2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
43 #include "transaction.h"
44 #include "btrfs_inode.h"
46 #include "print-tree.h"
48 #include "ordered-data.h"
51 #include "compression.h"
53 #include "free-space-cache.h"
55 struct btrfs_iget_args
{
57 struct btrfs_root
*root
;
60 static const struct inode_operations btrfs_dir_inode_operations
;
61 static const struct inode_operations btrfs_symlink_inode_operations
;
62 static const struct inode_operations btrfs_dir_ro_inode_operations
;
63 static const struct inode_operations btrfs_special_inode_operations
;
64 static const struct inode_operations btrfs_file_inode_operations
;
65 static const struct address_space_operations btrfs_aops
;
66 static const struct address_space_operations btrfs_symlink_aops
;
67 static const struct file_operations btrfs_dir_file_operations
;
68 static struct extent_io_ops btrfs_extent_io_ops
;
70 static struct kmem_cache
*btrfs_inode_cachep
;
71 struct kmem_cache
*btrfs_trans_handle_cachep
;
72 struct kmem_cache
*btrfs_transaction_cachep
;
73 struct kmem_cache
*btrfs_path_cachep
;
74 struct kmem_cache
*btrfs_free_space_cachep
;
77 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
78 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
79 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
80 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
81 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
82 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
83 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
84 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
87 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
);
88 static int btrfs_truncate(struct inode
*inode
);
89 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
90 static noinline
int cow_file_range(struct inode
*inode
,
91 struct page
*locked_page
,
92 u64 start
, u64 end
, int *page_started
,
93 unsigned long *nr_written
, int unlock
);
95 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
96 struct inode
*inode
, struct inode
*dir
,
97 const struct qstr
*qstr
)
101 err
= btrfs_init_acl(trans
, inode
, dir
);
103 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
108 * this does all the hard work for inserting an inline extent into
109 * the btree. The caller should have done a btrfs_drop_extents so that
110 * no overlapping inline items exist in the btree
112 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
113 struct btrfs_root
*root
, struct inode
*inode
,
114 u64 start
, size_t size
, size_t compressed_size
,
116 struct page
**compressed_pages
)
118 struct btrfs_key key
;
119 struct btrfs_path
*path
;
120 struct extent_buffer
*leaf
;
121 struct page
*page
= NULL
;
124 struct btrfs_file_extent_item
*ei
;
127 size_t cur_size
= size
;
129 unsigned long offset
;
131 if (compressed_size
&& compressed_pages
)
132 cur_size
= compressed_size
;
134 path
= btrfs_alloc_path();
138 path
->leave_spinning
= 1;
139 btrfs_set_trans_block_group(trans
, inode
);
141 key
.objectid
= inode
->i_ino
;
143 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
144 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
146 inode_add_bytes(inode
, size
);
147 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
154 leaf
= path
->nodes
[0];
155 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
156 struct btrfs_file_extent_item
);
157 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
158 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
159 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
160 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
161 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
162 ptr
= btrfs_file_extent_inline_start(ei
);
164 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
167 while (compressed_size
> 0) {
168 cpage
= compressed_pages
[i
];
169 cur_size
= min_t(unsigned long, compressed_size
,
172 kaddr
= kmap_atomic(cpage
, KM_USER0
);
173 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
174 kunmap_atomic(kaddr
, KM_USER0
);
178 compressed_size
-= cur_size
;
180 btrfs_set_file_extent_compression(leaf
, ei
,
183 page
= find_get_page(inode
->i_mapping
,
184 start
>> PAGE_CACHE_SHIFT
);
185 btrfs_set_file_extent_compression(leaf
, ei
, 0);
186 kaddr
= kmap_atomic(page
, KM_USER0
);
187 offset
= start
& (PAGE_CACHE_SIZE
- 1);
188 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
189 kunmap_atomic(kaddr
, KM_USER0
);
190 page_cache_release(page
);
192 btrfs_mark_buffer_dirty(leaf
);
193 btrfs_free_path(path
);
196 * we're an inline extent, so nobody can
197 * extend the file past i_size without locking
198 * a page we already have locked.
200 * We must do any isize and inode updates
201 * before we unlock the pages. Otherwise we
202 * could end up racing with unlink.
204 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
205 btrfs_update_inode(trans
, root
, inode
);
209 btrfs_free_path(path
);
215 * conditionally insert an inline extent into the file. This
216 * does the checks required to make sure the data is small enough
217 * to fit as an inline extent.
219 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
220 struct btrfs_root
*root
,
221 struct inode
*inode
, u64 start
, u64 end
,
222 size_t compressed_size
, int compress_type
,
223 struct page
**compressed_pages
)
225 u64 isize
= i_size_read(inode
);
226 u64 actual_end
= min(end
+ 1, isize
);
227 u64 inline_len
= actual_end
- start
;
228 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
229 ~((u64
)root
->sectorsize
- 1);
231 u64 data_len
= inline_len
;
235 data_len
= compressed_size
;
238 actual_end
>= PAGE_CACHE_SIZE
||
239 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
241 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
243 data_len
> root
->fs_info
->max_inline
) {
247 ret
= btrfs_drop_extents(trans
, inode
, start
, aligned_end
,
251 if (isize
> actual_end
)
252 inline_len
= min_t(u64
, isize
, actual_end
);
253 ret
= insert_inline_extent(trans
, root
, inode
, start
,
254 inline_len
, compressed_size
,
255 compress_type
, compressed_pages
);
257 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
258 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
262 struct async_extent
{
267 unsigned long nr_pages
;
269 struct list_head list
;
274 struct btrfs_root
*root
;
275 struct page
*locked_page
;
278 struct list_head extents
;
279 struct btrfs_work work
;
282 static noinline
int add_async_extent(struct async_cow
*cow
,
283 u64 start
, u64 ram_size
,
286 unsigned long nr_pages
,
289 struct async_extent
*async_extent
;
291 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
292 BUG_ON(!async_extent
);
293 async_extent
->start
= start
;
294 async_extent
->ram_size
= ram_size
;
295 async_extent
->compressed_size
= compressed_size
;
296 async_extent
->pages
= pages
;
297 async_extent
->nr_pages
= nr_pages
;
298 async_extent
->compress_type
= compress_type
;
299 list_add_tail(&async_extent
->list
, &cow
->extents
);
304 * we create compressed extents in two phases. The first
305 * phase compresses a range of pages that have already been
306 * locked (both pages and state bits are locked).
308 * This is done inside an ordered work queue, and the compression
309 * is spread across many cpus. The actual IO submission is step
310 * two, and the ordered work queue takes care of making sure that
311 * happens in the same order things were put onto the queue by
312 * writepages and friends.
314 * If this code finds it can't get good compression, it puts an
315 * entry onto the work queue to write the uncompressed bytes. This
316 * makes sure that both compressed inodes and uncompressed inodes
317 * are written in the same order that pdflush sent them down.
319 static noinline
int compress_file_range(struct inode
*inode
,
320 struct page
*locked_page
,
322 struct async_cow
*async_cow
,
325 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
326 struct btrfs_trans_handle
*trans
;
328 u64 blocksize
= root
->sectorsize
;
330 u64 isize
= i_size_read(inode
);
332 struct page
**pages
= NULL
;
333 unsigned long nr_pages
;
334 unsigned long nr_pages_ret
= 0;
335 unsigned long total_compressed
= 0;
336 unsigned long total_in
= 0;
337 unsigned long max_compressed
= 128 * 1024;
338 unsigned long max_uncompressed
= 128 * 1024;
341 int compress_type
= root
->fs_info
->compress_type
;
343 actual_end
= min_t(u64
, isize
, end
+ 1);
346 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
347 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
350 * we don't want to send crud past the end of i_size through
351 * compression, that's just a waste of CPU time. So, if the
352 * end of the file is before the start of our current
353 * requested range of bytes, we bail out to the uncompressed
354 * cleanup code that can deal with all of this.
356 * It isn't really the fastest way to fix things, but this is a
357 * very uncommon corner.
359 if (actual_end
<= start
)
360 goto cleanup_and_bail_uncompressed
;
362 total_compressed
= actual_end
- start
;
364 /* we want to make sure that amount of ram required to uncompress
365 * an extent is reasonable, so we limit the total size in ram
366 * of a compressed extent to 128k. This is a crucial number
367 * because it also controls how easily we can spread reads across
368 * cpus for decompression.
370 * We also want to make sure the amount of IO required to do
371 * a random read is reasonably small, so we limit the size of
372 * a compressed extent to 128k.
374 total_compressed
= min(total_compressed
, max_uncompressed
);
375 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
376 num_bytes
= max(blocksize
, num_bytes
);
381 * we do compression for mount -o compress and when the
382 * inode has not been flagged as nocompress. This flag can
383 * change at any time if we discover bad compression ratios.
385 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
386 (btrfs_test_opt(root
, COMPRESS
) ||
387 (BTRFS_I(inode
)->force_compress
) ||
388 (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))) {
390 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
393 if (BTRFS_I(inode
)->force_compress
)
394 compress_type
= BTRFS_I(inode
)->force_compress
;
396 ret
= btrfs_compress_pages(compress_type
,
397 inode
->i_mapping
, start
,
398 total_compressed
, pages
,
399 nr_pages
, &nr_pages_ret
,
405 unsigned long offset
= total_compressed
&
406 (PAGE_CACHE_SIZE
- 1);
407 struct page
*page
= pages
[nr_pages_ret
- 1];
410 /* zero the tail end of the last page, we might be
411 * sending it down to disk
414 kaddr
= kmap_atomic(page
, KM_USER0
);
415 memset(kaddr
+ offset
, 0,
416 PAGE_CACHE_SIZE
- offset
);
417 kunmap_atomic(kaddr
, KM_USER0
);
423 trans
= btrfs_join_transaction(root
, 1);
424 BUG_ON(IS_ERR(trans
));
425 btrfs_set_trans_block_group(trans
, inode
);
426 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
428 /* lets try to make an inline extent */
429 if (ret
|| total_in
< (actual_end
- start
)) {
430 /* we didn't compress the entire range, try
431 * to make an uncompressed inline extent.
433 ret
= cow_file_range_inline(trans
, root
, inode
,
434 start
, end
, 0, 0, NULL
);
436 /* try making a compressed inline extent */
437 ret
= cow_file_range_inline(trans
, root
, inode
,
440 compress_type
, pages
);
444 * inline extent creation worked, we don't need
445 * to create any more async work items. Unlock
446 * and free up our temp pages.
448 extent_clear_unlock_delalloc(inode
,
449 &BTRFS_I(inode
)->io_tree
,
451 EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
452 EXTENT_CLEAR_DELALLOC
|
453 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
);
455 btrfs_end_transaction(trans
, root
);
458 btrfs_end_transaction(trans
, root
);
463 * we aren't doing an inline extent round the compressed size
464 * up to a block size boundary so the allocator does sane
467 total_compressed
= (total_compressed
+ blocksize
- 1) &
471 * one last check to make sure the compression is really a
472 * win, compare the page count read with the blocks on disk
474 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
475 ~(PAGE_CACHE_SIZE
- 1);
476 if (total_compressed
>= total_in
) {
479 num_bytes
= total_in
;
482 if (!will_compress
&& pages
) {
484 * the compression code ran but failed to make things smaller,
485 * free any pages it allocated and our page pointer array
487 for (i
= 0; i
< nr_pages_ret
; i
++) {
488 WARN_ON(pages
[i
]->mapping
);
489 page_cache_release(pages
[i
]);
493 total_compressed
= 0;
496 /* flag the file so we don't compress in the future */
497 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
498 !(BTRFS_I(inode
)->force_compress
)) {
499 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
505 /* the async work queues will take care of doing actual
506 * allocation on disk for these compressed pages,
507 * and will submit them to the elevator.
509 add_async_extent(async_cow
, start
, num_bytes
,
510 total_compressed
, pages
, nr_pages_ret
,
513 if (start
+ num_bytes
< end
) {
520 cleanup_and_bail_uncompressed
:
522 * No compression, but we still need to write the pages in
523 * the file we've been given so far. redirty the locked
524 * page if it corresponds to our extent and set things up
525 * for the async work queue to run cow_file_range to do
526 * the normal delalloc dance
528 if (page_offset(locked_page
) >= start
&&
529 page_offset(locked_page
) <= end
) {
530 __set_page_dirty_nobuffers(locked_page
);
531 /* unlocked later on in the async handlers */
533 add_async_extent(async_cow
, start
, end
- start
+ 1,
534 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
542 for (i
= 0; i
< nr_pages_ret
; i
++) {
543 WARN_ON(pages
[i
]->mapping
);
544 page_cache_release(pages
[i
]);
552 * phase two of compressed writeback. This is the ordered portion
553 * of the code, which only gets called in the order the work was
554 * queued. We walk all the async extents created by compress_file_range
555 * and send them down to the disk.
557 static noinline
int submit_compressed_extents(struct inode
*inode
,
558 struct async_cow
*async_cow
)
560 struct async_extent
*async_extent
;
562 struct btrfs_trans_handle
*trans
;
563 struct btrfs_key ins
;
564 struct extent_map
*em
;
565 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
566 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
567 struct extent_io_tree
*io_tree
;
570 if (list_empty(&async_cow
->extents
))
574 while (!list_empty(&async_cow
->extents
)) {
575 async_extent
= list_entry(async_cow
->extents
.next
,
576 struct async_extent
, list
);
577 list_del(&async_extent
->list
);
579 io_tree
= &BTRFS_I(inode
)->io_tree
;
582 /* did the compression code fall back to uncompressed IO? */
583 if (!async_extent
->pages
) {
584 int page_started
= 0;
585 unsigned long nr_written
= 0;
587 lock_extent(io_tree
, async_extent
->start
,
588 async_extent
->start
+
589 async_extent
->ram_size
- 1, GFP_NOFS
);
591 /* allocate blocks */
592 ret
= cow_file_range(inode
, async_cow
->locked_page
,
594 async_extent
->start
+
595 async_extent
->ram_size
- 1,
596 &page_started
, &nr_written
, 0);
599 * if page_started, cow_file_range inserted an
600 * inline extent and took care of all the unlocking
601 * and IO for us. Otherwise, we need to submit
602 * all those pages down to the drive.
604 if (!page_started
&& !ret
)
605 extent_write_locked_range(io_tree
,
606 inode
, async_extent
->start
,
607 async_extent
->start
+
608 async_extent
->ram_size
- 1,
616 lock_extent(io_tree
, async_extent
->start
,
617 async_extent
->start
+ async_extent
->ram_size
- 1,
620 trans
= btrfs_join_transaction(root
, 1);
621 BUG_ON(IS_ERR(trans
));
622 ret
= btrfs_reserve_extent(trans
, root
,
623 async_extent
->compressed_size
,
624 async_extent
->compressed_size
,
627 btrfs_end_transaction(trans
, root
);
631 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
632 WARN_ON(async_extent
->pages
[i
]->mapping
);
633 page_cache_release(async_extent
->pages
[i
]);
635 kfree(async_extent
->pages
);
636 async_extent
->nr_pages
= 0;
637 async_extent
->pages
= NULL
;
638 unlock_extent(io_tree
, async_extent
->start
,
639 async_extent
->start
+
640 async_extent
->ram_size
- 1, GFP_NOFS
);
645 * here we're doing allocation and writeback of the
648 btrfs_drop_extent_cache(inode
, async_extent
->start
,
649 async_extent
->start
+
650 async_extent
->ram_size
- 1, 0);
652 em
= alloc_extent_map(GFP_NOFS
);
654 em
->start
= async_extent
->start
;
655 em
->len
= async_extent
->ram_size
;
656 em
->orig_start
= em
->start
;
658 em
->block_start
= ins
.objectid
;
659 em
->block_len
= ins
.offset
;
660 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
661 em
->compress_type
= async_extent
->compress_type
;
662 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
663 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
666 write_lock(&em_tree
->lock
);
667 ret
= add_extent_mapping(em_tree
, em
);
668 write_unlock(&em_tree
->lock
);
669 if (ret
!= -EEXIST
) {
673 btrfs_drop_extent_cache(inode
, async_extent
->start
,
674 async_extent
->start
+
675 async_extent
->ram_size
- 1, 0);
678 ret
= btrfs_add_ordered_extent_compress(inode
,
681 async_extent
->ram_size
,
683 BTRFS_ORDERED_COMPRESSED
,
684 async_extent
->compress_type
);
688 * clear dirty, set writeback and unlock the pages.
690 extent_clear_unlock_delalloc(inode
,
691 &BTRFS_I(inode
)->io_tree
,
693 async_extent
->start
+
694 async_extent
->ram_size
- 1,
695 NULL
, EXTENT_CLEAR_UNLOCK_PAGE
|
696 EXTENT_CLEAR_UNLOCK
|
697 EXTENT_CLEAR_DELALLOC
|
698 EXTENT_CLEAR_DIRTY
| EXTENT_SET_WRITEBACK
);
700 ret
= btrfs_submit_compressed_write(inode
,
702 async_extent
->ram_size
,
704 ins
.offset
, async_extent
->pages
,
705 async_extent
->nr_pages
);
708 alloc_hint
= ins
.objectid
+ ins
.offset
;
716 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
719 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
720 struct extent_map
*em
;
723 read_lock(&em_tree
->lock
);
724 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
727 * if block start isn't an actual block number then find the
728 * first block in this inode and use that as a hint. If that
729 * block is also bogus then just don't worry about it.
731 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
733 em
= search_extent_mapping(em_tree
, 0, 0);
734 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
735 alloc_hint
= em
->block_start
;
739 alloc_hint
= em
->block_start
;
743 read_unlock(&em_tree
->lock
);
749 * when extent_io.c finds a delayed allocation range in the file,
750 * the call backs end up in this code. The basic idea is to
751 * allocate extents on disk for the range, and create ordered data structs
752 * in ram to track those extents.
754 * locked_page is the page that writepage had locked already. We use
755 * it to make sure we don't do extra locks or unlocks.
757 * *page_started is set to one if we unlock locked_page and do everything
758 * required to start IO on it. It may be clean and already done with
761 static noinline
int cow_file_range(struct inode
*inode
,
762 struct page
*locked_page
,
763 u64 start
, u64 end
, int *page_started
,
764 unsigned long *nr_written
,
767 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
768 struct btrfs_trans_handle
*trans
;
771 unsigned long ram_size
;
774 u64 blocksize
= root
->sectorsize
;
775 struct btrfs_key ins
;
776 struct extent_map
*em
;
777 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
780 BUG_ON(root
== root
->fs_info
->tree_root
);
781 trans
= btrfs_join_transaction(root
, 1);
782 BUG_ON(IS_ERR(trans
));
783 btrfs_set_trans_block_group(trans
, inode
);
784 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
786 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
787 num_bytes
= max(blocksize
, num_bytes
);
788 disk_num_bytes
= num_bytes
;
792 /* lets try to make an inline extent */
793 ret
= cow_file_range_inline(trans
, root
, inode
,
794 start
, end
, 0, 0, NULL
);
796 extent_clear_unlock_delalloc(inode
,
797 &BTRFS_I(inode
)->io_tree
,
799 EXTENT_CLEAR_UNLOCK_PAGE
|
800 EXTENT_CLEAR_UNLOCK
|
801 EXTENT_CLEAR_DELALLOC
|
803 EXTENT_SET_WRITEBACK
|
804 EXTENT_END_WRITEBACK
);
806 *nr_written
= *nr_written
+
807 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
814 BUG_ON(disk_num_bytes
>
815 btrfs_super_total_bytes(&root
->fs_info
->super_copy
));
817 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
818 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
820 while (disk_num_bytes
> 0) {
823 cur_alloc_size
= disk_num_bytes
;
824 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
825 root
->sectorsize
, 0, alloc_hint
,
829 em
= alloc_extent_map(GFP_NOFS
);
832 em
->orig_start
= em
->start
;
833 ram_size
= ins
.offset
;
834 em
->len
= ins
.offset
;
836 em
->block_start
= ins
.objectid
;
837 em
->block_len
= ins
.offset
;
838 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
839 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
842 write_lock(&em_tree
->lock
);
843 ret
= add_extent_mapping(em_tree
, em
);
844 write_unlock(&em_tree
->lock
);
845 if (ret
!= -EEXIST
) {
849 btrfs_drop_extent_cache(inode
, start
,
850 start
+ ram_size
- 1, 0);
853 cur_alloc_size
= ins
.offset
;
854 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
855 ram_size
, cur_alloc_size
, 0);
858 if (root
->root_key
.objectid
==
859 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
860 ret
= btrfs_reloc_clone_csums(inode
, start
,
865 if (disk_num_bytes
< cur_alloc_size
)
868 /* we're not doing compressed IO, don't unlock the first
869 * page (which the caller expects to stay locked), don't
870 * clear any dirty bits and don't set any writeback bits
872 * Do set the Private2 bit so we know this page was properly
873 * setup for writepage
875 op
= unlock
? EXTENT_CLEAR_UNLOCK_PAGE
: 0;
876 op
|= EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
879 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
880 start
, start
+ ram_size
- 1,
882 disk_num_bytes
-= cur_alloc_size
;
883 num_bytes
-= cur_alloc_size
;
884 alloc_hint
= ins
.objectid
+ ins
.offset
;
885 start
+= cur_alloc_size
;
889 btrfs_end_transaction(trans
, root
);
895 * work queue call back to started compression on a file and pages
897 static noinline
void async_cow_start(struct btrfs_work
*work
)
899 struct async_cow
*async_cow
;
901 async_cow
= container_of(work
, struct async_cow
, work
);
903 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
904 async_cow
->start
, async_cow
->end
, async_cow
,
907 async_cow
->inode
= NULL
;
911 * work queue call back to submit previously compressed pages
913 static noinline
void async_cow_submit(struct btrfs_work
*work
)
915 struct async_cow
*async_cow
;
916 struct btrfs_root
*root
;
917 unsigned long nr_pages
;
919 async_cow
= container_of(work
, struct async_cow
, work
);
921 root
= async_cow
->root
;
922 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
925 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
927 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
929 waitqueue_active(&root
->fs_info
->async_submit_wait
))
930 wake_up(&root
->fs_info
->async_submit_wait
);
932 if (async_cow
->inode
)
933 submit_compressed_extents(async_cow
->inode
, async_cow
);
936 static noinline
void async_cow_free(struct btrfs_work
*work
)
938 struct async_cow
*async_cow
;
939 async_cow
= container_of(work
, struct async_cow
, work
);
943 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
944 u64 start
, u64 end
, int *page_started
,
945 unsigned long *nr_written
)
947 struct async_cow
*async_cow
;
948 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
949 unsigned long nr_pages
;
951 int limit
= 10 * 1024 * 1042;
953 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
954 1, 0, NULL
, GFP_NOFS
);
955 while (start
< end
) {
956 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
957 async_cow
->inode
= inode
;
958 async_cow
->root
= root
;
959 async_cow
->locked_page
= locked_page
;
960 async_cow
->start
= start
;
962 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
965 cur_end
= min(end
, start
+ 512 * 1024 - 1);
967 async_cow
->end
= cur_end
;
968 INIT_LIST_HEAD(&async_cow
->extents
);
970 async_cow
->work
.func
= async_cow_start
;
971 async_cow
->work
.ordered_func
= async_cow_submit
;
972 async_cow
->work
.ordered_free
= async_cow_free
;
973 async_cow
->work
.flags
= 0;
975 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
977 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
979 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
982 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
983 wait_event(root
->fs_info
->async_submit_wait
,
984 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
988 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
989 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
990 wait_event(root
->fs_info
->async_submit_wait
,
991 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
995 *nr_written
+= nr_pages
;
1002 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
1003 u64 bytenr
, u64 num_bytes
)
1006 struct btrfs_ordered_sum
*sums
;
1009 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1010 bytenr
+ num_bytes
- 1, &list
);
1011 if (ret
== 0 && list_empty(&list
))
1014 while (!list_empty(&list
)) {
1015 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1016 list_del(&sums
->list
);
1023 * when nowcow writeback call back. This checks for snapshots or COW copies
1024 * of the extents that exist in the file, and COWs the file as required.
1026 * If no cow copies or snapshots exist, we write directly to the existing
1029 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1030 struct page
*locked_page
,
1031 u64 start
, u64 end
, int *page_started
, int force
,
1032 unsigned long *nr_written
)
1034 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1035 struct btrfs_trans_handle
*trans
;
1036 struct extent_buffer
*leaf
;
1037 struct btrfs_path
*path
;
1038 struct btrfs_file_extent_item
*fi
;
1039 struct btrfs_key found_key
;
1051 bool nolock
= false;
1053 path
= btrfs_alloc_path();
1055 if (root
== root
->fs_info
->tree_root
) {
1057 trans
= btrfs_join_transaction_nolock(root
, 1);
1059 trans
= btrfs_join_transaction(root
, 1);
1061 BUG_ON(IS_ERR(trans
));
1063 cow_start
= (u64
)-1;
1066 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
1069 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1070 leaf
= path
->nodes
[0];
1071 btrfs_item_key_to_cpu(leaf
, &found_key
,
1072 path
->slots
[0] - 1);
1073 if (found_key
.objectid
== inode
->i_ino
&&
1074 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1079 leaf
= path
->nodes
[0];
1080 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1081 ret
= btrfs_next_leaf(root
, path
);
1086 leaf
= path
->nodes
[0];
1092 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1094 if (found_key
.objectid
> inode
->i_ino
||
1095 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1096 found_key
.offset
> end
)
1099 if (found_key
.offset
> cur_offset
) {
1100 extent_end
= found_key
.offset
;
1105 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1106 struct btrfs_file_extent_item
);
1107 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1109 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1110 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1111 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1112 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1113 extent_end
= found_key
.offset
+
1114 btrfs_file_extent_num_bytes(leaf
, fi
);
1115 if (extent_end
<= start
) {
1119 if (disk_bytenr
== 0)
1121 if (btrfs_file_extent_compression(leaf
, fi
) ||
1122 btrfs_file_extent_encryption(leaf
, fi
) ||
1123 btrfs_file_extent_other_encoding(leaf
, fi
))
1125 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1127 if (btrfs_extent_readonly(root
, disk_bytenr
))
1129 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
1131 extent_offset
, disk_bytenr
))
1133 disk_bytenr
+= extent_offset
;
1134 disk_bytenr
+= cur_offset
- found_key
.offset
;
1135 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1137 * force cow if csum exists in the range.
1138 * this ensure that csum for a given extent are
1139 * either valid or do not exist.
1141 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1144 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1145 extent_end
= found_key
.offset
+
1146 btrfs_file_extent_inline_len(leaf
, fi
);
1147 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1152 if (extent_end
<= start
) {
1157 if (cow_start
== (u64
)-1)
1158 cow_start
= cur_offset
;
1159 cur_offset
= extent_end
;
1160 if (cur_offset
> end
)
1166 btrfs_release_path(root
, path
);
1167 if (cow_start
!= (u64
)-1) {
1168 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1169 found_key
.offset
- 1, page_started
,
1172 cow_start
= (u64
)-1;
1175 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1176 struct extent_map
*em
;
1177 struct extent_map_tree
*em_tree
;
1178 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1179 em
= alloc_extent_map(GFP_NOFS
);
1181 em
->start
= cur_offset
;
1182 em
->orig_start
= em
->start
;
1183 em
->len
= num_bytes
;
1184 em
->block_len
= num_bytes
;
1185 em
->block_start
= disk_bytenr
;
1186 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1187 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1189 write_lock(&em_tree
->lock
);
1190 ret
= add_extent_mapping(em_tree
, em
);
1191 write_unlock(&em_tree
->lock
);
1192 if (ret
!= -EEXIST
) {
1193 free_extent_map(em
);
1196 btrfs_drop_extent_cache(inode
, em
->start
,
1197 em
->start
+ em
->len
- 1, 0);
1199 type
= BTRFS_ORDERED_PREALLOC
;
1201 type
= BTRFS_ORDERED_NOCOW
;
1204 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1205 num_bytes
, num_bytes
, type
);
1208 if (root
->root_key
.objectid
==
1209 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1210 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1215 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1216 cur_offset
, cur_offset
+ num_bytes
- 1,
1217 locked_page
, EXTENT_CLEAR_UNLOCK_PAGE
|
1218 EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
1219 EXTENT_SET_PRIVATE2
);
1220 cur_offset
= extent_end
;
1221 if (cur_offset
> end
)
1224 btrfs_release_path(root
, path
);
1226 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1227 cow_start
= cur_offset
;
1228 if (cow_start
!= (u64
)-1) {
1229 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1230 page_started
, nr_written
, 1);
1235 ret
= btrfs_end_transaction_nolock(trans
, root
);
1238 ret
= btrfs_end_transaction(trans
, root
);
1241 btrfs_free_path(path
);
1246 * extent_io.c call back to do delayed allocation processing
1248 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1249 u64 start
, u64 end
, int *page_started
,
1250 unsigned long *nr_written
)
1253 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1255 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)
1256 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1257 page_started
, 1, nr_written
);
1258 else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)
1259 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1260 page_started
, 0, nr_written
);
1261 else if (!btrfs_test_opt(root
, COMPRESS
) &&
1262 !(BTRFS_I(inode
)->force_compress
) &&
1263 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))
1264 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1265 page_started
, nr_written
, 1);
1267 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1268 page_started
, nr_written
);
1272 static int btrfs_split_extent_hook(struct inode
*inode
,
1273 struct extent_state
*orig
, u64 split
)
1275 /* not delalloc, ignore it */
1276 if (!(orig
->state
& EXTENT_DELALLOC
))
1279 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
1284 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1285 * extents so we can keep track of new extents that are just merged onto old
1286 * extents, such as when we are doing sequential writes, so we can properly
1287 * account for the metadata space we'll need.
1289 static int btrfs_merge_extent_hook(struct inode
*inode
,
1290 struct extent_state
*new,
1291 struct extent_state
*other
)
1293 /* not delalloc, ignore it */
1294 if (!(other
->state
& EXTENT_DELALLOC
))
1297 atomic_dec(&BTRFS_I(inode
)->outstanding_extents
);
1302 * extent_io.c set_bit_hook, used to track delayed allocation
1303 * bytes in this file, and to maintain the list of inodes that
1304 * have pending delalloc work to be done.
1306 static int btrfs_set_bit_hook(struct inode
*inode
,
1307 struct extent_state
*state
, int *bits
)
1311 * set_bit and clear bit hooks normally require _irqsave/restore
1312 * but in this case, we are only testeing for the DELALLOC
1313 * bit, which is only set or cleared with irqs on
1315 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1316 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1317 u64 len
= state
->end
+ 1 - state
->start
;
1318 int do_list
= (root
->root_key
.objectid
!=
1319 BTRFS_ROOT_TREE_OBJECTID
);
1321 if (*bits
& EXTENT_FIRST_DELALLOC
)
1322 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1324 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
1326 spin_lock(&root
->fs_info
->delalloc_lock
);
1327 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1328 root
->fs_info
->delalloc_bytes
+= len
;
1329 if (do_list
&& list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1330 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1331 &root
->fs_info
->delalloc_inodes
);
1333 spin_unlock(&root
->fs_info
->delalloc_lock
);
1339 * extent_io.c clear_bit_hook, see set_bit_hook for why
1341 static int btrfs_clear_bit_hook(struct inode
*inode
,
1342 struct extent_state
*state
, int *bits
)
1345 * set_bit and clear bit hooks normally require _irqsave/restore
1346 * but in this case, we are only testeing for the DELALLOC
1347 * bit, which is only set or cleared with irqs on
1349 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1350 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1351 u64 len
= state
->end
+ 1 - state
->start
;
1352 int do_list
= (root
->root_key
.objectid
!=
1353 BTRFS_ROOT_TREE_OBJECTID
);
1355 if (*bits
& EXTENT_FIRST_DELALLOC
)
1356 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1357 else if (!(*bits
& EXTENT_DO_ACCOUNTING
))
1358 atomic_dec(&BTRFS_I(inode
)->outstanding_extents
);
1360 if (*bits
& EXTENT_DO_ACCOUNTING
)
1361 btrfs_delalloc_release_metadata(inode
, len
);
1363 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1365 btrfs_free_reserved_data_space(inode
, len
);
1367 spin_lock(&root
->fs_info
->delalloc_lock
);
1368 root
->fs_info
->delalloc_bytes
-= len
;
1369 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1371 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1372 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1373 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1375 spin_unlock(&root
->fs_info
->delalloc_lock
);
1381 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1382 * we don't create bios that span stripes or chunks
1384 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1385 size_t size
, struct bio
*bio
,
1386 unsigned long bio_flags
)
1388 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1389 struct btrfs_mapping_tree
*map_tree
;
1390 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1395 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1398 length
= bio
->bi_size
;
1399 map_tree
= &root
->fs_info
->mapping_tree
;
1400 map_length
= length
;
1401 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1402 &map_length
, NULL
, 0);
1404 if (map_length
< length
+ size
)
1410 * in order to insert checksums into the metadata in large chunks,
1411 * we wait until bio submission time. All the pages in the bio are
1412 * checksummed and sums are attached onto the ordered extent record.
1414 * At IO completion time the cums attached on the ordered extent record
1415 * are inserted into the btree
1417 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1418 struct bio
*bio
, int mirror_num
,
1419 unsigned long bio_flags
,
1422 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1425 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1431 * in order to insert checksums into the metadata in large chunks,
1432 * we wait until bio submission time. All the pages in the bio are
1433 * checksummed and sums are attached onto the ordered extent record.
1435 * At IO completion time the cums attached on the ordered extent record
1436 * are inserted into the btree
1438 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1439 int mirror_num
, unsigned long bio_flags
,
1442 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1443 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1447 * extent_io.c submission hook. This does the right thing for csum calculation
1448 * on write, or reading the csums from the tree before a read
1450 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1451 int mirror_num
, unsigned long bio_flags
,
1454 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1458 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1460 if (root
== root
->fs_info
->tree_root
)
1461 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 2);
1463 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1466 if (!(rw
& REQ_WRITE
)) {
1467 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1468 return btrfs_submit_compressed_read(inode
, bio
,
1469 mirror_num
, bio_flags
);
1470 } else if (!skip_sum
) {
1471 ret
= btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1476 } else if (!skip_sum
) {
1477 /* csum items have already been cloned */
1478 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1480 /* we're doing a write, do the async checksumming */
1481 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1482 inode
, rw
, bio
, mirror_num
,
1483 bio_flags
, bio_offset
,
1484 __btrfs_submit_bio_start
,
1485 __btrfs_submit_bio_done
);
1489 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1493 * given a list of ordered sums record them in the inode. This happens
1494 * at IO completion time based on sums calculated at bio submission time.
1496 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1497 struct inode
*inode
, u64 file_offset
,
1498 struct list_head
*list
)
1500 struct btrfs_ordered_sum
*sum
;
1502 btrfs_set_trans_block_group(trans
, inode
);
1504 list_for_each_entry(sum
, list
, list
) {
1505 btrfs_csum_file_blocks(trans
,
1506 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1511 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1512 struct extent_state
**cached_state
)
1514 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1516 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1517 cached_state
, GFP_NOFS
);
1520 /* see btrfs_writepage_start_hook for details on why this is required */
1521 struct btrfs_writepage_fixup
{
1523 struct btrfs_work work
;
1526 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1528 struct btrfs_writepage_fixup
*fixup
;
1529 struct btrfs_ordered_extent
*ordered
;
1530 struct extent_state
*cached_state
= NULL
;
1532 struct inode
*inode
;
1536 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1540 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1541 ClearPageChecked(page
);
1545 inode
= page
->mapping
->host
;
1546 page_start
= page_offset(page
);
1547 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1549 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1550 &cached_state
, GFP_NOFS
);
1552 /* already ordered? We're done */
1553 if (PagePrivate2(page
))
1556 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1558 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1559 page_end
, &cached_state
, GFP_NOFS
);
1561 btrfs_start_ordered_extent(inode
, ordered
, 1);
1566 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1567 ClearPageChecked(page
);
1569 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1570 &cached_state
, GFP_NOFS
);
1573 page_cache_release(page
);
1578 * There are a few paths in the higher layers of the kernel that directly
1579 * set the page dirty bit without asking the filesystem if it is a
1580 * good idea. This causes problems because we want to make sure COW
1581 * properly happens and the data=ordered rules are followed.
1583 * In our case any range that doesn't have the ORDERED bit set
1584 * hasn't been properly setup for IO. We kick off an async process
1585 * to fix it up. The async helper will wait for ordered extents, set
1586 * the delalloc bit and make it safe to write the page.
1588 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1590 struct inode
*inode
= page
->mapping
->host
;
1591 struct btrfs_writepage_fixup
*fixup
;
1592 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1594 /* this page is properly in the ordered list */
1595 if (TestClearPagePrivate2(page
))
1598 if (PageChecked(page
))
1601 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1605 SetPageChecked(page
);
1606 page_cache_get(page
);
1607 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1609 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1613 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1614 struct inode
*inode
, u64 file_pos
,
1615 u64 disk_bytenr
, u64 disk_num_bytes
,
1616 u64 num_bytes
, u64 ram_bytes
,
1617 u8 compression
, u8 encryption
,
1618 u16 other_encoding
, int extent_type
)
1620 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1621 struct btrfs_file_extent_item
*fi
;
1622 struct btrfs_path
*path
;
1623 struct extent_buffer
*leaf
;
1624 struct btrfs_key ins
;
1628 path
= btrfs_alloc_path();
1631 path
->leave_spinning
= 1;
1634 * we may be replacing one extent in the tree with another.
1635 * The new extent is pinned in the extent map, and we don't want
1636 * to drop it from the cache until it is completely in the btree.
1638 * So, tell btrfs_drop_extents to leave this extent in the cache.
1639 * the caller is expected to unpin it and allow it to be merged
1642 ret
= btrfs_drop_extents(trans
, inode
, file_pos
, file_pos
+ num_bytes
,
1646 ins
.objectid
= inode
->i_ino
;
1647 ins
.offset
= file_pos
;
1648 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1649 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1651 leaf
= path
->nodes
[0];
1652 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1653 struct btrfs_file_extent_item
);
1654 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1655 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1656 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1657 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1658 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1659 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1660 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1661 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1662 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1663 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1665 btrfs_unlock_up_safe(path
, 1);
1666 btrfs_set_lock_blocking(leaf
);
1668 btrfs_mark_buffer_dirty(leaf
);
1670 inode_add_bytes(inode
, num_bytes
);
1672 ins
.objectid
= disk_bytenr
;
1673 ins
.offset
= disk_num_bytes
;
1674 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1675 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1676 root
->root_key
.objectid
,
1677 inode
->i_ino
, file_pos
, &ins
);
1679 btrfs_free_path(path
);
1685 * helper function for btrfs_finish_ordered_io, this
1686 * just reads in some of the csum leaves to prime them into ram
1687 * before we start the transaction. It limits the amount of btree
1688 * reads required while inside the transaction.
1690 /* as ordered data IO finishes, this gets called so we can finish
1691 * an ordered extent if the range of bytes in the file it covers are
1694 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1696 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1697 struct btrfs_trans_handle
*trans
= NULL
;
1698 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
1699 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1700 struct extent_state
*cached_state
= NULL
;
1701 int compress_type
= 0;
1703 bool nolock
= false;
1705 ret
= btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
1709 BUG_ON(!ordered_extent
);
1711 nolock
= (root
== root
->fs_info
->tree_root
);
1713 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
1714 BUG_ON(!list_empty(&ordered_extent
->list
));
1715 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1718 trans
= btrfs_join_transaction_nolock(root
, 1);
1720 trans
= btrfs_join_transaction(root
, 1);
1721 BUG_ON(IS_ERR(trans
));
1722 btrfs_set_trans_block_group(trans
, inode
);
1723 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1724 ret
= btrfs_update_inode(trans
, root
, inode
);
1730 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
1731 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1732 0, &cached_state
, GFP_NOFS
);
1735 trans
= btrfs_join_transaction_nolock(root
, 1);
1737 trans
= btrfs_join_transaction(root
, 1);
1738 BUG_ON(IS_ERR(trans
));
1739 btrfs_set_trans_block_group(trans
, inode
);
1740 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1742 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1743 compress_type
= ordered_extent
->compress_type
;
1744 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1745 BUG_ON(compress_type
);
1746 ret
= btrfs_mark_extent_written(trans
, inode
,
1747 ordered_extent
->file_offset
,
1748 ordered_extent
->file_offset
+
1749 ordered_extent
->len
);
1752 BUG_ON(root
== root
->fs_info
->tree_root
);
1753 ret
= insert_reserved_file_extent(trans
, inode
,
1754 ordered_extent
->file_offset
,
1755 ordered_extent
->start
,
1756 ordered_extent
->disk_len
,
1757 ordered_extent
->len
,
1758 ordered_extent
->len
,
1759 compress_type
, 0, 0,
1760 BTRFS_FILE_EXTENT_REG
);
1761 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
1762 ordered_extent
->file_offset
,
1763 ordered_extent
->len
);
1766 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
1767 ordered_extent
->file_offset
+
1768 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
1770 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1771 &ordered_extent
->list
);
1773 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1775 ret
= btrfs_update_inode(trans
, root
, inode
);
1782 btrfs_end_transaction_nolock(trans
, root
);
1784 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
1786 btrfs_end_transaction(trans
, root
);
1790 btrfs_put_ordered_extent(ordered_extent
);
1791 /* once for the tree */
1792 btrfs_put_ordered_extent(ordered_extent
);
1797 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1798 struct extent_state
*state
, int uptodate
)
1800 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
1802 ClearPagePrivate2(page
);
1803 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1807 * When IO fails, either with EIO or csum verification fails, we
1808 * try other mirrors that might have a good copy of the data. This
1809 * io_failure_record is used to record state as we go through all the
1810 * mirrors. If another mirror has good data, the page is set up to date
1811 * and things continue. If a good mirror can't be found, the original
1812 * bio end_io callback is called to indicate things have failed.
1814 struct io_failure_record
{
1819 unsigned long bio_flags
;
1823 static int btrfs_io_failed_hook(struct bio
*failed_bio
,
1824 struct page
*page
, u64 start
, u64 end
,
1825 struct extent_state
*state
)
1827 struct io_failure_record
*failrec
= NULL
;
1829 struct extent_map
*em
;
1830 struct inode
*inode
= page
->mapping
->host
;
1831 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1832 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1839 ret
= get_state_private(failure_tree
, start
, &private);
1841 failrec
= kmalloc(sizeof(*failrec
), GFP_NOFS
);
1844 failrec
->start
= start
;
1845 failrec
->len
= end
- start
+ 1;
1846 failrec
->last_mirror
= 0;
1847 failrec
->bio_flags
= 0;
1849 read_lock(&em_tree
->lock
);
1850 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
1851 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
1852 free_extent_map(em
);
1855 read_unlock(&em_tree
->lock
);
1857 if (!em
|| IS_ERR(em
)) {
1861 logical
= start
- em
->start
;
1862 logical
= em
->block_start
+ logical
;
1863 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
1864 logical
= em
->block_start
;
1865 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
1866 extent_set_compress_type(&failrec
->bio_flags
,
1869 failrec
->logical
= logical
;
1870 free_extent_map(em
);
1871 set_extent_bits(failure_tree
, start
, end
, EXTENT_LOCKED
|
1872 EXTENT_DIRTY
, GFP_NOFS
);
1873 set_state_private(failure_tree
, start
,
1874 (u64
)(unsigned long)failrec
);
1876 failrec
= (struct io_failure_record
*)(unsigned long)private;
1878 num_copies
= btrfs_num_copies(
1879 &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1880 failrec
->logical
, failrec
->len
);
1881 failrec
->last_mirror
++;
1883 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
1884 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
1887 if (state
&& state
->start
!= failrec
->start
)
1889 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
1891 if (!state
|| failrec
->last_mirror
> num_copies
) {
1892 set_state_private(failure_tree
, failrec
->start
, 0);
1893 clear_extent_bits(failure_tree
, failrec
->start
,
1894 failrec
->start
+ failrec
->len
- 1,
1895 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1899 bio
= bio_alloc(GFP_NOFS
, 1);
1900 bio
->bi_private
= state
;
1901 bio
->bi_end_io
= failed_bio
->bi_end_io
;
1902 bio
->bi_sector
= failrec
->logical
>> 9;
1903 bio
->bi_bdev
= failed_bio
->bi_bdev
;
1906 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
1907 if (failed_bio
->bi_rw
& REQ_WRITE
)
1912 ret
= BTRFS_I(inode
)->io_tree
.ops
->submit_bio_hook(inode
, rw
, bio
,
1913 failrec
->last_mirror
,
1914 failrec
->bio_flags
, 0);
1919 * each time an IO finishes, we do a fast check in the IO failure tree
1920 * to see if we need to process or clean up an io_failure_record
1922 static int btrfs_clean_io_failures(struct inode
*inode
, u64 start
)
1925 u64 private_failure
;
1926 struct io_failure_record
*failure
;
1930 if (count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
1931 (u64
)-1, 1, EXTENT_DIRTY
, 0)) {
1932 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1933 start
, &private_failure
);
1935 failure
= (struct io_failure_record
*)(unsigned long)
1937 set_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1939 clear_extent_bits(&BTRFS_I(inode
)->io_failure_tree
,
1941 failure
->start
+ failure
->len
- 1,
1942 EXTENT_DIRTY
| EXTENT_LOCKED
,
1951 * when reads are done, we need to check csums to verify the data is correct
1952 * if there's a match, we allow the bio to finish. If not, we go through
1953 * the io_failure_record routines to find good copies
1955 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1956 struct extent_state
*state
)
1958 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1959 struct inode
*inode
= page
->mapping
->host
;
1960 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1962 u64
private = ~(u32
)0;
1964 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1967 if (PageChecked(page
)) {
1968 ClearPageChecked(page
);
1972 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
1975 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1976 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
1977 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1982 if (state
&& state
->start
== start
) {
1983 private = state
->private;
1986 ret
= get_state_private(io_tree
, start
, &private);
1988 kaddr
= kmap_atomic(page
, KM_USER0
);
1992 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
1993 btrfs_csum_final(csum
, (char *)&csum
);
1994 if (csum
!= private)
1997 kunmap_atomic(kaddr
, KM_USER0
);
1999 /* if the io failure tree for this inode is non-empty,
2000 * check to see if we've recovered from a failed IO
2002 btrfs_clean_io_failures(inode
, start
);
2006 if (printk_ratelimit()) {
2007 printk(KERN_INFO
"btrfs csum failed ino %lu off %llu csum %u "
2008 "private %llu\n", page
->mapping
->host
->i_ino
,
2009 (unsigned long long)start
, csum
,
2010 (unsigned long long)private);
2012 memset(kaddr
+ offset
, 1, end
- start
+ 1);
2013 flush_dcache_page(page
);
2014 kunmap_atomic(kaddr
, KM_USER0
);
2020 struct delayed_iput
{
2021 struct list_head list
;
2022 struct inode
*inode
;
2025 void btrfs_add_delayed_iput(struct inode
*inode
)
2027 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2028 struct delayed_iput
*delayed
;
2030 if (atomic_add_unless(&inode
->i_count
, -1, 1))
2033 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
2034 delayed
->inode
= inode
;
2036 spin_lock(&fs_info
->delayed_iput_lock
);
2037 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
2038 spin_unlock(&fs_info
->delayed_iput_lock
);
2041 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
2044 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2045 struct delayed_iput
*delayed
;
2048 spin_lock(&fs_info
->delayed_iput_lock
);
2049 empty
= list_empty(&fs_info
->delayed_iputs
);
2050 spin_unlock(&fs_info
->delayed_iput_lock
);
2054 down_read(&root
->fs_info
->cleanup_work_sem
);
2055 spin_lock(&fs_info
->delayed_iput_lock
);
2056 list_splice_init(&fs_info
->delayed_iputs
, &list
);
2057 spin_unlock(&fs_info
->delayed_iput_lock
);
2059 while (!list_empty(&list
)) {
2060 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
2061 list_del(&delayed
->list
);
2062 iput(delayed
->inode
);
2065 up_read(&root
->fs_info
->cleanup_work_sem
);
2069 * calculate extra metadata reservation when snapshotting a subvolume
2070 * contains orphan files.
2072 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle
*trans
,
2073 struct btrfs_pending_snapshot
*pending
,
2074 u64
*bytes_to_reserve
)
2076 struct btrfs_root
*root
;
2077 struct btrfs_block_rsv
*block_rsv
;
2081 root
= pending
->root
;
2082 if (!root
->orphan_block_rsv
|| list_empty(&root
->orphan_list
))
2085 block_rsv
= root
->orphan_block_rsv
;
2087 /* orphan block reservation for the snapshot */
2088 num_bytes
= block_rsv
->size
;
2091 * after the snapshot is created, COWing tree blocks may use more
2092 * space than it frees. So we should make sure there is enough
2095 index
= trans
->transid
& 0x1;
2096 if (block_rsv
->reserved
+ block_rsv
->freed
[index
] < block_rsv
->size
) {
2097 num_bytes
+= block_rsv
->size
-
2098 (block_rsv
->reserved
+ block_rsv
->freed
[index
]);
2101 *bytes_to_reserve
+= num_bytes
;
2104 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle
*trans
,
2105 struct btrfs_pending_snapshot
*pending
)
2107 struct btrfs_root
*root
= pending
->root
;
2108 struct btrfs_root
*snap
= pending
->snap
;
2109 struct btrfs_block_rsv
*block_rsv
;
2114 if (!root
->orphan_block_rsv
|| list_empty(&root
->orphan_list
))
2117 /* refill source subvolume's orphan block reservation */
2118 block_rsv
= root
->orphan_block_rsv
;
2119 index
= trans
->transid
& 0x1;
2120 if (block_rsv
->reserved
+ block_rsv
->freed
[index
] < block_rsv
->size
) {
2121 num_bytes
= block_rsv
->size
-
2122 (block_rsv
->reserved
+ block_rsv
->freed
[index
]);
2123 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
2124 root
->orphan_block_rsv
,
2129 /* setup orphan block reservation for the snapshot */
2130 block_rsv
= btrfs_alloc_block_rsv(snap
);
2133 btrfs_add_durable_block_rsv(root
->fs_info
, block_rsv
);
2134 snap
->orphan_block_rsv
= block_rsv
;
2136 num_bytes
= root
->orphan_block_rsv
->size
;
2137 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
2138 block_rsv
, num_bytes
);
2142 /* insert orphan item for the snapshot */
2143 WARN_ON(!root
->orphan_item_inserted
);
2144 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2145 snap
->root_key
.objectid
);
2147 snap
->orphan_item_inserted
= 1;
2151 enum btrfs_orphan_cleanup_state
{
2152 ORPHAN_CLEANUP_STARTED
= 1,
2153 ORPHAN_CLEANUP_DONE
= 2,
2157 * This is called in transaction commmit time. If there are no orphan
2158 * files in the subvolume, it removes orphan item and frees block_rsv
2161 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
2162 struct btrfs_root
*root
)
2166 if (!list_empty(&root
->orphan_list
) ||
2167 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
2170 if (root
->orphan_item_inserted
&&
2171 btrfs_root_refs(&root
->root_item
) > 0) {
2172 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
2173 root
->root_key
.objectid
);
2175 root
->orphan_item_inserted
= 0;
2178 if (root
->orphan_block_rsv
) {
2179 WARN_ON(root
->orphan_block_rsv
->size
> 0);
2180 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
2181 root
->orphan_block_rsv
= NULL
;
2186 * This creates an orphan entry for the given inode in case something goes
2187 * wrong in the middle of an unlink/truncate.
2189 * NOTE: caller of this function should reserve 5 units of metadata for
2192 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2194 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2195 struct btrfs_block_rsv
*block_rsv
= NULL
;
2200 if (!root
->orphan_block_rsv
) {
2201 block_rsv
= btrfs_alloc_block_rsv(root
);
2205 spin_lock(&root
->orphan_lock
);
2206 if (!root
->orphan_block_rsv
) {
2207 root
->orphan_block_rsv
= block_rsv
;
2208 } else if (block_rsv
) {
2209 btrfs_free_block_rsv(root
, block_rsv
);
2213 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2214 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2217 * For proper ENOSPC handling, we should do orphan
2218 * cleanup when mounting. But this introduces backward
2219 * compatibility issue.
2221 if (!xchg(&root
->orphan_item_inserted
, 1))
2229 if (!BTRFS_I(inode
)->orphan_meta_reserved
) {
2230 BTRFS_I(inode
)->orphan_meta_reserved
= 1;
2233 spin_unlock(&root
->orphan_lock
);
2236 btrfs_add_durable_block_rsv(root
->fs_info
, block_rsv
);
2238 /* grab metadata reservation from transaction handle */
2240 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
2244 /* insert an orphan item to track this unlinked/truncated file */
2246 ret
= btrfs_insert_orphan_item(trans
, root
, inode
->i_ino
);
2250 /* insert an orphan item to track subvolume contains orphan files */
2252 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2253 root
->root_key
.objectid
);
2260 * We have done the truncate/delete so we can go ahead and remove the orphan
2261 * item for this particular inode.
2263 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2265 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2266 int delete_item
= 0;
2267 int release_rsv
= 0;
2270 spin_lock(&root
->orphan_lock
);
2271 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2272 list_del_init(&BTRFS_I(inode
)->i_orphan
);
2276 if (BTRFS_I(inode
)->orphan_meta_reserved
) {
2277 BTRFS_I(inode
)->orphan_meta_reserved
= 0;
2280 spin_unlock(&root
->orphan_lock
);
2282 if (trans
&& delete_item
) {
2283 ret
= btrfs_del_orphan_item(trans
, root
, inode
->i_ino
);
2288 btrfs_orphan_release_metadata(inode
);
2294 * this cleans up any orphans that may be left on the list from the last use
2297 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
2299 struct btrfs_path
*path
;
2300 struct extent_buffer
*leaf
;
2301 struct btrfs_key key
, found_key
;
2302 struct btrfs_trans_handle
*trans
;
2303 struct inode
*inode
;
2304 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
2306 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
2309 path
= btrfs_alloc_path();
2316 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2317 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
2318 key
.offset
= (u64
)-1;
2321 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2326 * if ret == 0 means we found what we were searching for, which
2327 * is weird, but possible, so only screw with path if we didn't
2328 * find the key and see if we have stuff that matches
2332 if (path
->slots
[0] == 0)
2337 /* pull out the item */
2338 leaf
= path
->nodes
[0];
2339 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2341 /* make sure the item matches what we want */
2342 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2344 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
2347 /* release the path since we're done with it */
2348 btrfs_release_path(root
, path
);
2351 * this is where we are basically btrfs_lookup, without the
2352 * crossing root thing. we store the inode number in the
2353 * offset of the orphan item.
2355 found_key
.objectid
= found_key
.offset
;
2356 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2357 found_key
.offset
= 0;
2358 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
2359 if (IS_ERR(inode
)) {
2360 ret
= PTR_ERR(inode
);
2365 * add this inode to the orphan list so btrfs_orphan_del does
2366 * the proper thing when we hit it
2368 spin_lock(&root
->orphan_lock
);
2369 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2370 spin_unlock(&root
->orphan_lock
);
2373 * if this is a bad inode, means we actually succeeded in
2374 * removing the inode, but not the orphan record, which means
2375 * we need to manually delete the orphan since iput will just
2376 * do a destroy_inode
2378 if (is_bad_inode(inode
)) {
2379 trans
= btrfs_start_transaction(root
, 0);
2380 if (IS_ERR(trans
)) {
2381 ret
= PTR_ERR(trans
);
2384 btrfs_orphan_del(trans
, inode
);
2385 btrfs_end_transaction(trans
, root
);
2390 /* if we have links, this was a truncate, lets do that */
2391 if (inode
->i_nlink
) {
2392 if (!S_ISREG(inode
->i_mode
)) {
2398 ret
= btrfs_truncate(inode
);
2403 /* this will do delete_inode and everything for us */
2408 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
2410 if (root
->orphan_block_rsv
)
2411 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
2414 if (root
->orphan_block_rsv
|| root
->orphan_item_inserted
) {
2415 trans
= btrfs_join_transaction(root
, 1);
2417 btrfs_end_transaction(trans
, root
);
2421 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2423 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2427 printk(KERN_CRIT
"btrfs: could not do orphan cleanup %d\n", ret
);
2428 btrfs_free_path(path
);
2433 * very simple check to peek ahead in the leaf looking for xattrs. If we
2434 * don't find any xattrs, we know there can't be any acls.
2436 * slot is the slot the inode is in, objectid is the objectid of the inode
2438 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2439 int slot
, u64 objectid
)
2441 u32 nritems
= btrfs_header_nritems(leaf
);
2442 struct btrfs_key found_key
;
2446 while (slot
< nritems
) {
2447 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2449 /* we found a different objectid, there must not be acls */
2450 if (found_key
.objectid
!= objectid
)
2453 /* we found an xattr, assume we've got an acl */
2454 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2458 * we found a key greater than an xattr key, there can't
2459 * be any acls later on
2461 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2468 * it goes inode, inode backrefs, xattrs, extents,
2469 * so if there are a ton of hard links to an inode there can
2470 * be a lot of backrefs. Don't waste time searching too hard,
2471 * this is just an optimization
2476 /* we hit the end of the leaf before we found an xattr or
2477 * something larger than an xattr. We have to assume the inode
2484 * read an inode from the btree into the in-memory inode
2486 static void btrfs_read_locked_inode(struct inode
*inode
)
2488 struct btrfs_path
*path
;
2489 struct extent_buffer
*leaf
;
2490 struct btrfs_inode_item
*inode_item
;
2491 struct btrfs_timespec
*tspec
;
2492 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2493 struct btrfs_key location
;
2495 u64 alloc_group_block
;
2499 path
= btrfs_alloc_path();
2501 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2503 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2507 leaf
= path
->nodes
[0];
2508 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2509 struct btrfs_inode_item
);
2511 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2512 inode
->i_nlink
= btrfs_inode_nlink(leaf
, inode_item
);
2513 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
2514 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
2515 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2517 tspec
= btrfs_inode_atime(inode_item
);
2518 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2519 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2521 tspec
= btrfs_inode_mtime(inode_item
);
2522 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2523 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2525 tspec
= btrfs_inode_ctime(inode_item
);
2526 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2527 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2529 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2530 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2531 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2532 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2534 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2536 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2537 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2539 alloc_group_block
= btrfs_inode_block_group(leaf
, inode_item
);
2542 * try to precache a NULL acl entry for files that don't have
2543 * any xattrs or acls
2545 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0], inode
->i_ino
);
2547 cache_no_acl(inode
);
2549 BTRFS_I(inode
)->block_group
= btrfs_find_block_group(root
, 0,
2550 alloc_group_block
, 0);
2551 btrfs_free_path(path
);
2554 switch (inode
->i_mode
& S_IFMT
) {
2556 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2557 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2558 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2559 inode
->i_fop
= &btrfs_file_operations
;
2560 inode
->i_op
= &btrfs_file_inode_operations
;
2563 inode
->i_fop
= &btrfs_dir_file_operations
;
2564 if (root
== root
->fs_info
->tree_root
)
2565 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2567 inode
->i_op
= &btrfs_dir_inode_operations
;
2570 inode
->i_op
= &btrfs_symlink_inode_operations
;
2571 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2572 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2575 inode
->i_op
= &btrfs_special_inode_operations
;
2576 init_special_inode(inode
, inode
->i_mode
, rdev
);
2580 btrfs_update_iflags(inode
);
2584 btrfs_free_path(path
);
2585 make_bad_inode(inode
);
2589 * given a leaf and an inode, copy the inode fields into the leaf
2591 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2592 struct extent_buffer
*leaf
,
2593 struct btrfs_inode_item
*item
,
2594 struct inode
*inode
)
2596 if (!leaf
->map_token
)
2597 map_private_extent_buffer(leaf
, (unsigned long)item
,
2598 sizeof(struct btrfs_inode_item
),
2599 &leaf
->map_token
, &leaf
->kaddr
,
2600 &leaf
->map_start
, &leaf
->map_len
,
2603 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2604 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2605 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2606 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2607 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2609 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2610 inode
->i_atime
.tv_sec
);
2611 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2612 inode
->i_atime
.tv_nsec
);
2614 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2615 inode
->i_mtime
.tv_sec
);
2616 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2617 inode
->i_mtime
.tv_nsec
);
2619 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2620 inode
->i_ctime
.tv_sec
);
2621 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2622 inode
->i_ctime
.tv_nsec
);
2624 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2625 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2626 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2627 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2628 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2629 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2630 btrfs_set_inode_block_group(leaf
, item
, BTRFS_I(inode
)->block_group
);
2632 if (leaf
->map_token
) {
2633 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
2634 leaf
->map_token
= NULL
;
2639 * copy everything in the in-memory inode into the btree.
2641 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2642 struct btrfs_root
*root
, struct inode
*inode
)
2644 struct btrfs_inode_item
*inode_item
;
2645 struct btrfs_path
*path
;
2646 struct extent_buffer
*leaf
;
2649 path
= btrfs_alloc_path();
2651 path
->leave_spinning
= 1;
2652 ret
= btrfs_lookup_inode(trans
, root
, path
,
2653 &BTRFS_I(inode
)->location
, 1);
2660 btrfs_unlock_up_safe(path
, 1);
2661 leaf
= path
->nodes
[0];
2662 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2663 struct btrfs_inode_item
);
2665 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2666 btrfs_mark_buffer_dirty(leaf
);
2667 btrfs_set_inode_last_trans(trans
, inode
);
2670 btrfs_free_path(path
);
2676 * unlink helper that gets used here in inode.c and in the tree logging
2677 * recovery code. It remove a link in a directory with a given name, and
2678 * also drops the back refs in the inode to the directory
2680 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2681 struct btrfs_root
*root
,
2682 struct inode
*dir
, struct inode
*inode
,
2683 const char *name
, int name_len
)
2685 struct btrfs_path
*path
;
2687 struct extent_buffer
*leaf
;
2688 struct btrfs_dir_item
*di
;
2689 struct btrfs_key key
;
2692 path
= btrfs_alloc_path();
2698 path
->leave_spinning
= 1;
2699 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2700 name
, name_len
, -1);
2709 leaf
= path
->nodes
[0];
2710 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2711 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2714 btrfs_release_path(root
, path
);
2716 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
2718 dir
->i_ino
, &index
);
2720 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2721 "inode %lu parent %lu\n", name_len
, name
,
2722 inode
->i_ino
, dir
->i_ino
);
2726 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2727 index
, name
, name_len
, -1);
2736 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2737 btrfs_release_path(root
, path
);
2739 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2741 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2743 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2748 btrfs_free_path(path
);
2752 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2753 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2754 btrfs_update_inode(trans
, root
, dir
);
2759 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2760 struct btrfs_root
*root
,
2761 struct inode
*dir
, struct inode
*inode
,
2762 const char *name
, int name_len
)
2765 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
2767 btrfs_drop_nlink(inode
);
2768 ret
= btrfs_update_inode(trans
, root
, inode
);
2774 /* helper to check if there is any shared block in the path */
2775 static int check_path_shared(struct btrfs_root
*root
,
2776 struct btrfs_path
*path
)
2778 struct extent_buffer
*eb
;
2782 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
2785 if (!path
->nodes
[level
])
2787 eb
= path
->nodes
[level
];
2788 if (!btrfs_block_can_be_shared(root
, eb
))
2790 ret
= btrfs_lookup_extent_info(NULL
, root
, eb
->start
, eb
->len
,
2799 * helper to start transaction for unlink and rmdir.
2801 * unlink and rmdir are special in btrfs, they do not always free space.
2802 * so in enospc case, we should make sure they will free space before
2803 * allowing them to use the global metadata reservation.
2805 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
,
2806 struct dentry
*dentry
)
2808 struct btrfs_trans_handle
*trans
;
2809 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2810 struct btrfs_path
*path
;
2811 struct btrfs_inode_ref
*ref
;
2812 struct btrfs_dir_item
*di
;
2813 struct inode
*inode
= dentry
->d_inode
;
2819 trans
= btrfs_start_transaction(root
, 10);
2820 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
2823 if (inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
2824 return ERR_PTR(-ENOSPC
);
2826 /* check if there is someone else holds reference */
2827 if (S_ISDIR(inode
->i_mode
) && atomic_read(&inode
->i_count
) > 1)
2828 return ERR_PTR(-ENOSPC
);
2830 if (atomic_read(&inode
->i_count
) > 2)
2831 return ERR_PTR(-ENOSPC
);
2833 if (xchg(&root
->fs_info
->enospc_unlink
, 1))
2834 return ERR_PTR(-ENOSPC
);
2836 path
= btrfs_alloc_path();
2838 root
->fs_info
->enospc_unlink
= 0;
2839 return ERR_PTR(-ENOMEM
);
2842 trans
= btrfs_start_transaction(root
, 0);
2843 if (IS_ERR(trans
)) {
2844 btrfs_free_path(path
);
2845 root
->fs_info
->enospc_unlink
= 0;
2849 path
->skip_locking
= 1;
2850 path
->search_commit_root
= 1;
2852 ret
= btrfs_lookup_inode(trans
, root
, path
,
2853 &BTRFS_I(dir
)->location
, 0);
2859 if (check_path_shared(root
, path
))
2864 btrfs_release_path(root
, path
);
2866 ret
= btrfs_lookup_inode(trans
, root
, path
,
2867 &BTRFS_I(inode
)->location
, 0);
2873 if (check_path_shared(root
, path
))
2878 btrfs_release_path(root
, path
);
2880 if (ret
== 0 && S_ISREG(inode
->i_mode
)) {
2881 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
2882 inode
->i_ino
, (u64
)-1, 0);
2888 if (check_path_shared(root
, path
))
2890 btrfs_release_path(root
, path
);
2898 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2899 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2905 if (check_path_shared(root
, path
))
2911 btrfs_release_path(root
, path
);
2913 ref
= btrfs_lookup_inode_ref(trans
, root
, path
,
2914 dentry
->d_name
.name
, dentry
->d_name
.len
,
2915 inode
->i_ino
, dir
->i_ino
, 0);
2921 if (check_path_shared(root
, path
))
2923 index
= btrfs_inode_ref_index(path
->nodes
[0], ref
);
2924 btrfs_release_path(root
, path
);
2926 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
, index
,
2927 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2932 BUG_ON(ret
== -ENOENT
);
2933 if (check_path_shared(root
, path
))
2938 btrfs_free_path(path
);
2940 btrfs_end_transaction(trans
, root
);
2941 root
->fs_info
->enospc_unlink
= 0;
2942 return ERR_PTR(err
);
2945 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
2949 static void __unlink_end_trans(struct btrfs_trans_handle
*trans
,
2950 struct btrfs_root
*root
)
2952 if (trans
->block_rsv
== &root
->fs_info
->global_block_rsv
) {
2953 BUG_ON(!root
->fs_info
->enospc_unlink
);
2954 root
->fs_info
->enospc_unlink
= 0;
2956 btrfs_end_transaction_throttle(trans
, root
);
2959 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2961 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2962 struct btrfs_trans_handle
*trans
;
2963 struct inode
*inode
= dentry
->d_inode
;
2965 unsigned long nr
= 0;
2967 trans
= __unlink_start_trans(dir
, dentry
);
2969 return PTR_ERR(trans
);
2971 btrfs_set_trans_block_group(trans
, dir
);
2973 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
2975 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2976 dentry
->d_name
.name
, dentry
->d_name
.len
);
2979 if (inode
->i_nlink
== 0) {
2980 ret
= btrfs_orphan_add(trans
, inode
);
2984 nr
= trans
->blocks_used
;
2985 __unlink_end_trans(trans
, root
);
2986 btrfs_btree_balance_dirty(root
, nr
);
2990 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
2991 struct btrfs_root
*root
,
2992 struct inode
*dir
, u64 objectid
,
2993 const char *name
, int name_len
)
2995 struct btrfs_path
*path
;
2996 struct extent_buffer
*leaf
;
2997 struct btrfs_dir_item
*di
;
2998 struct btrfs_key key
;
3002 path
= btrfs_alloc_path();
3006 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
3007 name
, name_len
, -1);
3008 BUG_ON(!di
|| IS_ERR(di
));
3010 leaf
= path
->nodes
[0];
3011 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3012 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
3013 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3015 btrfs_release_path(root
, path
);
3017 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
3018 objectid
, root
->root_key
.objectid
,
3019 dir
->i_ino
, &index
, name
, name_len
);
3021 BUG_ON(ret
!= -ENOENT
);
3022 di
= btrfs_search_dir_index_item(root
, path
, dir
->i_ino
,
3024 BUG_ON(!di
|| IS_ERR(di
));
3026 leaf
= path
->nodes
[0];
3027 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3028 btrfs_release_path(root
, path
);
3032 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
3033 index
, name
, name_len
, -1);
3034 BUG_ON(!di
|| IS_ERR(di
));
3036 leaf
= path
->nodes
[0];
3037 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3038 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
3039 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3041 btrfs_release_path(root
, path
);
3043 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
3044 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
3045 ret
= btrfs_update_inode(trans
, root
, dir
);
3048 btrfs_free_path(path
);
3052 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
3054 struct inode
*inode
= dentry
->d_inode
;
3056 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3057 struct btrfs_trans_handle
*trans
;
3058 unsigned long nr
= 0;
3060 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
3061 inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
3064 trans
= __unlink_start_trans(dir
, dentry
);
3066 return PTR_ERR(trans
);
3068 btrfs_set_trans_block_group(trans
, dir
);
3070 if (unlikely(inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
3071 err
= btrfs_unlink_subvol(trans
, root
, dir
,
3072 BTRFS_I(inode
)->location
.objectid
,
3073 dentry
->d_name
.name
,
3074 dentry
->d_name
.len
);
3078 err
= btrfs_orphan_add(trans
, inode
);
3082 /* now the directory is empty */
3083 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3084 dentry
->d_name
.name
, dentry
->d_name
.len
);
3086 btrfs_i_size_write(inode
, 0);
3088 nr
= trans
->blocks_used
;
3089 __unlink_end_trans(trans
, root
);
3090 btrfs_btree_balance_dirty(root
, nr
);
3097 * when truncating bytes in a file, it is possible to avoid reading
3098 * the leaves that contain only checksum items. This can be the
3099 * majority of the IO required to delete a large file, but it must
3100 * be done carefully.
3102 * The keys in the level just above the leaves are checked to make sure
3103 * the lowest key in a given leaf is a csum key, and starts at an offset
3104 * after the new size.
3106 * Then the key for the next leaf is checked to make sure it also has
3107 * a checksum item for the same file. If it does, we know our target leaf
3108 * contains only checksum items, and it can be safely freed without reading
3111 * This is just an optimization targeted at large files. It may do
3112 * nothing. It will return 0 unless things went badly.
3114 static noinline
int drop_csum_leaves(struct btrfs_trans_handle
*trans
,
3115 struct btrfs_root
*root
,
3116 struct btrfs_path
*path
,
3117 struct inode
*inode
, u64 new_size
)
3119 struct btrfs_key key
;
3122 struct btrfs_key found_key
;
3123 struct btrfs_key other_key
;
3124 struct btrfs_leaf_ref
*ref
;
3128 path
->lowest_level
= 1;
3129 key
.objectid
= inode
->i_ino
;
3130 key
.type
= BTRFS_CSUM_ITEM_KEY
;
3131 key
.offset
= new_size
;
3133 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3137 if (path
->nodes
[1] == NULL
) {
3142 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, path
->slots
[1]);
3143 nritems
= btrfs_header_nritems(path
->nodes
[1]);
3148 if (path
->slots
[1] >= nritems
)
3151 /* did we find a key greater than anything we want to delete? */
3152 if (found_key
.objectid
> inode
->i_ino
||
3153 (found_key
.objectid
== inode
->i_ino
&& found_key
.type
> key
.type
))
3156 /* we check the next key in the node to make sure the leave contains
3157 * only checksum items. This comparison doesn't work if our
3158 * leaf is the last one in the node
3160 if (path
->slots
[1] + 1 >= nritems
) {
3162 /* search forward from the last key in the node, this
3163 * will bring us into the next node in the tree
3165 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, nritems
- 1);
3167 /* unlikely, but we inc below, so check to be safe */
3168 if (found_key
.offset
== (u64
)-1)
3171 /* search_forward needs a path with locks held, do the
3172 * search again for the original key. It is possible
3173 * this will race with a balance and return a path that
3174 * we could modify, but this drop is just an optimization
3175 * and is allowed to miss some leaves.
3177 btrfs_release_path(root
, path
);
3180 /* setup a max key for search_forward */
3181 other_key
.offset
= (u64
)-1;
3182 other_key
.type
= key
.type
;
3183 other_key
.objectid
= key
.objectid
;
3185 path
->keep_locks
= 1;
3186 ret
= btrfs_search_forward(root
, &found_key
, &other_key
,
3188 path
->keep_locks
= 0;
3189 if (ret
|| found_key
.objectid
!= key
.objectid
||
3190 found_key
.type
!= key
.type
) {
3195 key
.offset
= found_key
.offset
;
3196 btrfs_release_path(root
, path
);
3201 /* we know there's one more slot after us in the tree,
3202 * read that key so we can verify it is also a checksum item
3204 btrfs_node_key_to_cpu(path
->nodes
[1], &other_key
, path
->slots
[1] + 1);
3206 if (found_key
.objectid
< inode
->i_ino
)
3209 if (found_key
.type
!= key
.type
|| found_key
.offset
< new_size
)
3213 * if the key for the next leaf isn't a csum key from this objectid,
3214 * we can't be sure there aren't good items inside this leaf.
3217 if (other_key
.objectid
!= inode
->i_ino
|| other_key
.type
!= key
.type
)
3220 leaf_start
= btrfs_node_blockptr(path
->nodes
[1], path
->slots
[1]);
3221 leaf_gen
= btrfs_node_ptr_generation(path
->nodes
[1], path
->slots
[1]);
3223 * it is safe to delete this leaf, it contains only
3224 * csum items from this inode at an offset >= new_size
3226 ret
= btrfs_del_leaf(trans
, root
, path
, leaf_start
);
3229 if (root
->ref_cows
&& leaf_gen
< trans
->transid
) {
3230 ref
= btrfs_alloc_leaf_ref(root
, 0);
3232 ref
->root_gen
= root
->root_key
.offset
;
3233 ref
->bytenr
= leaf_start
;
3235 ref
->generation
= leaf_gen
;
3238 btrfs_sort_leaf_ref(ref
);
3240 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
3242 btrfs_free_leaf_ref(root
, ref
);
3248 btrfs_release_path(root
, path
);
3250 if (other_key
.objectid
== inode
->i_ino
&&
3251 other_key
.type
== key
.type
&& other_key
.offset
> key
.offset
) {
3252 key
.offset
= other_key
.offset
;
3258 /* fixup any changes we've made to the path */
3259 path
->lowest_level
= 0;
3260 path
->keep_locks
= 0;
3261 btrfs_release_path(root
, path
);
3268 * this can truncate away extent items, csum items and directory items.
3269 * It starts at a high offset and removes keys until it can't find
3270 * any higher than new_size
3272 * csum items that cross the new i_size are truncated to the new size
3275 * min_type is the minimum key type to truncate down to. If set to 0, this
3276 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3278 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
3279 struct btrfs_root
*root
,
3280 struct inode
*inode
,
3281 u64 new_size
, u32 min_type
)
3283 struct btrfs_path
*path
;
3284 struct extent_buffer
*leaf
;
3285 struct btrfs_file_extent_item
*fi
;
3286 struct btrfs_key key
;
3287 struct btrfs_key found_key
;
3288 u64 extent_start
= 0;
3289 u64 extent_num_bytes
= 0;
3290 u64 extent_offset
= 0;
3292 u64 mask
= root
->sectorsize
- 1;
3293 u32 found_type
= (u8
)-1;
3296 int pending_del_nr
= 0;
3297 int pending_del_slot
= 0;
3298 int extent_type
= -1;
3303 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
3305 if (root
->ref_cows
|| root
== root
->fs_info
->tree_root
)
3306 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
3308 path
= btrfs_alloc_path();
3312 key
.objectid
= inode
->i_ino
;
3313 key
.offset
= (u64
)-1;
3317 path
->leave_spinning
= 1;
3318 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3325 /* there are no items in the tree for us to truncate, we're
3328 if (path
->slots
[0] == 0)
3335 leaf
= path
->nodes
[0];
3336 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3337 found_type
= btrfs_key_type(&found_key
);
3340 if (found_key
.objectid
!= inode
->i_ino
)
3343 if (found_type
< min_type
)
3346 item_end
= found_key
.offset
;
3347 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
3348 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3349 struct btrfs_file_extent_item
);
3350 extent_type
= btrfs_file_extent_type(leaf
, fi
);
3351 encoding
= btrfs_file_extent_compression(leaf
, fi
);
3352 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
3353 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
3355 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3357 btrfs_file_extent_num_bytes(leaf
, fi
);
3358 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3359 item_end
+= btrfs_file_extent_inline_len(leaf
,
3364 if (found_type
> min_type
) {
3367 if (item_end
< new_size
)
3369 if (found_key
.offset
>= new_size
)
3375 /* FIXME, shrink the extent if the ref count is only 1 */
3376 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
3379 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3381 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
3382 if (!del_item
&& !encoding
) {
3383 u64 orig_num_bytes
=
3384 btrfs_file_extent_num_bytes(leaf
, fi
);
3385 extent_num_bytes
= new_size
-
3386 found_key
.offset
+ root
->sectorsize
- 1;
3387 extent_num_bytes
= extent_num_bytes
&
3388 ~((u64
)root
->sectorsize
- 1);
3389 btrfs_set_file_extent_num_bytes(leaf
, fi
,
3391 num_dec
= (orig_num_bytes
-
3393 if (root
->ref_cows
&& extent_start
!= 0)
3394 inode_sub_bytes(inode
, num_dec
);
3395 btrfs_mark_buffer_dirty(leaf
);
3398 btrfs_file_extent_disk_num_bytes(leaf
,
3400 extent_offset
= found_key
.offset
-
3401 btrfs_file_extent_offset(leaf
, fi
);
3403 /* FIXME blocksize != 4096 */
3404 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
3405 if (extent_start
!= 0) {
3408 inode_sub_bytes(inode
, num_dec
);
3411 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3413 * we can't truncate inline items that have had
3417 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
3418 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
3419 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
3420 u32 size
= new_size
- found_key
.offset
;
3422 if (root
->ref_cows
) {
3423 inode_sub_bytes(inode
, item_end
+ 1 -
3427 btrfs_file_extent_calc_inline_size(size
);
3428 ret
= btrfs_truncate_item(trans
, root
, path
,
3431 } else if (root
->ref_cows
) {
3432 inode_sub_bytes(inode
, item_end
+ 1 -
3438 if (!pending_del_nr
) {
3439 /* no pending yet, add ourselves */
3440 pending_del_slot
= path
->slots
[0];
3442 } else if (pending_del_nr
&&
3443 path
->slots
[0] + 1 == pending_del_slot
) {
3444 /* hop on the pending chunk */
3446 pending_del_slot
= path
->slots
[0];
3453 if (found_extent
&& (root
->ref_cows
||
3454 root
== root
->fs_info
->tree_root
)) {
3455 btrfs_set_path_blocking(path
);
3456 ret
= btrfs_free_extent(trans
, root
, extent_start
,
3457 extent_num_bytes
, 0,
3458 btrfs_header_owner(leaf
),
3459 inode
->i_ino
, extent_offset
);
3463 if (found_type
== BTRFS_INODE_ITEM_KEY
)
3466 if (path
->slots
[0] == 0 ||
3467 path
->slots
[0] != pending_del_slot
) {
3468 if (root
->ref_cows
) {
3472 if (pending_del_nr
) {
3473 ret
= btrfs_del_items(trans
, root
, path
,
3479 btrfs_release_path(root
, path
);
3486 if (pending_del_nr
) {
3487 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
3491 btrfs_free_path(path
);
3496 * taken from block_truncate_page, but does cow as it zeros out
3497 * any bytes left in the last page in the file.
3499 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
3501 struct inode
*inode
= mapping
->host
;
3502 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3503 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3504 struct btrfs_ordered_extent
*ordered
;
3505 struct extent_state
*cached_state
= NULL
;
3507 u32 blocksize
= root
->sectorsize
;
3508 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
3509 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3515 if ((offset
& (blocksize
- 1)) == 0)
3517 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
3523 page
= grab_cache_page(mapping
, index
);
3525 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3529 page_start
= page_offset(page
);
3530 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
3532 if (!PageUptodate(page
)) {
3533 ret
= btrfs_readpage(NULL
, page
);
3535 if (page
->mapping
!= mapping
) {
3537 page_cache_release(page
);
3540 if (!PageUptodate(page
)) {
3545 wait_on_page_writeback(page
);
3547 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
3549 set_page_extent_mapped(page
);
3551 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
3553 unlock_extent_cached(io_tree
, page_start
, page_end
,
3554 &cached_state
, GFP_NOFS
);
3556 page_cache_release(page
);
3557 btrfs_start_ordered_extent(inode
, ordered
, 1);
3558 btrfs_put_ordered_extent(ordered
);
3562 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
3563 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
3564 0, 0, &cached_state
, GFP_NOFS
);
3566 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
3569 unlock_extent_cached(io_tree
, page_start
, page_end
,
3570 &cached_state
, GFP_NOFS
);
3575 if (offset
!= PAGE_CACHE_SIZE
) {
3577 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
3578 flush_dcache_page(page
);
3581 ClearPageChecked(page
);
3582 set_page_dirty(page
);
3583 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
3588 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3590 page_cache_release(page
);
3596 * This function puts in dummy file extents for the area we're creating a hole
3597 * for. So if we are truncating this file to a larger size we need to insert
3598 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3599 * the range between oldsize and size
3601 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
3603 struct btrfs_trans_handle
*trans
;
3604 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3605 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3606 struct extent_map
*em
= NULL
;
3607 struct extent_state
*cached_state
= NULL
;
3608 u64 mask
= root
->sectorsize
- 1;
3609 u64 hole_start
= (oldsize
+ mask
) & ~mask
;
3610 u64 block_end
= (size
+ mask
) & ~mask
;
3616 if (size
<= hole_start
)
3620 struct btrfs_ordered_extent
*ordered
;
3621 btrfs_wait_ordered_range(inode
, hole_start
,
3622 block_end
- hole_start
);
3623 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
3624 &cached_state
, GFP_NOFS
);
3625 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
3628 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
3629 &cached_state
, GFP_NOFS
);
3630 btrfs_put_ordered_extent(ordered
);
3633 cur_offset
= hole_start
;
3635 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
3636 block_end
- cur_offset
, 0);
3637 BUG_ON(IS_ERR(em
) || !em
);
3638 last_byte
= min(extent_map_end(em
), block_end
);
3639 last_byte
= (last_byte
+ mask
) & ~mask
;
3640 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
3642 hole_size
= last_byte
- cur_offset
;
3644 trans
= btrfs_start_transaction(root
, 2);
3645 if (IS_ERR(trans
)) {
3646 err
= PTR_ERR(trans
);
3649 btrfs_set_trans_block_group(trans
, inode
);
3651 err
= btrfs_drop_extents(trans
, inode
, cur_offset
,
3652 cur_offset
+ hole_size
,
3657 err
= btrfs_insert_file_extent(trans
, root
,
3658 inode
->i_ino
, cur_offset
, 0,
3659 0, hole_size
, 0, hole_size
,
3664 btrfs_drop_extent_cache(inode
, hole_start
,
3667 btrfs_end_transaction(trans
, root
);
3669 free_extent_map(em
);
3671 cur_offset
= last_byte
;
3672 if (cur_offset
>= block_end
)
3676 free_extent_map(em
);
3677 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
3682 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
)
3684 loff_t oldsize
= i_size_read(inode
);
3687 if (newsize
== oldsize
)
3690 if (newsize
> oldsize
) {
3691 i_size_write(inode
, newsize
);
3692 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
3693 truncate_pagecache(inode
, oldsize
, newsize
);
3694 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
3696 btrfs_setsize(inode
, oldsize
);
3700 mark_inode_dirty(inode
);
3704 * We're truncating a file that used to have good data down to
3705 * zero. Make sure it gets into the ordered flush list so that
3706 * any new writes get down to disk quickly.
3709 BTRFS_I(inode
)->ordered_data_close
= 1;
3711 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3712 truncate_setsize(inode
, newsize
);
3713 ret
= btrfs_truncate(inode
);
3719 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3721 struct inode
*inode
= dentry
->d_inode
;
3722 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3725 if (btrfs_root_readonly(root
))
3728 err
= inode_change_ok(inode
, attr
);
3732 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
3733 err
= btrfs_setsize(inode
, attr
->ia_size
);
3738 if (attr
->ia_valid
) {
3739 setattr_copy(inode
, attr
);
3740 mark_inode_dirty(inode
);
3742 if (attr
->ia_valid
& ATTR_MODE
)
3743 err
= btrfs_acl_chmod(inode
);
3749 void btrfs_evict_inode(struct inode
*inode
)
3751 struct btrfs_trans_handle
*trans
;
3752 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3756 trace_btrfs_inode_evict(inode
);
3758 truncate_inode_pages(&inode
->i_data
, 0);
3759 if (inode
->i_nlink
&& (btrfs_root_refs(&root
->root_item
) != 0 ||
3760 root
== root
->fs_info
->tree_root
))
3763 if (is_bad_inode(inode
)) {
3764 btrfs_orphan_del(NULL
, inode
);
3767 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3768 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3770 if (root
->fs_info
->log_root_recovering
) {
3771 BUG_ON(!list_empty(&BTRFS_I(inode
)->i_orphan
));
3775 if (inode
->i_nlink
> 0) {
3776 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0);
3780 btrfs_i_size_write(inode
, 0);
3783 trans
= btrfs_start_transaction(root
, 0);
3784 BUG_ON(IS_ERR(trans
));
3785 btrfs_set_trans_block_group(trans
, inode
);
3786 trans
->block_rsv
= root
->orphan_block_rsv
;
3788 ret
= btrfs_block_rsv_check(trans
, root
,
3789 root
->orphan_block_rsv
, 0, 5);
3791 BUG_ON(ret
!= -EAGAIN
);
3792 ret
= btrfs_commit_transaction(trans
, root
);
3797 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
3801 nr
= trans
->blocks_used
;
3802 btrfs_end_transaction(trans
, root
);
3804 btrfs_btree_balance_dirty(root
, nr
);
3809 ret
= btrfs_orphan_del(trans
, inode
);
3813 nr
= trans
->blocks_used
;
3814 btrfs_end_transaction(trans
, root
);
3815 btrfs_btree_balance_dirty(root
, nr
);
3817 end_writeback(inode
);
3822 * this returns the key found in the dir entry in the location pointer.
3823 * If no dir entries were found, location->objectid is 0.
3825 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3826 struct btrfs_key
*location
)
3828 const char *name
= dentry
->d_name
.name
;
3829 int namelen
= dentry
->d_name
.len
;
3830 struct btrfs_dir_item
*di
;
3831 struct btrfs_path
*path
;
3832 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3835 path
= btrfs_alloc_path();
3838 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir
->i_ino
, name
,
3843 if (!di
|| IS_ERR(di
))
3846 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3848 btrfs_free_path(path
);
3851 location
->objectid
= 0;
3856 * when we hit a tree root in a directory, the btrfs part of the inode
3857 * needs to be changed to reflect the root directory of the tree root. This
3858 * is kind of like crossing a mount point.
3860 static int fixup_tree_root_location(struct btrfs_root
*root
,
3862 struct dentry
*dentry
,
3863 struct btrfs_key
*location
,
3864 struct btrfs_root
**sub_root
)
3866 struct btrfs_path
*path
;
3867 struct btrfs_root
*new_root
;
3868 struct btrfs_root_ref
*ref
;
3869 struct extent_buffer
*leaf
;
3873 path
= btrfs_alloc_path();
3880 ret
= btrfs_find_root_ref(root
->fs_info
->tree_root
, path
,
3881 BTRFS_I(dir
)->root
->root_key
.objectid
,
3882 location
->objectid
);
3889 leaf
= path
->nodes
[0];
3890 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
3891 if (btrfs_root_ref_dirid(leaf
, ref
) != dir
->i_ino
||
3892 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
3895 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
3896 (unsigned long)(ref
+ 1),
3897 dentry
->d_name
.len
);
3901 btrfs_release_path(root
->fs_info
->tree_root
, path
);
3903 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
3904 if (IS_ERR(new_root
)) {
3905 err
= PTR_ERR(new_root
);
3909 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
3914 *sub_root
= new_root
;
3915 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
3916 location
->type
= BTRFS_INODE_ITEM_KEY
;
3917 location
->offset
= 0;
3920 btrfs_free_path(path
);
3924 static void inode_tree_add(struct inode
*inode
)
3926 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3927 struct btrfs_inode
*entry
;
3929 struct rb_node
*parent
;
3931 p
= &root
->inode_tree
.rb_node
;
3934 if (inode_unhashed(inode
))
3937 spin_lock(&root
->inode_lock
);
3940 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
3942 if (inode
->i_ino
< entry
->vfs_inode
.i_ino
)
3943 p
= &parent
->rb_left
;
3944 else if (inode
->i_ino
> entry
->vfs_inode
.i_ino
)
3945 p
= &parent
->rb_right
;
3947 WARN_ON(!(entry
->vfs_inode
.i_state
&
3948 (I_WILL_FREE
| I_FREEING
)));
3949 rb_erase(parent
, &root
->inode_tree
);
3950 RB_CLEAR_NODE(parent
);
3951 spin_unlock(&root
->inode_lock
);
3955 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
3956 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3957 spin_unlock(&root
->inode_lock
);
3960 static void inode_tree_del(struct inode
*inode
)
3962 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3965 spin_lock(&root
->inode_lock
);
3966 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
3967 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3968 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3969 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3971 spin_unlock(&root
->inode_lock
);
3974 * Free space cache has inodes in the tree root, but the tree root has a
3975 * root_refs of 0, so this could end up dropping the tree root as a
3976 * snapshot, so we need the extra !root->fs_info->tree_root check to
3977 * make sure we don't drop it.
3979 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0 &&
3980 root
!= root
->fs_info
->tree_root
) {
3981 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
3982 spin_lock(&root
->inode_lock
);
3983 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3984 spin_unlock(&root
->inode_lock
);
3986 btrfs_add_dead_root(root
);
3990 int btrfs_invalidate_inodes(struct btrfs_root
*root
)
3992 struct rb_node
*node
;
3993 struct rb_node
*prev
;
3994 struct btrfs_inode
*entry
;
3995 struct inode
*inode
;
3998 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
4000 spin_lock(&root
->inode_lock
);
4002 node
= root
->inode_tree
.rb_node
;
4006 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4008 if (objectid
< entry
->vfs_inode
.i_ino
)
4009 node
= node
->rb_left
;
4010 else if (objectid
> entry
->vfs_inode
.i_ino
)
4011 node
= node
->rb_right
;
4017 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
4018 if (objectid
<= entry
->vfs_inode
.i_ino
) {
4022 prev
= rb_next(prev
);
4026 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4027 objectid
= entry
->vfs_inode
.i_ino
+ 1;
4028 inode
= igrab(&entry
->vfs_inode
);
4030 spin_unlock(&root
->inode_lock
);
4031 if (atomic_read(&inode
->i_count
) > 1)
4032 d_prune_aliases(inode
);
4034 * btrfs_drop_inode will have it removed from
4035 * the inode cache when its usage count
4040 spin_lock(&root
->inode_lock
);
4044 if (cond_resched_lock(&root
->inode_lock
))
4047 node
= rb_next(node
);
4049 spin_unlock(&root
->inode_lock
);
4053 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
4055 struct btrfs_iget_args
*args
= p
;
4056 inode
->i_ino
= args
->ino
;
4057 BTRFS_I(inode
)->root
= args
->root
;
4058 btrfs_set_inode_space_info(args
->root
, inode
);
4062 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
4064 struct btrfs_iget_args
*args
= opaque
;
4065 return args
->ino
== inode
->i_ino
&&
4066 args
->root
== BTRFS_I(inode
)->root
;
4069 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
4071 struct btrfs_root
*root
)
4073 struct inode
*inode
;
4074 struct btrfs_iget_args args
;
4075 args
.ino
= objectid
;
4078 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
4079 btrfs_init_locked_inode
,
4084 /* Get an inode object given its location and corresponding root.
4085 * Returns in *is_new if the inode was read from disk
4087 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
4088 struct btrfs_root
*root
, int *new)
4090 struct inode
*inode
;
4092 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
4094 return ERR_PTR(-ENOMEM
);
4096 if (inode
->i_state
& I_NEW
) {
4097 BTRFS_I(inode
)->root
= root
;
4098 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
4099 btrfs_read_locked_inode(inode
);
4100 inode_tree_add(inode
);
4101 unlock_new_inode(inode
);
4109 static struct inode
*new_simple_dir(struct super_block
*s
,
4110 struct btrfs_key
*key
,
4111 struct btrfs_root
*root
)
4113 struct inode
*inode
= new_inode(s
);
4116 return ERR_PTR(-ENOMEM
);
4118 BTRFS_I(inode
)->root
= root
;
4119 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
4120 BTRFS_I(inode
)->dummy_inode
= 1;
4122 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
4123 inode
->i_op
= &simple_dir_inode_operations
;
4124 inode
->i_fop
= &simple_dir_operations
;
4125 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
4126 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4131 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
4133 struct inode
*inode
;
4134 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4135 struct btrfs_root
*sub_root
= root
;
4136 struct btrfs_key location
;
4140 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
4141 return ERR_PTR(-ENAMETOOLONG
);
4143 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
4146 return ERR_PTR(ret
);
4148 if (location
.objectid
== 0)
4151 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
4152 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
4156 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
4158 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
4159 ret
= fixup_tree_root_location(root
, dir
, dentry
,
4160 &location
, &sub_root
);
4163 inode
= ERR_PTR(ret
);
4165 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
4167 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
4169 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
4171 if (!IS_ERR(inode
) && root
!= sub_root
) {
4172 down_read(&root
->fs_info
->cleanup_work_sem
);
4173 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
4174 ret
= btrfs_orphan_cleanup(sub_root
);
4175 up_read(&root
->fs_info
->cleanup_work_sem
);
4177 inode
= ERR_PTR(ret
);
4183 static int btrfs_dentry_delete(const struct dentry
*dentry
)
4185 struct btrfs_root
*root
;
4187 if (!dentry
->d_inode
&& !IS_ROOT(dentry
))
4188 dentry
= dentry
->d_parent
;
4190 if (dentry
->d_inode
) {
4191 root
= BTRFS_I(dentry
->d_inode
)->root
;
4192 if (btrfs_root_refs(&root
->root_item
) == 0)
4198 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
4199 struct nameidata
*nd
)
4201 struct inode
*inode
;
4203 inode
= btrfs_lookup_dentry(dir
, dentry
);
4205 return ERR_CAST(inode
);
4207 return d_splice_alias(inode
, dentry
);
4210 static unsigned char btrfs_filetype_table
[] = {
4211 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
4214 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
4217 struct inode
*inode
= filp
->f_dentry
->d_inode
;
4218 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4219 struct btrfs_item
*item
;
4220 struct btrfs_dir_item
*di
;
4221 struct btrfs_key key
;
4222 struct btrfs_key found_key
;
4223 struct btrfs_path
*path
;
4225 struct extent_buffer
*leaf
;
4227 unsigned char d_type
;
4232 int key_type
= BTRFS_DIR_INDEX_KEY
;
4237 /* FIXME, use a real flag for deciding about the key type */
4238 if (root
->fs_info
->tree_root
== root
)
4239 key_type
= BTRFS_DIR_ITEM_KEY
;
4241 /* special case for "." */
4242 if (filp
->f_pos
== 0) {
4243 over
= filldir(dirent
, ".", 1,
4250 /* special case for .., just use the back ref */
4251 if (filp
->f_pos
== 1) {
4252 u64 pino
= parent_ino(filp
->f_path
.dentry
);
4253 over
= filldir(dirent
, "..", 2,
4259 path
= btrfs_alloc_path();
4262 btrfs_set_key_type(&key
, key_type
);
4263 key
.offset
= filp
->f_pos
;
4264 key
.objectid
= inode
->i_ino
;
4266 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4271 leaf
= path
->nodes
[0];
4272 slot
= path
->slots
[0];
4273 if (slot
>= btrfs_header_nritems(leaf
)) {
4274 ret
= btrfs_next_leaf(root
, path
);
4282 item
= btrfs_item_nr(leaf
, slot
);
4283 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
4285 if (found_key
.objectid
!= key
.objectid
)
4287 if (btrfs_key_type(&found_key
) != key_type
)
4289 if (found_key
.offset
< filp
->f_pos
)
4292 filp
->f_pos
= found_key
.offset
;
4294 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
4296 di_total
= btrfs_item_size(leaf
, item
);
4298 while (di_cur
< di_total
) {
4299 struct btrfs_key location
;
4301 if (verify_dir_item(root
, leaf
, di
))
4304 name_len
= btrfs_dir_name_len(leaf
, di
);
4305 if (name_len
<= sizeof(tmp_name
)) {
4306 name_ptr
= tmp_name
;
4308 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
4314 read_extent_buffer(leaf
, name_ptr
,
4315 (unsigned long)(di
+ 1), name_len
);
4317 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
4318 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
4320 /* is this a reference to our own snapshot? If so
4323 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
4324 location
.objectid
== root
->root_key
.objectid
) {
4328 over
= filldir(dirent
, name_ptr
, name_len
,
4329 found_key
.offset
, location
.objectid
,
4333 if (name_ptr
!= tmp_name
)
4338 di_len
= btrfs_dir_name_len(leaf
, di
) +
4339 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
4341 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
4347 /* Reached end of directory/root. Bump pos past the last item. */
4348 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4350 * 32-bit glibc will use getdents64, but then strtol -
4351 * so the last number we can serve is this.
4353 filp
->f_pos
= 0x7fffffff;
4359 btrfs_free_path(path
);
4363 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4365 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4366 struct btrfs_trans_handle
*trans
;
4368 bool nolock
= false;
4370 if (BTRFS_I(inode
)->dummy_inode
)
4374 nolock
= (root
->fs_info
->closing
&& root
== root
->fs_info
->tree_root
);
4376 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
4378 trans
= btrfs_join_transaction_nolock(root
, 1);
4380 trans
= btrfs_join_transaction(root
, 1);
4382 return PTR_ERR(trans
);
4383 btrfs_set_trans_block_group(trans
, inode
);
4385 ret
= btrfs_end_transaction_nolock(trans
, root
);
4387 ret
= btrfs_commit_transaction(trans
, root
);
4393 * This is somewhat expensive, updating the tree every time the
4394 * inode changes. But, it is most likely to find the inode in cache.
4395 * FIXME, needs more benchmarking...there are no reasons other than performance
4396 * to keep or drop this code.
4398 void btrfs_dirty_inode(struct inode
*inode
)
4400 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4401 struct btrfs_trans_handle
*trans
;
4404 if (BTRFS_I(inode
)->dummy_inode
)
4407 trans
= btrfs_join_transaction(root
, 1);
4408 BUG_ON(IS_ERR(trans
));
4409 btrfs_set_trans_block_group(trans
, inode
);
4411 ret
= btrfs_update_inode(trans
, root
, inode
);
4412 if (ret
&& ret
== -ENOSPC
) {
4413 /* whoops, lets try again with the full transaction */
4414 btrfs_end_transaction(trans
, root
);
4415 trans
= btrfs_start_transaction(root
, 1);
4416 if (IS_ERR(trans
)) {
4417 if (printk_ratelimit()) {
4418 printk(KERN_ERR
"btrfs: fail to "
4419 "dirty inode %lu error %ld\n",
4420 inode
->i_ino
, PTR_ERR(trans
));
4424 btrfs_set_trans_block_group(trans
, inode
);
4426 ret
= btrfs_update_inode(trans
, root
, inode
);
4428 if (printk_ratelimit()) {
4429 printk(KERN_ERR
"btrfs: fail to "
4430 "dirty inode %lu error %d\n",
4435 btrfs_end_transaction(trans
, root
);
4439 * find the highest existing sequence number in a directory
4440 * and then set the in-memory index_cnt variable to reflect
4441 * free sequence numbers
4443 static int btrfs_set_inode_index_count(struct inode
*inode
)
4445 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4446 struct btrfs_key key
, found_key
;
4447 struct btrfs_path
*path
;
4448 struct extent_buffer
*leaf
;
4451 key
.objectid
= inode
->i_ino
;
4452 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
4453 key
.offset
= (u64
)-1;
4455 path
= btrfs_alloc_path();
4459 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4462 /* FIXME: we should be able to handle this */
4468 * MAGIC NUMBER EXPLANATION:
4469 * since we search a directory based on f_pos we have to start at 2
4470 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4471 * else has to start at 2
4473 if (path
->slots
[0] == 0) {
4474 BTRFS_I(inode
)->index_cnt
= 2;
4480 leaf
= path
->nodes
[0];
4481 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4483 if (found_key
.objectid
!= inode
->i_ino
||
4484 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
4485 BTRFS_I(inode
)->index_cnt
= 2;
4489 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
4491 btrfs_free_path(path
);
4496 * helper to find a free sequence number in a given directory. This current
4497 * code is very simple, later versions will do smarter things in the btree
4499 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
4503 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
4504 ret
= btrfs_set_inode_index_count(dir
);
4509 *index
= BTRFS_I(dir
)->index_cnt
;
4510 BTRFS_I(dir
)->index_cnt
++;
4515 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
4516 struct btrfs_root
*root
,
4518 const char *name
, int name_len
,
4519 u64 ref_objectid
, u64 objectid
,
4520 u64 alloc_hint
, int mode
, u64
*index
)
4522 struct inode
*inode
;
4523 struct btrfs_inode_item
*inode_item
;
4524 struct btrfs_key
*location
;
4525 struct btrfs_path
*path
;
4526 struct btrfs_inode_ref
*ref
;
4527 struct btrfs_key key
[2];
4533 path
= btrfs_alloc_path();
4536 inode
= new_inode(root
->fs_info
->sb
);
4538 btrfs_free_path(path
);
4539 return ERR_PTR(-ENOMEM
);
4543 trace_btrfs_inode_request(dir
);
4545 ret
= btrfs_set_inode_index(dir
, index
);
4547 btrfs_free_path(path
);
4549 return ERR_PTR(ret
);
4553 * index_cnt is ignored for everything but a dir,
4554 * btrfs_get_inode_index_count has an explanation for the magic
4557 BTRFS_I(inode
)->index_cnt
= 2;
4558 BTRFS_I(inode
)->root
= root
;
4559 BTRFS_I(inode
)->generation
= trans
->transid
;
4560 inode
->i_generation
= BTRFS_I(inode
)->generation
;
4561 btrfs_set_inode_space_info(root
, inode
);
4567 BTRFS_I(inode
)->block_group
=
4568 btrfs_find_block_group(root
, 0, alloc_hint
, owner
);
4570 key
[0].objectid
= objectid
;
4571 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
4574 key
[1].objectid
= objectid
;
4575 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
4576 key
[1].offset
= ref_objectid
;
4578 sizes
[0] = sizeof(struct btrfs_inode_item
);
4579 sizes
[1] = name_len
+ sizeof(*ref
);
4581 path
->leave_spinning
= 1;
4582 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
4586 inode_init_owner(inode
, dir
, mode
);
4587 inode
->i_ino
= objectid
;
4588 inode_set_bytes(inode
, 0);
4589 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4590 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4591 struct btrfs_inode_item
);
4592 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
4594 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
4595 struct btrfs_inode_ref
);
4596 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
4597 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
4598 ptr
= (unsigned long)(ref
+ 1);
4599 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
4601 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4602 btrfs_free_path(path
);
4604 location
= &BTRFS_I(inode
)->location
;
4605 location
->objectid
= objectid
;
4606 location
->offset
= 0;
4607 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
4609 btrfs_inherit_iflags(inode
, dir
);
4611 if ((mode
& S_IFREG
)) {
4612 if (btrfs_test_opt(root
, NODATASUM
))
4613 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
4614 if (btrfs_test_opt(root
, NODATACOW
) ||
4615 (BTRFS_I(dir
)->flags
& BTRFS_INODE_NODATACOW
))
4616 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
4619 insert_inode_hash(inode
);
4620 inode_tree_add(inode
);
4622 trace_btrfs_inode_new(inode
);
4627 BTRFS_I(dir
)->index_cnt
--;
4628 btrfs_free_path(path
);
4630 return ERR_PTR(ret
);
4633 static inline u8
btrfs_inode_type(struct inode
*inode
)
4635 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
4639 * utility function to add 'inode' into 'parent_inode' with
4640 * a give name and a given sequence number.
4641 * if 'add_backref' is true, also insert a backref from the
4642 * inode to the parent directory.
4644 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
4645 struct inode
*parent_inode
, struct inode
*inode
,
4646 const char *name
, int name_len
, int add_backref
, u64 index
)
4649 struct btrfs_key key
;
4650 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
4652 if (unlikely(inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4653 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
4655 key
.objectid
= inode
->i_ino
;
4656 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
4660 if (unlikely(inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4661 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
4662 key
.objectid
, root
->root_key
.objectid
,
4663 parent_inode
->i_ino
,
4664 index
, name
, name_len
);
4665 } else if (add_backref
) {
4666 ret
= btrfs_insert_inode_ref(trans
, root
,
4667 name
, name_len
, inode
->i_ino
,
4668 parent_inode
->i_ino
, index
);
4672 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
4673 parent_inode
->i_ino
, &key
,
4674 btrfs_inode_type(inode
), index
);
4677 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
4679 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
4680 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
4685 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
4686 struct inode
*dir
, struct dentry
*dentry
,
4687 struct inode
*inode
, int backref
, u64 index
)
4689 int err
= btrfs_add_link(trans
, dir
, inode
,
4690 dentry
->d_name
.name
, dentry
->d_name
.len
,
4693 d_instantiate(dentry
, inode
);
4701 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
4702 int mode
, dev_t rdev
)
4704 struct btrfs_trans_handle
*trans
;
4705 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4706 struct inode
*inode
= NULL
;
4710 unsigned long nr
= 0;
4713 if (!new_valid_dev(rdev
))
4716 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
4721 * 2 for inode item and ref
4723 * 1 for xattr if selinux is on
4725 trans
= btrfs_start_transaction(root
, 5);
4727 return PTR_ERR(trans
);
4729 btrfs_set_trans_block_group(trans
, dir
);
4731 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4732 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
4733 BTRFS_I(dir
)->block_group
, mode
, &index
);
4734 err
= PTR_ERR(inode
);
4738 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4744 btrfs_set_trans_block_group(trans
, inode
);
4745 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4749 inode
->i_op
= &btrfs_special_inode_operations
;
4750 init_special_inode(inode
, inode
->i_mode
, rdev
);
4751 btrfs_update_inode(trans
, root
, inode
);
4753 btrfs_update_inode_block_group(trans
, inode
);
4754 btrfs_update_inode_block_group(trans
, dir
);
4756 nr
= trans
->blocks_used
;
4757 btrfs_end_transaction_throttle(trans
, root
);
4758 btrfs_btree_balance_dirty(root
, nr
);
4760 inode_dec_link_count(inode
);
4766 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
4767 int mode
, struct nameidata
*nd
)
4769 struct btrfs_trans_handle
*trans
;
4770 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4771 struct inode
*inode
= NULL
;
4774 unsigned long nr
= 0;
4778 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
4782 * 2 for inode item and ref
4784 * 1 for xattr if selinux is on
4786 trans
= btrfs_start_transaction(root
, 5);
4788 return PTR_ERR(trans
);
4790 btrfs_set_trans_block_group(trans
, dir
);
4792 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4793 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
4794 BTRFS_I(dir
)->block_group
, mode
, &index
);
4795 err
= PTR_ERR(inode
);
4799 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4805 btrfs_set_trans_block_group(trans
, inode
);
4806 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4810 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4811 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4812 inode
->i_fop
= &btrfs_file_operations
;
4813 inode
->i_op
= &btrfs_file_inode_operations
;
4814 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4816 btrfs_update_inode_block_group(trans
, inode
);
4817 btrfs_update_inode_block_group(trans
, dir
);
4819 nr
= trans
->blocks_used
;
4820 btrfs_end_transaction_throttle(trans
, root
);
4822 inode_dec_link_count(inode
);
4825 btrfs_btree_balance_dirty(root
, nr
);
4829 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
4830 struct dentry
*dentry
)
4832 struct btrfs_trans_handle
*trans
;
4833 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4834 struct inode
*inode
= old_dentry
->d_inode
;
4836 unsigned long nr
= 0;
4840 /* do not allow sys_link's with other subvols of the same device */
4841 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
4844 if (inode
->i_nlink
== ~0U)
4847 err
= btrfs_set_inode_index(dir
, &index
);
4852 * 2 items for inode and inode ref
4853 * 2 items for dir items
4854 * 1 item for parent inode
4856 trans
= btrfs_start_transaction(root
, 5);
4857 if (IS_ERR(trans
)) {
4858 err
= PTR_ERR(trans
);
4862 btrfs_inc_nlink(inode
);
4863 inode
->i_ctime
= CURRENT_TIME
;
4865 btrfs_set_trans_block_group(trans
, dir
);
4868 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
4873 struct dentry
*parent
= dget_parent(dentry
);
4874 btrfs_update_inode_block_group(trans
, dir
);
4875 err
= btrfs_update_inode(trans
, root
, inode
);
4877 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
4881 nr
= trans
->blocks_used
;
4882 btrfs_end_transaction_throttle(trans
, root
);
4885 inode_dec_link_count(inode
);
4888 btrfs_btree_balance_dirty(root
, nr
);
4892 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
4894 struct inode
*inode
= NULL
;
4895 struct btrfs_trans_handle
*trans
;
4896 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4898 int drop_on_err
= 0;
4901 unsigned long nr
= 1;
4903 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
4908 * 2 items for inode and ref
4909 * 2 items for dir items
4910 * 1 for xattr if selinux is on
4912 trans
= btrfs_start_transaction(root
, 5);
4914 return PTR_ERR(trans
);
4915 btrfs_set_trans_block_group(trans
, dir
);
4917 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4918 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
4919 BTRFS_I(dir
)->block_group
, S_IFDIR
| mode
,
4921 if (IS_ERR(inode
)) {
4922 err
= PTR_ERR(inode
);
4928 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4932 inode
->i_op
= &btrfs_dir_inode_operations
;
4933 inode
->i_fop
= &btrfs_dir_file_operations
;
4934 btrfs_set_trans_block_group(trans
, inode
);
4936 btrfs_i_size_write(inode
, 0);
4937 err
= btrfs_update_inode(trans
, root
, inode
);
4941 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
4942 dentry
->d_name
.len
, 0, index
);
4946 d_instantiate(dentry
, inode
);
4948 btrfs_update_inode_block_group(trans
, inode
);
4949 btrfs_update_inode_block_group(trans
, dir
);
4952 nr
= trans
->blocks_used
;
4953 btrfs_end_transaction_throttle(trans
, root
);
4956 btrfs_btree_balance_dirty(root
, nr
);
4960 /* helper for btfs_get_extent. Given an existing extent in the tree,
4961 * and an extent that you want to insert, deal with overlap and insert
4962 * the new extent into the tree.
4964 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
4965 struct extent_map
*existing
,
4966 struct extent_map
*em
,
4967 u64 map_start
, u64 map_len
)
4971 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
4972 start_diff
= map_start
- em
->start
;
4973 em
->start
= map_start
;
4975 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
4976 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
4977 em
->block_start
+= start_diff
;
4978 em
->block_len
-= start_diff
;
4980 return add_extent_mapping(em_tree
, em
);
4983 static noinline
int uncompress_inline(struct btrfs_path
*path
,
4984 struct inode
*inode
, struct page
*page
,
4985 size_t pg_offset
, u64 extent_offset
,
4986 struct btrfs_file_extent_item
*item
)
4989 struct extent_buffer
*leaf
= path
->nodes
[0];
4992 unsigned long inline_size
;
4996 WARN_ON(pg_offset
!= 0);
4997 compress_type
= btrfs_file_extent_compression(leaf
, item
);
4998 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
4999 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
5000 btrfs_item_nr(leaf
, path
->slots
[0]));
5001 tmp
= kmalloc(inline_size
, GFP_NOFS
);
5002 ptr
= btrfs_file_extent_inline_start(item
);
5004 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
5006 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
5007 ret
= btrfs_decompress(compress_type
, tmp
, page
,
5008 extent_offset
, inline_size
, max_size
);
5010 char *kaddr
= kmap_atomic(page
, KM_USER0
);
5011 unsigned long copy_size
= min_t(u64
,
5012 PAGE_CACHE_SIZE
- pg_offset
,
5013 max_size
- extent_offset
);
5014 memset(kaddr
+ pg_offset
, 0, copy_size
);
5015 kunmap_atomic(kaddr
, KM_USER0
);
5022 * a bit scary, this does extent mapping from logical file offset to the disk.
5023 * the ugly parts come from merging extents from the disk with the in-ram
5024 * representation. This gets more complex because of the data=ordered code,
5025 * where the in-ram extents might be locked pending data=ordered completion.
5027 * This also copies inline extents directly into the page.
5030 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
5031 size_t pg_offset
, u64 start
, u64 len
,
5037 u64 extent_start
= 0;
5039 u64 objectid
= inode
->i_ino
;
5041 struct btrfs_path
*path
= NULL
;
5042 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5043 struct btrfs_file_extent_item
*item
;
5044 struct extent_buffer
*leaf
;
5045 struct btrfs_key found_key
;
5046 struct extent_map
*em
= NULL
;
5047 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5048 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5049 struct btrfs_trans_handle
*trans
= NULL
;
5053 read_lock(&em_tree
->lock
);
5054 em
= lookup_extent_mapping(em_tree
, start
, len
);
5056 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5057 read_unlock(&em_tree
->lock
);
5060 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
5061 free_extent_map(em
);
5062 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
5063 free_extent_map(em
);
5067 em
= alloc_extent_map(GFP_NOFS
);
5072 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5073 em
->start
= EXTENT_MAP_HOLE
;
5074 em
->orig_start
= EXTENT_MAP_HOLE
;
5076 em
->block_len
= (u64
)-1;
5079 path
= btrfs_alloc_path();
5083 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
5084 objectid
, start
, trans
!= NULL
);
5091 if (path
->slots
[0] == 0)
5096 leaf
= path
->nodes
[0];
5097 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5098 struct btrfs_file_extent_item
);
5099 /* are we inside the extent that was found? */
5100 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5101 found_type
= btrfs_key_type(&found_key
);
5102 if (found_key
.objectid
!= objectid
||
5103 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
5107 found_type
= btrfs_file_extent_type(leaf
, item
);
5108 extent_start
= found_key
.offset
;
5109 compress_type
= btrfs_file_extent_compression(leaf
, item
);
5110 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5111 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5112 extent_end
= extent_start
+
5113 btrfs_file_extent_num_bytes(leaf
, item
);
5114 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5116 size
= btrfs_file_extent_inline_len(leaf
, item
);
5117 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
5118 ~((u64
)root
->sectorsize
- 1);
5121 if (start
>= extent_end
) {
5123 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
5124 ret
= btrfs_next_leaf(root
, path
);
5131 leaf
= path
->nodes
[0];
5133 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5134 if (found_key
.objectid
!= objectid
||
5135 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5137 if (start
+ len
<= found_key
.offset
)
5140 em
->len
= found_key
.offset
- start
;
5144 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5145 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5146 em
->start
= extent_start
;
5147 em
->len
= extent_end
- extent_start
;
5148 em
->orig_start
= extent_start
-
5149 btrfs_file_extent_offset(leaf
, item
);
5150 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
5152 em
->block_start
= EXTENT_MAP_HOLE
;
5155 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
5156 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5157 em
->compress_type
= compress_type
;
5158 em
->block_start
= bytenr
;
5159 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
5162 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
5163 em
->block_start
= bytenr
;
5164 em
->block_len
= em
->len
;
5165 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
5166 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
5169 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5173 size_t extent_offset
;
5176 em
->block_start
= EXTENT_MAP_INLINE
;
5177 if (!page
|| create
) {
5178 em
->start
= extent_start
;
5179 em
->len
= extent_end
- extent_start
;
5183 size
= btrfs_file_extent_inline_len(leaf
, item
);
5184 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
5185 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
5186 size
- extent_offset
);
5187 em
->start
= extent_start
+ extent_offset
;
5188 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
5189 ~((u64
)root
->sectorsize
- 1);
5190 em
->orig_start
= EXTENT_MAP_INLINE
;
5191 if (compress_type
) {
5192 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5193 em
->compress_type
= compress_type
;
5195 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
5196 if (create
== 0 && !PageUptodate(page
)) {
5197 if (btrfs_file_extent_compression(leaf
, item
) !=
5198 BTRFS_COMPRESS_NONE
) {
5199 ret
= uncompress_inline(path
, inode
, page
,
5201 extent_offset
, item
);
5205 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5207 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
5208 memset(map
+ pg_offset
+ copy_size
, 0,
5209 PAGE_CACHE_SIZE
- pg_offset
-
5214 flush_dcache_page(page
);
5215 } else if (create
&& PageUptodate(page
)) {
5219 free_extent_map(em
);
5221 btrfs_release_path(root
, path
);
5222 trans
= btrfs_join_transaction(root
, 1);
5224 return ERR_CAST(trans
);
5228 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5231 btrfs_mark_buffer_dirty(leaf
);
5233 set_extent_uptodate(io_tree
, em
->start
,
5234 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
5237 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
5244 em
->block_start
= EXTENT_MAP_HOLE
;
5245 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
5247 btrfs_release_path(root
, path
);
5248 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
5249 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
5250 "[%llu %llu]\n", (unsigned long long)em
->start
,
5251 (unsigned long long)em
->len
,
5252 (unsigned long long)start
,
5253 (unsigned long long)len
);
5259 write_lock(&em_tree
->lock
);
5260 ret
= add_extent_mapping(em_tree
, em
);
5261 /* it is possible that someone inserted the extent into the tree
5262 * while we had the lock dropped. It is also possible that
5263 * an overlapping map exists in the tree
5265 if (ret
== -EEXIST
) {
5266 struct extent_map
*existing
;
5270 existing
= lookup_extent_mapping(em_tree
, start
, len
);
5271 if (existing
&& (existing
->start
> start
||
5272 existing
->start
+ existing
->len
<= start
)) {
5273 free_extent_map(existing
);
5277 existing
= lookup_extent_mapping(em_tree
, em
->start
,
5280 err
= merge_extent_mapping(em_tree
, existing
,
5283 free_extent_map(existing
);
5285 free_extent_map(em
);
5290 free_extent_map(em
);
5294 free_extent_map(em
);
5299 write_unlock(&em_tree
->lock
);
5302 trace_btrfs_get_extent(root
, em
);
5305 btrfs_free_path(path
);
5307 ret
= btrfs_end_transaction(trans
, root
);
5312 free_extent_map(em
);
5313 return ERR_PTR(err
);
5318 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
5319 size_t pg_offset
, u64 start
, u64 len
,
5322 struct extent_map
*em
;
5323 struct extent_map
*hole_em
= NULL
;
5324 u64 range_start
= start
;
5330 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
5335 * if our em maps to a hole, there might
5336 * actually be delalloc bytes behind it
5338 if (em
->block_start
!= EXTENT_MAP_HOLE
)
5344 /* check to see if we've wrapped (len == -1 or similar) */
5353 /* ok, we didn't find anything, lets look for delalloc */
5354 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
5355 end
, len
, EXTENT_DELALLOC
, 1);
5356 found_end
= range_start
+ found
;
5357 if (found_end
< range_start
)
5358 found_end
= (u64
)-1;
5361 * we didn't find anything useful, return
5362 * the original results from get_extent()
5364 if (range_start
> end
|| found_end
<= start
) {
5370 /* adjust the range_start to make sure it doesn't
5371 * go backwards from the start they passed in
5373 range_start
= max(start
,range_start
);
5374 found
= found_end
- range_start
;
5377 u64 hole_start
= start
;
5380 em
= alloc_extent_map(GFP_NOFS
);
5386 * when btrfs_get_extent can't find anything it
5387 * returns one huge hole
5389 * make sure what it found really fits our range, and
5390 * adjust to make sure it is based on the start from
5394 u64 calc_end
= extent_map_end(hole_em
);
5396 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
5397 free_extent_map(hole_em
);
5400 hole_start
= max(hole_em
->start
, start
);
5401 hole_len
= calc_end
- hole_start
;
5405 if (hole_em
&& range_start
> hole_start
) {
5406 /* our hole starts before our delalloc, so we
5407 * have to return just the parts of the hole
5408 * that go until the delalloc starts
5410 em
->len
= min(hole_len
,
5411 range_start
- hole_start
);
5412 em
->start
= hole_start
;
5413 em
->orig_start
= hole_start
;
5415 * don't adjust block start at all,
5416 * it is fixed at EXTENT_MAP_HOLE
5418 em
->block_start
= hole_em
->block_start
;
5419 em
->block_len
= hole_len
;
5421 em
->start
= range_start
;
5423 em
->orig_start
= range_start
;
5424 em
->block_start
= EXTENT_MAP_DELALLOC
;
5425 em
->block_len
= found
;
5427 } else if (hole_em
) {
5432 free_extent_map(hole_em
);
5434 free_extent_map(em
);
5435 return ERR_PTR(err
);
5440 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
5441 struct extent_map
*em
,
5444 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5445 struct btrfs_trans_handle
*trans
;
5446 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5447 struct btrfs_key ins
;
5450 bool insert
= false;
5453 * Ok if the extent map we looked up is a hole and is for the exact
5454 * range we want, there is no reason to allocate a new one, however if
5455 * it is not right then we need to free this one and drop the cache for
5458 if (em
->block_start
!= EXTENT_MAP_HOLE
|| em
->start
!= start
||
5460 free_extent_map(em
);
5463 btrfs_drop_extent_cache(inode
, start
, start
+ len
- 1, 0);
5466 trans
= btrfs_join_transaction(root
, 0);
5468 return ERR_CAST(trans
);
5470 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5472 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
5473 ret
= btrfs_reserve_extent(trans
, root
, len
, root
->sectorsize
, 0,
5474 alloc_hint
, (u64
)-1, &ins
, 1);
5481 em
= alloc_extent_map(GFP_NOFS
);
5483 em
= ERR_PTR(-ENOMEM
);
5489 em
->orig_start
= em
->start
;
5490 em
->len
= ins
.offset
;
5492 em
->block_start
= ins
.objectid
;
5493 em
->block_len
= ins
.offset
;
5494 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5497 * We need to do this because if we're using the original em we searched
5498 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5501 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5504 write_lock(&em_tree
->lock
);
5505 ret
= add_extent_mapping(em_tree
, em
);
5506 write_unlock(&em_tree
->lock
);
5509 btrfs_drop_extent_cache(inode
, start
, start
+ em
->len
- 1, 0);
5512 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
5513 ins
.offset
, ins
.offset
, 0);
5515 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
5519 btrfs_end_transaction(trans
, root
);
5524 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5525 * block must be cow'd
5527 static noinline
int can_nocow_odirect(struct btrfs_trans_handle
*trans
,
5528 struct inode
*inode
, u64 offset
, u64 len
)
5530 struct btrfs_path
*path
;
5532 struct extent_buffer
*leaf
;
5533 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5534 struct btrfs_file_extent_item
*fi
;
5535 struct btrfs_key key
;
5543 path
= btrfs_alloc_path();
5547 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
5552 slot
= path
->slots
[0];
5555 /* can't find the item, must cow */
5562 leaf
= path
->nodes
[0];
5563 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5564 if (key
.objectid
!= inode
->i_ino
||
5565 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
5566 /* not our file or wrong item type, must cow */
5570 if (key
.offset
> offset
) {
5571 /* Wrong offset, must cow */
5575 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5576 found_type
= btrfs_file_extent_type(leaf
, fi
);
5577 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
5578 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
5579 /* not a regular extent, must cow */
5582 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
5583 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
5585 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
5586 if (extent_end
< offset
+ len
) {
5587 /* extent doesn't include our full range, must cow */
5591 if (btrfs_extent_readonly(root
, disk_bytenr
))
5595 * look for other files referencing this extent, if we
5596 * find any we must cow
5598 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
5599 key
.offset
- backref_offset
, disk_bytenr
))
5603 * adjust disk_bytenr and num_bytes to cover just the bytes
5604 * in this extent we are about to write. If there
5605 * are any csums in that range we have to cow in order
5606 * to keep the csums correct
5608 disk_bytenr
+= backref_offset
;
5609 disk_bytenr
+= offset
- key
.offset
;
5610 num_bytes
= min(offset
+ len
, extent_end
) - offset
;
5611 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
5614 * all of the above have passed, it is safe to overwrite this extent
5619 btrfs_free_path(path
);
5623 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
5624 struct buffer_head
*bh_result
, int create
)
5626 struct extent_map
*em
;
5627 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5628 u64 start
= iblock
<< inode
->i_blkbits
;
5629 u64 len
= bh_result
->b_size
;
5630 struct btrfs_trans_handle
*trans
;
5632 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
5637 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5638 * io. INLINE is special, and we could probably kludge it in here, but
5639 * it's still buffered so for safety lets just fall back to the generic
5642 * For COMPRESSED we _have_ to read the entire extent in so we can
5643 * decompress it, so there will be buffering required no matter what we
5644 * do, so go ahead and fallback to buffered.
5646 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5647 * to buffered IO. Don't blame me, this is the price we pay for using
5650 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
5651 em
->block_start
== EXTENT_MAP_INLINE
) {
5652 free_extent_map(em
);
5656 /* Just a good old fashioned hole, return */
5657 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
5658 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
5659 free_extent_map(em
);
5660 /* DIO will do one hole at a time, so just unlock a sector */
5661 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
,
5662 start
+ root
->sectorsize
- 1, GFP_NOFS
);
5667 * We don't allocate a new extent in the following cases
5669 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5671 * 2) The extent is marked as PREALLOC. We're good to go here and can
5672 * just use the extent.
5676 len
= em
->len
- (start
- em
->start
);
5680 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
5681 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
5682 em
->block_start
!= EXTENT_MAP_HOLE
)) {
5687 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5688 type
= BTRFS_ORDERED_PREALLOC
;
5690 type
= BTRFS_ORDERED_NOCOW
;
5691 len
= min(len
, em
->len
- (start
- em
->start
));
5692 block_start
= em
->block_start
+ (start
- em
->start
);
5695 * we're not going to log anything, but we do need
5696 * to make sure the current transaction stays open
5697 * while we look for nocow cross refs
5699 trans
= btrfs_join_transaction(root
, 0);
5703 if (can_nocow_odirect(trans
, inode
, start
, len
) == 1) {
5704 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
5705 block_start
, len
, len
, type
);
5706 btrfs_end_transaction(trans
, root
);
5708 free_extent_map(em
);
5713 btrfs_end_transaction(trans
, root
);
5717 * this will cow the extent, reset the len in case we changed
5720 len
= bh_result
->b_size
;
5721 em
= btrfs_new_extent_direct(inode
, em
, start
, len
);
5724 len
= min(len
, em
->len
- (start
- em
->start
));
5726 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
5727 EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DIRTY
, 1,
5730 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
5732 bh_result
->b_size
= len
;
5733 bh_result
->b_bdev
= em
->bdev
;
5734 set_buffer_mapped(bh_result
);
5735 if (create
&& !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5736 set_buffer_new(bh_result
);
5738 free_extent_map(em
);
5743 struct btrfs_dio_private
{
5744 struct inode
*inode
;
5751 /* number of bios pending for this dio */
5752 atomic_t pending_bios
;
5757 struct bio
*orig_bio
;
5760 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
5762 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5763 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
5764 struct bio_vec
*bvec
= bio
->bi_io_vec
;
5765 struct inode
*inode
= dip
->inode
;
5766 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5768 u32
*private = dip
->csums
;
5770 start
= dip
->logical_offset
;
5772 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
5773 struct page
*page
= bvec
->bv_page
;
5776 unsigned long flags
;
5778 local_irq_save(flags
);
5779 kaddr
= kmap_atomic(page
, KM_IRQ0
);
5780 csum
= btrfs_csum_data(root
, kaddr
+ bvec
->bv_offset
,
5781 csum
, bvec
->bv_len
);
5782 btrfs_csum_final(csum
, (char *)&csum
);
5783 kunmap_atomic(kaddr
, KM_IRQ0
);
5784 local_irq_restore(flags
);
5786 flush_dcache_page(bvec
->bv_page
);
5787 if (csum
!= *private) {
5788 printk(KERN_ERR
"btrfs csum failed ino %lu off"
5789 " %llu csum %u private %u\n",
5790 inode
->i_ino
, (unsigned long long)start
,
5796 start
+= bvec
->bv_len
;
5799 } while (bvec
<= bvec_end
);
5801 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
5802 dip
->logical_offset
+ dip
->bytes
- 1, GFP_NOFS
);
5803 bio
->bi_private
= dip
->private;
5808 /* If we had a csum failure make sure to clear the uptodate flag */
5810 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5811 dio_end_io(bio
, err
);
5814 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
5816 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5817 struct inode
*inode
= dip
->inode
;
5818 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5819 struct btrfs_trans_handle
*trans
;
5820 struct btrfs_ordered_extent
*ordered
= NULL
;
5821 struct extent_state
*cached_state
= NULL
;
5822 u64 ordered_offset
= dip
->logical_offset
;
5823 u64 ordered_bytes
= dip
->bytes
;
5829 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
5837 trans
= btrfs_join_transaction(root
, 1);
5838 if (IS_ERR(trans
)) {
5842 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5844 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
)) {
5845 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5847 ret
= btrfs_update_inode(trans
, root
, inode
);
5852 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5853 ordered
->file_offset
+ ordered
->len
- 1, 0,
5854 &cached_state
, GFP_NOFS
);
5856 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
)) {
5857 ret
= btrfs_mark_extent_written(trans
, inode
,
5858 ordered
->file_offset
,
5859 ordered
->file_offset
+
5866 ret
= insert_reserved_file_extent(trans
, inode
,
5867 ordered
->file_offset
,
5873 BTRFS_FILE_EXTENT_REG
);
5874 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
5875 ordered
->file_offset
, ordered
->len
);
5883 add_pending_csums(trans
, inode
, ordered
->file_offset
, &ordered
->list
);
5884 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5886 btrfs_update_inode(trans
, root
, inode
);
5889 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5890 ordered
->file_offset
+ ordered
->len
- 1,
5891 &cached_state
, GFP_NOFS
);
5893 btrfs_delalloc_release_metadata(inode
, ordered
->len
);
5894 btrfs_end_transaction(trans
, root
);
5895 ordered_offset
= ordered
->file_offset
+ ordered
->len
;
5896 btrfs_put_ordered_extent(ordered
);
5897 btrfs_put_ordered_extent(ordered
);
5901 * our bio might span multiple ordered extents. If we haven't
5902 * completed the accounting for the whole dio, go back and try again
5904 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
5905 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
5910 bio
->bi_private
= dip
->private;
5915 /* If we had an error make sure to clear the uptodate flag */
5917 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5918 dio_end_io(bio
, err
);
5921 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
5922 struct bio
*bio
, int mirror_num
,
5923 unsigned long bio_flags
, u64 offset
)
5926 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5927 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
5932 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
5934 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5937 printk(KERN_ERR
"btrfs direct IO failed ino %lu rw %lu "
5938 "sector %#Lx len %u err no %d\n",
5939 dip
->inode
->i_ino
, bio
->bi_rw
,
5940 (unsigned long long)bio
->bi_sector
, bio
->bi_size
, err
);
5944 * before atomic variable goto zero, we must make sure
5945 * dip->errors is perceived to be set.
5947 smp_mb__before_atomic_dec();
5950 /* if there are more bios still pending for this dio, just exit */
5951 if (!atomic_dec_and_test(&dip
->pending_bios
))
5955 bio_io_error(dip
->orig_bio
);
5957 set_bit(BIO_UPTODATE
, &dip
->orig_bio
->bi_flags
);
5958 bio_endio(dip
->orig_bio
, 0);
5964 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
5965 u64 first_sector
, gfp_t gfp_flags
)
5967 int nr_vecs
= bio_get_nr_vecs(bdev
);
5968 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
5971 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
5972 int rw
, u64 file_offset
, int skip_sum
,
5973 u32
*csums
, int async_submit
)
5975 int write
= rw
& REQ_WRITE
;
5976 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5980 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
5987 if (write
&& async_submit
) {
5988 ret
= btrfs_wq_submit_bio(root
->fs_info
,
5989 inode
, rw
, bio
, 0, 0,
5991 __btrfs_submit_bio_start_direct_io
,
5992 __btrfs_submit_bio_done
);
5996 * If we aren't doing async submit, calculate the csum of the
5999 ret
= btrfs_csum_one_bio(root
, inode
, bio
, file_offset
, 1);
6002 } else if (!skip_sum
) {
6003 ret
= btrfs_lookup_bio_sums_dio(root
, inode
, bio
,
6004 file_offset
, csums
);
6010 ret
= btrfs_map_bio(root
, rw
, bio
, 0, async_submit
);
6016 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
6019 struct inode
*inode
= dip
->inode
;
6020 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6021 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
6023 struct bio
*orig_bio
= dip
->orig_bio
;
6024 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
6025 u64 start_sector
= orig_bio
->bi_sector
;
6026 u64 file_offset
= dip
->logical_offset
;
6030 u32
*csums
= dip
->csums
;
6032 int async_submit
= 0;
6033 int write
= rw
& REQ_WRITE
;
6035 map_length
= orig_bio
->bi_size
;
6036 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
6037 &map_length
, NULL
, 0);
6043 if (map_length
>= orig_bio
->bi_size
) {
6049 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
6052 bio
->bi_private
= dip
;
6053 bio
->bi_end_io
= btrfs_end_dio_bio
;
6054 atomic_inc(&dip
->pending_bios
);
6056 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
6057 if (unlikely(map_length
< submit_len
+ bvec
->bv_len
||
6058 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
6059 bvec
->bv_offset
) < bvec
->bv_len
)) {
6061 * inc the count before we submit the bio so
6062 * we know the end IO handler won't happen before
6063 * we inc the count. Otherwise, the dip might get freed
6064 * before we're done setting it up
6066 atomic_inc(&dip
->pending_bios
);
6067 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
6068 file_offset
, skip_sum
,
6069 csums
, async_submit
);
6072 atomic_dec(&dip
->pending_bios
);
6076 /* Write's use the ordered csums */
6077 if (!write
&& !skip_sum
)
6078 csums
= csums
+ nr_pages
;
6079 start_sector
+= submit_len
>> 9;
6080 file_offset
+= submit_len
;
6085 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
6086 start_sector
, GFP_NOFS
);
6089 bio
->bi_private
= dip
;
6090 bio
->bi_end_io
= btrfs_end_dio_bio
;
6092 map_length
= orig_bio
->bi_size
;
6093 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
6094 &map_length
, NULL
, 0);
6100 submit_len
+= bvec
->bv_len
;
6107 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
6108 csums
, async_submit
);
6116 * before atomic variable goto zero, we must
6117 * make sure dip->errors is perceived to be set.
6119 smp_mb__before_atomic_dec();
6120 if (atomic_dec_and_test(&dip
->pending_bios
))
6121 bio_io_error(dip
->orig_bio
);
6123 /* bio_end_io() will handle error, so we needn't return it */
6127 static void btrfs_submit_direct(int rw
, struct bio
*bio
, struct inode
*inode
,
6130 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6131 struct btrfs_dio_private
*dip
;
6132 struct bio_vec
*bvec
= bio
->bi_io_vec
;
6134 int write
= rw
& REQ_WRITE
;
6137 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
6139 dip
= kmalloc(sizeof(*dip
), GFP_NOFS
);
6146 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6147 if (!write
&& !skip_sum
) {
6148 dip
->csums
= kmalloc(sizeof(u32
) * bio
->bi_vcnt
, GFP_NOFS
);
6156 dip
->private = bio
->bi_private
;
6158 dip
->logical_offset
= file_offset
;
6162 dip
->bytes
+= bvec
->bv_len
;
6164 } while (bvec
<= (bio
->bi_io_vec
+ bio
->bi_vcnt
- 1));
6166 dip
->disk_bytenr
= (u64
)bio
->bi_sector
<< 9;
6167 bio
->bi_private
= dip
;
6169 dip
->orig_bio
= bio
;
6170 atomic_set(&dip
->pending_bios
, 0);
6173 bio
->bi_end_io
= btrfs_endio_direct_write
;
6175 bio
->bi_end_io
= btrfs_endio_direct_read
;
6177 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
6182 * If this is a write, we need to clean up the reserved space and kill
6183 * the ordered extent.
6186 struct btrfs_ordered_extent
*ordered
;
6187 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
6188 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
6189 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
6190 btrfs_free_reserved_extent(root
, ordered
->start
,
6192 btrfs_put_ordered_extent(ordered
);
6193 btrfs_put_ordered_extent(ordered
);
6195 bio_endio(bio
, ret
);
6198 static ssize_t
check_direct_IO(struct btrfs_root
*root
, int rw
, struct kiocb
*iocb
,
6199 const struct iovec
*iov
, loff_t offset
,
6200 unsigned long nr_segs
)
6206 unsigned blocksize_mask
= root
->sectorsize
- 1;
6207 ssize_t retval
= -EINVAL
;
6208 loff_t end
= offset
;
6210 if (offset
& blocksize_mask
)
6213 /* Check the memory alignment. Blocks cannot straddle pages */
6214 for (seg
= 0; seg
< nr_segs
; seg
++) {
6215 addr
= (unsigned long)iov
[seg
].iov_base
;
6216 size
= iov
[seg
].iov_len
;
6218 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
6221 /* If this is a write we don't need to check anymore */
6226 * Check to make sure we don't have duplicate iov_base's in this
6227 * iovec, if so return EINVAL, otherwise we'll get csum errors
6228 * when reading back.
6230 for (i
= seg
+ 1; i
< nr_segs
; i
++) {
6231 if (iov
[seg
].iov_base
== iov
[i
].iov_base
)
6239 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
6240 const struct iovec
*iov
, loff_t offset
,
6241 unsigned long nr_segs
)
6243 struct file
*file
= iocb
->ki_filp
;
6244 struct inode
*inode
= file
->f_mapping
->host
;
6245 struct btrfs_ordered_extent
*ordered
;
6246 struct extent_state
*cached_state
= NULL
;
6247 u64 lockstart
, lockend
;
6249 int writing
= rw
& WRITE
;
6251 size_t count
= iov_length(iov
, nr_segs
);
6253 if (check_direct_IO(BTRFS_I(inode
)->root
, rw
, iocb
, iov
,
6259 lockend
= offset
+ count
- 1;
6262 ret
= btrfs_delalloc_reserve_space(inode
, count
);
6268 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6269 0, &cached_state
, GFP_NOFS
);
6271 * We're concerned with the entire range that we're going to be
6272 * doing DIO to, so we need to make sure theres no ordered
6273 * extents in this range.
6275 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
6276 lockend
- lockstart
+ 1);
6279 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6280 &cached_state
, GFP_NOFS
);
6281 btrfs_start_ordered_extent(inode
, ordered
, 1);
6282 btrfs_put_ordered_extent(ordered
);
6287 * we don't use btrfs_set_extent_delalloc because we don't want
6288 * the dirty or uptodate bits
6291 write_bits
= EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
;
6292 ret
= set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6293 EXTENT_DELALLOC
, 0, NULL
, &cached_state
,
6296 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6297 lockend
, EXTENT_LOCKED
| write_bits
,
6298 1, 0, &cached_state
, GFP_NOFS
);
6303 free_extent_state(cached_state
);
6304 cached_state
= NULL
;
6306 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
6307 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
6308 iov
, offset
, nr_segs
, btrfs_get_blocks_direct
, NULL
,
6309 btrfs_submit_direct
, 0);
6311 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
6312 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
,
6313 offset
+ iov_length(iov
, nr_segs
) - 1,
6314 EXTENT_LOCKED
| write_bits
, 1, 0,
6315 &cached_state
, GFP_NOFS
);
6316 } else if (ret
>= 0 && ret
< iov_length(iov
, nr_segs
)) {
6318 * We're falling back to buffered, unlock the section we didn't
6321 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
+ ret
,
6322 offset
+ iov_length(iov
, nr_segs
) - 1,
6323 EXTENT_LOCKED
| write_bits
, 1, 0,
6324 &cached_state
, GFP_NOFS
);
6327 free_extent_state(cached_state
);
6331 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
6332 __u64 start
, __u64 len
)
6334 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
6337 int btrfs_readpage(struct file
*file
, struct page
*page
)
6339 struct extent_io_tree
*tree
;
6340 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6341 return extent_read_full_page(tree
, page
, btrfs_get_extent
);
6344 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
6346 struct extent_io_tree
*tree
;
6349 if (current
->flags
& PF_MEMALLOC
) {
6350 redirty_page_for_writepage(wbc
, page
);
6354 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6355 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
6358 int btrfs_writepages(struct address_space
*mapping
,
6359 struct writeback_control
*wbc
)
6361 struct extent_io_tree
*tree
;
6363 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6364 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
6368 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
6369 struct list_head
*pages
, unsigned nr_pages
)
6371 struct extent_io_tree
*tree
;
6372 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6373 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
6376 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6378 struct extent_io_tree
*tree
;
6379 struct extent_map_tree
*map
;
6382 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6383 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
6384 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
6386 ClearPagePrivate(page
);
6387 set_page_private(page
, 0);
6388 page_cache_release(page
);
6393 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6395 if (PageWriteback(page
) || PageDirty(page
))
6397 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
6400 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
6402 struct extent_io_tree
*tree
;
6403 struct btrfs_ordered_extent
*ordered
;
6404 struct extent_state
*cached_state
= NULL
;
6405 u64 page_start
= page_offset(page
);
6406 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6410 * we have the page locked, so new writeback can't start,
6411 * and the dirty bit won't be cleared while we are here.
6413 * Wait for IO on this page so that we can safely clear
6414 * the PagePrivate2 bit and do ordered accounting
6416 wait_on_page_writeback(page
);
6418 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6420 btrfs_releasepage(page
, GFP_NOFS
);
6423 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6425 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
6429 * IO on this page will never be started, so we need
6430 * to account for any ordered extents now
6432 clear_extent_bit(tree
, page_start
, page_end
,
6433 EXTENT_DIRTY
| EXTENT_DELALLOC
|
6434 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
, 1, 0,
6435 &cached_state
, GFP_NOFS
);
6437 * whoever cleared the private bit is responsible
6438 * for the finish_ordered_io
6440 if (TestClearPagePrivate2(page
)) {
6441 btrfs_finish_ordered_io(page
->mapping
->host
,
6442 page_start
, page_end
);
6444 btrfs_put_ordered_extent(ordered
);
6445 cached_state
= NULL
;
6446 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6449 clear_extent_bit(tree
, page_start
, page_end
,
6450 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
6451 EXTENT_DO_ACCOUNTING
, 1, 1, &cached_state
, GFP_NOFS
);
6452 __btrfs_releasepage(page
, GFP_NOFS
);
6454 ClearPageChecked(page
);
6455 if (PagePrivate(page
)) {
6456 ClearPagePrivate(page
);
6457 set_page_private(page
, 0);
6458 page_cache_release(page
);
6463 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6464 * called from a page fault handler when a page is first dirtied. Hence we must
6465 * be careful to check for EOF conditions here. We set the page up correctly
6466 * for a written page which means we get ENOSPC checking when writing into
6467 * holes and correct delalloc and unwritten extent mapping on filesystems that
6468 * support these features.
6470 * We are not allowed to take the i_mutex here so we have to play games to
6471 * protect against truncate races as the page could now be beyond EOF. Because
6472 * vmtruncate() writes the inode size before removing pages, once we have the
6473 * page lock we can determine safely if the page is beyond EOF. If it is not
6474 * beyond EOF, then the page is guaranteed safe against truncation until we
6477 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
6479 struct page
*page
= vmf
->page
;
6480 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
6481 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6482 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6483 struct btrfs_ordered_extent
*ordered
;
6484 struct extent_state
*cached_state
= NULL
;
6486 unsigned long zero_start
;
6492 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
6496 else /* -ENOSPC, -EIO, etc */
6497 ret
= VM_FAULT_SIGBUS
;
6501 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
6504 size
= i_size_read(inode
);
6505 page_start
= page_offset(page
);
6506 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6508 if ((page
->mapping
!= inode
->i_mapping
) ||
6509 (page_start
>= size
)) {
6510 /* page got truncated out from underneath us */
6513 wait_on_page_writeback(page
);
6515 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
6517 set_page_extent_mapped(page
);
6520 * we can't set the delalloc bits if there are pending ordered
6521 * extents. Drop our locks and wait for them to finish
6523 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
6525 unlock_extent_cached(io_tree
, page_start
, page_end
,
6526 &cached_state
, GFP_NOFS
);
6528 btrfs_start_ordered_extent(inode
, ordered
, 1);
6529 btrfs_put_ordered_extent(ordered
);
6534 * XXX - page_mkwrite gets called every time the page is dirtied, even
6535 * if it was already dirty, so for space accounting reasons we need to
6536 * clear any delalloc bits for the range we are fixing to save. There
6537 * is probably a better way to do this, but for now keep consistent with
6538 * prepare_pages in the normal write path.
6540 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
6541 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
6542 0, 0, &cached_state
, GFP_NOFS
);
6544 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
6547 unlock_extent_cached(io_tree
, page_start
, page_end
,
6548 &cached_state
, GFP_NOFS
);
6549 ret
= VM_FAULT_SIGBUS
;
6554 /* page is wholly or partially inside EOF */
6555 if (page_start
+ PAGE_CACHE_SIZE
> size
)
6556 zero_start
= size
& ~PAGE_CACHE_MASK
;
6558 zero_start
= PAGE_CACHE_SIZE
;
6560 if (zero_start
!= PAGE_CACHE_SIZE
) {
6562 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
6563 flush_dcache_page(page
);
6566 ClearPageChecked(page
);
6567 set_page_dirty(page
);
6568 SetPageUptodate(page
);
6570 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
6571 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
6573 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
6577 return VM_FAULT_LOCKED
;
6579 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
6584 static int btrfs_truncate(struct inode
*inode
)
6586 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6589 struct btrfs_trans_handle
*trans
;
6591 u64 mask
= root
->sectorsize
- 1;
6593 ret
= btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
6597 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
6598 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
6600 trans
= btrfs_start_transaction(root
, 5);
6602 return PTR_ERR(trans
);
6604 btrfs_set_trans_block_group(trans
, inode
);
6606 ret
= btrfs_orphan_add(trans
, inode
);
6608 btrfs_end_transaction(trans
, root
);
6612 nr
= trans
->blocks_used
;
6613 btrfs_end_transaction(trans
, root
);
6614 btrfs_btree_balance_dirty(root
, nr
);
6616 /* Now start a transaction for the truncate */
6617 trans
= btrfs_start_transaction(root
, 0);
6619 return PTR_ERR(trans
);
6620 btrfs_set_trans_block_group(trans
, inode
);
6621 trans
->block_rsv
= root
->orphan_block_rsv
;
6624 * setattr is responsible for setting the ordered_data_close flag,
6625 * but that is only tested during the last file release. That
6626 * could happen well after the next commit, leaving a great big
6627 * window where new writes may get lost if someone chooses to write
6628 * to this file after truncating to zero
6630 * The inode doesn't have any dirty data here, and so if we commit
6631 * this is a noop. If someone immediately starts writing to the inode
6632 * it is very likely we'll catch some of their writes in this
6633 * transaction, and the commit will find this file on the ordered
6634 * data list with good things to send down.
6636 * This is a best effort solution, there is still a window where
6637 * using truncate to replace the contents of the file will
6638 * end up with a zero length file after a crash.
6640 if (inode
->i_size
== 0 && BTRFS_I(inode
)->ordered_data_close
)
6641 btrfs_add_ordered_operation(trans
, root
, inode
);
6645 trans
= btrfs_start_transaction(root
, 0);
6647 return PTR_ERR(trans
);
6648 btrfs_set_trans_block_group(trans
, inode
);
6649 trans
->block_rsv
= root
->orphan_block_rsv
;
6652 ret
= btrfs_block_rsv_check(trans
, root
,
6653 root
->orphan_block_rsv
, 0, 5);
6654 if (ret
== -EAGAIN
) {
6655 ret
= btrfs_commit_transaction(trans
, root
);
6665 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
6667 BTRFS_EXTENT_DATA_KEY
);
6668 if (ret
!= -EAGAIN
) {
6673 ret
= btrfs_update_inode(trans
, root
, inode
);
6679 nr
= trans
->blocks_used
;
6680 btrfs_end_transaction(trans
, root
);
6682 btrfs_btree_balance_dirty(root
, nr
);
6685 if (ret
== 0 && inode
->i_nlink
> 0) {
6686 ret
= btrfs_orphan_del(trans
, inode
);
6689 } else if (ret
&& inode
->i_nlink
> 0) {
6691 * Failed to do the truncate, remove us from the in memory
6694 ret
= btrfs_orphan_del(NULL
, inode
);
6697 ret
= btrfs_update_inode(trans
, root
, inode
);
6701 nr
= trans
->blocks_used
;
6702 ret
= btrfs_end_transaction_throttle(trans
, root
);
6705 btrfs_btree_balance_dirty(root
, nr
);
6711 * create a new subvolume directory/inode (helper for the ioctl).
6713 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
6714 struct btrfs_root
*new_root
,
6715 u64 new_dirid
, u64 alloc_hint
)
6717 struct inode
*inode
;
6721 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
6722 new_dirid
, alloc_hint
, S_IFDIR
| 0700, &index
);
6724 return PTR_ERR(inode
);
6725 inode
->i_op
= &btrfs_dir_inode_operations
;
6726 inode
->i_fop
= &btrfs_dir_file_operations
;
6729 btrfs_i_size_write(inode
, 0);
6731 err
= btrfs_update_inode(trans
, new_root
, inode
);
6738 /* helper function for file defrag and space balancing. This
6739 * forces readahead on a given range of bytes in an inode
6741 unsigned long btrfs_force_ra(struct address_space
*mapping
,
6742 struct file_ra_state
*ra
, struct file
*file
,
6743 pgoff_t offset
, pgoff_t last_index
)
6745 pgoff_t req_size
= last_index
- offset
+ 1;
6747 page_cache_sync_readahead(mapping
, ra
, file
, offset
, req_size
);
6748 return offset
+ req_size
;
6751 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
6753 struct btrfs_inode
*ei
;
6754 struct inode
*inode
;
6756 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
6761 ei
->space_info
= NULL
;
6765 ei
->last_sub_trans
= 0;
6766 ei
->logged_trans
= 0;
6767 ei
->delalloc_bytes
= 0;
6768 ei
->reserved_bytes
= 0;
6769 ei
->disk_i_size
= 0;
6771 ei
->index_cnt
= (u64
)-1;
6772 ei
->last_unlink_trans
= 0;
6774 atomic_set(&ei
->outstanding_extents
, 0);
6775 atomic_set(&ei
->reserved_extents
, 0);
6777 ei
->ordered_data_close
= 0;
6778 ei
->orphan_meta_reserved
= 0;
6779 ei
->dummy_inode
= 0;
6780 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
6782 inode
= &ei
->vfs_inode
;
6783 extent_map_tree_init(&ei
->extent_tree
, GFP_NOFS
);
6784 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
, GFP_NOFS
);
6785 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
, GFP_NOFS
);
6786 mutex_init(&ei
->log_mutex
);
6787 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
6788 INIT_LIST_HEAD(&ei
->i_orphan
);
6789 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
6790 INIT_LIST_HEAD(&ei
->ordered_operations
);
6791 RB_CLEAR_NODE(&ei
->rb_node
);
6796 static void btrfs_i_callback(struct rcu_head
*head
)
6798 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
6799 INIT_LIST_HEAD(&inode
->i_dentry
);
6800 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
6803 void btrfs_destroy_inode(struct inode
*inode
)
6805 struct btrfs_ordered_extent
*ordered
;
6806 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6808 WARN_ON(!list_empty(&inode
->i_dentry
));
6809 WARN_ON(inode
->i_data
.nrpages
);
6810 WARN_ON(atomic_read(&BTRFS_I(inode
)->outstanding_extents
));
6811 WARN_ON(atomic_read(&BTRFS_I(inode
)->reserved_extents
));
6814 * This can happen where we create an inode, but somebody else also
6815 * created the same inode and we need to destroy the one we already
6822 * Make sure we're properly removed from the ordered operation
6826 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
6827 spin_lock(&root
->fs_info
->ordered_extent_lock
);
6828 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
6829 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
6832 if (root
== root
->fs_info
->tree_root
) {
6833 struct btrfs_block_group_cache
*block_group
;
6835 block_group
= btrfs_lookup_block_group(root
->fs_info
,
6836 BTRFS_I(inode
)->block_group
);
6837 if (block_group
&& block_group
->inode
== inode
) {
6838 spin_lock(&block_group
->lock
);
6839 block_group
->inode
= NULL
;
6840 spin_unlock(&block_group
->lock
);
6841 btrfs_put_block_group(block_group
);
6842 } else if (block_group
) {
6843 btrfs_put_block_group(block_group
);
6847 spin_lock(&root
->orphan_lock
);
6848 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
6849 printk(KERN_INFO
"BTRFS: inode %lu still on the orphan list\n",
6851 list_del_init(&BTRFS_I(inode
)->i_orphan
);
6853 spin_unlock(&root
->orphan_lock
);
6856 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
6860 printk(KERN_ERR
"btrfs found ordered "
6861 "extent %llu %llu on inode cleanup\n",
6862 (unsigned long long)ordered
->file_offset
,
6863 (unsigned long long)ordered
->len
);
6864 btrfs_remove_ordered_extent(inode
, ordered
);
6865 btrfs_put_ordered_extent(ordered
);
6866 btrfs_put_ordered_extent(ordered
);
6869 inode_tree_del(inode
);
6870 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
6872 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
6875 int btrfs_drop_inode(struct inode
*inode
)
6877 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6879 if (btrfs_root_refs(&root
->root_item
) == 0 &&
6880 root
!= root
->fs_info
->tree_root
)
6883 return generic_drop_inode(inode
);
6886 static void init_once(void *foo
)
6888 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
6890 inode_init_once(&ei
->vfs_inode
);
6893 void btrfs_destroy_cachep(void)
6895 if (btrfs_inode_cachep
)
6896 kmem_cache_destroy(btrfs_inode_cachep
);
6897 if (btrfs_trans_handle_cachep
)
6898 kmem_cache_destroy(btrfs_trans_handle_cachep
);
6899 if (btrfs_transaction_cachep
)
6900 kmem_cache_destroy(btrfs_transaction_cachep
);
6901 if (btrfs_path_cachep
)
6902 kmem_cache_destroy(btrfs_path_cachep
);
6903 if (btrfs_free_space_cachep
)
6904 kmem_cache_destroy(btrfs_free_space_cachep
);
6907 int btrfs_init_cachep(void)
6909 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode_cache",
6910 sizeof(struct btrfs_inode
), 0,
6911 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
6912 if (!btrfs_inode_cachep
)
6915 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle_cache",
6916 sizeof(struct btrfs_trans_handle
), 0,
6917 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6918 if (!btrfs_trans_handle_cachep
)
6921 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction_cache",
6922 sizeof(struct btrfs_transaction
), 0,
6923 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6924 if (!btrfs_transaction_cachep
)
6927 btrfs_path_cachep
= kmem_cache_create("btrfs_path_cache",
6928 sizeof(struct btrfs_path
), 0,
6929 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6930 if (!btrfs_path_cachep
)
6933 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space_cache",
6934 sizeof(struct btrfs_free_space
), 0,
6935 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6936 if (!btrfs_free_space_cachep
)
6941 btrfs_destroy_cachep();
6945 static int btrfs_getattr(struct vfsmount
*mnt
,
6946 struct dentry
*dentry
, struct kstat
*stat
)
6948 struct inode
*inode
= dentry
->d_inode
;
6949 generic_fillattr(inode
, stat
);
6950 stat
->dev
= BTRFS_I(inode
)->root
->anon_super
.s_dev
;
6951 stat
->blksize
= PAGE_CACHE_SIZE
;
6952 stat
->blocks
= (inode_get_bytes(inode
) +
6953 BTRFS_I(inode
)->delalloc_bytes
) >> 9;
6958 * If a file is moved, it will inherit the cow and compression flags of the new
6961 static void fixup_inode_flags(struct inode
*dir
, struct inode
*inode
)
6963 struct btrfs_inode
*b_dir
= BTRFS_I(dir
);
6964 struct btrfs_inode
*b_inode
= BTRFS_I(inode
);
6966 if (b_dir
->flags
& BTRFS_INODE_NODATACOW
)
6967 b_inode
->flags
|= BTRFS_INODE_NODATACOW
;
6969 b_inode
->flags
&= ~BTRFS_INODE_NODATACOW
;
6971 if (b_dir
->flags
& BTRFS_INODE_COMPRESS
)
6972 b_inode
->flags
|= BTRFS_INODE_COMPRESS
;
6974 b_inode
->flags
&= ~BTRFS_INODE_COMPRESS
;
6977 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
6978 struct inode
*new_dir
, struct dentry
*new_dentry
)
6980 struct btrfs_trans_handle
*trans
;
6981 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
6982 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
6983 struct inode
*new_inode
= new_dentry
->d_inode
;
6984 struct inode
*old_inode
= old_dentry
->d_inode
;
6985 struct timespec ctime
= CURRENT_TIME
;
6990 if (new_dir
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
6993 /* we only allow rename subvolume link between subvolumes */
6994 if (old_inode
->i_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
6997 if (old_inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
6998 (new_inode
&& new_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
))
7001 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
7002 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
7005 * we're using rename to replace one file with another.
7006 * and the replacement file is large. Start IO on it now so
7007 * we don't add too much work to the end of the transaction
7009 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
7010 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
7011 filemap_flush(old_inode
->i_mapping
);
7013 /* close the racy window with snapshot create/destroy ioctl */
7014 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
7015 down_read(&root
->fs_info
->subvol_sem
);
7017 * We want to reserve the absolute worst case amount of items. So if
7018 * both inodes are subvols and we need to unlink them then that would
7019 * require 4 item modifications, but if they are both normal inodes it
7020 * would require 5 item modifications, so we'll assume their normal
7021 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7022 * should cover the worst case number of items we'll modify.
7024 trans
= btrfs_start_transaction(root
, 20);
7025 if (IS_ERR(trans
)) {
7026 ret
= PTR_ERR(trans
);
7030 btrfs_set_trans_block_group(trans
, new_dir
);
7033 btrfs_record_root_in_trans(trans
, dest
);
7035 ret
= btrfs_set_inode_index(new_dir
, &index
);
7039 if (unlikely(old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
7040 /* force full log commit if subvolume involved. */
7041 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
7043 ret
= btrfs_insert_inode_ref(trans
, dest
,
7044 new_dentry
->d_name
.name
,
7045 new_dentry
->d_name
.len
,
7047 new_dir
->i_ino
, index
);
7051 * this is an ugly little race, but the rename is required
7052 * to make sure that if we crash, the inode is either at the
7053 * old name or the new one. pinning the log transaction lets
7054 * us make sure we don't allow a log commit to come in after
7055 * we unlink the name but before we add the new name back in.
7057 btrfs_pin_log_trans(root
);
7060 * make sure the inode gets flushed if it is replacing
7063 if (new_inode
&& new_inode
->i_size
&&
7064 old_inode
&& S_ISREG(old_inode
->i_mode
)) {
7065 btrfs_add_ordered_operation(trans
, root
, old_inode
);
7068 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
7069 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
7070 old_inode
->i_ctime
= ctime
;
7072 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
7073 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
7075 if (unlikely(old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
7076 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
7077 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
7078 old_dentry
->d_name
.name
,
7079 old_dentry
->d_name
.len
);
7081 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
7082 old_dentry
->d_inode
,
7083 old_dentry
->d_name
.name
,
7084 old_dentry
->d_name
.len
);
7086 ret
= btrfs_update_inode(trans
, root
, old_inode
);
7091 new_inode
->i_ctime
= CURRENT_TIME
;
7092 if (unlikely(new_inode
->i_ino
==
7093 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
7094 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
7095 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
7097 new_dentry
->d_name
.name
,
7098 new_dentry
->d_name
.len
);
7099 BUG_ON(new_inode
->i_nlink
== 0);
7101 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
7102 new_dentry
->d_inode
,
7103 new_dentry
->d_name
.name
,
7104 new_dentry
->d_name
.len
);
7107 if (new_inode
->i_nlink
== 0) {
7108 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
7113 fixup_inode_flags(new_dir
, old_inode
);
7115 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
7116 new_dentry
->d_name
.name
,
7117 new_dentry
->d_name
.len
, 0, index
);
7120 if (old_inode
->i_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
7121 struct dentry
*parent
= dget_parent(new_dentry
);
7122 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
7124 btrfs_end_log_trans(root
);
7127 btrfs_end_transaction_throttle(trans
, root
);
7129 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
7130 up_read(&root
->fs_info
->subvol_sem
);
7136 * some fairly slow code that needs optimization. This walks the list
7137 * of all the inodes with pending delalloc and forces them to disk.
7139 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
7141 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
7142 struct btrfs_inode
*binode
;
7143 struct inode
*inode
;
7145 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
7148 spin_lock(&root
->fs_info
->delalloc_lock
);
7149 while (!list_empty(head
)) {
7150 binode
= list_entry(head
->next
, struct btrfs_inode
,
7152 inode
= igrab(&binode
->vfs_inode
);
7154 list_del_init(&binode
->delalloc_inodes
);
7155 spin_unlock(&root
->fs_info
->delalloc_lock
);
7157 filemap_flush(inode
->i_mapping
);
7159 btrfs_add_delayed_iput(inode
);
7164 spin_lock(&root
->fs_info
->delalloc_lock
);
7166 spin_unlock(&root
->fs_info
->delalloc_lock
);
7168 /* the filemap_flush will queue IO into the worker threads, but
7169 * we have to make sure the IO is actually started and that
7170 * ordered extents get created before we return
7172 atomic_inc(&root
->fs_info
->async_submit_draining
);
7173 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
7174 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
7175 wait_event(root
->fs_info
->async_submit_wait
,
7176 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
7177 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
7179 atomic_dec(&root
->fs_info
->async_submit_draining
);
7183 int btrfs_start_one_delalloc_inode(struct btrfs_root
*root
, int delay_iput
,
7186 struct btrfs_inode
*binode
;
7187 struct inode
*inode
= NULL
;
7189 spin_lock(&root
->fs_info
->delalloc_lock
);
7190 while (!list_empty(&root
->fs_info
->delalloc_inodes
)) {
7191 binode
= list_entry(root
->fs_info
->delalloc_inodes
.next
,
7192 struct btrfs_inode
, delalloc_inodes
);
7193 inode
= igrab(&binode
->vfs_inode
);
7195 list_move_tail(&binode
->delalloc_inodes
,
7196 &root
->fs_info
->delalloc_inodes
);
7200 list_del_init(&binode
->delalloc_inodes
);
7201 cond_resched_lock(&root
->fs_info
->delalloc_lock
);
7203 spin_unlock(&root
->fs_info
->delalloc_lock
);
7207 filemap_write_and_wait(inode
->i_mapping
);
7209 * We have to do this because compression doesn't
7210 * actually set PG_writeback until it submits the pages
7211 * for IO, which happens in an async thread, so we could
7212 * race and not actually wait for any writeback pages
7213 * because they've not been submitted yet. Technically
7214 * this could still be the case for the ordered stuff
7215 * since the async thread may not have started to do its
7216 * work yet. If this becomes the case then we need to
7217 * figure out a way to make sure that in writepage we
7218 * wait for any async pages to be submitted before
7219 * returning so that fdatawait does what its supposed to
7222 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
7224 filemap_flush(inode
->i_mapping
);
7227 btrfs_add_delayed_iput(inode
);
7235 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
7236 const char *symname
)
7238 struct btrfs_trans_handle
*trans
;
7239 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
7240 struct btrfs_path
*path
;
7241 struct btrfs_key key
;
7242 struct inode
*inode
= NULL
;
7250 struct btrfs_file_extent_item
*ei
;
7251 struct extent_buffer
*leaf
;
7252 unsigned long nr
= 0;
7254 name_len
= strlen(symname
) + 1;
7255 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
7256 return -ENAMETOOLONG
;
7258 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
7262 * 2 items for inode item and ref
7263 * 2 items for dir items
7264 * 1 item for xattr if selinux is on
7266 trans
= btrfs_start_transaction(root
, 5);
7268 return PTR_ERR(trans
);
7270 btrfs_set_trans_block_group(trans
, dir
);
7272 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
7273 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
7274 BTRFS_I(dir
)->block_group
, S_IFLNK
|S_IRWXUGO
,
7276 err
= PTR_ERR(inode
);
7280 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
7286 btrfs_set_trans_block_group(trans
, inode
);
7287 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
7291 inode
->i_mapping
->a_ops
= &btrfs_aops
;
7292 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7293 inode
->i_fop
= &btrfs_file_operations
;
7294 inode
->i_op
= &btrfs_file_inode_operations
;
7295 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
7297 btrfs_update_inode_block_group(trans
, inode
);
7298 btrfs_update_inode_block_group(trans
, dir
);
7302 path
= btrfs_alloc_path();
7304 key
.objectid
= inode
->i_ino
;
7306 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
7307 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
7308 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
7314 leaf
= path
->nodes
[0];
7315 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
7316 struct btrfs_file_extent_item
);
7317 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
7318 btrfs_set_file_extent_type(leaf
, ei
,
7319 BTRFS_FILE_EXTENT_INLINE
);
7320 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
7321 btrfs_set_file_extent_compression(leaf
, ei
, 0);
7322 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
7323 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
7325 ptr
= btrfs_file_extent_inline_start(ei
);
7326 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
7327 btrfs_mark_buffer_dirty(leaf
);
7328 btrfs_free_path(path
);
7330 inode
->i_op
= &btrfs_symlink_inode_operations
;
7331 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
7332 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7333 inode_set_bytes(inode
, name_len
);
7334 btrfs_i_size_write(inode
, name_len
- 1);
7335 err
= btrfs_update_inode(trans
, root
, inode
);
7340 nr
= trans
->blocks_used
;
7341 btrfs_end_transaction_throttle(trans
, root
);
7343 inode_dec_link_count(inode
);
7346 btrfs_btree_balance_dirty(root
, nr
);
7350 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7351 u64 start
, u64 num_bytes
, u64 min_size
,
7352 loff_t actual_len
, u64
*alloc_hint
,
7353 struct btrfs_trans_handle
*trans
)
7355 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7356 struct btrfs_key ins
;
7357 u64 cur_offset
= start
;
7360 bool own_trans
= true;
7364 while (num_bytes
> 0) {
7366 trans
= btrfs_start_transaction(root
, 3);
7367 if (IS_ERR(trans
)) {
7368 ret
= PTR_ERR(trans
);
7373 ret
= btrfs_reserve_extent(trans
, root
, num_bytes
, min_size
,
7374 0, *alloc_hint
, (u64
)-1, &ins
, 1);
7377 btrfs_end_transaction(trans
, root
);
7381 ret
= insert_reserved_file_extent(trans
, inode
,
7382 cur_offset
, ins
.objectid
,
7383 ins
.offset
, ins
.offset
,
7384 ins
.offset
, 0, 0, 0,
7385 BTRFS_FILE_EXTENT_PREALLOC
);
7387 btrfs_drop_extent_cache(inode
, cur_offset
,
7388 cur_offset
+ ins
.offset
-1, 0);
7390 num_bytes
-= ins
.offset
;
7391 cur_offset
+= ins
.offset
;
7392 *alloc_hint
= ins
.objectid
+ ins
.offset
;
7394 inode
->i_ctime
= CURRENT_TIME
;
7395 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
7396 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
7397 (actual_len
> inode
->i_size
) &&
7398 (cur_offset
> inode
->i_size
)) {
7399 if (cur_offset
> actual_len
)
7400 i_size
= actual_len
;
7402 i_size
= cur_offset
;
7403 i_size_write(inode
, i_size
);
7404 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
7407 ret
= btrfs_update_inode(trans
, root
, inode
);
7411 btrfs_end_transaction(trans
, root
);
7416 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7417 u64 start
, u64 num_bytes
, u64 min_size
,
7418 loff_t actual_len
, u64
*alloc_hint
)
7420 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7421 min_size
, actual_len
, alloc_hint
,
7425 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
7426 struct btrfs_trans_handle
*trans
, int mode
,
7427 u64 start
, u64 num_bytes
, u64 min_size
,
7428 loff_t actual_len
, u64
*alloc_hint
)
7430 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7431 min_size
, actual_len
, alloc_hint
, trans
);
7434 static int btrfs_set_page_dirty(struct page
*page
)
7436 return __set_page_dirty_nobuffers(page
);
7439 static int btrfs_permission(struct inode
*inode
, int mask
, unsigned int flags
)
7441 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7443 if (btrfs_root_readonly(root
) && (mask
& MAY_WRITE
))
7445 if ((BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
) && (mask
& MAY_WRITE
))
7447 return generic_permission(inode
, mask
, flags
, btrfs_check_acl
);
7450 static const struct inode_operations btrfs_dir_inode_operations
= {
7451 .getattr
= btrfs_getattr
,
7452 .lookup
= btrfs_lookup
,
7453 .create
= btrfs_create
,
7454 .unlink
= btrfs_unlink
,
7456 .mkdir
= btrfs_mkdir
,
7457 .rmdir
= btrfs_rmdir
,
7458 .rename
= btrfs_rename
,
7459 .symlink
= btrfs_symlink
,
7460 .setattr
= btrfs_setattr
,
7461 .mknod
= btrfs_mknod
,
7462 .setxattr
= btrfs_setxattr
,
7463 .getxattr
= btrfs_getxattr
,
7464 .listxattr
= btrfs_listxattr
,
7465 .removexattr
= btrfs_removexattr
,
7466 .permission
= btrfs_permission
,
7468 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
7469 .lookup
= btrfs_lookup
,
7470 .permission
= btrfs_permission
,
7473 static const struct file_operations btrfs_dir_file_operations
= {
7474 .llseek
= generic_file_llseek
,
7475 .read
= generic_read_dir
,
7476 .readdir
= btrfs_real_readdir
,
7477 .unlocked_ioctl
= btrfs_ioctl
,
7478 #ifdef CONFIG_COMPAT
7479 .compat_ioctl
= btrfs_ioctl
,
7481 .release
= btrfs_release_file
,
7482 .fsync
= btrfs_sync_file
,
7485 static struct extent_io_ops btrfs_extent_io_ops
= {
7486 .fill_delalloc
= run_delalloc_range
,
7487 .submit_bio_hook
= btrfs_submit_bio_hook
,
7488 .merge_bio_hook
= btrfs_merge_bio_hook
,
7489 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
7490 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
7491 .writepage_start_hook
= btrfs_writepage_start_hook
,
7492 .readpage_io_failed_hook
= btrfs_io_failed_hook
,
7493 .set_bit_hook
= btrfs_set_bit_hook
,
7494 .clear_bit_hook
= btrfs_clear_bit_hook
,
7495 .merge_extent_hook
= btrfs_merge_extent_hook
,
7496 .split_extent_hook
= btrfs_split_extent_hook
,
7500 * btrfs doesn't support the bmap operation because swapfiles
7501 * use bmap to make a mapping of extents in the file. They assume
7502 * these extents won't change over the life of the file and they
7503 * use the bmap result to do IO directly to the drive.
7505 * the btrfs bmap call would return logical addresses that aren't
7506 * suitable for IO and they also will change frequently as COW
7507 * operations happen. So, swapfile + btrfs == corruption.
7509 * For now we're avoiding this by dropping bmap.
7511 static const struct address_space_operations btrfs_aops
= {
7512 .readpage
= btrfs_readpage
,
7513 .writepage
= btrfs_writepage
,
7514 .writepages
= btrfs_writepages
,
7515 .readpages
= btrfs_readpages
,
7516 .direct_IO
= btrfs_direct_IO
,
7517 .invalidatepage
= btrfs_invalidatepage
,
7518 .releasepage
= btrfs_releasepage
,
7519 .set_page_dirty
= btrfs_set_page_dirty
,
7520 .error_remove_page
= generic_error_remove_page
,
7523 static const struct address_space_operations btrfs_symlink_aops
= {
7524 .readpage
= btrfs_readpage
,
7525 .writepage
= btrfs_writepage
,
7526 .invalidatepage
= btrfs_invalidatepage
,
7527 .releasepage
= btrfs_releasepage
,
7530 static const struct inode_operations btrfs_file_inode_operations
= {
7531 .getattr
= btrfs_getattr
,
7532 .setattr
= btrfs_setattr
,
7533 .setxattr
= btrfs_setxattr
,
7534 .getxattr
= btrfs_getxattr
,
7535 .listxattr
= btrfs_listxattr
,
7536 .removexattr
= btrfs_removexattr
,
7537 .permission
= btrfs_permission
,
7538 .fiemap
= btrfs_fiemap
,
7540 static const struct inode_operations btrfs_special_inode_operations
= {
7541 .getattr
= btrfs_getattr
,
7542 .setattr
= btrfs_setattr
,
7543 .permission
= btrfs_permission
,
7544 .setxattr
= btrfs_setxattr
,
7545 .getxattr
= btrfs_getxattr
,
7546 .listxattr
= btrfs_listxattr
,
7547 .removexattr
= btrfs_removexattr
,
7549 static const struct inode_operations btrfs_symlink_inode_operations
= {
7550 .readlink
= generic_readlink
,
7551 .follow_link
= page_follow_link_light
,
7552 .put_link
= page_put_link
,
7553 .getattr
= btrfs_getattr
,
7554 .permission
= btrfs_permission
,
7555 .setxattr
= btrfs_setxattr
,
7556 .getxattr
= btrfs_getxattr
,
7557 .listxattr
= btrfs_listxattr
,
7558 .removexattr
= btrfs_removexattr
,
7561 const struct dentry_operations btrfs_dentry_operations
= {
7562 .d_delete
= btrfs_dentry_delete
,