;
927 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
928 .tx = rt2x00mac_tx,
929 .start = rt2x00mac_start,
930 .stop = rt2x00mac_stop,
931 .add_interface = rt2x00mac_add_interface,
932 .remove_interface = rt2x00mac_remove_interface,
933 .config = rt2x00mac_config,
934 .configure_filter = rt2x00mac_configure_filter,
935 .set_key = rt2x00mac_set_key,
936 .sw_scan_start = rt2x00mac_sw_scan_start,
937 .sw_scan_complete = rt2x00mac_sw_scan_complete,
938 .get_stats = rt2x00mac_get_stats,
939 .get_tkip_seq = rt2800_get_tkip_seq,
940 .set_rts_threshold = rt2800_set_rts_threshold,
941 .bss_info_changed = rt2x00mac_bss_info_changed,
942 .conf_tx = rt2800_conf_tx,
943 .get_tsf = rt2800_get_tsf,
944 .rfkill_poll = rt2x00mac_rfkill_poll,
945 .ampdu_action = rt2800_ampdu_action,
946 .flush = rt2x00mac_flush,
949 static const struct rt2800_ops rt2800pci_rt2800_ops = {
950 .register_read = rt2x00pci_register_read,
951 .register_read_lock = rt2x00pci_register_read, /* same for PCI */
952 .register_write = rt2x00pci_register_write,
953 .register_write_lock = rt2x00pci_register_write, /* same for PCI */
954 .register_multiread = rt2x00pci_register_multiread,
955 .register_multiwrite = rt2x00pci_register_multiwrite,
956 .regbusy_read = rt2x00pci_regbusy_read,
957 .drv_write_firmware = rt2800pci_write_firmware,
958 .drv_init_registers = rt2800pci_init_registers,
959 .drv_get_txwi = rt2800pci_get_txwi,
962 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
963 .irq_handler = rt2800pci_interrupt,
964 .irq_handler_thread = rt2800pci_interrupt_thread,
965 .txstatus_tasklet = rt2800pci_txstatus_tasklet,
966 .probe_hw = rt2800pci_probe_hw,
967 .get_firmware_name = rt2800pci_get_firmware_name,
968 .check_firmware = rt2800_check_firmware,
969 .load_firmware = rt2800_load_firmware,
970 .initialize = rt2x00pci_initialize,
971 .uninitialize = rt2x00pci_uninitialize,
972 .get_entry_state = rt2800pci_get_entry_state,
973 .clear_entry = rt2800pci_clear_entry,
974 .set_device_state = rt2800pci_set_device_state,
975 .rfkill_poll = rt2800_rfkill_poll,
976 .link_stats = rt2800_link_stats,
977 .reset_tuner = rt2800_reset_tuner,
978 .link_tuner = rt2800_link_tuner,
979 .write_tx_desc = rt2800pci_write_tx_desc,
980 .write_tx_data = rt2800_write_tx_data,
981 .write_beacon = rt2800_write_beacon,
982 .kick_tx_queue = rt2800pci_kick_tx_queue,
983 .kill_tx_queue = rt2800pci_kill_tx_queue,
984 .fill_rxdone = rt2800pci_fill_rxdone,
985 .config_shared_key = rt2800_config_shared_key,
986 .config_pairwise_key = rt2800_config_pairwise_key,
987 .config_filter = rt2800_config_filter,
988 .config_intf = rt2800_config_intf,
989 .config_erp = rt2800_config_erp,
990 .config_ant = rt2800_config_ant,
991 .config = rt2800_config,
994 static const struct data_queue_desc rt2800pci_queue_rx = {
995 .entry_num = 128,
996 .data_size = AGGREGATION_SIZE,
997 .desc_size = RXD_DESC_SIZE,
998 .priv_size = sizeof(struct queue_entry_priv_pci),
1001 static const struct data_queue_desc rt2800pci_queue_tx = {
1002 .entry_num = 64,
1003 .data_size = AGGREGATION_SIZE,
1004 .desc_size = TXD_DESC_SIZE,
1005 .priv_size = sizeof(struct queue_entry_priv_pci),
1008 static const struct data_queue_desc rt2800pci_queue_bcn = {
1009 .entry_num = 8,
1010 .data_size = 0, /* No DMA required for beacons */
1011 .desc_size = TXWI_DESC_SIZE,
1012 .priv_size = sizeof(struct queue_entry_priv_pci),
1015 static const struct rt2x00_ops rt2800pci_ops = {
1016 .name = KBUILD_MODNAME,
1017 .max_sta_intf = 1,
1018 .max_ap_intf = 8,
1019 .eeprom_size = EEPROM_SIZE,
1020 .rf_size = RF_SIZE,
1021 .tx_queues = NUM_TX_QUEUES,
1022 .extra_tx_headroom = TXWI_DESC_SIZE,
1023 .rx = &rt2800pci_queue_rx,
1024 .tx = &rt2800pci_queue_tx,
1025 .bcn = &rt2800pci_queue_bcn,
1026 .lib = &rt2800pci_rt2x00_ops,
1027 .drv = &rt2800pci_rt2800_ops,
1028 .hw = &rt2800pci_mac80211_ops,
1029 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1030 .debugfs = &rt2800_rt2x00debug,
1031 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1035 * RT2800pci module information.
1037 #ifdef CONFIG_RT2800PCI_PCI
1038 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1039 { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
1040 { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
1041 { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
1042 { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
1043 { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
1044 { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
1045 { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
1046 { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
1047 { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
1048 { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
1049 { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
1050 { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
1051 #ifdef CONFIG_RT2800PCI_RT30XX
1052 { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
1053 { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
1054 { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
1055 { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
1056 #endif
1057 #ifdef CONFIG_RT2800PCI_RT35XX
1058 { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
1059 { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
1060 { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
1061 { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
1062 { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
1063 #endif
1064 { 0, }
1066 #endif /* CONFIG_RT2800PCI_PCI */
1068 MODULE_AUTHOR(DRV_PROJECT);
1069 MODULE_VERSION(DRV_VERSION);
1070 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1071 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1072 #ifdef CONFIG_RT2800PCI_PCI
1073 MODULE_FIRMWARE(FIRMWARE_RT2860);
1074 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1075 #endif /* CONFIG_RT2800PCI_PCI */
1076 MODULE_LICENSE("GPL");
1078 #ifdef CONFIG_RT2800PCI_SOC
1079 static int rt2800soc_probe(struct platform_device *pdev)
1081 return rt2x00soc_probe(pdev, &rt2800pci_ops);
1084 static struct platform_driver rt2800soc_driver = {
1085 .driver = {
1086 .name = "rt2800_wmac",
1087 .owner = THIS_MODULE,
1088 .mod_name = KBUILD_MODNAME,
1090 .probe = rt2800soc_probe,
1091 .remove = __devexit_p(rt2x00soc_remove),
1092 .suspend = rt2x00soc_suspend,
1093 .resume = rt2x00soc_resume,
1095 #endif /* CONFIG_RT2800PCI_SOC */
1097 #ifdef CONFIG_RT2800PCI_PCI
1098 static struct pci_driver rt2800pci_driver = {
1099 .name = KBUILD_MODNAME,
1100 .id_table = rt2800pci_device_table,
1101 .probe = rt2x00pci_probe,
1102 .remove = __devexit_p(rt2x00pci_remove),
1103 .suspend = rt2x00pci_suspend,
1104 .resume = rt2x00pci_resume,
1106 #endif /* CONFIG_RT2800PCI_PCI */
1108 static int __init rt2800pci_init(void)
1110 int ret = 0;
1112 #ifdef CONFIG_RT2800PCI_SOC
1113 ret = platform_driver_register(&rt2800soc_driver);
1114 if (ret)
1115 return ret;
1116 #endif
1117 #ifdef CONFIG_RT2800PCI_PCI
1118 ret = pci_register_driver(&rt2800pci_driver);
1119 if (ret) {
1120 #ifdef CONFIG_RT2800PCI_SOC
1121 platform_driver_unregister(&rt2800soc_driver);
1122 #endif
1123 return ret;
1125 #endif
1127 return ret;
1130 static void __exit rt2800pci_exit(void)
1132 #ifdef CONFIG_RT2800PCI_PCI
1133 pci_unregister_driver(&rt2800pci_driver);
1134 #endif
1135 #ifdef CONFIG_RT2800PCI_SOC
1136 platform_driver_unregister(&rt2800soc_driver);
1137 #endif
1140 module_init(rt2800pci_init);
1141 module_exit(rt2800pci_exit);