perf events, x86: Add Westmere stalled-cycles-frontend/backend events
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / inode.c
blobfcd66b6a80864c9612975163473240c4e8cb34fd
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 #include "free-space-cache.h"
55 struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
60 static const struct inode_operations btrfs_dir_inode_operations;
61 static const struct inode_operations btrfs_symlink_inode_operations;
62 static const struct inode_operations btrfs_dir_ro_inode_operations;
63 static const struct inode_operations btrfs_special_inode_operations;
64 static const struct inode_operations btrfs_file_inode_operations;
65 static const struct address_space_operations btrfs_aops;
66 static const struct address_space_operations btrfs_symlink_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
87 static int btrfs_setsize(struct inode *inode, loff_t newsize);
88 static int btrfs_truncate(struct inode *inode);
89 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
90 static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
92 u64 start, u64 end, int *page_started,
93 unsigned long *nr_written, int unlock);
95 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96 struct inode *inode, struct inode *dir,
97 const struct qstr *qstr)
99 int err;
101 err = btrfs_init_acl(trans, inode, dir);
102 if (!err)
103 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
104 return err;
108 * this does all the hard work for inserting an inline extent into
109 * the btree. The caller should have done a btrfs_drop_extents so that
110 * no overlapping inline items exist in the btree
112 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
113 struct btrfs_root *root, struct inode *inode,
114 u64 start, size_t size, size_t compressed_size,
115 int compress_type,
116 struct page **compressed_pages)
118 struct btrfs_key key;
119 struct btrfs_path *path;
120 struct extent_buffer *leaf;
121 struct page *page = NULL;
122 char *kaddr;
123 unsigned long ptr;
124 struct btrfs_file_extent_item *ei;
125 int err = 0;
126 int ret;
127 size_t cur_size = size;
128 size_t datasize;
129 unsigned long offset;
131 if (compressed_size && compressed_pages)
132 cur_size = compressed_size;
134 path = btrfs_alloc_path();
135 if (!path)
136 return -ENOMEM;
138 path->leave_spinning = 1;
139 btrfs_set_trans_block_group(trans, inode);
141 key.objectid = inode->i_ino;
142 key.offset = start;
143 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
144 datasize = btrfs_file_extent_calc_inline_size(cur_size);
146 inode_add_bytes(inode, size);
147 ret = btrfs_insert_empty_item(trans, root, path, &key,
148 datasize);
149 BUG_ON(ret);
150 if (ret) {
151 err = ret;
152 goto fail;
154 leaf = path->nodes[0];
155 ei = btrfs_item_ptr(leaf, path->slots[0],
156 struct btrfs_file_extent_item);
157 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
158 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
159 btrfs_set_file_extent_encryption(leaf, ei, 0);
160 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
161 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
162 ptr = btrfs_file_extent_inline_start(ei);
164 if (compress_type != BTRFS_COMPRESS_NONE) {
165 struct page *cpage;
166 int i = 0;
167 while (compressed_size > 0) {
168 cpage = compressed_pages[i];
169 cur_size = min_t(unsigned long, compressed_size,
170 PAGE_CACHE_SIZE);
172 kaddr = kmap_atomic(cpage, KM_USER0);
173 write_extent_buffer(leaf, kaddr, ptr, cur_size);
174 kunmap_atomic(kaddr, KM_USER0);
176 i++;
177 ptr += cur_size;
178 compressed_size -= cur_size;
180 btrfs_set_file_extent_compression(leaf, ei,
181 compress_type);
182 } else {
183 page = find_get_page(inode->i_mapping,
184 start >> PAGE_CACHE_SHIFT);
185 btrfs_set_file_extent_compression(leaf, ei, 0);
186 kaddr = kmap_atomic(page, KM_USER0);
187 offset = start & (PAGE_CACHE_SIZE - 1);
188 write_extent_buffer(leaf, kaddr + offset, ptr, size);
189 kunmap_atomic(kaddr, KM_USER0);
190 page_cache_release(page);
192 btrfs_mark_buffer_dirty(leaf);
193 btrfs_free_path(path);
196 * we're an inline extent, so nobody can
197 * extend the file past i_size without locking
198 * a page we already have locked.
200 * We must do any isize and inode updates
201 * before we unlock the pages. Otherwise we
202 * could end up racing with unlink.
204 BTRFS_I(inode)->disk_i_size = inode->i_size;
205 btrfs_update_inode(trans, root, inode);
207 return 0;
208 fail:
209 btrfs_free_path(path);
210 return err;
215 * conditionally insert an inline extent into the file. This
216 * does the checks required to make sure the data is small enough
217 * to fit as an inline extent.
219 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
220 struct btrfs_root *root,
221 struct inode *inode, u64 start, u64 end,
222 size_t compressed_size, int compress_type,
223 struct page **compressed_pages)
225 u64 isize = i_size_read(inode);
226 u64 actual_end = min(end + 1, isize);
227 u64 inline_len = actual_end - start;
228 u64 aligned_end = (end + root->sectorsize - 1) &
229 ~((u64)root->sectorsize - 1);
230 u64 hint_byte;
231 u64 data_len = inline_len;
232 int ret;
234 if (compressed_size)
235 data_len = compressed_size;
237 if (start > 0 ||
238 actual_end >= PAGE_CACHE_SIZE ||
239 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
240 (!compressed_size &&
241 (actual_end & (root->sectorsize - 1)) == 0) ||
242 end + 1 < isize ||
243 data_len > root->fs_info->max_inline) {
244 return 1;
247 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
248 &hint_byte, 1);
249 BUG_ON(ret);
251 if (isize > actual_end)
252 inline_len = min_t(u64, isize, actual_end);
253 ret = insert_inline_extent(trans, root, inode, start,
254 inline_len, compressed_size,
255 compress_type, compressed_pages);
256 BUG_ON(ret);
257 btrfs_delalloc_release_metadata(inode, end + 1 - start);
258 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
259 return 0;
262 struct async_extent {
263 u64 start;
264 u64 ram_size;
265 u64 compressed_size;
266 struct page **pages;
267 unsigned long nr_pages;
268 int compress_type;
269 struct list_head list;
272 struct async_cow {
273 struct inode *inode;
274 struct btrfs_root *root;
275 struct page *locked_page;
276 u64 start;
277 u64 end;
278 struct list_head extents;
279 struct btrfs_work work;
282 static noinline int add_async_extent(struct async_cow *cow,
283 u64 start, u64 ram_size,
284 u64 compressed_size,
285 struct page **pages,
286 unsigned long nr_pages,
287 int compress_type)
289 struct async_extent *async_extent;
291 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
292 BUG_ON(!async_extent);
293 async_extent->start = start;
294 async_extent->ram_size = ram_size;
295 async_extent->compressed_size = compressed_size;
296 async_extent->pages = pages;
297 async_extent->nr_pages = nr_pages;
298 async_extent->compress_type = compress_type;
299 list_add_tail(&async_extent->list, &cow->extents);
300 return 0;
304 * we create compressed extents in two phases. The first
305 * phase compresses a range of pages that have already been
306 * locked (both pages and state bits are locked).
308 * This is done inside an ordered work queue, and the compression
309 * is spread across many cpus. The actual IO submission is step
310 * two, and the ordered work queue takes care of making sure that
311 * happens in the same order things were put onto the queue by
312 * writepages and friends.
314 * If this code finds it can't get good compression, it puts an
315 * entry onto the work queue to write the uncompressed bytes. This
316 * makes sure that both compressed inodes and uncompressed inodes
317 * are written in the same order that pdflush sent them down.
319 static noinline int compress_file_range(struct inode *inode,
320 struct page *locked_page,
321 u64 start, u64 end,
322 struct async_cow *async_cow,
323 int *num_added)
325 struct btrfs_root *root = BTRFS_I(inode)->root;
326 struct btrfs_trans_handle *trans;
327 u64 num_bytes;
328 u64 blocksize = root->sectorsize;
329 u64 actual_end;
330 u64 isize = i_size_read(inode);
331 int ret = 0;
332 struct page **pages = NULL;
333 unsigned long nr_pages;
334 unsigned long nr_pages_ret = 0;
335 unsigned long total_compressed = 0;
336 unsigned long total_in = 0;
337 unsigned long max_compressed = 128 * 1024;
338 unsigned long max_uncompressed = 128 * 1024;
339 int i;
340 int will_compress;
341 int compress_type = root->fs_info->compress_type;
343 actual_end = min_t(u64, isize, end + 1);
344 again:
345 will_compress = 0;
346 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
347 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
350 * we don't want to send crud past the end of i_size through
351 * compression, that's just a waste of CPU time. So, if the
352 * end of the file is before the start of our current
353 * requested range of bytes, we bail out to the uncompressed
354 * cleanup code that can deal with all of this.
356 * It isn't really the fastest way to fix things, but this is a
357 * very uncommon corner.
359 if (actual_end <= start)
360 goto cleanup_and_bail_uncompressed;
362 total_compressed = actual_end - start;
364 /* we want to make sure that amount of ram required to uncompress
365 * an extent is reasonable, so we limit the total size in ram
366 * of a compressed extent to 128k. This is a crucial number
367 * because it also controls how easily we can spread reads across
368 * cpus for decompression.
370 * We also want to make sure the amount of IO required to do
371 * a random read is reasonably small, so we limit the size of
372 * a compressed extent to 128k.
374 total_compressed = min(total_compressed, max_uncompressed);
375 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
376 num_bytes = max(blocksize, num_bytes);
377 total_in = 0;
378 ret = 0;
381 * we do compression for mount -o compress and when the
382 * inode has not been flagged as nocompress. This flag can
383 * change at any time if we discover bad compression ratios.
385 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
386 (btrfs_test_opt(root, COMPRESS) ||
387 (BTRFS_I(inode)->force_compress) ||
388 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
389 WARN_ON(pages);
390 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
391 BUG_ON(!pages);
393 if (BTRFS_I(inode)->force_compress)
394 compress_type = BTRFS_I(inode)->force_compress;
396 ret = btrfs_compress_pages(compress_type,
397 inode->i_mapping, start,
398 total_compressed, pages,
399 nr_pages, &nr_pages_ret,
400 &total_in,
401 &total_compressed,
402 max_compressed);
404 if (!ret) {
405 unsigned long offset = total_compressed &
406 (PAGE_CACHE_SIZE - 1);
407 struct page *page = pages[nr_pages_ret - 1];
408 char *kaddr;
410 /* zero the tail end of the last page, we might be
411 * sending it down to disk
413 if (offset) {
414 kaddr = kmap_atomic(page, KM_USER0);
415 memset(kaddr + offset, 0,
416 PAGE_CACHE_SIZE - offset);
417 kunmap_atomic(kaddr, KM_USER0);
419 will_compress = 1;
422 if (start == 0) {
423 trans = btrfs_join_transaction(root, 1);
424 BUG_ON(IS_ERR(trans));
425 btrfs_set_trans_block_group(trans, inode);
426 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
428 /* lets try to make an inline extent */
429 if (ret || total_in < (actual_end - start)) {
430 /* we didn't compress the entire range, try
431 * to make an uncompressed inline extent.
433 ret = cow_file_range_inline(trans, root, inode,
434 start, end, 0, 0, NULL);
435 } else {
436 /* try making a compressed inline extent */
437 ret = cow_file_range_inline(trans, root, inode,
438 start, end,
439 total_compressed,
440 compress_type, pages);
442 if (ret == 0) {
444 * inline extent creation worked, we don't need
445 * to create any more async work items. Unlock
446 * and free up our temp pages.
448 extent_clear_unlock_delalloc(inode,
449 &BTRFS_I(inode)->io_tree,
450 start, end, NULL,
451 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
452 EXTENT_CLEAR_DELALLOC |
453 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
455 btrfs_end_transaction(trans, root);
456 goto free_pages_out;
458 btrfs_end_transaction(trans, root);
461 if (will_compress) {
463 * we aren't doing an inline extent round the compressed size
464 * up to a block size boundary so the allocator does sane
465 * things
467 total_compressed = (total_compressed + blocksize - 1) &
468 ~(blocksize - 1);
471 * one last check to make sure the compression is really a
472 * win, compare the page count read with the blocks on disk
474 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
475 ~(PAGE_CACHE_SIZE - 1);
476 if (total_compressed >= total_in) {
477 will_compress = 0;
478 } else {
479 num_bytes = total_in;
482 if (!will_compress && pages) {
484 * the compression code ran but failed to make things smaller,
485 * free any pages it allocated and our page pointer array
487 for (i = 0; i < nr_pages_ret; i++) {
488 WARN_ON(pages[i]->mapping);
489 page_cache_release(pages[i]);
491 kfree(pages);
492 pages = NULL;
493 total_compressed = 0;
494 nr_pages_ret = 0;
496 /* flag the file so we don't compress in the future */
497 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
498 !(BTRFS_I(inode)->force_compress)) {
499 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
502 if (will_compress) {
503 *num_added += 1;
505 /* the async work queues will take care of doing actual
506 * allocation on disk for these compressed pages,
507 * and will submit them to the elevator.
509 add_async_extent(async_cow, start, num_bytes,
510 total_compressed, pages, nr_pages_ret,
511 compress_type);
513 if (start + num_bytes < end) {
514 start += num_bytes;
515 pages = NULL;
516 cond_resched();
517 goto again;
519 } else {
520 cleanup_and_bail_uncompressed:
522 * No compression, but we still need to write the pages in
523 * the file we've been given so far. redirty the locked
524 * page if it corresponds to our extent and set things up
525 * for the async work queue to run cow_file_range to do
526 * the normal delalloc dance
528 if (page_offset(locked_page) >= start &&
529 page_offset(locked_page) <= end) {
530 __set_page_dirty_nobuffers(locked_page);
531 /* unlocked later on in the async handlers */
533 add_async_extent(async_cow, start, end - start + 1,
534 0, NULL, 0, BTRFS_COMPRESS_NONE);
535 *num_added += 1;
538 out:
539 return 0;
541 free_pages_out:
542 for (i = 0; i < nr_pages_ret; i++) {
543 WARN_ON(pages[i]->mapping);
544 page_cache_release(pages[i]);
546 kfree(pages);
548 goto out;
552 * phase two of compressed writeback. This is the ordered portion
553 * of the code, which only gets called in the order the work was
554 * queued. We walk all the async extents created by compress_file_range
555 * and send them down to the disk.
557 static noinline int submit_compressed_extents(struct inode *inode,
558 struct async_cow *async_cow)
560 struct async_extent *async_extent;
561 u64 alloc_hint = 0;
562 struct btrfs_trans_handle *trans;
563 struct btrfs_key ins;
564 struct extent_map *em;
565 struct btrfs_root *root = BTRFS_I(inode)->root;
566 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
567 struct extent_io_tree *io_tree;
568 int ret = 0;
570 if (list_empty(&async_cow->extents))
571 return 0;
574 while (!list_empty(&async_cow->extents)) {
575 async_extent = list_entry(async_cow->extents.next,
576 struct async_extent, list);
577 list_del(&async_extent->list);
579 io_tree = &BTRFS_I(inode)->io_tree;
581 retry:
582 /* did the compression code fall back to uncompressed IO? */
583 if (!async_extent->pages) {
584 int page_started = 0;
585 unsigned long nr_written = 0;
587 lock_extent(io_tree, async_extent->start,
588 async_extent->start +
589 async_extent->ram_size - 1, GFP_NOFS);
591 /* allocate blocks */
592 ret = cow_file_range(inode, async_cow->locked_page,
593 async_extent->start,
594 async_extent->start +
595 async_extent->ram_size - 1,
596 &page_started, &nr_written, 0);
599 * if page_started, cow_file_range inserted an
600 * inline extent and took care of all the unlocking
601 * and IO for us. Otherwise, we need to submit
602 * all those pages down to the drive.
604 if (!page_started && !ret)
605 extent_write_locked_range(io_tree,
606 inode, async_extent->start,
607 async_extent->start +
608 async_extent->ram_size - 1,
609 btrfs_get_extent,
610 WB_SYNC_ALL);
611 kfree(async_extent);
612 cond_resched();
613 continue;
616 lock_extent(io_tree, async_extent->start,
617 async_extent->start + async_extent->ram_size - 1,
618 GFP_NOFS);
620 trans = btrfs_join_transaction(root, 1);
621 BUG_ON(IS_ERR(trans));
622 ret = btrfs_reserve_extent(trans, root,
623 async_extent->compressed_size,
624 async_extent->compressed_size,
625 0, alloc_hint,
626 (u64)-1, &ins, 1);
627 btrfs_end_transaction(trans, root);
629 if (ret) {
630 int i;
631 for (i = 0; i < async_extent->nr_pages; i++) {
632 WARN_ON(async_extent->pages[i]->mapping);
633 page_cache_release(async_extent->pages[i]);
635 kfree(async_extent->pages);
636 async_extent->nr_pages = 0;
637 async_extent->pages = NULL;
638 unlock_extent(io_tree, async_extent->start,
639 async_extent->start +
640 async_extent->ram_size - 1, GFP_NOFS);
641 goto retry;
645 * here we're doing allocation and writeback of the
646 * compressed pages
648 btrfs_drop_extent_cache(inode, async_extent->start,
649 async_extent->start +
650 async_extent->ram_size - 1, 0);
652 em = alloc_extent_map(GFP_NOFS);
653 BUG_ON(!em);
654 em->start = async_extent->start;
655 em->len = async_extent->ram_size;
656 em->orig_start = em->start;
658 em->block_start = ins.objectid;
659 em->block_len = ins.offset;
660 em->bdev = root->fs_info->fs_devices->latest_bdev;
661 em->compress_type = async_extent->compress_type;
662 set_bit(EXTENT_FLAG_PINNED, &em->flags);
663 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
665 while (1) {
666 write_lock(&em_tree->lock);
667 ret = add_extent_mapping(em_tree, em);
668 write_unlock(&em_tree->lock);
669 if (ret != -EEXIST) {
670 free_extent_map(em);
671 break;
673 btrfs_drop_extent_cache(inode, async_extent->start,
674 async_extent->start +
675 async_extent->ram_size - 1, 0);
678 ret = btrfs_add_ordered_extent_compress(inode,
679 async_extent->start,
680 ins.objectid,
681 async_extent->ram_size,
682 ins.offset,
683 BTRFS_ORDERED_COMPRESSED,
684 async_extent->compress_type);
685 BUG_ON(ret);
688 * clear dirty, set writeback and unlock the pages.
690 extent_clear_unlock_delalloc(inode,
691 &BTRFS_I(inode)->io_tree,
692 async_extent->start,
693 async_extent->start +
694 async_extent->ram_size - 1,
695 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
696 EXTENT_CLEAR_UNLOCK |
697 EXTENT_CLEAR_DELALLOC |
698 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
700 ret = btrfs_submit_compressed_write(inode,
701 async_extent->start,
702 async_extent->ram_size,
703 ins.objectid,
704 ins.offset, async_extent->pages,
705 async_extent->nr_pages);
707 BUG_ON(ret);
708 alloc_hint = ins.objectid + ins.offset;
709 kfree(async_extent);
710 cond_resched();
713 return 0;
716 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
717 u64 num_bytes)
719 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
720 struct extent_map *em;
721 u64 alloc_hint = 0;
723 read_lock(&em_tree->lock);
724 em = search_extent_mapping(em_tree, start, num_bytes);
725 if (em) {
727 * if block start isn't an actual block number then find the
728 * first block in this inode and use that as a hint. If that
729 * block is also bogus then just don't worry about it.
731 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
732 free_extent_map(em);
733 em = search_extent_mapping(em_tree, 0, 0);
734 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
735 alloc_hint = em->block_start;
736 if (em)
737 free_extent_map(em);
738 } else {
739 alloc_hint = em->block_start;
740 free_extent_map(em);
743 read_unlock(&em_tree->lock);
745 return alloc_hint;
749 * when extent_io.c finds a delayed allocation range in the file,
750 * the call backs end up in this code. The basic idea is to
751 * allocate extents on disk for the range, and create ordered data structs
752 * in ram to track those extents.
754 * locked_page is the page that writepage had locked already. We use
755 * it to make sure we don't do extra locks or unlocks.
757 * *page_started is set to one if we unlock locked_page and do everything
758 * required to start IO on it. It may be clean and already done with
759 * IO when we return.
761 static noinline int cow_file_range(struct inode *inode,
762 struct page *locked_page,
763 u64 start, u64 end, int *page_started,
764 unsigned long *nr_written,
765 int unlock)
767 struct btrfs_root *root = BTRFS_I(inode)->root;
768 struct btrfs_trans_handle *trans;
769 u64 alloc_hint = 0;
770 u64 num_bytes;
771 unsigned long ram_size;
772 u64 disk_num_bytes;
773 u64 cur_alloc_size;
774 u64 blocksize = root->sectorsize;
775 struct btrfs_key ins;
776 struct extent_map *em;
777 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
778 int ret = 0;
780 BUG_ON(root == root->fs_info->tree_root);
781 trans = btrfs_join_transaction(root, 1);
782 BUG_ON(IS_ERR(trans));
783 btrfs_set_trans_block_group(trans, inode);
784 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
786 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
787 num_bytes = max(blocksize, num_bytes);
788 disk_num_bytes = num_bytes;
789 ret = 0;
791 if (start == 0) {
792 /* lets try to make an inline extent */
793 ret = cow_file_range_inline(trans, root, inode,
794 start, end, 0, 0, NULL);
795 if (ret == 0) {
796 extent_clear_unlock_delalloc(inode,
797 &BTRFS_I(inode)->io_tree,
798 start, end, NULL,
799 EXTENT_CLEAR_UNLOCK_PAGE |
800 EXTENT_CLEAR_UNLOCK |
801 EXTENT_CLEAR_DELALLOC |
802 EXTENT_CLEAR_DIRTY |
803 EXTENT_SET_WRITEBACK |
804 EXTENT_END_WRITEBACK);
806 *nr_written = *nr_written +
807 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
808 *page_started = 1;
809 ret = 0;
810 goto out;
814 BUG_ON(disk_num_bytes >
815 btrfs_super_total_bytes(&root->fs_info->super_copy));
817 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
818 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
820 while (disk_num_bytes > 0) {
821 unsigned long op;
823 cur_alloc_size = disk_num_bytes;
824 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
825 root->sectorsize, 0, alloc_hint,
826 (u64)-1, &ins, 1);
827 BUG_ON(ret);
829 em = alloc_extent_map(GFP_NOFS);
830 BUG_ON(!em);
831 em->start = start;
832 em->orig_start = em->start;
833 ram_size = ins.offset;
834 em->len = ins.offset;
836 em->block_start = ins.objectid;
837 em->block_len = ins.offset;
838 em->bdev = root->fs_info->fs_devices->latest_bdev;
839 set_bit(EXTENT_FLAG_PINNED, &em->flags);
841 while (1) {
842 write_lock(&em_tree->lock);
843 ret = add_extent_mapping(em_tree, em);
844 write_unlock(&em_tree->lock);
845 if (ret != -EEXIST) {
846 free_extent_map(em);
847 break;
849 btrfs_drop_extent_cache(inode, start,
850 start + ram_size - 1, 0);
853 cur_alloc_size = ins.offset;
854 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
855 ram_size, cur_alloc_size, 0);
856 BUG_ON(ret);
858 if (root->root_key.objectid ==
859 BTRFS_DATA_RELOC_TREE_OBJECTID) {
860 ret = btrfs_reloc_clone_csums(inode, start,
861 cur_alloc_size);
862 BUG_ON(ret);
865 if (disk_num_bytes < cur_alloc_size)
866 break;
868 /* we're not doing compressed IO, don't unlock the first
869 * page (which the caller expects to stay locked), don't
870 * clear any dirty bits and don't set any writeback bits
872 * Do set the Private2 bit so we know this page was properly
873 * setup for writepage
875 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
876 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
877 EXTENT_SET_PRIVATE2;
879 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
880 start, start + ram_size - 1,
881 locked_page, op);
882 disk_num_bytes -= cur_alloc_size;
883 num_bytes -= cur_alloc_size;
884 alloc_hint = ins.objectid + ins.offset;
885 start += cur_alloc_size;
887 out:
888 ret = 0;
889 btrfs_end_transaction(trans, root);
891 return ret;
895 * work queue call back to started compression on a file and pages
897 static noinline void async_cow_start(struct btrfs_work *work)
899 struct async_cow *async_cow;
900 int num_added = 0;
901 async_cow = container_of(work, struct async_cow, work);
903 compress_file_range(async_cow->inode, async_cow->locked_page,
904 async_cow->start, async_cow->end, async_cow,
905 &num_added);
906 if (num_added == 0)
907 async_cow->inode = NULL;
911 * work queue call back to submit previously compressed pages
913 static noinline void async_cow_submit(struct btrfs_work *work)
915 struct async_cow *async_cow;
916 struct btrfs_root *root;
917 unsigned long nr_pages;
919 async_cow = container_of(work, struct async_cow, work);
921 root = async_cow->root;
922 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
923 PAGE_CACHE_SHIFT;
925 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
927 if (atomic_read(&root->fs_info->async_delalloc_pages) <
928 5 * 1042 * 1024 &&
929 waitqueue_active(&root->fs_info->async_submit_wait))
930 wake_up(&root->fs_info->async_submit_wait);
932 if (async_cow->inode)
933 submit_compressed_extents(async_cow->inode, async_cow);
936 static noinline void async_cow_free(struct btrfs_work *work)
938 struct async_cow *async_cow;
939 async_cow = container_of(work, struct async_cow, work);
940 kfree(async_cow);
943 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
944 u64 start, u64 end, int *page_started,
945 unsigned long *nr_written)
947 struct async_cow *async_cow;
948 struct btrfs_root *root = BTRFS_I(inode)->root;
949 unsigned long nr_pages;
950 u64 cur_end;
951 int limit = 10 * 1024 * 1042;
953 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
954 1, 0, NULL, GFP_NOFS);
955 while (start < end) {
956 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
957 async_cow->inode = inode;
958 async_cow->root = root;
959 async_cow->locked_page = locked_page;
960 async_cow->start = start;
962 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
963 cur_end = end;
964 else
965 cur_end = min(end, start + 512 * 1024 - 1);
967 async_cow->end = cur_end;
968 INIT_LIST_HEAD(&async_cow->extents);
970 async_cow->work.func = async_cow_start;
971 async_cow->work.ordered_func = async_cow_submit;
972 async_cow->work.ordered_free = async_cow_free;
973 async_cow->work.flags = 0;
975 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
976 PAGE_CACHE_SHIFT;
977 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
979 btrfs_queue_worker(&root->fs_info->delalloc_workers,
980 &async_cow->work);
982 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
983 wait_event(root->fs_info->async_submit_wait,
984 (atomic_read(&root->fs_info->async_delalloc_pages) <
985 limit));
988 while (atomic_read(&root->fs_info->async_submit_draining) &&
989 atomic_read(&root->fs_info->async_delalloc_pages)) {
990 wait_event(root->fs_info->async_submit_wait,
991 (atomic_read(&root->fs_info->async_delalloc_pages) ==
992 0));
995 *nr_written += nr_pages;
996 start = cur_end + 1;
998 *page_started = 1;
999 return 0;
1002 static noinline int csum_exist_in_range(struct btrfs_root *root,
1003 u64 bytenr, u64 num_bytes)
1005 int ret;
1006 struct btrfs_ordered_sum *sums;
1007 LIST_HEAD(list);
1009 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1010 bytenr + num_bytes - 1, &list);
1011 if (ret == 0 && list_empty(&list))
1012 return 0;
1014 while (!list_empty(&list)) {
1015 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1016 list_del(&sums->list);
1017 kfree(sums);
1019 return 1;
1023 * when nowcow writeback call back. This checks for snapshots or COW copies
1024 * of the extents that exist in the file, and COWs the file as required.
1026 * If no cow copies or snapshots exist, we write directly to the existing
1027 * blocks on disk
1029 static noinline int run_delalloc_nocow(struct inode *inode,
1030 struct page *locked_page,
1031 u64 start, u64 end, int *page_started, int force,
1032 unsigned long *nr_written)
1034 struct btrfs_root *root = BTRFS_I(inode)->root;
1035 struct btrfs_trans_handle *trans;
1036 struct extent_buffer *leaf;
1037 struct btrfs_path *path;
1038 struct btrfs_file_extent_item *fi;
1039 struct btrfs_key found_key;
1040 u64 cow_start;
1041 u64 cur_offset;
1042 u64 extent_end;
1043 u64 extent_offset;
1044 u64 disk_bytenr;
1045 u64 num_bytes;
1046 int extent_type;
1047 int ret;
1048 int type;
1049 int nocow;
1050 int check_prev = 1;
1051 bool nolock = false;
1053 path = btrfs_alloc_path();
1054 BUG_ON(!path);
1055 if (root == root->fs_info->tree_root) {
1056 nolock = true;
1057 trans = btrfs_join_transaction_nolock(root, 1);
1058 } else {
1059 trans = btrfs_join_transaction(root, 1);
1061 BUG_ON(IS_ERR(trans));
1063 cow_start = (u64)-1;
1064 cur_offset = start;
1065 while (1) {
1066 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1067 cur_offset, 0);
1068 BUG_ON(ret < 0);
1069 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1070 leaf = path->nodes[0];
1071 btrfs_item_key_to_cpu(leaf, &found_key,
1072 path->slots[0] - 1);
1073 if (found_key.objectid == inode->i_ino &&
1074 found_key.type == BTRFS_EXTENT_DATA_KEY)
1075 path->slots[0]--;
1077 check_prev = 0;
1078 next_slot:
1079 leaf = path->nodes[0];
1080 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1081 ret = btrfs_next_leaf(root, path);
1082 if (ret < 0)
1083 BUG_ON(1);
1084 if (ret > 0)
1085 break;
1086 leaf = path->nodes[0];
1089 nocow = 0;
1090 disk_bytenr = 0;
1091 num_bytes = 0;
1092 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1094 if (found_key.objectid > inode->i_ino ||
1095 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1096 found_key.offset > end)
1097 break;
1099 if (found_key.offset > cur_offset) {
1100 extent_end = found_key.offset;
1101 extent_type = 0;
1102 goto out_check;
1105 fi = btrfs_item_ptr(leaf, path->slots[0],
1106 struct btrfs_file_extent_item);
1107 extent_type = btrfs_file_extent_type(leaf, fi);
1109 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1110 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1111 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1112 extent_offset = btrfs_file_extent_offset(leaf, fi);
1113 extent_end = found_key.offset +
1114 btrfs_file_extent_num_bytes(leaf, fi);
1115 if (extent_end <= start) {
1116 path->slots[0]++;
1117 goto next_slot;
1119 if (disk_bytenr == 0)
1120 goto out_check;
1121 if (btrfs_file_extent_compression(leaf, fi) ||
1122 btrfs_file_extent_encryption(leaf, fi) ||
1123 btrfs_file_extent_other_encoding(leaf, fi))
1124 goto out_check;
1125 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1126 goto out_check;
1127 if (btrfs_extent_readonly(root, disk_bytenr))
1128 goto out_check;
1129 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1130 found_key.offset -
1131 extent_offset, disk_bytenr))
1132 goto out_check;
1133 disk_bytenr += extent_offset;
1134 disk_bytenr += cur_offset - found_key.offset;
1135 num_bytes = min(end + 1, extent_end) - cur_offset;
1137 * force cow if csum exists in the range.
1138 * this ensure that csum for a given extent are
1139 * either valid or do not exist.
1141 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1142 goto out_check;
1143 nocow = 1;
1144 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1145 extent_end = found_key.offset +
1146 btrfs_file_extent_inline_len(leaf, fi);
1147 extent_end = ALIGN(extent_end, root->sectorsize);
1148 } else {
1149 BUG_ON(1);
1151 out_check:
1152 if (extent_end <= start) {
1153 path->slots[0]++;
1154 goto next_slot;
1156 if (!nocow) {
1157 if (cow_start == (u64)-1)
1158 cow_start = cur_offset;
1159 cur_offset = extent_end;
1160 if (cur_offset > end)
1161 break;
1162 path->slots[0]++;
1163 goto next_slot;
1166 btrfs_release_path(root, path);
1167 if (cow_start != (u64)-1) {
1168 ret = cow_file_range(inode, locked_page, cow_start,
1169 found_key.offset - 1, page_started,
1170 nr_written, 1);
1171 BUG_ON(ret);
1172 cow_start = (u64)-1;
1175 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1176 struct extent_map *em;
1177 struct extent_map_tree *em_tree;
1178 em_tree = &BTRFS_I(inode)->extent_tree;
1179 em = alloc_extent_map(GFP_NOFS);
1180 BUG_ON(!em);
1181 em->start = cur_offset;
1182 em->orig_start = em->start;
1183 em->len = num_bytes;
1184 em->block_len = num_bytes;
1185 em->block_start = disk_bytenr;
1186 em->bdev = root->fs_info->fs_devices->latest_bdev;
1187 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1188 while (1) {
1189 write_lock(&em_tree->lock);
1190 ret = add_extent_mapping(em_tree, em);
1191 write_unlock(&em_tree->lock);
1192 if (ret != -EEXIST) {
1193 free_extent_map(em);
1194 break;
1196 btrfs_drop_extent_cache(inode, em->start,
1197 em->start + em->len - 1, 0);
1199 type = BTRFS_ORDERED_PREALLOC;
1200 } else {
1201 type = BTRFS_ORDERED_NOCOW;
1204 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1205 num_bytes, num_bytes, type);
1206 BUG_ON(ret);
1208 if (root->root_key.objectid ==
1209 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1210 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1211 num_bytes);
1212 BUG_ON(ret);
1215 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1216 cur_offset, cur_offset + num_bytes - 1,
1217 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1218 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1219 EXTENT_SET_PRIVATE2);
1220 cur_offset = extent_end;
1221 if (cur_offset > end)
1222 break;
1224 btrfs_release_path(root, path);
1226 if (cur_offset <= end && cow_start == (u64)-1)
1227 cow_start = cur_offset;
1228 if (cow_start != (u64)-1) {
1229 ret = cow_file_range(inode, locked_page, cow_start, end,
1230 page_started, nr_written, 1);
1231 BUG_ON(ret);
1234 if (nolock) {
1235 ret = btrfs_end_transaction_nolock(trans, root);
1236 BUG_ON(ret);
1237 } else {
1238 ret = btrfs_end_transaction(trans, root);
1239 BUG_ON(ret);
1241 btrfs_free_path(path);
1242 return 0;
1246 * extent_io.c call back to do delayed allocation processing
1248 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1249 u64 start, u64 end, int *page_started,
1250 unsigned long *nr_written)
1252 int ret;
1253 struct btrfs_root *root = BTRFS_I(inode)->root;
1255 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1256 ret = run_delalloc_nocow(inode, locked_page, start, end,
1257 page_started, 1, nr_written);
1258 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1259 ret = run_delalloc_nocow(inode, locked_page, start, end,
1260 page_started, 0, nr_written);
1261 else if (!btrfs_test_opt(root, COMPRESS) &&
1262 !(BTRFS_I(inode)->force_compress) &&
1263 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1264 ret = cow_file_range(inode, locked_page, start, end,
1265 page_started, nr_written, 1);
1266 else
1267 ret = cow_file_range_async(inode, locked_page, start, end,
1268 page_started, nr_written);
1269 return ret;
1272 static int btrfs_split_extent_hook(struct inode *inode,
1273 struct extent_state *orig, u64 split)
1275 /* not delalloc, ignore it */
1276 if (!(orig->state & EXTENT_DELALLOC))
1277 return 0;
1279 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1280 return 0;
1284 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1285 * extents so we can keep track of new extents that are just merged onto old
1286 * extents, such as when we are doing sequential writes, so we can properly
1287 * account for the metadata space we'll need.
1289 static int btrfs_merge_extent_hook(struct inode *inode,
1290 struct extent_state *new,
1291 struct extent_state *other)
1293 /* not delalloc, ignore it */
1294 if (!(other->state & EXTENT_DELALLOC))
1295 return 0;
1297 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1298 return 0;
1302 * extent_io.c set_bit_hook, used to track delayed allocation
1303 * bytes in this file, and to maintain the list of inodes that
1304 * have pending delalloc work to be done.
1306 static int btrfs_set_bit_hook(struct inode *inode,
1307 struct extent_state *state, int *bits)
1311 * set_bit and clear bit hooks normally require _irqsave/restore
1312 * but in this case, we are only testeing for the DELALLOC
1313 * bit, which is only set or cleared with irqs on
1315 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1316 struct btrfs_root *root = BTRFS_I(inode)->root;
1317 u64 len = state->end + 1 - state->start;
1318 int do_list = (root->root_key.objectid !=
1319 BTRFS_ROOT_TREE_OBJECTID);
1321 if (*bits & EXTENT_FIRST_DELALLOC)
1322 *bits &= ~EXTENT_FIRST_DELALLOC;
1323 else
1324 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1326 spin_lock(&root->fs_info->delalloc_lock);
1327 BTRFS_I(inode)->delalloc_bytes += len;
1328 root->fs_info->delalloc_bytes += len;
1329 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1330 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1331 &root->fs_info->delalloc_inodes);
1333 spin_unlock(&root->fs_info->delalloc_lock);
1335 return 0;
1339 * extent_io.c clear_bit_hook, see set_bit_hook for why
1341 static int btrfs_clear_bit_hook(struct inode *inode,
1342 struct extent_state *state, int *bits)
1345 * set_bit and clear bit hooks normally require _irqsave/restore
1346 * but in this case, we are only testeing for the DELALLOC
1347 * bit, which is only set or cleared with irqs on
1349 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1350 struct btrfs_root *root = BTRFS_I(inode)->root;
1351 u64 len = state->end + 1 - state->start;
1352 int do_list = (root->root_key.objectid !=
1353 BTRFS_ROOT_TREE_OBJECTID);
1355 if (*bits & EXTENT_FIRST_DELALLOC)
1356 *bits &= ~EXTENT_FIRST_DELALLOC;
1357 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1358 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1360 if (*bits & EXTENT_DO_ACCOUNTING)
1361 btrfs_delalloc_release_metadata(inode, len);
1363 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1364 && do_list)
1365 btrfs_free_reserved_data_space(inode, len);
1367 spin_lock(&root->fs_info->delalloc_lock);
1368 root->fs_info->delalloc_bytes -= len;
1369 BTRFS_I(inode)->delalloc_bytes -= len;
1371 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1372 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1373 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1375 spin_unlock(&root->fs_info->delalloc_lock);
1377 return 0;
1381 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1382 * we don't create bios that span stripes or chunks
1384 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1385 size_t size, struct bio *bio,
1386 unsigned long bio_flags)
1388 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1389 struct btrfs_mapping_tree *map_tree;
1390 u64 logical = (u64)bio->bi_sector << 9;
1391 u64 length = 0;
1392 u64 map_length;
1393 int ret;
1395 if (bio_flags & EXTENT_BIO_COMPRESSED)
1396 return 0;
1398 length = bio->bi_size;
1399 map_tree = &root->fs_info->mapping_tree;
1400 map_length = length;
1401 ret = btrfs_map_block(map_tree, READ, logical,
1402 &map_length, NULL, 0);
1404 if (map_length < length + size)
1405 return 1;
1406 return ret;
1410 * in order to insert checksums into the metadata in large chunks,
1411 * we wait until bio submission time. All the pages in the bio are
1412 * checksummed and sums are attached onto the ordered extent record.
1414 * At IO completion time the cums attached on the ordered extent record
1415 * are inserted into the btree
1417 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1418 struct bio *bio, int mirror_num,
1419 unsigned long bio_flags,
1420 u64 bio_offset)
1422 struct btrfs_root *root = BTRFS_I(inode)->root;
1423 int ret = 0;
1425 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1426 BUG_ON(ret);
1427 return 0;
1431 * in order to insert checksums into the metadata in large chunks,
1432 * we wait until bio submission time. All the pages in the bio are
1433 * checksummed and sums are attached onto the ordered extent record.
1435 * At IO completion time the cums attached on the ordered extent record
1436 * are inserted into the btree
1438 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1439 int mirror_num, unsigned long bio_flags,
1440 u64 bio_offset)
1442 struct btrfs_root *root = BTRFS_I(inode)->root;
1443 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1447 * extent_io.c submission hook. This does the right thing for csum calculation
1448 * on write, or reading the csums from the tree before a read
1450 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1451 int mirror_num, unsigned long bio_flags,
1452 u64 bio_offset)
1454 struct btrfs_root *root = BTRFS_I(inode)->root;
1455 int ret = 0;
1456 int skip_sum;
1458 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1460 if (root == root->fs_info->tree_root)
1461 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1462 else
1463 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1464 BUG_ON(ret);
1466 if (!(rw & REQ_WRITE)) {
1467 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1468 return btrfs_submit_compressed_read(inode, bio,
1469 mirror_num, bio_flags);
1470 } else if (!skip_sum) {
1471 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1472 if (ret)
1473 return ret;
1475 goto mapit;
1476 } else if (!skip_sum) {
1477 /* csum items have already been cloned */
1478 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1479 goto mapit;
1480 /* we're doing a write, do the async checksumming */
1481 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1482 inode, rw, bio, mirror_num,
1483 bio_flags, bio_offset,
1484 __btrfs_submit_bio_start,
1485 __btrfs_submit_bio_done);
1488 mapit:
1489 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1493 * given a list of ordered sums record them in the inode. This happens
1494 * at IO completion time based on sums calculated at bio submission time.
1496 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1497 struct inode *inode, u64 file_offset,
1498 struct list_head *list)
1500 struct btrfs_ordered_sum *sum;
1502 btrfs_set_trans_block_group(trans, inode);
1504 list_for_each_entry(sum, list, list) {
1505 btrfs_csum_file_blocks(trans,
1506 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1508 return 0;
1511 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1512 struct extent_state **cached_state)
1514 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1515 WARN_ON(1);
1516 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1517 cached_state, GFP_NOFS);
1520 /* see btrfs_writepage_start_hook for details on why this is required */
1521 struct btrfs_writepage_fixup {
1522 struct page *page;
1523 struct btrfs_work work;
1526 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1528 struct btrfs_writepage_fixup *fixup;
1529 struct btrfs_ordered_extent *ordered;
1530 struct extent_state *cached_state = NULL;
1531 struct page *page;
1532 struct inode *inode;
1533 u64 page_start;
1534 u64 page_end;
1536 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1537 page = fixup->page;
1538 again:
1539 lock_page(page);
1540 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1541 ClearPageChecked(page);
1542 goto out_page;
1545 inode = page->mapping->host;
1546 page_start = page_offset(page);
1547 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1549 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1550 &cached_state, GFP_NOFS);
1552 /* already ordered? We're done */
1553 if (PagePrivate2(page))
1554 goto out;
1556 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1557 if (ordered) {
1558 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1559 page_end, &cached_state, GFP_NOFS);
1560 unlock_page(page);
1561 btrfs_start_ordered_extent(inode, ordered, 1);
1562 goto again;
1565 BUG();
1566 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1567 ClearPageChecked(page);
1568 out:
1569 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1570 &cached_state, GFP_NOFS);
1571 out_page:
1572 unlock_page(page);
1573 page_cache_release(page);
1574 kfree(fixup);
1578 * There are a few paths in the higher layers of the kernel that directly
1579 * set the page dirty bit without asking the filesystem if it is a
1580 * good idea. This causes problems because we want to make sure COW
1581 * properly happens and the data=ordered rules are followed.
1583 * In our case any range that doesn't have the ORDERED bit set
1584 * hasn't been properly setup for IO. We kick off an async process
1585 * to fix it up. The async helper will wait for ordered extents, set
1586 * the delalloc bit and make it safe to write the page.
1588 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1590 struct inode *inode = page->mapping->host;
1591 struct btrfs_writepage_fixup *fixup;
1592 struct btrfs_root *root = BTRFS_I(inode)->root;
1594 /* this page is properly in the ordered list */
1595 if (TestClearPagePrivate2(page))
1596 return 0;
1598 if (PageChecked(page))
1599 return -EAGAIN;
1601 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1602 if (!fixup)
1603 return -EAGAIN;
1605 SetPageChecked(page);
1606 page_cache_get(page);
1607 fixup->work.func = btrfs_writepage_fixup_worker;
1608 fixup->page = page;
1609 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1610 return -EAGAIN;
1613 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1614 struct inode *inode, u64 file_pos,
1615 u64 disk_bytenr, u64 disk_num_bytes,
1616 u64 num_bytes, u64 ram_bytes,
1617 u8 compression, u8 encryption,
1618 u16 other_encoding, int extent_type)
1620 struct btrfs_root *root = BTRFS_I(inode)->root;
1621 struct btrfs_file_extent_item *fi;
1622 struct btrfs_path *path;
1623 struct extent_buffer *leaf;
1624 struct btrfs_key ins;
1625 u64 hint;
1626 int ret;
1628 path = btrfs_alloc_path();
1629 BUG_ON(!path);
1631 path->leave_spinning = 1;
1634 * we may be replacing one extent in the tree with another.
1635 * The new extent is pinned in the extent map, and we don't want
1636 * to drop it from the cache until it is completely in the btree.
1638 * So, tell btrfs_drop_extents to leave this extent in the cache.
1639 * the caller is expected to unpin it and allow it to be merged
1640 * with the others.
1642 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1643 &hint, 0);
1644 BUG_ON(ret);
1646 ins.objectid = inode->i_ino;
1647 ins.offset = file_pos;
1648 ins.type = BTRFS_EXTENT_DATA_KEY;
1649 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1650 BUG_ON(ret);
1651 leaf = path->nodes[0];
1652 fi = btrfs_item_ptr(leaf, path->slots[0],
1653 struct btrfs_file_extent_item);
1654 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1655 btrfs_set_file_extent_type(leaf, fi, extent_type);
1656 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1657 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1658 btrfs_set_file_extent_offset(leaf, fi, 0);
1659 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1660 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1661 btrfs_set_file_extent_compression(leaf, fi, compression);
1662 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1663 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1665 btrfs_unlock_up_safe(path, 1);
1666 btrfs_set_lock_blocking(leaf);
1668 btrfs_mark_buffer_dirty(leaf);
1670 inode_add_bytes(inode, num_bytes);
1672 ins.objectid = disk_bytenr;
1673 ins.offset = disk_num_bytes;
1674 ins.type = BTRFS_EXTENT_ITEM_KEY;
1675 ret = btrfs_alloc_reserved_file_extent(trans, root,
1676 root->root_key.objectid,
1677 inode->i_ino, file_pos, &ins);
1678 BUG_ON(ret);
1679 btrfs_free_path(path);
1681 return 0;
1685 * helper function for btrfs_finish_ordered_io, this
1686 * just reads in some of the csum leaves to prime them into ram
1687 * before we start the transaction. It limits the amount of btree
1688 * reads required while inside the transaction.
1690 /* as ordered data IO finishes, this gets called so we can finish
1691 * an ordered extent if the range of bytes in the file it covers are
1692 * fully written.
1694 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1696 struct btrfs_root *root = BTRFS_I(inode)->root;
1697 struct btrfs_trans_handle *trans = NULL;
1698 struct btrfs_ordered_extent *ordered_extent = NULL;
1699 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1700 struct extent_state *cached_state = NULL;
1701 int compress_type = 0;
1702 int ret;
1703 bool nolock = false;
1705 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1706 end - start + 1);
1707 if (!ret)
1708 return 0;
1709 BUG_ON(!ordered_extent);
1711 nolock = (root == root->fs_info->tree_root);
1713 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1714 BUG_ON(!list_empty(&ordered_extent->list));
1715 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1716 if (!ret) {
1717 if (nolock)
1718 trans = btrfs_join_transaction_nolock(root, 1);
1719 else
1720 trans = btrfs_join_transaction(root, 1);
1721 BUG_ON(IS_ERR(trans));
1722 btrfs_set_trans_block_group(trans, inode);
1723 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1724 ret = btrfs_update_inode(trans, root, inode);
1725 BUG_ON(ret);
1727 goto out;
1730 lock_extent_bits(io_tree, ordered_extent->file_offset,
1731 ordered_extent->file_offset + ordered_extent->len - 1,
1732 0, &cached_state, GFP_NOFS);
1734 if (nolock)
1735 trans = btrfs_join_transaction_nolock(root, 1);
1736 else
1737 trans = btrfs_join_transaction(root, 1);
1738 BUG_ON(IS_ERR(trans));
1739 btrfs_set_trans_block_group(trans, inode);
1740 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1742 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1743 compress_type = ordered_extent->compress_type;
1744 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1745 BUG_ON(compress_type);
1746 ret = btrfs_mark_extent_written(trans, inode,
1747 ordered_extent->file_offset,
1748 ordered_extent->file_offset +
1749 ordered_extent->len);
1750 BUG_ON(ret);
1751 } else {
1752 BUG_ON(root == root->fs_info->tree_root);
1753 ret = insert_reserved_file_extent(trans, inode,
1754 ordered_extent->file_offset,
1755 ordered_extent->start,
1756 ordered_extent->disk_len,
1757 ordered_extent->len,
1758 ordered_extent->len,
1759 compress_type, 0, 0,
1760 BTRFS_FILE_EXTENT_REG);
1761 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1762 ordered_extent->file_offset,
1763 ordered_extent->len);
1764 BUG_ON(ret);
1766 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1767 ordered_extent->file_offset +
1768 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1770 add_pending_csums(trans, inode, ordered_extent->file_offset,
1771 &ordered_extent->list);
1773 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1774 if (!ret) {
1775 ret = btrfs_update_inode(trans, root, inode);
1776 BUG_ON(ret);
1778 ret = 0;
1779 out:
1780 if (nolock) {
1781 if (trans)
1782 btrfs_end_transaction_nolock(trans, root);
1783 } else {
1784 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1785 if (trans)
1786 btrfs_end_transaction(trans, root);
1789 /* once for us */
1790 btrfs_put_ordered_extent(ordered_extent);
1791 /* once for the tree */
1792 btrfs_put_ordered_extent(ordered_extent);
1794 return 0;
1797 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1798 struct extent_state *state, int uptodate)
1800 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1802 ClearPagePrivate2(page);
1803 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1807 * When IO fails, either with EIO or csum verification fails, we
1808 * try other mirrors that might have a good copy of the data. This
1809 * io_failure_record is used to record state as we go through all the
1810 * mirrors. If another mirror has good data, the page is set up to date
1811 * and things continue. If a good mirror can't be found, the original
1812 * bio end_io callback is called to indicate things have failed.
1814 struct io_failure_record {
1815 struct page *page;
1816 u64 start;
1817 u64 len;
1818 u64 logical;
1819 unsigned long bio_flags;
1820 int last_mirror;
1823 static int btrfs_io_failed_hook(struct bio *failed_bio,
1824 struct page *page, u64 start, u64 end,
1825 struct extent_state *state)
1827 struct io_failure_record *failrec = NULL;
1828 u64 private;
1829 struct extent_map *em;
1830 struct inode *inode = page->mapping->host;
1831 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1832 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1833 struct bio *bio;
1834 int num_copies;
1835 int ret;
1836 int rw;
1837 u64 logical;
1839 ret = get_state_private(failure_tree, start, &private);
1840 if (ret) {
1841 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1842 if (!failrec)
1843 return -ENOMEM;
1844 failrec->start = start;
1845 failrec->len = end - start + 1;
1846 failrec->last_mirror = 0;
1847 failrec->bio_flags = 0;
1849 read_lock(&em_tree->lock);
1850 em = lookup_extent_mapping(em_tree, start, failrec->len);
1851 if (em->start > start || em->start + em->len < start) {
1852 free_extent_map(em);
1853 em = NULL;
1855 read_unlock(&em_tree->lock);
1857 if (!em || IS_ERR(em)) {
1858 kfree(failrec);
1859 return -EIO;
1861 logical = start - em->start;
1862 logical = em->block_start + logical;
1863 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1864 logical = em->block_start;
1865 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1866 extent_set_compress_type(&failrec->bio_flags,
1867 em->compress_type);
1869 failrec->logical = logical;
1870 free_extent_map(em);
1871 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1872 EXTENT_DIRTY, GFP_NOFS);
1873 set_state_private(failure_tree, start,
1874 (u64)(unsigned long)failrec);
1875 } else {
1876 failrec = (struct io_failure_record *)(unsigned long)private;
1878 num_copies = btrfs_num_copies(
1879 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1880 failrec->logical, failrec->len);
1881 failrec->last_mirror++;
1882 if (!state) {
1883 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1884 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1885 failrec->start,
1886 EXTENT_LOCKED);
1887 if (state && state->start != failrec->start)
1888 state = NULL;
1889 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1891 if (!state || failrec->last_mirror > num_copies) {
1892 set_state_private(failure_tree, failrec->start, 0);
1893 clear_extent_bits(failure_tree, failrec->start,
1894 failrec->start + failrec->len - 1,
1895 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1896 kfree(failrec);
1897 return -EIO;
1899 bio = bio_alloc(GFP_NOFS, 1);
1900 bio->bi_private = state;
1901 bio->bi_end_io = failed_bio->bi_end_io;
1902 bio->bi_sector = failrec->logical >> 9;
1903 bio->bi_bdev = failed_bio->bi_bdev;
1904 bio->bi_size = 0;
1906 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1907 if (failed_bio->bi_rw & REQ_WRITE)
1908 rw = WRITE;
1909 else
1910 rw = READ;
1912 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1913 failrec->last_mirror,
1914 failrec->bio_flags, 0);
1915 return ret;
1919 * each time an IO finishes, we do a fast check in the IO failure tree
1920 * to see if we need to process or clean up an io_failure_record
1922 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1924 u64 private;
1925 u64 private_failure;
1926 struct io_failure_record *failure;
1927 int ret;
1929 private = 0;
1930 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1931 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1932 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1933 start, &private_failure);
1934 if (ret == 0) {
1935 failure = (struct io_failure_record *)(unsigned long)
1936 private_failure;
1937 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1938 failure->start, 0);
1939 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1940 failure->start,
1941 failure->start + failure->len - 1,
1942 EXTENT_DIRTY | EXTENT_LOCKED,
1943 GFP_NOFS);
1944 kfree(failure);
1947 return 0;
1951 * when reads are done, we need to check csums to verify the data is correct
1952 * if there's a match, we allow the bio to finish. If not, we go through
1953 * the io_failure_record routines to find good copies
1955 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1956 struct extent_state *state)
1958 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1959 struct inode *inode = page->mapping->host;
1960 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1961 char *kaddr;
1962 u64 private = ~(u32)0;
1963 int ret;
1964 struct btrfs_root *root = BTRFS_I(inode)->root;
1965 u32 csum = ~(u32)0;
1967 if (PageChecked(page)) {
1968 ClearPageChecked(page);
1969 goto good;
1972 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1973 return 0;
1975 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1976 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1977 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1978 GFP_NOFS);
1979 return 0;
1982 if (state && state->start == start) {
1983 private = state->private;
1984 ret = 0;
1985 } else {
1986 ret = get_state_private(io_tree, start, &private);
1988 kaddr = kmap_atomic(page, KM_USER0);
1989 if (ret)
1990 goto zeroit;
1992 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1993 btrfs_csum_final(csum, (char *)&csum);
1994 if (csum != private)
1995 goto zeroit;
1997 kunmap_atomic(kaddr, KM_USER0);
1998 good:
1999 /* if the io failure tree for this inode is non-empty,
2000 * check to see if we've recovered from a failed IO
2002 btrfs_clean_io_failures(inode, start);
2003 return 0;
2005 zeroit:
2006 if (printk_ratelimit()) {
2007 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2008 "private %llu\n", page->mapping->host->i_ino,
2009 (unsigned long long)start, csum,
2010 (unsigned long long)private);
2012 memset(kaddr + offset, 1, end - start + 1);
2013 flush_dcache_page(page);
2014 kunmap_atomic(kaddr, KM_USER0);
2015 if (private == 0)
2016 return 0;
2017 return -EIO;
2020 struct delayed_iput {
2021 struct list_head list;
2022 struct inode *inode;
2025 void btrfs_add_delayed_iput(struct inode *inode)
2027 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2028 struct delayed_iput *delayed;
2030 if (atomic_add_unless(&inode->i_count, -1, 1))
2031 return;
2033 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2034 delayed->inode = inode;
2036 spin_lock(&fs_info->delayed_iput_lock);
2037 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2038 spin_unlock(&fs_info->delayed_iput_lock);
2041 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2043 LIST_HEAD(list);
2044 struct btrfs_fs_info *fs_info = root->fs_info;
2045 struct delayed_iput *delayed;
2046 int empty;
2048 spin_lock(&fs_info->delayed_iput_lock);
2049 empty = list_empty(&fs_info->delayed_iputs);
2050 spin_unlock(&fs_info->delayed_iput_lock);
2051 if (empty)
2052 return;
2054 down_read(&root->fs_info->cleanup_work_sem);
2055 spin_lock(&fs_info->delayed_iput_lock);
2056 list_splice_init(&fs_info->delayed_iputs, &list);
2057 spin_unlock(&fs_info->delayed_iput_lock);
2059 while (!list_empty(&list)) {
2060 delayed = list_entry(list.next, struct delayed_iput, list);
2061 list_del(&delayed->list);
2062 iput(delayed->inode);
2063 kfree(delayed);
2065 up_read(&root->fs_info->cleanup_work_sem);
2069 * calculate extra metadata reservation when snapshotting a subvolume
2070 * contains orphan files.
2072 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2073 struct btrfs_pending_snapshot *pending,
2074 u64 *bytes_to_reserve)
2076 struct btrfs_root *root;
2077 struct btrfs_block_rsv *block_rsv;
2078 u64 num_bytes;
2079 int index;
2081 root = pending->root;
2082 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2083 return;
2085 block_rsv = root->orphan_block_rsv;
2087 /* orphan block reservation for the snapshot */
2088 num_bytes = block_rsv->size;
2091 * after the snapshot is created, COWing tree blocks may use more
2092 * space than it frees. So we should make sure there is enough
2093 * reserved space.
2095 index = trans->transid & 0x1;
2096 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2097 num_bytes += block_rsv->size -
2098 (block_rsv->reserved + block_rsv->freed[index]);
2101 *bytes_to_reserve += num_bytes;
2104 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2105 struct btrfs_pending_snapshot *pending)
2107 struct btrfs_root *root = pending->root;
2108 struct btrfs_root *snap = pending->snap;
2109 struct btrfs_block_rsv *block_rsv;
2110 u64 num_bytes;
2111 int index;
2112 int ret;
2114 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2115 return;
2117 /* refill source subvolume's orphan block reservation */
2118 block_rsv = root->orphan_block_rsv;
2119 index = trans->transid & 0x1;
2120 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2121 num_bytes = block_rsv->size -
2122 (block_rsv->reserved + block_rsv->freed[index]);
2123 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2124 root->orphan_block_rsv,
2125 num_bytes);
2126 BUG_ON(ret);
2129 /* setup orphan block reservation for the snapshot */
2130 block_rsv = btrfs_alloc_block_rsv(snap);
2131 BUG_ON(!block_rsv);
2133 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2134 snap->orphan_block_rsv = block_rsv;
2136 num_bytes = root->orphan_block_rsv->size;
2137 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2138 block_rsv, num_bytes);
2139 BUG_ON(ret);
2141 #if 0
2142 /* insert orphan item for the snapshot */
2143 WARN_ON(!root->orphan_item_inserted);
2144 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2145 snap->root_key.objectid);
2146 BUG_ON(ret);
2147 snap->orphan_item_inserted = 1;
2148 #endif
2151 enum btrfs_orphan_cleanup_state {
2152 ORPHAN_CLEANUP_STARTED = 1,
2153 ORPHAN_CLEANUP_DONE = 2,
2157 * This is called in transaction commmit time. If there are no orphan
2158 * files in the subvolume, it removes orphan item and frees block_rsv
2159 * structure.
2161 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2162 struct btrfs_root *root)
2164 int ret;
2166 if (!list_empty(&root->orphan_list) ||
2167 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2168 return;
2170 if (root->orphan_item_inserted &&
2171 btrfs_root_refs(&root->root_item) > 0) {
2172 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2173 root->root_key.objectid);
2174 BUG_ON(ret);
2175 root->orphan_item_inserted = 0;
2178 if (root->orphan_block_rsv) {
2179 WARN_ON(root->orphan_block_rsv->size > 0);
2180 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2181 root->orphan_block_rsv = NULL;
2186 * This creates an orphan entry for the given inode in case something goes
2187 * wrong in the middle of an unlink/truncate.
2189 * NOTE: caller of this function should reserve 5 units of metadata for
2190 * this function.
2192 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2194 struct btrfs_root *root = BTRFS_I(inode)->root;
2195 struct btrfs_block_rsv *block_rsv = NULL;
2196 int reserve = 0;
2197 int insert = 0;
2198 int ret;
2200 if (!root->orphan_block_rsv) {
2201 block_rsv = btrfs_alloc_block_rsv(root);
2202 BUG_ON(!block_rsv);
2205 spin_lock(&root->orphan_lock);
2206 if (!root->orphan_block_rsv) {
2207 root->orphan_block_rsv = block_rsv;
2208 } else if (block_rsv) {
2209 btrfs_free_block_rsv(root, block_rsv);
2210 block_rsv = NULL;
2213 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2214 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2215 #if 0
2217 * For proper ENOSPC handling, we should do orphan
2218 * cleanup when mounting. But this introduces backward
2219 * compatibility issue.
2221 if (!xchg(&root->orphan_item_inserted, 1))
2222 insert = 2;
2223 else
2224 insert = 1;
2225 #endif
2226 insert = 1;
2229 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2230 BTRFS_I(inode)->orphan_meta_reserved = 1;
2231 reserve = 1;
2233 spin_unlock(&root->orphan_lock);
2235 if (block_rsv)
2236 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2238 /* grab metadata reservation from transaction handle */
2239 if (reserve) {
2240 ret = btrfs_orphan_reserve_metadata(trans, inode);
2241 BUG_ON(ret);
2244 /* insert an orphan item to track this unlinked/truncated file */
2245 if (insert >= 1) {
2246 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2247 BUG_ON(ret);
2250 /* insert an orphan item to track subvolume contains orphan files */
2251 if (insert >= 2) {
2252 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2253 root->root_key.objectid);
2254 BUG_ON(ret);
2256 return 0;
2260 * We have done the truncate/delete so we can go ahead and remove the orphan
2261 * item for this particular inode.
2263 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2265 struct btrfs_root *root = BTRFS_I(inode)->root;
2266 int delete_item = 0;
2267 int release_rsv = 0;
2268 int ret = 0;
2270 spin_lock(&root->orphan_lock);
2271 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2272 list_del_init(&BTRFS_I(inode)->i_orphan);
2273 delete_item = 1;
2276 if (BTRFS_I(inode)->orphan_meta_reserved) {
2277 BTRFS_I(inode)->orphan_meta_reserved = 0;
2278 release_rsv = 1;
2280 spin_unlock(&root->orphan_lock);
2282 if (trans && delete_item) {
2283 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2284 BUG_ON(ret);
2287 if (release_rsv)
2288 btrfs_orphan_release_metadata(inode);
2290 return 0;
2294 * this cleans up any orphans that may be left on the list from the last use
2295 * of this root.
2297 int btrfs_orphan_cleanup(struct btrfs_root *root)
2299 struct btrfs_path *path;
2300 struct extent_buffer *leaf;
2301 struct btrfs_key key, found_key;
2302 struct btrfs_trans_handle *trans;
2303 struct inode *inode;
2304 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2306 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2307 return 0;
2309 path = btrfs_alloc_path();
2310 if (!path) {
2311 ret = -ENOMEM;
2312 goto out;
2314 path->reada = -1;
2316 key.objectid = BTRFS_ORPHAN_OBJECTID;
2317 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2318 key.offset = (u64)-1;
2320 while (1) {
2321 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2322 if (ret < 0)
2323 goto out;
2326 * if ret == 0 means we found what we were searching for, which
2327 * is weird, but possible, so only screw with path if we didn't
2328 * find the key and see if we have stuff that matches
2330 if (ret > 0) {
2331 ret = 0;
2332 if (path->slots[0] == 0)
2333 break;
2334 path->slots[0]--;
2337 /* pull out the item */
2338 leaf = path->nodes[0];
2339 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2341 /* make sure the item matches what we want */
2342 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2343 break;
2344 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2345 break;
2347 /* release the path since we're done with it */
2348 btrfs_release_path(root, path);
2351 * this is where we are basically btrfs_lookup, without the
2352 * crossing root thing. we store the inode number in the
2353 * offset of the orphan item.
2355 found_key.objectid = found_key.offset;
2356 found_key.type = BTRFS_INODE_ITEM_KEY;
2357 found_key.offset = 0;
2358 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2359 if (IS_ERR(inode)) {
2360 ret = PTR_ERR(inode);
2361 goto out;
2365 * add this inode to the orphan list so btrfs_orphan_del does
2366 * the proper thing when we hit it
2368 spin_lock(&root->orphan_lock);
2369 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2370 spin_unlock(&root->orphan_lock);
2373 * if this is a bad inode, means we actually succeeded in
2374 * removing the inode, but not the orphan record, which means
2375 * we need to manually delete the orphan since iput will just
2376 * do a destroy_inode
2378 if (is_bad_inode(inode)) {
2379 trans = btrfs_start_transaction(root, 0);
2380 if (IS_ERR(trans)) {
2381 ret = PTR_ERR(trans);
2382 goto out;
2384 btrfs_orphan_del(trans, inode);
2385 btrfs_end_transaction(trans, root);
2386 iput(inode);
2387 continue;
2390 /* if we have links, this was a truncate, lets do that */
2391 if (inode->i_nlink) {
2392 if (!S_ISREG(inode->i_mode)) {
2393 WARN_ON(1);
2394 iput(inode);
2395 continue;
2397 nr_truncate++;
2398 ret = btrfs_truncate(inode);
2399 } else {
2400 nr_unlink++;
2403 /* this will do delete_inode and everything for us */
2404 iput(inode);
2405 if (ret)
2406 goto out;
2408 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2410 if (root->orphan_block_rsv)
2411 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2412 (u64)-1);
2414 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2415 trans = btrfs_join_transaction(root, 1);
2416 if (!IS_ERR(trans))
2417 btrfs_end_transaction(trans, root);
2420 if (nr_unlink)
2421 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2422 if (nr_truncate)
2423 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2425 out:
2426 if (ret)
2427 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2428 btrfs_free_path(path);
2429 return ret;
2433 * very simple check to peek ahead in the leaf looking for xattrs. If we
2434 * don't find any xattrs, we know there can't be any acls.
2436 * slot is the slot the inode is in, objectid is the objectid of the inode
2438 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2439 int slot, u64 objectid)
2441 u32 nritems = btrfs_header_nritems(leaf);
2442 struct btrfs_key found_key;
2443 int scanned = 0;
2445 slot++;
2446 while (slot < nritems) {
2447 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2449 /* we found a different objectid, there must not be acls */
2450 if (found_key.objectid != objectid)
2451 return 0;
2453 /* we found an xattr, assume we've got an acl */
2454 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2455 return 1;
2458 * we found a key greater than an xattr key, there can't
2459 * be any acls later on
2461 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2462 return 0;
2464 slot++;
2465 scanned++;
2468 * it goes inode, inode backrefs, xattrs, extents,
2469 * so if there are a ton of hard links to an inode there can
2470 * be a lot of backrefs. Don't waste time searching too hard,
2471 * this is just an optimization
2473 if (scanned >= 8)
2474 break;
2476 /* we hit the end of the leaf before we found an xattr or
2477 * something larger than an xattr. We have to assume the inode
2478 * has acls
2480 return 1;
2484 * read an inode from the btree into the in-memory inode
2486 static void btrfs_read_locked_inode(struct inode *inode)
2488 struct btrfs_path *path;
2489 struct extent_buffer *leaf;
2490 struct btrfs_inode_item *inode_item;
2491 struct btrfs_timespec *tspec;
2492 struct btrfs_root *root = BTRFS_I(inode)->root;
2493 struct btrfs_key location;
2494 int maybe_acls;
2495 u64 alloc_group_block;
2496 u32 rdev;
2497 int ret;
2499 path = btrfs_alloc_path();
2500 BUG_ON(!path);
2501 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2503 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2504 if (ret)
2505 goto make_bad;
2507 leaf = path->nodes[0];
2508 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2509 struct btrfs_inode_item);
2511 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2512 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2513 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2514 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2515 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2517 tspec = btrfs_inode_atime(inode_item);
2518 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2519 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2521 tspec = btrfs_inode_mtime(inode_item);
2522 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2523 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2525 tspec = btrfs_inode_ctime(inode_item);
2526 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2527 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2529 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2530 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2531 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2532 inode->i_generation = BTRFS_I(inode)->generation;
2533 inode->i_rdev = 0;
2534 rdev = btrfs_inode_rdev(leaf, inode_item);
2536 BTRFS_I(inode)->index_cnt = (u64)-1;
2537 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2539 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2542 * try to precache a NULL acl entry for files that don't have
2543 * any xattrs or acls
2545 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2546 if (!maybe_acls)
2547 cache_no_acl(inode);
2549 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2550 alloc_group_block, 0);
2551 btrfs_free_path(path);
2552 inode_item = NULL;
2554 switch (inode->i_mode & S_IFMT) {
2555 case S_IFREG:
2556 inode->i_mapping->a_ops = &btrfs_aops;
2557 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2558 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2559 inode->i_fop = &btrfs_file_operations;
2560 inode->i_op = &btrfs_file_inode_operations;
2561 break;
2562 case S_IFDIR:
2563 inode->i_fop = &btrfs_dir_file_operations;
2564 if (root == root->fs_info->tree_root)
2565 inode->i_op = &btrfs_dir_ro_inode_operations;
2566 else
2567 inode->i_op = &btrfs_dir_inode_operations;
2568 break;
2569 case S_IFLNK:
2570 inode->i_op = &btrfs_symlink_inode_operations;
2571 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2572 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2573 break;
2574 default:
2575 inode->i_op = &btrfs_special_inode_operations;
2576 init_special_inode(inode, inode->i_mode, rdev);
2577 break;
2580 btrfs_update_iflags(inode);
2581 return;
2583 make_bad:
2584 btrfs_free_path(path);
2585 make_bad_inode(inode);
2589 * given a leaf and an inode, copy the inode fields into the leaf
2591 static void fill_inode_item(struct btrfs_trans_handle *trans,
2592 struct extent_buffer *leaf,
2593 struct btrfs_inode_item *item,
2594 struct inode *inode)
2596 if (!leaf->map_token)
2597 map_private_extent_buffer(leaf, (unsigned long)item,
2598 sizeof(struct btrfs_inode_item),
2599 &leaf->map_token, &leaf->kaddr,
2600 &leaf->map_start, &leaf->map_len,
2601 KM_USER1);
2603 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2604 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2605 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2606 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2607 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2609 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2610 inode->i_atime.tv_sec);
2611 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2612 inode->i_atime.tv_nsec);
2614 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2615 inode->i_mtime.tv_sec);
2616 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2617 inode->i_mtime.tv_nsec);
2619 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2620 inode->i_ctime.tv_sec);
2621 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2622 inode->i_ctime.tv_nsec);
2624 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2625 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2626 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2627 btrfs_set_inode_transid(leaf, item, trans->transid);
2628 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2629 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2630 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2632 if (leaf->map_token) {
2633 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2634 leaf->map_token = NULL;
2639 * copy everything in the in-memory inode into the btree.
2641 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2642 struct btrfs_root *root, struct inode *inode)
2644 struct btrfs_inode_item *inode_item;
2645 struct btrfs_path *path;
2646 struct extent_buffer *leaf;
2647 int ret;
2649 path = btrfs_alloc_path();
2650 BUG_ON(!path);
2651 path->leave_spinning = 1;
2652 ret = btrfs_lookup_inode(trans, root, path,
2653 &BTRFS_I(inode)->location, 1);
2654 if (ret) {
2655 if (ret > 0)
2656 ret = -ENOENT;
2657 goto failed;
2660 btrfs_unlock_up_safe(path, 1);
2661 leaf = path->nodes[0];
2662 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2663 struct btrfs_inode_item);
2665 fill_inode_item(trans, leaf, inode_item, inode);
2666 btrfs_mark_buffer_dirty(leaf);
2667 btrfs_set_inode_last_trans(trans, inode);
2668 ret = 0;
2669 failed:
2670 btrfs_free_path(path);
2671 return ret;
2676 * unlink helper that gets used here in inode.c and in the tree logging
2677 * recovery code. It remove a link in a directory with a given name, and
2678 * also drops the back refs in the inode to the directory
2680 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2681 struct btrfs_root *root,
2682 struct inode *dir, struct inode *inode,
2683 const char *name, int name_len)
2685 struct btrfs_path *path;
2686 int ret = 0;
2687 struct extent_buffer *leaf;
2688 struct btrfs_dir_item *di;
2689 struct btrfs_key key;
2690 u64 index;
2692 path = btrfs_alloc_path();
2693 if (!path) {
2694 ret = -ENOMEM;
2695 goto out;
2698 path->leave_spinning = 1;
2699 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2700 name, name_len, -1);
2701 if (IS_ERR(di)) {
2702 ret = PTR_ERR(di);
2703 goto err;
2705 if (!di) {
2706 ret = -ENOENT;
2707 goto err;
2709 leaf = path->nodes[0];
2710 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2711 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2712 if (ret)
2713 goto err;
2714 btrfs_release_path(root, path);
2716 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2717 inode->i_ino,
2718 dir->i_ino, &index);
2719 if (ret) {
2720 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2721 "inode %lu parent %lu\n", name_len, name,
2722 inode->i_ino, dir->i_ino);
2723 goto err;
2726 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2727 index, name, name_len, -1);
2728 if (IS_ERR(di)) {
2729 ret = PTR_ERR(di);
2730 goto err;
2732 if (!di) {
2733 ret = -ENOENT;
2734 goto err;
2736 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2737 btrfs_release_path(root, path);
2739 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2740 inode, dir->i_ino);
2741 BUG_ON(ret != 0 && ret != -ENOENT);
2743 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2744 dir, index);
2745 if (ret == -ENOENT)
2746 ret = 0;
2747 err:
2748 btrfs_free_path(path);
2749 if (ret)
2750 goto out;
2752 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2753 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2754 btrfs_update_inode(trans, root, dir);
2755 out:
2756 return ret;
2759 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2760 struct btrfs_root *root,
2761 struct inode *dir, struct inode *inode,
2762 const char *name, int name_len)
2764 int ret;
2765 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2766 if (!ret) {
2767 btrfs_drop_nlink(inode);
2768 ret = btrfs_update_inode(trans, root, inode);
2770 return ret;
2774 /* helper to check if there is any shared block in the path */
2775 static int check_path_shared(struct btrfs_root *root,
2776 struct btrfs_path *path)
2778 struct extent_buffer *eb;
2779 int level;
2780 u64 refs = 1;
2782 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2783 int ret;
2785 if (!path->nodes[level])
2786 break;
2787 eb = path->nodes[level];
2788 if (!btrfs_block_can_be_shared(root, eb))
2789 continue;
2790 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2791 &refs, NULL);
2792 if (refs > 1)
2793 return 1;
2795 return 0;
2799 * helper to start transaction for unlink and rmdir.
2801 * unlink and rmdir are special in btrfs, they do not always free space.
2802 * so in enospc case, we should make sure they will free space before
2803 * allowing them to use the global metadata reservation.
2805 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2806 struct dentry *dentry)
2808 struct btrfs_trans_handle *trans;
2809 struct btrfs_root *root = BTRFS_I(dir)->root;
2810 struct btrfs_path *path;
2811 struct btrfs_inode_ref *ref;
2812 struct btrfs_dir_item *di;
2813 struct inode *inode = dentry->d_inode;
2814 u64 index;
2815 int check_link = 1;
2816 int err = -ENOSPC;
2817 int ret;
2819 trans = btrfs_start_transaction(root, 10);
2820 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2821 return trans;
2823 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2824 return ERR_PTR(-ENOSPC);
2826 /* check if there is someone else holds reference */
2827 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2828 return ERR_PTR(-ENOSPC);
2830 if (atomic_read(&inode->i_count) > 2)
2831 return ERR_PTR(-ENOSPC);
2833 if (xchg(&root->fs_info->enospc_unlink, 1))
2834 return ERR_PTR(-ENOSPC);
2836 path = btrfs_alloc_path();
2837 if (!path) {
2838 root->fs_info->enospc_unlink = 0;
2839 return ERR_PTR(-ENOMEM);
2842 trans = btrfs_start_transaction(root, 0);
2843 if (IS_ERR(trans)) {
2844 btrfs_free_path(path);
2845 root->fs_info->enospc_unlink = 0;
2846 return trans;
2849 path->skip_locking = 1;
2850 path->search_commit_root = 1;
2852 ret = btrfs_lookup_inode(trans, root, path,
2853 &BTRFS_I(dir)->location, 0);
2854 if (ret < 0) {
2855 err = ret;
2856 goto out;
2858 if (ret == 0) {
2859 if (check_path_shared(root, path))
2860 goto out;
2861 } else {
2862 check_link = 0;
2864 btrfs_release_path(root, path);
2866 ret = btrfs_lookup_inode(trans, root, path,
2867 &BTRFS_I(inode)->location, 0);
2868 if (ret < 0) {
2869 err = ret;
2870 goto out;
2872 if (ret == 0) {
2873 if (check_path_shared(root, path))
2874 goto out;
2875 } else {
2876 check_link = 0;
2878 btrfs_release_path(root, path);
2880 if (ret == 0 && S_ISREG(inode->i_mode)) {
2881 ret = btrfs_lookup_file_extent(trans, root, path,
2882 inode->i_ino, (u64)-1, 0);
2883 if (ret < 0) {
2884 err = ret;
2885 goto out;
2887 BUG_ON(ret == 0);
2888 if (check_path_shared(root, path))
2889 goto out;
2890 btrfs_release_path(root, path);
2893 if (!check_link) {
2894 err = 0;
2895 goto out;
2898 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2899 dentry->d_name.name, dentry->d_name.len, 0);
2900 if (IS_ERR(di)) {
2901 err = PTR_ERR(di);
2902 goto out;
2904 if (di) {
2905 if (check_path_shared(root, path))
2906 goto out;
2907 } else {
2908 err = 0;
2909 goto out;
2911 btrfs_release_path(root, path);
2913 ref = btrfs_lookup_inode_ref(trans, root, path,
2914 dentry->d_name.name, dentry->d_name.len,
2915 inode->i_ino, dir->i_ino, 0);
2916 if (IS_ERR(ref)) {
2917 err = PTR_ERR(ref);
2918 goto out;
2920 BUG_ON(!ref);
2921 if (check_path_shared(root, path))
2922 goto out;
2923 index = btrfs_inode_ref_index(path->nodes[0], ref);
2924 btrfs_release_path(root, path);
2926 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2927 dentry->d_name.name, dentry->d_name.len, 0);
2928 if (IS_ERR(di)) {
2929 err = PTR_ERR(di);
2930 goto out;
2932 BUG_ON(ret == -ENOENT);
2933 if (check_path_shared(root, path))
2934 goto out;
2936 err = 0;
2937 out:
2938 btrfs_free_path(path);
2939 if (err) {
2940 btrfs_end_transaction(trans, root);
2941 root->fs_info->enospc_unlink = 0;
2942 return ERR_PTR(err);
2945 trans->block_rsv = &root->fs_info->global_block_rsv;
2946 return trans;
2949 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2950 struct btrfs_root *root)
2952 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2953 BUG_ON(!root->fs_info->enospc_unlink);
2954 root->fs_info->enospc_unlink = 0;
2956 btrfs_end_transaction_throttle(trans, root);
2959 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2961 struct btrfs_root *root = BTRFS_I(dir)->root;
2962 struct btrfs_trans_handle *trans;
2963 struct inode *inode = dentry->d_inode;
2964 int ret;
2965 unsigned long nr = 0;
2967 trans = __unlink_start_trans(dir, dentry);
2968 if (IS_ERR(trans))
2969 return PTR_ERR(trans);
2971 btrfs_set_trans_block_group(trans, dir);
2973 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2975 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2976 dentry->d_name.name, dentry->d_name.len);
2977 BUG_ON(ret);
2979 if (inode->i_nlink == 0) {
2980 ret = btrfs_orphan_add(trans, inode);
2981 BUG_ON(ret);
2984 nr = trans->blocks_used;
2985 __unlink_end_trans(trans, root);
2986 btrfs_btree_balance_dirty(root, nr);
2987 return ret;
2990 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2991 struct btrfs_root *root,
2992 struct inode *dir, u64 objectid,
2993 const char *name, int name_len)
2995 struct btrfs_path *path;
2996 struct extent_buffer *leaf;
2997 struct btrfs_dir_item *di;
2998 struct btrfs_key key;
2999 u64 index;
3000 int ret;
3002 path = btrfs_alloc_path();
3003 if (!path)
3004 return -ENOMEM;
3006 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
3007 name, name_len, -1);
3008 BUG_ON(!di || IS_ERR(di));
3010 leaf = path->nodes[0];
3011 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3012 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3013 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3014 BUG_ON(ret);
3015 btrfs_release_path(root, path);
3017 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3018 objectid, root->root_key.objectid,
3019 dir->i_ino, &index, name, name_len);
3020 if (ret < 0) {
3021 BUG_ON(ret != -ENOENT);
3022 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
3023 name, name_len);
3024 BUG_ON(!di || IS_ERR(di));
3026 leaf = path->nodes[0];
3027 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3028 btrfs_release_path(root, path);
3029 index = key.offset;
3032 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3033 index, name, name_len, -1);
3034 BUG_ON(!di || IS_ERR(di));
3036 leaf = path->nodes[0];
3037 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3038 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3039 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3040 BUG_ON(ret);
3041 btrfs_release_path(root, path);
3043 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3044 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3045 ret = btrfs_update_inode(trans, root, dir);
3046 BUG_ON(ret);
3048 btrfs_free_path(path);
3049 return 0;
3052 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3054 struct inode *inode = dentry->d_inode;
3055 int err = 0;
3056 struct btrfs_root *root = BTRFS_I(dir)->root;
3057 struct btrfs_trans_handle *trans;
3058 unsigned long nr = 0;
3060 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3061 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3062 return -ENOTEMPTY;
3064 trans = __unlink_start_trans(dir, dentry);
3065 if (IS_ERR(trans))
3066 return PTR_ERR(trans);
3068 btrfs_set_trans_block_group(trans, dir);
3070 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3071 err = btrfs_unlink_subvol(trans, root, dir,
3072 BTRFS_I(inode)->location.objectid,
3073 dentry->d_name.name,
3074 dentry->d_name.len);
3075 goto out;
3078 err = btrfs_orphan_add(trans, inode);
3079 if (err)
3080 goto out;
3082 /* now the directory is empty */
3083 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3084 dentry->d_name.name, dentry->d_name.len);
3085 if (!err)
3086 btrfs_i_size_write(inode, 0);
3087 out:
3088 nr = trans->blocks_used;
3089 __unlink_end_trans(trans, root);
3090 btrfs_btree_balance_dirty(root, nr);
3092 return err;
3095 #if 0
3097 * when truncating bytes in a file, it is possible to avoid reading
3098 * the leaves that contain only checksum items. This can be the
3099 * majority of the IO required to delete a large file, but it must
3100 * be done carefully.
3102 * The keys in the level just above the leaves are checked to make sure
3103 * the lowest key in a given leaf is a csum key, and starts at an offset
3104 * after the new size.
3106 * Then the key for the next leaf is checked to make sure it also has
3107 * a checksum item for the same file. If it does, we know our target leaf
3108 * contains only checksum items, and it can be safely freed without reading
3109 * it.
3111 * This is just an optimization targeted at large files. It may do
3112 * nothing. It will return 0 unless things went badly.
3114 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3115 struct btrfs_root *root,
3116 struct btrfs_path *path,
3117 struct inode *inode, u64 new_size)
3119 struct btrfs_key key;
3120 int ret;
3121 int nritems;
3122 struct btrfs_key found_key;
3123 struct btrfs_key other_key;
3124 struct btrfs_leaf_ref *ref;
3125 u64 leaf_gen;
3126 u64 leaf_start;
3128 path->lowest_level = 1;
3129 key.objectid = inode->i_ino;
3130 key.type = BTRFS_CSUM_ITEM_KEY;
3131 key.offset = new_size;
3132 again:
3133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3134 if (ret < 0)
3135 goto out;
3137 if (path->nodes[1] == NULL) {
3138 ret = 0;
3139 goto out;
3141 ret = 0;
3142 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3143 nritems = btrfs_header_nritems(path->nodes[1]);
3145 if (!nritems)
3146 goto out;
3148 if (path->slots[1] >= nritems)
3149 goto next_node;
3151 /* did we find a key greater than anything we want to delete? */
3152 if (found_key.objectid > inode->i_ino ||
3153 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3154 goto out;
3156 /* we check the next key in the node to make sure the leave contains
3157 * only checksum items. This comparison doesn't work if our
3158 * leaf is the last one in the node
3160 if (path->slots[1] + 1 >= nritems) {
3161 next_node:
3162 /* search forward from the last key in the node, this
3163 * will bring us into the next node in the tree
3165 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3167 /* unlikely, but we inc below, so check to be safe */
3168 if (found_key.offset == (u64)-1)
3169 goto out;
3171 /* search_forward needs a path with locks held, do the
3172 * search again for the original key. It is possible
3173 * this will race with a balance and return a path that
3174 * we could modify, but this drop is just an optimization
3175 * and is allowed to miss some leaves.
3177 btrfs_release_path(root, path);
3178 found_key.offset++;
3180 /* setup a max key for search_forward */
3181 other_key.offset = (u64)-1;
3182 other_key.type = key.type;
3183 other_key.objectid = key.objectid;
3185 path->keep_locks = 1;
3186 ret = btrfs_search_forward(root, &found_key, &other_key,
3187 path, 0, 0);
3188 path->keep_locks = 0;
3189 if (ret || found_key.objectid != key.objectid ||
3190 found_key.type != key.type) {
3191 ret = 0;
3192 goto out;
3195 key.offset = found_key.offset;
3196 btrfs_release_path(root, path);
3197 cond_resched();
3198 goto again;
3201 /* we know there's one more slot after us in the tree,
3202 * read that key so we can verify it is also a checksum item
3204 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3206 if (found_key.objectid < inode->i_ino)
3207 goto next_key;
3209 if (found_key.type != key.type || found_key.offset < new_size)
3210 goto next_key;
3213 * if the key for the next leaf isn't a csum key from this objectid,
3214 * we can't be sure there aren't good items inside this leaf.
3215 * Bail out
3217 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3218 goto out;
3220 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3221 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3223 * it is safe to delete this leaf, it contains only
3224 * csum items from this inode at an offset >= new_size
3226 ret = btrfs_del_leaf(trans, root, path, leaf_start);
3227 BUG_ON(ret);
3229 if (root->ref_cows && leaf_gen < trans->transid) {
3230 ref = btrfs_alloc_leaf_ref(root, 0);
3231 if (ref) {
3232 ref->root_gen = root->root_key.offset;
3233 ref->bytenr = leaf_start;
3234 ref->owner = 0;
3235 ref->generation = leaf_gen;
3236 ref->nritems = 0;
3238 btrfs_sort_leaf_ref(ref);
3240 ret = btrfs_add_leaf_ref(root, ref, 0);
3241 WARN_ON(ret);
3242 btrfs_free_leaf_ref(root, ref);
3243 } else {
3244 WARN_ON(1);
3247 next_key:
3248 btrfs_release_path(root, path);
3250 if (other_key.objectid == inode->i_ino &&
3251 other_key.type == key.type && other_key.offset > key.offset) {
3252 key.offset = other_key.offset;
3253 cond_resched();
3254 goto again;
3256 ret = 0;
3257 out:
3258 /* fixup any changes we've made to the path */
3259 path->lowest_level = 0;
3260 path->keep_locks = 0;
3261 btrfs_release_path(root, path);
3262 return ret;
3265 #endif
3268 * this can truncate away extent items, csum items and directory items.
3269 * It starts at a high offset and removes keys until it can't find
3270 * any higher than new_size
3272 * csum items that cross the new i_size are truncated to the new size
3273 * as well.
3275 * min_type is the minimum key type to truncate down to. If set to 0, this
3276 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3278 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3279 struct btrfs_root *root,
3280 struct inode *inode,
3281 u64 new_size, u32 min_type)
3283 struct btrfs_path *path;
3284 struct extent_buffer *leaf;
3285 struct btrfs_file_extent_item *fi;
3286 struct btrfs_key key;
3287 struct btrfs_key found_key;
3288 u64 extent_start = 0;
3289 u64 extent_num_bytes = 0;
3290 u64 extent_offset = 0;
3291 u64 item_end = 0;
3292 u64 mask = root->sectorsize - 1;
3293 u32 found_type = (u8)-1;
3294 int found_extent;
3295 int del_item;
3296 int pending_del_nr = 0;
3297 int pending_del_slot = 0;
3298 int extent_type = -1;
3299 int encoding;
3300 int ret;
3301 int err = 0;
3303 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3305 if (root->ref_cows || root == root->fs_info->tree_root)
3306 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3308 path = btrfs_alloc_path();
3309 BUG_ON(!path);
3310 path->reada = -1;
3312 key.objectid = inode->i_ino;
3313 key.offset = (u64)-1;
3314 key.type = (u8)-1;
3316 search_again:
3317 path->leave_spinning = 1;
3318 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3319 if (ret < 0) {
3320 err = ret;
3321 goto out;
3324 if (ret > 0) {
3325 /* there are no items in the tree for us to truncate, we're
3326 * done
3328 if (path->slots[0] == 0)
3329 goto out;
3330 path->slots[0]--;
3333 while (1) {
3334 fi = NULL;
3335 leaf = path->nodes[0];
3336 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3337 found_type = btrfs_key_type(&found_key);
3338 encoding = 0;
3340 if (found_key.objectid != inode->i_ino)
3341 break;
3343 if (found_type < min_type)
3344 break;
3346 item_end = found_key.offset;
3347 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3348 fi = btrfs_item_ptr(leaf, path->slots[0],
3349 struct btrfs_file_extent_item);
3350 extent_type = btrfs_file_extent_type(leaf, fi);
3351 encoding = btrfs_file_extent_compression(leaf, fi);
3352 encoding |= btrfs_file_extent_encryption(leaf, fi);
3353 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3355 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3356 item_end +=
3357 btrfs_file_extent_num_bytes(leaf, fi);
3358 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3359 item_end += btrfs_file_extent_inline_len(leaf,
3360 fi);
3362 item_end--;
3364 if (found_type > min_type) {
3365 del_item = 1;
3366 } else {
3367 if (item_end < new_size)
3368 break;
3369 if (found_key.offset >= new_size)
3370 del_item = 1;
3371 else
3372 del_item = 0;
3374 found_extent = 0;
3375 /* FIXME, shrink the extent if the ref count is only 1 */
3376 if (found_type != BTRFS_EXTENT_DATA_KEY)
3377 goto delete;
3379 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3380 u64 num_dec;
3381 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3382 if (!del_item && !encoding) {
3383 u64 orig_num_bytes =
3384 btrfs_file_extent_num_bytes(leaf, fi);
3385 extent_num_bytes = new_size -
3386 found_key.offset + root->sectorsize - 1;
3387 extent_num_bytes = extent_num_bytes &
3388 ~((u64)root->sectorsize - 1);
3389 btrfs_set_file_extent_num_bytes(leaf, fi,
3390 extent_num_bytes);
3391 num_dec = (orig_num_bytes -
3392 extent_num_bytes);
3393 if (root->ref_cows && extent_start != 0)
3394 inode_sub_bytes(inode, num_dec);
3395 btrfs_mark_buffer_dirty(leaf);
3396 } else {
3397 extent_num_bytes =
3398 btrfs_file_extent_disk_num_bytes(leaf,
3399 fi);
3400 extent_offset = found_key.offset -
3401 btrfs_file_extent_offset(leaf, fi);
3403 /* FIXME blocksize != 4096 */
3404 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3405 if (extent_start != 0) {
3406 found_extent = 1;
3407 if (root->ref_cows)
3408 inode_sub_bytes(inode, num_dec);
3411 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3413 * we can't truncate inline items that have had
3414 * special encodings
3416 if (!del_item &&
3417 btrfs_file_extent_compression(leaf, fi) == 0 &&
3418 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3419 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3420 u32 size = new_size - found_key.offset;
3422 if (root->ref_cows) {
3423 inode_sub_bytes(inode, item_end + 1 -
3424 new_size);
3426 size =
3427 btrfs_file_extent_calc_inline_size(size);
3428 ret = btrfs_truncate_item(trans, root, path,
3429 size, 1);
3430 BUG_ON(ret);
3431 } else if (root->ref_cows) {
3432 inode_sub_bytes(inode, item_end + 1 -
3433 found_key.offset);
3436 delete:
3437 if (del_item) {
3438 if (!pending_del_nr) {
3439 /* no pending yet, add ourselves */
3440 pending_del_slot = path->slots[0];
3441 pending_del_nr = 1;
3442 } else if (pending_del_nr &&
3443 path->slots[0] + 1 == pending_del_slot) {
3444 /* hop on the pending chunk */
3445 pending_del_nr++;
3446 pending_del_slot = path->slots[0];
3447 } else {
3448 BUG();
3450 } else {
3451 break;
3453 if (found_extent && (root->ref_cows ||
3454 root == root->fs_info->tree_root)) {
3455 btrfs_set_path_blocking(path);
3456 ret = btrfs_free_extent(trans, root, extent_start,
3457 extent_num_bytes, 0,
3458 btrfs_header_owner(leaf),
3459 inode->i_ino, extent_offset);
3460 BUG_ON(ret);
3463 if (found_type == BTRFS_INODE_ITEM_KEY)
3464 break;
3466 if (path->slots[0] == 0 ||
3467 path->slots[0] != pending_del_slot) {
3468 if (root->ref_cows) {
3469 err = -EAGAIN;
3470 goto out;
3472 if (pending_del_nr) {
3473 ret = btrfs_del_items(trans, root, path,
3474 pending_del_slot,
3475 pending_del_nr);
3476 BUG_ON(ret);
3477 pending_del_nr = 0;
3479 btrfs_release_path(root, path);
3480 goto search_again;
3481 } else {
3482 path->slots[0]--;
3485 out:
3486 if (pending_del_nr) {
3487 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3488 pending_del_nr);
3489 BUG_ON(ret);
3491 btrfs_free_path(path);
3492 return err;
3496 * taken from block_truncate_page, but does cow as it zeros out
3497 * any bytes left in the last page in the file.
3499 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3501 struct inode *inode = mapping->host;
3502 struct btrfs_root *root = BTRFS_I(inode)->root;
3503 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3504 struct btrfs_ordered_extent *ordered;
3505 struct extent_state *cached_state = NULL;
3506 char *kaddr;
3507 u32 blocksize = root->sectorsize;
3508 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3509 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3510 struct page *page;
3511 int ret = 0;
3512 u64 page_start;
3513 u64 page_end;
3515 if ((offset & (blocksize - 1)) == 0)
3516 goto out;
3517 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3518 if (ret)
3519 goto out;
3521 ret = -ENOMEM;
3522 again:
3523 page = grab_cache_page(mapping, index);
3524 if (!page) {
3525 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3526 goto out;
3529 page_start = page_offset(page);
3530 page_end = page_start + PAGE_CACHE_SIZE - 1;
3532 if (!PageUptodate(page)) {
3533 ret = btrfs_readpage(NULL, page);
3534 lock_page(page);
3535 if (page->mapping != mapping) {
3536 unlock_page(page);
3537 page_cache_release(page);
3538 goto again;
3540 if (!PageUptodate(page)) {
3541 ret = -EIO;
3542 goto out_unlock;
3545 wait_on_page_writeback(page);
3547 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3548 GFP_NOFS);
3549 set_page_extent_mapped(page);
3551 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3552 if (ordered) {
3553 unlock_extent_cached(io_tree, page_start, page_end,
3554 &cached_state, GFP_NOFS);
3555 unlock_page(page);
3556 page_cache_release(page);
3557 btrfs_start_ordered_extent(inode, ordered, 1);
3558 btrfs_put_ordered_extent(ordered);
3559 goto again;
3562 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3563 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3564 0, 0, &cached_state, GFP_NOFS);
3566 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3567 &cached_state);
3568 if (ret) {
3569 unlock_extent_cached(io_tree, page_start, page_end,
3570 &cached_state, GFP_NOFS);
3571 goto out_unlock;
3574 ret = 0;
3575 if (offset != PAGE_CACHE_SIZE) {
3576 kaddr = kmap(page);
3577 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3578 flush_dcache_page(page);
3579 kunmap(page);
3581 ClearPageChecked(page);
3582 set_page_dirty(page);
3583 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3584 GFP_NOFS);
3586 out_unlock:
3587 if (ret)
3588 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3589 unlock_page(page);
3590 page_cache_release(page);
3591 out:
3592 return ret;
3596 * This function puts in dummy file extents for the area we're creating a hole
3597 * for. So if we are truncating this file to a larger size we need to insert
3598 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3599 * the range between oldsize and size
3601 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3603 struct btrfs_trans_handle *trans;
3604 struct btrfs_root *root = BTRFS_I(inode)->root;
3605 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3606 struct extent_map *em = NULL;
3607 struct extent_state *cached_state = NULL;
3608 u64 mask = root->sectorsize - 1;
3609 u64 hole_start = (oldsize + mask) & ~mask;
3610 u64 block_end = (size + mask) & ~mask;
3611 u64 last_byte;
3612 u64 cur_offset;
3613 u64 hole_size;
3614 int err = 0;
3616 if (size <= hole_start)
3617 return 0;
3619 while (1) {
3620 struct btrfs_ordered_extent *ordered;
3621 btrfs_wait_ordered_range(inode, hole_start,
3622 block_end - hole_start);
3623 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3624 &cached_state, GFP_NOFS);
3625 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3626 if (!ordered)
3627 break;
3628 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3629 &cached_state, GFP_NOFS);
3630 btrfs_put_ordered_extent(ordered);
3633 cur_offset = hole_start;
3634 while (1) {
3635 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3636 block_end - cur_offset, 0);
3637 BUG_ON(IS_ERR(em) || !em);
3638 last_byte = min(extent_map_end(em), block_end);
3639 last_byte = (last_byte + mask) & ~mask;
3640 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3641 u64 hint_byte = 0;
3642 hole_size = last_byte - cur_offset;
3644 trans = btrfs_start_transaction(root, 2);
3645 if (IS_ERR(trans)) {
3646 err = PTR_ERR(trans);
3647 break;
3649 btrfs_set_trans_block_group(trans, inode);
3651 err = btrfs_drop_extents(trans, inode, cur_offset,
3652 cur_offset + hole_size,
3653 &hint_byte, 1);
3654 if (err)
3655 break;
3657 err = btrfs_insert_file_extent(trans, root,
3658 inode->i_ino, cur_offset, 0,
3659 0, hole_size, 0, hole_size,
3660 0, 0, 0);
3661 if (err)
3662 break;
3664 btrfs_drop_extent_cache(inode, hole_start,
3665 last_byte - 1, 0);
3667 btrfs_end_transaction(trans, root);
3669 free_extent_map(em);
3670 em = NULL;
3671 cur_offset = last_byte;
3672 if (cur_offset >= block_end)
3673 break;
3676 free_extent_map(em);
3677 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3678 GFP_NOFS);
3679 return err;
3682 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3684 loff_t oldsize = i_size_read(inode);
3685 int ret;
3687 if (newsize == oldsize)
3688 return 0;
3690 if (newsize > oldsize) {
3691 i_size_write(inode, newsize);
3692 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3693 truncate_pagecache(inode, oldsize, newsize);
3694 ret = btrfs_cont_expand(inode, oldsize, newsize);
3695 if (ret) {
3696 btrfs_setsize(inode, oldsize);
3697 return ret;
3700 mark_inode_dirty(inode);
3701 } else {
3704 * We're truncating a file that used to have good data down to
3705 * zero. Make sure it gets into the ordered flush list so that
3706 * any new writes get down to disk quickly.
3708 if (newsize == 0)
3709 BTRFS_I(inode)->ordered_data_close = 1;
3711 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3712 truncate_setsize(inode, newsize);
3713 ret = btrfs_truncate(inode);
3716 return ret;
3719 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3721 struct inode *inode = dentry->d_inode;
3722 struct btrfs_root *root = BTRFS_I(inode)->root;
3723 int err;
3725 if (btrfs_root_readonly(root))
3726 return -EROFS;
3728 err = inode_change_ok(inode, attr);
3729 if (err)
3730 return err;
3732 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3733 err = btrfs_setsize(inode, attr->ia_size);
3734 if (err)
3735 return err;
3738 if (attr->ia_valid) {
3739 setattr_copy(inode, attr);
3740 mark_inode_dirty(inode);
3742 if (attr->ia_valid & ATTR_MODE)
3743 err = btrfs_acl_chmod(inode);
3746 return err;
3749 void btrfs_evict_inode(struct inode *inode)
3751 struct btrfs_trans_handle *trans;
3752 struct btrfs_root *root = BTRFS_I(inode)->root;
3753 unsigned long nr;
3754 int ret;
3756 trace_btrfs_inode_evict(inode);
3758 truncate_inode_pages(&inode->i_data, 0);
3759 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3760 root == root->fs_info->tree_root))
3761 goto no_delete;
3763 if (is_bad_inode(inode)) {
3764 btrfs_orphan_del(NULL, inode);
3765 goto no_delete;
3767 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3768 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3770 if (root->fs_info->log_root_recovering) {
3771 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3772 goto no_delete;
3775 if (inode->i_nlink > 0) {
3776 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3777 goto no_delete;
3780 btrfs_i_size_write(inode, 0);
3782 while (1) {
3783 trans = btrfs_start_transaction(root, 0);
3784 BUG_ON(IS_ERR(trans));
3785 btrfs_set_trans_block_group(trans, inode);
3786 trans->block_rsv = root->orphan_block_rsv;
3788 ret = btrfs_block_rsv_check(trans, root,
3789 root->orphan_block_rsv, 0, 5);
3790 if (ret) {
3791 BUG_ON(ret != -EAGAIN);
3792 ret = btrfs_commit_transaction(trans, root);
3793 BUG_ON(ret);
3794 continue;
3797 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3798 if (ret != -EAGAIN)
3799 break;
3801 nr = trans->blocks_used;
3802 btrfs_end_transaction(trans, root);
3803 trans = NULL;
3804 btrfs_btree_balance_dirty(root, nr);
3808 if (ret == 0) {
3809 ret = btrfs_orphan_del(trans, inode);
3810 BUG_ON(ret);
3813 nr = trans->blocks_used;
3814 btrfs_end_transaction(trans, root);
3815 btrfs_btree_balance_dirty(root, nr);
3816 no_delete:
3817 end_writeback(inode);
3818 return;
3822 * this returns the key found in the dir entry in the location pointer.
3823 * If no dir entries were found, location->objectid is 0.
3825 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3826 struct btrfs_key *location)
3828 const char *name = dentry->d_name.name;
3829 int namelen = dentry->d_name.len;
3830 struct btrfs_dir_item *di;
3831 struct btrfs_path *path;
3832 struct btrfs_root *root = BTRFS_I(dir)->root;
3833 int ret = 0;
3835 path = btrfs_alloc_path();
3836 BUG_ON(!path);
3838 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3839 namelen, 0);
3840 if (IS_ERR(di))
3841 ret = PTR_ERR(di);
3843 if (!di || IS_ERR(di))
3844 goto out_err;
3846 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3847 out:
3848 btrfs_free_path(path);
3849 return ret;
3850 out_err:
3851 location->objectid = 0;
3852 goto out;
3856 * when we hit a tree root in a directory, the btrfs part of the inode
3857 * needs to be changed to reflect the root directory of the tree root. This
3858 * is kind of like crossing a mount point.
3860 static int fixup_tree_root_location(struct btrfs_root *root,
3861 struct inode *dir,
3862 struct dentry *dentry,
3863 struct btrfs_key *location,
3864 struct btrfs_root **sub_root)
3866 struct btrfs_path *path;
3867 struct btrfs_root *new_root;
3868 struct btrfs_root_ref *ref;
3869 struct extent_buffer *leaf;
3870 int ret;
3871 int err = 0;
3873 path = btrfs_alloc_path();
3874 if (!path) {
3875 err = -ENOMEM;
3876 goto out;
3879 err = -ENOENT;
3880 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3881 BTRFS_I(dir)->root->root_key.objectid,
3882 location->objectid);
3883 if (ret) {
3884 if (ret < 0)
3885 err = ret;
3886 goto out;
3889 leaf = path->nodes[0];
3890 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3891 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3892 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3893 goto out;
3895 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3896 (unsigned long)(ref + 1),
3897 dentry->d_name.len);
3898 if (ret)
3899 goto out;
3901 btrfs_release_path(root->fs_info->tree_root, path);
3903 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3904 if (IS_ERR(new_root)) {
3905 err = PTR_ERR(new_root);
3906 goto out;
3909 if (btrfs_root_refs(&new_root->root_item) == 0) {
3910 err = -ENOENT;
3911 goto out;
3914 *sub_root = new_root;
3915 location->objectid = btrfs_root_dirid(&new_root->root_item);
3916 location->type = BTRFS_INODE_ITEM_KEY;
3917 location->offset = 0;
3918 err = 0;
3919 out:
3920 btrfs_free_path(path);
3921 return err;
3924 static void inode_tree_add(struct inode *inode)
3926 struct btrfs_root *root = BTRFS_I(inode)->root;
3927 struct btrfs_inode *entry;
3928 struct rb_node **p;
3929 struct rb_node *parent;
3930 again:
3931 p = &root->inode_tree.rb_node;
3932 parent = NULL;
3934 if (inode_unhashed(inode))
3935 return;
3937 spin_lock(&root->inode_lock);
3938 while (*p) {
3939 parent = *p;
3940 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3942 if (inode->i_ino < entry->vfs_inode.i_ino)
3943 p = &parent->rb_left;
3944 else if (inode->i_ino > entry->vfs_inode.i_ino)
3945 p = &parent->rb_right;
3946 else {
3947 WARN_ON(!(entry->vfs_inode.i_state &
3948 (I_WILL_FREE | I_FREEING)));
3949 rb_erase(parent, &root->inode_tree);
3950 RB_CLEAR_NODE(parent);
3951 spin_unlock(&root->inode_lock);
3952 goto again;
3955 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3956 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3957 spin_unlock(&root->inode_lock);
3960 static void inode_tree_del(struct inode *inode)
3962 struct btrfs_root *root = BTRFS_I(inode)->root;
3963 int empty = 0;
3965 spin_lock(&root->inode_lock);
3966 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3967 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3968 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3969 empty = RB_EMPTY_ROOT(&root->inode_tree);
3971 spin_unlock(&root->inode_lock);
3974 * Free space cache has inodes in the tree root, but the tree root has a
3975 * root_refs of 0, so this could end up dropping the tree root as a
3976 * snapshot, so we need the extra !root->fs_info->tree_root check to
3977 * make sure we don't drop it.
3979 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3980 root != root->fs_info->tree_root) {
3981 synchronize_srcu(&root->fs_info->subvol_srcu);
3982 spin_lock(&root->inode_lock);
3983 empty = RB_EMPTY_ROOT(&root->inode_tree);
3984 spin_unlock(&root->inode_lock);
3985 if (empty)
3986 btrfs_add_dead_root(root);
3990 int btrfs_invalidate_inodes(struct btrfs_root *root)
3992 struct rb_node *node;
3993 struct rb_node *prev;
3994 struct btrfs_inode *entry;
3995 struct inode *inode;
3996 u64 objectid = 0;
3998 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4000 spin_lock(&root->inode_lock);
4001 again:
4002 node = root->inode_tree.rb_node;
4003 prev = NULL;
4004 while (node) {
4005 prev = node;
4006 entry = rb_entry(node, struct btrfs_inode, rb_node);
4008 if (objectid < entry->vfs_inode.i_ino)
4009 node = node->rb_left;
4010 else if (objectid > entry->vfs_inode.i_ino)
4011 node = node->rb_right;
4012 else
4013 break;
4015 if (!node) {
4016 while (prev) {
4017 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4018 if (objectid <= entry->vfs_inode.i_ino) {
4019 node = prev;
4020 break;
4022 prev = rb_next(prev);
4025 while (node) {
4026 entry = rb_entry(node, struct btrfs_inode, rb_node);
4027 objectid = entry->vfs_inode.i_ino + 1;
4028 inode = igrab(&entry->vfs_inode);
4029 if (inode) {
4030 spin_unlock(&root->inode_lock);
4031 if (atomic_read(&inode->i_count) > 1)
4032 d_prune_aliases(inode);
4034 * btrfs_drop_inode will have it removed from
4035 * the inode cache when its usage count
4036 * hits zero.
4038 iput(inode);
4039 cond_resched();
4040 spin_lock(&root->inode_lock);
4041 goto again;
4044 if (cond_resched_lock(&root->inode_lock))
4045 goto again;
4047 node = rb_next(node);
4049 spin_unlock(&root->inode_lock);
4050 return 0;
4053 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4055 struct btrfs_iget_args *args = p;
4056 inode->i_ino = args->ino;
4057 BTRFS_I(inode)->root = args->root;
4058 btrfs_set_inode_space_info(args->root, inode);
4059 return 0;
4062 static int btrfs_find_actor(struct inode *inode, void *opaque)
4064 struct btrfs_iget_args *args = opaque;
4065 return args->ino == inode->i_ino &&
4066 args->root == BTRFS_I(inode)->root;
4069 static struct inode *btrfs_iget_locked(struct super_block *s,
4070 u64 objectid,
4071 struct btrfs_root *root)
4073 struct inode *inode;
4074 struct btrfs_iget_args args;
4075 args.ino = objectid;
4076 args.root = root;
4078 inode = iget5_locked(s, objectid, btrfs_find_actor,
4079 btrfs_init_locked_inode,
4080 (void *)&args);
4081 return inode;
4084 /* Get an inode object given its location and corresponding root.
4085 * Returns in *is_new if the inode was read from disk
4087 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4088 struct btrfs_root *root, int *new)
4090 struct inode *inode;
4092 inode = btrfs_iget_locked(s, location->objectid, root);
4093 if (!inode)
4094 return ERR_PTR(-ENOMEM);
4096 if (inode->i_state & I_NEW) {
4097 BTRFS_I(inode)->root = root;
4098 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4099 btrfs_read_locked_inode(inode);
4100 inode_tree_add(inode);
4101 unlock_new_inode(inode);
4102 if (new)
4103 *new = 1;
4106 return inode;
4109 static struct inode *new_simple_dir(struct super_block *s,
4110 struct btrfs_key *key,
4111 struct btrfs_root *root)
4113 struct inode *inode = new_inode(s);
4115 if (!inode)
4116 return ERR_PTR(-ENOMEM);
4118 BTRFS_I(inode)->root = root;
4119 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4120 BTRFS_I(inode)->dummy_inode = 1;
4122 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4123 inode->i_op = &simple_dir_inode_operations;
4124 inode->i_fop = &simple_dir_operations;
4125 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4126 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4128 return inode;
4131 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4133 struct inode *inode;
4134 struct btrfs_root *root = BTRFS_I(dir)->root;
4135 struct btrfs_root *sub_root = root;
4136 struct btrfs_key location;
4137 int index;
4138 int ret;
4140 if (dentry->d_name.len > BTRFS_NAME_LEN)
4141 return ERR_PTR(-ENAMETOOLONG);
4143 ret = btrfs_inode_by_name(dir, dentry, &location);
4145 if (ret < 0)
4146 return ERR_PTR(ret);
4148 if (location.objectid == 0)
4149 return NULL;
4151 if (location.type == BTRFS_INODE_ITEM_KEY) {
4152 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4153 return inode;
4156 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4158 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4159 ret = fixup_tree_root_location(root, dir, dentry,
4160 &location, &sub_root);
4161 if (ret < 0) {
4162 if (ret != -ENOENT)
4163 inode = ERR_PTR(ret);
4164 else
4165 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4166 } else {
4167 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4169 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4171 if (!IS_ERR(inode) && root != sub_root) {
4172 down_read(&root->fs_info->cleanup_work_sem);
4173 if (!(inode->i_sb->s_flags & MS_RDONLY))
4174 ret = btrfs_orphan_cleanup(sub_root);
4175 up_read(&root->fs_info->cleanup_work_sem);
4176 if (ret)
4177 inode = ERR_PTR(ret);
4180 return inode;
4183 static int btrfs_dentry_delete(const struct dentry *dentry)
4185 struct btrfs_root *root;
4187 if (!dentry->d_inode && !IS_ROOT(dentry))
4188 dentry = dentry->d_parent;
4190 if (dentry->d_inode) {
4191 root = BTRFS_I(dentry->d_inode)->root;
4192 if (btrfs_root_refs(&root->root_item) == 0)
4193 return 1;
4195 return 0;
4198 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4199 struct nameidata *nd)
4201 struct inode *inode;
4203 inode = btrfs_lookup_dentry(dir, dentry);
4204 if (IS_ERR(inode))
4205 return ERR_CAST(inode);
4207 return d_splice_alias(inode, dentry);
4210 static unsigned char btrfs_filetype_table[] = {
4211 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4214 static int btrfs_real_readdir(struct file *filp, void *dirent,
4215 filldir_t filldir)
4217 struct inode *inode = filp->f_dentry->d_inode;
4218 struct btrfs_root *root = BTRFS_I(inode)->root;
4219 struct btrfs_item *item;
4220 struct btrfs_dir_item *di;
4221 struct btrfs_key key;
4222 struct btrfs_key found_key;
4223 struct btrfs_path *path;
4224 int ret;
4225 struct extent_buffer *leaf;
4226 int slot;
4227 unsigned char d_type;
4228 int over = 0;
4229 u32 di_cur;
4230 u32 di_total;
4231 u32 di_len;
4232 int key_type = BTRFS_DIR_INDEX_KEY;
4233 char tmp_name[32];
4234 char *name_ptr;
4235 int name_len;
4237 /* FIXME, use a real flag for deciding about the key type */
4238 if (root->fs_info->tree_root == root)
4239 key_type = BTRFS_DIR_ITEM_KEY;
4241 /* special case for "." */
4242 if (filp->f_pos == 0) {
4243 over = filldir(dirent, ".", 1,
4244 1, inode->i_ino,
4245 DT_DIR);
4246 if (over)
4247 return 0;
4248 filp->f_pos = 1;
4250 /* special case for .., just use the back ref */
4251 if (filp->f_pos == 1) {
4252 u64 pino = parent_ino(filp->f_path.dentry);
4253 over = filldir(dirent, "..", 2,
4254 2, pino, DT_DIR);
4255 if (over)
4256 return 0;
4257 filp->f_pos = 2;
4259 path = btrfs_alloc_path();
4260 path->reada = 2;
4262 btrfs_set_key_type(&key, key_type);
4263 key.offset = filp->f_pos;
4264 key.objectid = inode->i_ino;
4266 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4267 if (ret < 0)
4268 goto err;
4270 while (1) {
4271 leaf = path->nodes[0];
4272 slot = path->slots[0];
4273 if (slot >= btrfs_header_nritems(leaf)) {
4274 ret = btrfs_next_leaf(root, path);
4275 if (ret < 0)
4276 goto err;
4277 else if (ret > 0)
4278 break;
4279 continue;
4282 item = btrfs_item_nr(leaf, slot);
4283 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4285 if (found_key.objectid != key.objectid)
4286 break;
4287 if (btrfs_key_type(&found_key) != key_type)
4288 break;
4289 if (found_key.offset < filp->f_pos)
4290 goto next;
4292 filp->f_pos = found_key.offset;
4294 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4295 di_cur = 0;
4296 di_total = btrfs_item_size(leaf, item);
4298 while (di_cur < di_total) {
4299 struct btrfs_key location;
4301 if (verify_dir_item(root, leaf, di))
4302 break;
4304 name_len = btrfs_dir_name_len(leaf, di);
4305 if (name_len <= sizeof(tmp_name)) {
4306 name_ptr = tmp_name;
4307 } else {
4308 name_ptr = kmalloc(name_len, GFP_NOFS);
4309 if (!name_ptr) {
4310 ret = -ENOMEM;
4311 goto err;
4314 read_extent_buffer(leaf, name_ptr,
4315 (unsigned long)(di + 1), name_len);
4317 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4318 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4320 /* is this a reference to our own snapshot? If so
4321 * skip it
4323 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4324 location.objectid == root->root_key.objectid) {
4325 over = 0;
4326 goto skip;
4328 over = filldir(dirent, name_ptr, name_len,
4329 found_key.offset, location.objectid,
4330 d_type);
4332 skip:
4333 if (name_ptr != tmp_name)
4334 kfree(name_ptr);
4336 if (over)
4337 goto nopos;
4338 di_len = btrfs_dir_name_len(leaf, di) +
4339 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4340 di_cur += di_len;
4341 di = (struct btrfs_dir_item *)((char *)di + di_len);
4343 next:
4344 path->slots[0]++;
4347 /* Reached end of directory/root. Bump pos past the last item. */
4348 if (key_type == BTRFS_DIR_INDEX_KEY)
4350 * 32-bit glibc will use getdents64, but then strtol -
4351 * so the last number we can serve is this.
4353 filp->f_pos = 0x7fffffff;
4354 else
4355 filp->f_pos++;
4356 nopos:
4357 ret = 0;
4358 err:
4359 btrfs_free_path(path);
4360 return ret;
4363 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4365 struct btrfs_root *root = BTRFS_I(inode)->root;
4366 struct btrfs_trans_handle *trans;
4367 int ret = 0;
4368 bool nolock = false;
4370 if (BTRFS_I(inode)->dummy_inode)
4371 return 0;
4373 smp_mb();
4374 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4376 if (wbc->sync_mode == WB_SYNC_ALL) {
4377 if (nolock)
4378 trans = btrfs_join_transaction_nolock(root, 1);
4379 else
4380 trans = btrfs_join_transaction(root, 1);
4381 if (IS_ERR(trans))
4382 return PTR_ERR(trans);
4383 btrfs_set_trans_block_group(trans, inode);
4384 if (nolock)
4385 ret = btrfs_end_transaction_nolock(trans, root);
4386 else
4387 ret = btrfs_commit_transaction(trans, root);
4389 return ret;
4393 * This is somewhat expensive, updating the tree every time the
4394 * inode changes. But, it is most likely to find the inode in cache.
4395 * FIXME, needs more benchmarking...there are no reasons other than performance
4396 * to keep or drop this code.
4398 void btrfs_dirty_inode(struct inode *inode)
4400 struct btrfs_root *root = BTRFS_I(inode)->root;
4401 struct btrfs_trans_handle *trans;
4402 int ret;
4404 if (BTRFS_I(inode)->dummy_inode)
4405 return;
4407 trans = btrfs_join_transaction(root, 1);
4408 BUG_ON(IS_ERR(trans));
4409 btrfs_set_trans_block_group(trans, inode);
4411 ret = btrfs_update_inode(trans, root, inode);
4412 if (ret && ret == -ENOSPC) {
4413 /* whoops, lets try again with the full transaction */
4414 btrfs_end_transaction(trans, root);
4415 trans = btrfs_start_transaction(root, 1);
4416 if (IS_ERR(trans)) {
4417 if (printk_ratelimit()) {
4418 printk(KERN_ERR "btrfs: fail to "
4419 "dirty inode %lu error %ld\n",
4420 inode->i_ino, PTR_ERR(trans));
4422 return;
4424 btrfs_set_trans_block_group(trans, inode);
4426 ret = btrfs_update_inode(trans, root, inode);
4427 if (ret) {
4428 if (printk_ratelimit()) {
4429 printk(KERN_ERR "btrfs: fail to "
4430 "dirty inode %lu error %d\n",
4431 inode->i_ino, ret);
4435 btrfs_end_transaction(trans, root);
4439 * find the highest existing sequence number in a directory
4440 * and then set the in-memory index_cnt variable to reflect
4441 * free sequence numbers
4443 static int btrfs_set_inode_index_count(struct inode *inode)
4445 struct btrfs_root *root = BTRFS_I(inode)->root;
4446 struct btrfs_key key, found_key;
4447 struct btrfs_path *path;
4448 struct extent_buffer *leaf;
4449 int ret;
4451 key.objectid = inode->i_ino;
4452 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4453 key.offset = (u64)-1;
4455 path = btrfs_alloc_path();
4456 if (!path)
4457 return -ENOMEM;
4459 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4460 if (ret < 0)
4461 goto out;
4462 /* FIXME: we should be able to handle this */
4463 if (ret == 0)
4464 goto out;
4465 ret = 0;
4468 * MAGIC NUMBER EXPLANATION:
4469 * since we search a directory based on f_pos we have to start at 2
4470 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4471 * else has to start at 2
4473 if (path->slots[0] == 0) {
4474 BTRFS_I(inode)->index_cnt = 2;
4475 goto out;
4478 path->slots[0]--;
4480 leaf = path->nodes[0];
4481 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4483 if (found_key.objectid != inode->i_ino ||
4484 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4485 BTRFS_I(inode)->index_cnt = 2;
4486 goto out;
4489 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4490 out:
4491 btrfs_free_path(path);
4492 return ret;
4496 * helper to find a free sequence number in a given directory. This current
4497 * code is very simple, later versions will do smarter things in the btree
4499 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4501 int ret = 0;
4503 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4504 ret = btrfs_set_inode_index_count(dir);
4505 if (ret)
4506 return ret;
4509 *index = BTRFS_I(dir)->index_cnt;
4510 BTRFS_I(dir)->index_cnt++;
4512 return ret;
4515 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4516 struct btrfs_root *root,
4517 struct inode *dir,
4518 const char *name, int name_len,
4519 u64 ref_objectid, u64 objectid,
4520 u64 alloc_hint, int mode, u64 *index)
4522 struct inode *inode;
4523 struct btrfs_inode_item *inode_item;
4524 struct btrfs_key *location;
4525 struct btrfs_path *path;
4526 struct btrfs_inode_ref *ref;
4527 struct btrfs_key key[2];
4528 u32 sizes[2];
4529 unsigned long ptr;
4530 int ret;
4531 int owner;
4533 path = btrfs_alloc_path();
4534 BUG_ON(!path);
4536 inode = new_inode(root->fs_info->sb);
4537 if (!inode) {
4538 btrfs_free_path(path);
4539 return ERR_PTR(-ENOMEM);
4542 if (dir) {
4543 trace_btrfs_inode_request(dir);
4545 ret = btrfs_set_inode_index(dir, index);
4546 if (ret) {
4547 btrfs_free_path(path);
4548 iput(inode);
4549 return ERR_PTR(ret);
4553 * index_cnt is ignored for everything but a dir,
4554 * btrfs_get_inode_index_count has an explanation for the magic
4555 * number
4557 BTRFS_I(inode)->index_cnt = 2;
4558 BTRFS_I(inode)->root = root;
4559 BTRFS_I(inode)->generation = trans->transid;
4560 inode->i_generation = BTRFS_I(inode)->generation;
4561 btrfs_set_inode_space_info(root, inode);
4563 if (mode & S_IFDIR)
4564 owner = 0;
4565 else
4566 owner = 1;
4567 BTRFS_I(inode)->block_group =
4568 btrfs_find_block_group(root, 0, alloc_hint, owner);
4570 key[0].objectid = objectid;
4571 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4572 key[0].offset = 0;
4574 key[1].objectid = objectid;
4575 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4576 key[1].offset = ref_objectid;
4578 sizes[0] = sizeof(struct btrfs_inode_item);
4579 sizes[1] = name_len + sizeof(*ref);
4581 path->leave_spinning = 1;
4582 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4583 if (ret != 0)
4584 goto fail;
4586 inode_init_owner(inode, dir, mode);
4587 inode->i_ino = objectid;
4588 inode_set_bytes(inode, 0);
4589 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4590 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4591 struct btrfs_inode_item);
4592 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4594 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4595 struct btrfs_inode_ref);
4596 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4597 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4598 ptr = (unsigned long)(ref + 1);
4599 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4601 btrfs_mark_buffer_dirty(path->nodes[0]);
4602 btrfs_free_path(path);
4604 location = &BTRFS_I(inode)->location;
4605 location->objectid = objectid;
4606 location->offset = 0;
4607 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4609 btrfs_inherit_iflags(inode, dir);
4611 if ((mode & S_IFREG)) {
4612 if (btrfs_test_opt(root, NODATASUM))
4613 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4614 if (btrfs_test_opt(root, NODATACOW) ||
4615 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4616 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4619 insert_inode_hash(inode);
4620 inode_tree_add(inode);
4622 trace_btrfs_inode_new(inode);
4624 return inode;
4625 fail:
4626 if (dir)
4627 BTRFS_I(dir)->index_cnt--;
4628 btrfs_free_path(path);
4629 iput(inode);
4630 return ERR_PTR(ret);
4633 static inline u8 btrfs_inode_type(struct inode *inode)
4635 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4639 * utility function to add 'inode' into 'parent_inode' with
4640 * a give name and a given sequence number.
4641 * if 'add_backref' is true, also insert a backref from the
4642 * inode to the parent directory.
4644 int btrfs_add_link(struct btrfs_trans_handle *trans,
4645 struct inode *parent_inode, struct inode *inode,
4646 const char *name, int name_len, int add_backref, u64 index)
4648 int ret = 0;
4649 struct btrfs_key key;
4650 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4652 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4653 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4654 } else {
4655 key.objectid = inode->i_ino;
4656 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4657 key.offset = 0;
4660 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4661 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4662 key.objectid, root->root_key.objectid,
4663 parent_inode->i_ino,
4664 index, name, name_len);
4665 } else if (add_backref) {
4666 ret = btrfs_insert_inode_ref(trans, root,
4667 name, name_len, inode->i_ino,
4668 parent_inode->i_ino, index);
4671 if (ret == 0) {
4672 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4673 parent_inode->i_ino, &key,
4674 btrfs_inode_type(inode), index);
4675 BUG_ON(ret);
4677 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4678 name_len * 2);
4679 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4680 ret = btrfs_update_inode(trans, root, parent_inode);
4682 return ret;
4685 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4686 struct inode *dir, struct dentry *dentry,
4687 struct inode *inode, int backref, u64 index)
4689 int err = btrfs_add_link(trans, dir, inode,
4690 dentry->d_name.name, dentry->d_name.len,
4691 backref, index);
4692 if (!err) {
4693 d_instantiate(dentry, inode);
4694 return 0;
4696 if (err > 0)
4697 err = -EEXIST;
4698 return err;
4701 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4702 int mode, dev_t rdev)
4704 struct btrfs_trans_handle *trans;
4705 struct btrfs_root *root = BTRFS_I(dir)->root;
4706 struct inode *inode = NULL;
4707 int err;
4708 int drop_inode = 0;
4709 u64 objectid;
4710 unsigned long nr = 0;
4711 u64 index = 0;
4713 if (!new_valid_dev(rdev))
4714 return -EINVAL;
4716 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4717 if (err)
4718 return err;
4721 * 2 for inode item and ref
4722 * 2 for dir items
4723 * 1 for xattr if selinux is on
4725 trans = btrfs_start_transaction(root, 5);
4726 if (IS_ERR(trans))
4727 return PTR_ERR(trans);
4729 btrfs_set_trans_block_group(trans, dir);
4731 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4732 dentry->d_name.len, dir->i_ino, objectid,
4733 BTRFS_I(dir)->block_group, mode, &index);
4734 err = PTR_ERR(inode);
4735 if (IS_ERR(inode))
4736 goto out_unlock;
4738 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4739 if (err) {
4740 drop_inode = 1;
4741 goto out_unlock;
4744 btrfs_set_trans_block_group(trans, inode);
4745 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4746 if (err)
4747 drop_inode = 1;
4748 else {
4749 inode->i_op = &btrfs_special_inode_operations;
4750 init_special_inode(inode, inode->i_mode, rdev);
4751 btrfs_update_inode(trans, root, inode);
4753 btrfs_update_inode_block_group(trans, inode);
4754 btrfs_update_inode_block_group(trans, dir);
4755 out_unlock:
4756 nr = trans->blocks_used;
4757 btrfs_end_transaction_throttle(trans, root);
4758 btrfs_btree_balance_dirty(root, nr);
4759 if (drop_inode) {
4760 inode_dec_link_count(inode);
4761 iput(inode);
4763 return err;
4766 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4767 int mode, struct nameidata *nd)
4769 struct btrfs_trans_handle *trans;
4770 struct btrfs_root *root = BTRFS_I(dir)->root;
4771 struct inode *inode = NULL;
4772 int drop_inode = 0;
4773 int err;
4774 unsigned long nr = 0;
4775 u64 objectid;
4776 u64 index = 0;
4778 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4779 if (err)
4780 return err;
4782 * 2 for inode item and ref
4783 * 2 for dir items
4784 * 1 for xattr if selinux is on
4786 trans = btrfs_start_transaction(root, 5);
4787 if (IS_ERR(trans))
4788 return PTR_ERR(trans);
4790 btrfs_set_trans_block_group(trans, dir);
4792 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4793 dentry->d_name.len, dir->i_ino, objectid,
4794 BTRFS_I(dir)->block_group, mode, &index);
4795 err = PTR_ERR(inode);
4796 if (IS_ERR(inode))
4797 goto out_unlock;
4799 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4800 if (err) {
4801 drop_inode = 1;
4802 goto out_unlock;
4805 btrfs_set_trans_block_group(trans, inode);
4806 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4807 if (err)
4808 drop_inode = 1;
4809 else {
4810 inode->i_mapping->a_ops = &btrfs_aops;
4811 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4812 inode->i_fop = &btrfs_file_operations;
4813 inode->i_op = &btrfs_file_inode_operations;
4814 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4816 btrfs_update_inode_block_group(trans, inode);
4817 btrfs_update_inode_block_group(trans, dir);
4818 out_unlock:
4819 nr = trans->blocks_used;
4820 btrfs_end_transaction_throttle(trans, root);
4821 if (drop_inode) {
4822 inode_dec_link_count(inode);
4823 iput(inode);
4825 btrfs_btree_balance_dirty(root, nr);
4826 return err;
4829 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4830 struct dentry *dentry)
4832 struct btrfs_trans_handle *trans;
4833 struct btrfs_root *root = BTRFS_I(dir)->root;
4834 struct inode *inode = old_dentry->d_inode;
4835 u64 index;
4836 unsigned long nr = 0;
4837 int err;
4838 int drop_inode = 0;
4840 /* do not allow sys_link's with other subvols of the same device */
4841 if (root->objectid != BTRFS_I(inode)->root->objectid)
4842 return -EXDEV;
4844 if (inode->i_nlink == ~0U)
4845 return -EMLINK;
4847 err = btrfs_set_inode_index(dir, &index);
4848 if (err)
4849 goto fail;
4852 * 2 items for inode and inode ref
4853 * 2 items for dir items
4854 * 1 item for parent inode
4856 trans = btrfs_start_transaction(root, 5);
4857 if (IS_ERR(trans)) {
4858 err = PTR_ERR(trans);
4859 goto fail;
4862 btrfs_inc_nlink(inode);
4863 inode->i_ctime = CURRENT_TIME;
4865 btrfs_set_trans_block_group(trans, dir);
4866 ihold(inode);
4868 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4870 if (err) {
4871 drop_inode = 1;
4872 } else {
4873 struct dentry *parent = dget_parent(dentry);
4874 btrfs_update_inode_block_group(trans, dir);
4875 err = btrfs_update_inode(trans, root, inode);
4876 BUG_ON(err);
4877 btrfs_log_new_name(trans, inode, NULL, parent);
4878 dput(parent);
4881 nr = trans->blocks_used;
4882 btrfs_end_transaction_throttle(trans, root);
4883 fail:
4884 if (drop_inode) {
4885 inode_dec_link_count(inode);
4886 iput(inode);
4888 btrfs_btree_balance_dirty(root, nr);
4889 return err;
4892 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4894 struct inode *inode = NULL;
4895 struct btrfs_trans_handle *trans;
4896 struct btrfs_root *root = BTRFS_I(dir)->root;
4897 int err = 0;
4898 int drop_on_err = 0;
4899 u64 objectid = 0;
4900 u64 index = 0;
4901 unsigned long nr = 1;
4903 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4904 if (err)
4905 return err;
4908 * 2 items for inode and ref
4909 * 2 items for dir items
4910 * 1 for xattr if selinux is on
4912 trans = btrfs_start_transaction(root, 5);
4913 if (IS_ERR(trans))
4914 return PTR_ERR(trans);
4915 btrfs_set_trans_block_group(trans, dir);
4917 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4918 dentry->d_name.len, dir->i_ino, objectid,
4919 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4920 &index);
4921 if (IS_ERR(inode)) {
4922 err = PTR_ERR(inode);
4923 goto out_fail;
4926 drop_on_err = 1;
4928 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4929 if (err)
4930 goto out_fail;
4932 inode->i_op = &btrfs_dir_inode_operations;
4933 inode->i_fop = &btrfs_dir_file_operations;
4934 btrfs_set_trans_block_group(trans, inode);
4936 btrfs_i_size_write(inode, 0);
4937 err = btrfs_update_inode(trans, root, inode);
4938 if (err)
4939 goto out_fail;
4941 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4942 dentry->d_name.len, 0, index);
4943 if (err)
4944 goto out_fail;
4946 d_instantiate(dentry, inode);
4947 drop_on_err = 0;
4948 btrfs_update_inode_block_group(trans, inode);
4949 btrfs_update_inode_block_group(trans, dir);
4951 out_fail:
4952 nr = trans->blocks_used;
4953 btrfs_end_transaction_throttle(trans, root);
4954 if (drop_on_err)
4955 iput(inode);
4956 btrfs_btree_balance_dirty(root, nr);
4957 return err;
4960 /* helper for btfs_get_extent. Given an existing extent in the tree,
4961 * and an extent that you want to insert, deal with overlap and insert
4962 * the new extent into the tree.
4964 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4965 struct extent_map *existing,
4966 struct extent_map *em,
4967 u64 map_start, u64 map_len)
4969 u64 start_diff;
4971 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4972 start_diff = map_start - em->start;
4973 em->start = map_start;
4974 em->len = map_len;
4975 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4976 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4977 em->block_start += start_diff;
4978 em->block_len -= start_diff;
4980 return add_extent_mapping(em_tree, em);
4983 static noinline int uncompress_inline(struct btrfs_path *path,
4984 struct inode *inode, struct page *page,
4985 size_t pg_offset, u64 extent_offset,
4986 struct btrfs_file_extent_item *item)
4988 int ret;
4989 struct extent_buffer *leaf = path->nodes[0];
4990 char *tmp;
4991 size_t max_size;
4992 unsigned long inline_size;
4993 unsigned long ptr;
4994 int compress_type;
4996 WARN_ON(pg_offset != 0);
4997 compress_type = btrfs_file_extent_compression(leaf, item);
4998 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4999 inline_size = btrfs_file_extent_inline_item_len(leaf,
5000 btrfs_item_nr(leaf, path->slots[0]));
5001 tmp = kmalloc(inline_size, GFP_NOFS);
5002 ptr = btrfs_file_extent_inline_start(item);
5004 read_extent_buffer(leaf, tmp, ptr, inline_size);
5006 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5007 ret = btrfs_decompress(compress_type, tmp, page,
5008 extent_offset, inline_size, max_size);
5009 if (ret) {
5010 char *kaddr = kmap_atomic(page, KM_USER0);
5011 unsigned long copy_size = min_t(u64,
5012 PAGE_CACHE_SIZE - pg_offset,
5013 max_size - extent_offset);
5014 memset(kaddr + pg_offset, 0, copy_size);
5015 kunmap_atomic(kaddr, KM_USER0);
5017 kfree(tmp);
5018 return 0;
5022 * a bit scary, this does extent mapping from logical file offset to the disk.
5023 * the ugly parts come from merging extents from the disk with the in-ram
5024 * representation. This gets more complex because of the data=ordered code,
5025 * where the in-ram extents might be locked pending data=ordered completion.
5027 * This also copies inline extents directly into the page.
5030 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5031 size_t pg_offset, u64 start, u64 len,
5032 int create)
5034 int ret;
5035 int err = 0;
5036 u64 bytenr;
5037 u64 extent_start = 0;
5038 u64 extent_end = 0;
5039 u64 objectid = inode->i_ino;
5040 u32 found_type;
5041 struct btrfs_path *path = NULL;
5042 struct btrfs_root *root = BTRFS_I(inode)->root;
5043 struct btrfs_file_extent_item *item;
5044 struct extent_buffer *leaf;
5045 struct btrfs_key found_key;
5046 struct extent_map *em = NULL;
5047 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5048 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5049 struct btrfs_trans_handle *trans = NULL;
5050 int compress_type;
5052 again:
5053 read_lock(&em_tree->lock);
5054 em = lookup_extent_mapping(em_tree, start, len);
5055 if (em)
5056 em->bdev = root->fs_info->fs_devices->latest_bdev;
5057 read_unlock(&em_tree->lock);
5059 if (em) {
5060 if (em->start > start || em->start + em->len <= start)
5061 free_extent_map(em);
5062 else if (em->block_start == EXTENT_MAP_INLINE && page)
5063 free_extent_map(em);
5064 else
5065 goto out;
5067 em = alloc_extent_map(GFP_NOFS);
5068 if (!em) {
5069 err = -ENOMEM;
5070 goto out;
5072 em->bdev = root->fs_info->fs_devices->latest_bdev;
5073 em->start = EXTENT_MAP_HOLE;
5074 em->orig_start = EXTENT_MAP_HOLE;
5075 em->len = (u64)-1;
5076 em->block_len = (u64)-1;
5078 if (!path) {
5079 path = btrfs_alloc_path();
5080 BUG_ON(!path);
5083 ret = btrfs_lookup_file_extent(trans, root, path,
5084 objectid, start, trans != NULL);
5085 if (ret < 0) {
5086 err = ret;
5087 goto out;
5090 if (ret != 0) {
5091 if (path->slots[0] == 0)
5092 goto not_found;
5093 path->slots[0]--;
5096 leaf = path->nodes[0];
5097 item = btrfs_item_ptr(leaf, path->slots[0],
5098 struct btrfs_file_extent_item);
5099 /* are we inside the extent that was found? */
5100 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5101 found_type = btrfs_key_type(&found_key);
5102 if (found_key.objectid != objectid ||
5103 found_type != BTRFS_EXTENT_DATA_KEY) {
5104 goto not_found;
5107 found_type = btrfs_file_extent_type(leaf, item);
5108 extent_start = found_key.offset;
5109 compress_type = btrfs_file_extent_compression(leaf, item);
5110 if (found_type == BTRFS_FILE_EXTENT_REG ||
5111 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5112 extent_end = extent_start +
5113 btrfs_file_extent_num_bytes(leaf, item);
5114 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5115 size_t size;
5116 size = btrfs_file_extent_inline_len(leaf, item);
5117 extent_end = (extent_start + size + root->sectorsize - 1) &
5118 ~((u64)root->sectorsize - 1);
5121 if (start >= extent_end) {
5122 path->slots[0]++;
5123 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5124 ret = btrfs_next_leaf(root, path);
5125 if (ret < 0) {
5126 err = ret;
5127 goto out;
5129 if (ret > 0)
5130 goto not_found;
5131 leaf = path->nodes[0];
5133 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5134 if (found_key.objectid != objectid ||
5135 found_key.type != BTRFS_EXTENT_DATA_KEY)
5136 goto not_found;
5137 if (start + len <= found_key.offset)
5138 goto not_found;
5139 em->start = start;
5140 em->len = found_key.offset - start;
5141 goto not_found_em;
5144 if (found_type == BTRFS_FILE_EXTENT_REG ||
5145 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5146 em->start = extent_start;
5147 em->len = extent_end - extent_start;
5148 em->orig_start = extent_start -
5149 btrfs_file_extent_offset(leaf, item);
5150 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5151 if (bytenr == 0) {
5152 em->block_start = EXTENT_MAP_HOLE;
5153 goto insert;
5155 if (compress_type != BTRFS_COMPRESS_NONE) {
5156 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5157 em->compress_type = compress_type;
5158 em->block_start = bytenr;
5159 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5160 item);
5161 } else {
5162 bytenr += btrfs_file_extent_offset(leaf, item);
5163 em->block_start = bytenr;
5164 em->block_len = em->len;
5165 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5166 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5168 goto insert;
5169 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5170 unsigned long ptr;
5171 char *map;
5172 size_t size;
5173 size_t extent_offset;
5174 size_t copy_size;
5176 em->block_start = EXTENT_MAP_INLINE;
5177 if (!page || create) {
5178 em->start = extent_start;
5179 em->len = extent_end - extent_start;
5180 goto out;
5183 size = btrfs_file_extent_inline_len(leaf, item);
5184 extent_offset = page_offset(page) + pg_offset - extent_start;
5185 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5186 size - extent_offset);
5187 em->start = extent_start + extent_offset;
5188 em->len = (copy_size + root->sectorsize - 1) &
5189 ~((u64)root->sectorsize - 1);
5190 em->orig_start = EXTENT_MAP_INLINE;
5191 if (compress_type) {
5192 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5193 em->compress_type = compress_type;
5195 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5196 if (create == 0 && !PageUptodate(page)) {
5197 if (btrfs_file_extent_compression(leaf, item) !=
5198 BTRFS_COMPRESS_NONE) {
5199 ret = uncompress_inline(path, inode, page,
5200 pg_offset,
5201 extent_offset, item);
5202 BUG_ON(ret);
5203 } else {
5204 map = kmap(page);
5205 read_extent_buffer(leaf, map + pg_offset, ptr,
5206 copy_size);
5207 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5208 memset(map + pg_offset + copy_size, 0,
5209 PAGE_CACHE_SIZE - pg_offset -
5210 copy_size);
5212 kunmap(page);
5214 flush_dcache_page(page);
5215 } else if (create && PageUptodate(page)) {
5216 WARN_ON(1);
5217 if (!trans) {
5218 kunmap(page);
5219 free_extent_map(em);
5220 em = NULL;
5221 btrfs_release_path(root, path);
5222 trans = btrfs_join_transaction(root, 1);
5223 if (IS_ERR(trans))
5224 return ERR_CAST(trans);
5225 goto again;
5227 map = kmap(page);
5228 write_extent_buffer(leaf, map + pg_offset, ptr,
5229 copy_size);
5230 kunmap(page);
5231 btrfs_mark_buffer_dirty(leaf);
5233 set_extent_uptodate(io_tree, em->start,
5234 extent_map_end(em) - 1, NULL, GFP_NOFS);
5235 goto insert;
5236 } else {
5237 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5238 WARN_ON(1);
5240 not_found:
5241 em->start = start;
5242 em->len = len;
5243 not_found_em:
5244 em->block_start = EXTENT_MAP_HOLE;
5245 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5246 insert:
5247 btrfs_release_path(root, path);
5248 if (em->start > start || extent_map_end(em) <= start) {
5249 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5250 "[%llu %llu]\n", (unsigned long long)em->start,
5251 (unsigned long long)em->len,
5252 (unsigned long long)start,
5253 (unsigned long long)len);
5254 err = -EIO;
5255 goto out;
5258 err = 0;
5259 write_lock(&em_tree->lock);
5260 ret = add_extent_mapping(em_tree, em);
5261 /* it is possible that someone inserted the extent into the tree
5262 * while we had the lock dropped. It is also possible that
5263 * an overlapping map exists in the tree
5265 if (ret == -EEXIST) {
5266 struct extent_map *existing;
5268 ret = 0;
5270 existing = lookup_extent_mapping(em_tree, start, len);
5271 if (existing && (existing->start > start ||
5272 existing->start + existing->len <= start)) {
5273 free_extent_map(existing);
5274 existing = NULL;
5276 if (!existing) {
5277 existing = lookup_extent_mapping(em_tree, em->start,
5278 em->len);
5279 if (existing) {
5280 err = merge_extent_mapping(em_tree, existing,
5281 em, start,
5282 root->sectorsize);
5283 free_extent_map(existing);
5284 if (err) {
5285 free_extent_map(em);
5286 em = NULL;
5288 } else {
5289 err = -EIO;
5290 free_extent_map(em);
5291 em = NULL;
5293 } else {
5294 free_extent_map(em);
5295 em = existing;
5296 err = 0;
5299 write_unlock(&em_tree->lock);
5300 out:
5302 trace_btrfs_get_extent(root, em);
5304 if (path)
5305 btrfs_free_path(path);
5306 if (trans) {
5307 ret = btrfs_end_transaction(trans, root);
5308 if (!err)
5309 err = ret;
5311 if (err) {
5312 free_extent_map(em);
5313 return ERR_PTR(err);
5315 return em;
5318 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5319 size_t pg_offset, u64 start, u64 len,
5320 int create)
5322 struct extent_map *em;
5323 struct extent_map *hole_em = NULL;
5324 u64 range_start = start;
5325 u64 end;
5326 u64 found;
5327 u64 found_end;
5328 int err = 0;
5330 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5331 if (IS_ERR(em))
5332 return em;
5333 if (em) {
5335 * if our em maps to a hole, there might
5336 * actually be delalloc bytes behind it
5338 if (em->block_start != EXTENT_MAP_HOLE)
5339 return em;
5340 else
5341 hole_em = em;
5344 /* check to see if we've wrapped (len == -1 or similar) */
5345 end = start + len;
5346 if (end < start)
5347 end = (u64)-1;
5348 else
5349 end -= 1;
5351 em = NULL;
5353 /* ok, we didn't find anything, lets look for delalloc */
5354 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5355 end, len, EXTENT_DELALLOC, 1);
5356 found_end = range_start + found;
5357 if (found_end < range_start)
5358 found_end = (u64)-1;
5361 * we didn't find anything useful, return
5362 * the original results from get_extent()
5364 if (range_start > end || found_end <= start) {
5365 em = hole_em;
5366 hole_em = NULL;
5367 goto out;
5370 /* adjust the range_start to make sure it doesn't
5371 * go backwards from the start they passed in
5373 range_start = max(start,range_start);
5374 found = found_end - range_start;
5376 if (found > 0) {
5377 u64 hole_start = start;
5378 u64 hole_len = len;
5380 em = alloc_extent_map(GFP_NOFS);
5381 if (!em) {
5382 err = -ENOMEM;
5383 goto out;
5386 * when btrfs_get_extent can't find anything it
5387 * returns one huge hole
5389 * make sure what it found really fits our range, and
5390 * adjust to make sure it is based on the start from
5391 * the caller
5393 if (hole_em) {
5394 u64 calc_end = extent_map_end(hole_em);
5396 if (calc_end <= start || (hole_em->start > end)) {
5397 free_extent_map(hole_em);
5398 hole_em = NULL;
5399 } else {
5400 hole_start = max(hole_em->start, start);
5401 hole_len = calc_end - hole_start;
5404 em->bdev = NULL;
5405 if (hole_em && range_start > hole_start) {
5406 /* our hole starts before our delalloc, so we
5407 * have to return just the parts of the hole
5408 * that go until the delalloc starts
5410 em->len = min(hole_len,
5411 range_start - hole_start);
5412 em->start = hole_start;
5413 em->orig_start = hole_start;
5415 * don't adjust block start at all,
5416 * it is fixed at EXTENT_MAP_HOLE
5418 em->block_start = hole_em->block_start;
5419 em->block_len = hole_len;
5420 } else {
5421 em->start = range_start;
5422 em->len = found;
5423 em->orig_start = range_start;
5424 em->block_start = EXTENT_MAP_DELALLOC;
5425 em->block_len = found;
5427 } else if (hole_em) {
5428 return hole_em;
5430 out:
5432 free_extent_map(hole_em);
5433 if (err) {
5434 free_extent_map(em);
5435 return ERR_PTR(err);
5437 return em;
5440 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5441 struct extent_map *em,
5442 u64 start, u64 len)
5444 struct btrfs_root *root = BTRFS_I(inode)->root;
5445 struct btrfs_trans_handle *trans;
5446 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5447 struct btrfs_key ins;
5448 u64 alloc_hint;
5449 int ret;
5450 bool insert = false;
5453 * Ok if the extent map we looked up is a hole and is for the exact
5454 * range we want, there is no reason to allocate a new one, however if
5455 * it is not right then we need to free this one and drop the cache for
5456 * our range.
5458 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5459 em->len != len) {
5460 free_extent_map(em);
5461 em = NULL;
5462 insert = true;
5463 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5466 trans = btrfs_join_transaction(root, 0);
5467 if (IS_ERR(trans))
5468 return ERR_CAST(trans);
5470 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5472 alloc_hint = get_extent_allocation_hint(inode, start, len);
5473 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5474 alloc_hint, (u64)-1, &ins, 1);
5475 if (ret) {
5476 em = ERR_PTR(ret);
5477 goto out;
5480 if (!em) {
5481 em = alloc_extent_map(GFP_NOFS);
5482 if (!em) {
5483 em = ERR_PTR(-ENOMEM);
5484 goto out;
5488 em->start = start;
5489 em->orig_start = em->start;
5490 em->len = ins.offset;
5492 em->block_start = ins.objectid;
5493 em->block_len = ins.offset;
5494 em->bdev = root->fs_info->fs_devices->latest_bdev;
5497 * We need to do this because if we're using the original em we searched
5498 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5500 em->flags = 0;
5501 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5503 while (insert) {
5504 write_lock(&em_tree->lock);
5505 ret = add_extent_mapping(em_tree, em);
5506 write_unlock(&em_tree->lock);
5507 if (ret != -EEXIST)
5508 break;
5509 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5512 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5513 ins.offset, ins.offset, 0);
5514 if (ret) {
5515 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5516 em = ERR_PTR(ret);
5518 out:
5519 btrfs_end_transaction(trans, root);
5520 return em;
5524 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5525 * block must be cow'd
5527 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5528 struct inode *inode, u64 offset, u64 len)
5530 struct btrfs_path *path;
5531 int ret;
5532 struct extent_buffer *leaf;
5533 struct btrfs_root *root = BTRFS_I(inode)->root;
5534 struct btrfs_file_extent_item *fi;
5535 struct btrfs_key key;
5536 u64 disk_bytenr;
5537 u64 backref_offset;
5538 u64 extent_end;
5539 u64 num_bytes;
5540 int slot;
5541 int found_type;
5543 path = btrfs_alloc_path();
5544 if (!path)
5545 return -ENOMEM;
5547 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5548 offset, 0);
5549 if (ret < 0)
5550 goto out;
5552 slot = path->slots[0];
5553 if (ret == 1) {
5554 if (slot == 0) {
5555 /* can't find the item, must cow */
5556 ret = 0;
5557 goto out;
5559 slot--;
5561 ret = 0;
5562 leaf = path->nodes[0];
5563 btrfs_item_key_to_cpu(leaf, &key, slot);
5564 if (key.objectid != inode->i_ino ||
5565 key.type != BTRFS_EXTENT_DATA_KEY) {
5566 /* not our file or wrong item type, must cow */
5567 goto out;
5570 if (key.offset > offset) {
5571 /* Wrong offset, must cow */
5572 goto out;
5575 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5576 found_type = btrfs_file_extent_type(leaf, fi);
5577 if (found_type != BTRFS_FILE_EXTENT_REG &&
5578 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5579 /* not a regular extent, must cow */
5580 goto out;
5582 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5583 backref_offset = btrfs_file_extent_offset(leaf, fi);
5585 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5586 if (extent_end < offset + len) {
5587 /* extent doesn't include our full range, must cow */
5588 goto out;
5591 if (btrfs_extent_readonly(root, disk_bytenr))
5592 goto out;
5595 * look for other files referencing this extent, if we
5596 * find any we must cow
5598 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5599 key.offset - backref_offset, disk_bytenr))
5600 goto out;
5603 * adjust disk_bytenr and num_bytes to cover just the bytes
5604 * in this extent we are about to write. If there
5605 * are any csums in that range we have to cow in order
5606 * to keep the csums correct
5608 disk_bytenr += backref_offset;
5609 disk_bytenr += offset - key.offset;
5610 num_bytes = min(offset + len, extent_end) - offset;
5611 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5612 goto out;
5614 * all of the above have passed, it is safe to overwrite this extent
5615 * without cow
5617 ret = 1;
5618 out:
5619 btrfs_free_path(path);
5620 return ret;
5623 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5624 struct buffer_head *bh_result, int create)
5626 struct extent_map *em;
5627 struct btrfs_root *root = BTRFS_I(inode)->root;
5628 u64 start = iblock << inode->i_blkbits;
5629 u64 len = bh_result->b_size;
5630 struct btrfs_trans_handle *trans;
5632 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5633 if (IS_ERR(em))
5634 return PTR_ERR(em);
5637 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5638 * io. INLINE is special, and we could probably kludge it in here, but
5639 * it's still buffered so for safety lets just fall back to the generic
5640 * buffered path.
5642 * For COMPRESSED we _have_ to read the entire extent in so we can
5643 * decompress it, so there will be buffering required no matter what we
5644 * do, so go ahead and fallback to buffered.
5646 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5647 * to buffered IO. Don't blame me, this is the price we pay for using
5648 * the generic code.
5650 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5651 em->block_start == EXTENT_MAP_INLINE) {
5652 free_extent_map(em);
5653 return -ENOTBLK;
5656 /* Just a good old fashioned hole, return */
5657 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5658 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5659 free_extent_map(em);
5660 /* DIO will do one hole at a time, so just unlock a sector */
5661 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5662 start + root->sectorsize - 1, GFP_NOFS);
5663 return 0;
5667 * We don't allocate a new extent in the following cases
5669 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5670 * existing extent.
5671 * 2) The extent is marked as PREALLOC. We're good to go here and can
5672 * just use the extent.
5675 if (!create) {
5676 len = em->len - (start - em->start);
5677 goto map;
5680 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5681 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5682 em->block_start != EXTENT_MAP_HOLE)) {
5683 int type;
5684 int ret;
5685 u64 block_start;
5687 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5688 type = BTRFS_ORDERED_PREALLOC;
5689 else
5690 type = BTRFS_ORDERED_NOCOW;
5691 len = min(len, em->len - (start - em->start));
5692 block_start = em->block_start + (start - em->start);
5695 * we're not going to log anything, but we do need
5696 * to make sure the current transaction stays open
5697 * while we look for nocow cross refs
5699 trans = btrfs_join_transaction(root, 0);
5700 if (IS_ERR(trans))
5701 goto must_cow;
5703 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5704 ret = btrfs_add_ordered_extent_dio(inode, start,
5705 block_start, len, len, type);
5706 btrfs_end_transaction(trans, root);
5707 if (ret) {
5708 free_extent_map(em);
5709 return ret;
5711 goto unlock;
5713 btrfs_end_transaction(trans, root);
5715 must_cow:
5717 * this will cow the extent, reset the len in case we changed
5718 * it above
5720 len = bh_result->b_size;
5721 em = btrfs_new_extent_direct(inode, em, start, len);
5722 if (IS_ERR(em))
5723 return PTR_ERR(em);
5724 len = min(len, em->len - (start - em->start));
5725 unlock:
5726 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5727 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5728 0, NULL, GFP_NOFS);
5729 map:
5730 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5731 inode->i_blkbits;
5732 bh_result->b_size = len;
5733 bh_result->b_bdev = em->bdev;
5734 set_buffer_mapped(bh_result);
5735 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5736 set_buffer_new(bh_result);
5738 free_extent_map(em);
5740 return 0;
5743 struct btrfs_dio_private {
5744 struct inode *inode;
5745 u64 logical_offset;
5746 u64 disk_bytenr;
5747 u64 bytes;
5748 u32 *csums;
5749 void *private;
5751 /* number of bios pending for this dio */
5752 atomic_t pending_bios;
5754 /* IO errors */
5755 int errors;
5757 struct bio *orig_bio;
5760 static void btrfs_endio_direct_read(struct bio *bio, int err)
5762 struct btrfs_dio_private *dip = bio->bi_private;
5763 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5764 struct bio_vec *bvec = bio->bi_io_vec;
5765 struct inode *inode = dip->inode;
5766 struct btrfs_root *root = BTRFS_I(inode)->root;
5767 u64 start;
5768 u32 *private = dip->csums;
5770 start = dip->logical_offset;
5771 do {
5772 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5773 struct page *page = bvec->bv_page;
5774 char *kaddr;
5775 u32 csum = ~(u32)0;
5776 unsigned long flags;
5778 local_irq_save(flags);
5779 kaddr = kmap_atomic(page, KM_IRQ0);
5780 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5781 csum, bvec->bv_len);
5782 btrfs_csum_final(csum, (char *)&csum);
5783 kunmap_atomic(kaddr, KM_IRQ0);
5784 local_irq_restore(flags);
5786 flush_dcache_page(bvec->bv_page);
5787 if (csum != *private) {
5788 printk(KERN_ERR "btrfs csum failed ino %lu off"
5789 " %llu csum %u private %u\n",
5790 inode->i_ino, (unsigned long long)start,
5791 csum, *private);
5792 err = -EIO;
5796 start += bvec->bv_len;
5797 private++;
5798 bvec++;
5799 } while (bvec <= bvec_end);
5801 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5802 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5803 bio->bi_private = dip->private;
5805 kfree(dip->csums);
5806 kfree(dip);
5808 /* If we had a csum failure make sure to clear the uptodate flag */
5809 if (err)
5810 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5811 dio_end_io(bio, err);
5814 static void btrfs_endio_direct_write(struct bio *bio, int err)
5816 struct btrfs_dio_private *dip = bio->bi_private;
5817 struct inode *inode = dip->inode;
5818 struct btrfs_root *root = BTRFS_I(inode)->root;
5819 struct btrfs_trans_handle *trans;
5820 struct btrfs_ordered_extent *ordered = NULL;
5821 struct extent_state *cached_state = NULL;
5822 u64 ordered_offset = dip->logical_offset;
5823 u64 ordered_bytes = dip->bytes;
5824 int ret;
5826 if (err)
5827 goto out_done;
5828 again:
5829 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5830 &ordered_offset,
5831 ordered_bytes);
5832 if (!ret)
5833 goto out_test;
5835 BUG_ON(!ordered);
5837 trans = btrfs_join_transaction(root, 1);
5838 if (IS_ERR(trans)) {
5839 err = -ENOMEM;
5840 goto out;
5842 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5844 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5845 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5846 if (!ret)
5847 ret = btrfs_update_inode(trans, root, inode);
5848 err = ret;
5849 goto out;
5852 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5853 ordered->file_offset + ordered->len - 1, 0,
5854 &cached_state, GFP_NOFS);
5856 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5857 ret = btrfs_mark_extent_written(trans, inode,
5858 ordered->file_offset,
5859 ordered->file_offset +
5860 ordered->len);
5861 if (ret) {
5862 err = ret;
5863 goto out_unlock;
5865 } else {
5866 ret = insert_reserved_file_extent(trans, inode,
5867 ordered->file_offset,
5868 ordered->start,
5869 ordered->disk_len,
5870 ordered->len,
5871 ordered->len,
5872 0, 0, 0,
5873 BTRFS_FILE_EXTENT_REG);
5874 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5875 ordered->file_offset, ordered->len);
5876 if (ret) {
5877 err = ret;
5878 WARN_ON(1);
5879 goto out_unlock;
5883 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5884 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5885 if (!ret)
5886 btrfs_update_inode(trans, root, inode);
5887 ret = 0;
5888 out_unlock:
5889 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5890 ordered->file_offset + ordered->len - 1,
5891 &cached_state, GFP_NOFS);
5892 out:
5893 btrfs_delalloc_release_metadata(inode, ordered->len);
5894 btrfs_end_transaction(trans, root);
5895 ordered_offset = ordered->file_offset + ordered->len;
5896 btrfs_put_ordered_extent(ordered);
5897 btrfs_put_ordered_extent(ordered);
5899 out_test:
5901 * our bio might span multiple ordered extents. If we haven't
5902 * completed the accounting for the whole dio, go back and try again
5904 if (ordered_offset < dip->logical_offset + dip->bytes) {
5905 ordered_bytes = dip->logical_offset + dip->bytes -
5906 ordered_offset;
5907 goto again;
5909 out_done:
5910 bio->bi_private = dip->private;
5912 kfree(dip->csums);
5913 kfree(dip);
5915 /* If we had an error make sure to clear the uptodate flag */
5916 if (err)
5917 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5918 dio_end_io(bio, err);
5921 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5922 struct bio *bio, int mirror_num,
5923 unsigned long bio_flags, u64 offset)
5925 int ret;
5926 struct btrfs_root *root = BTRFS_I(inode)->root;
5927 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5928 BUG_ON(ret);
5929 return 0;
5932 static void btrfs_end_dio_bio(struct bio *bio, int err)
5934 struct btrfs_dio_private *dip = bio->bi_private;
5936 if (err) {
5937 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5938 "sector %#Lx len %u err no %d\n",
5939 dip->inode->i_ino, bio->bi_rw,
5940 (unsigned long long)bio->bi_sector, bio->bi_size, err);
5941 dip->errors = 1;
5944 * before atomic variable goto zero, we must make sure
5945 * dip->errors is perceived to be set.
5947 smp_mb__before_atomic_dec();
5950 /* if there are more bios still pending for this dio, just exit */
5951 if (!atomic_dec_and_test(&dip->pending_bios))
5952 goto out;
5954 if (dip->errors)
5955 bio_io_error(dip->orig_bio);
5956 else {
5957 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5958 bio_endio(dip->orig_bio, 0);
5960 out:
5961 bio_put(bio);
5964 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5965 u64 first_sector, gfp_t gfp_flags)
5967 int nr_vecs = bio_get_nr_vecs(bdev);
5968 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5971 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5972 int rw, u64 file_offset, int skip_sum,
5973 u32 *csums, int async_submit)
5975 int write = rw & REQ_WRITE;
5976 struct btrfs_root *root = BTRFS_I(inode)->root;
5977 int ret;
5979 bio_get(bio);
5980 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5981 if (ret)
5982 goto err;
5984 if (skip_sum)
5985 goto map;
5987 if (write && async_submit) {
5988 ret = btrfs_wq_submit_bio(root->fs_info,
5989 inode, rw, bio, 0, 0,
5990 file_offset,
5991 __btrfs_submit_bio_start_direct_io,
5992 __btrfs_submit_bio_done);
5993 goto err;
5994 } else if (write) {
5996 * If we aren't doing async submit, calculate the csum of the
5997 * bio now.
5999 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6000 if (ret)
6001 goto err;
6002 } else if (!skip_sum) {
6003 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
6004 file_offset, csums);
6005 if (ret)
6006 goto err;
6009 map:
6010 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6011 err:
6012 bio_put(bio);
6013 return ret;
6016 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6017 int skip_sum)
6019 struct inode *inode = dip->inode;
6020 struct btrfs_root *root = BTRFS_I(inode)->root;
6021 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6022 struct bio *bio;
6023 struct bio *orig_bio = dip->orig_bio;
6024 struct bio_vec *bvec = orig_bio->bi_io_vec;
6025 u64 start_sector = orig_bio->bi_sector;
6026 u64 file_offset = dip->logical_offset;
6027 u64 submit_len = 0;
6028 u64 map_length;
6029 int nr_pages = 0;
6030 u32 *csums = dip->csums;
6031 int ret = 0;
6032 int async_submit = 0;
6033 int write = rw & REQ_WRITE;
6035 map_length = orig_bio->bi_size;
6036 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6037 &map_length, NULL, 0);
6038 if (ret) {
6039 bio_put(bio);
6040 return -EIO;
6043 if (map_length >= orig_bio->bi_size) {
6044 bio = orig_bio;
6045 goto submit;
6048 async_submit = 1;
6049 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6050 if (!bio)
6051 return -ENOMEM;
6052 bio->bi_private = dip;
6053 bio->bi_end_io = btrfs_end_dio_bio;
6054 atomic_inc(&dip->pending_bios);
6056 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6057 if (unlikely(map_length < submit_len + bvec->bv_len ||
6058 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6059 bvec->bv_offset) < bvec->bv_len)) {
6061 * inc the count before we submit the bio so
6062 * we know the end IO handler won't happen before
6063 * we inc the count. Otherwise, the dip might get freed
6064 * before we're done setting it up
6066 atomic_inc(&dip->pending_bios);
6067 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6068 file_offset, skip_sum,
6069 csums, async_submit);
6070 if (ret) {
6071 bio_put(bio);
6072 atomic_dec(&dip->pending_bios);
6073 goto out_err;
6076 /* Write's use the ordered csums */
6077 if (!write && !skip_sum)
6078 csums = csums + nr_pages;
6079 start_sector += submit_len >> 9;
6080 file_offset += submit_len;
6082 submit_len = 0;
6083 nr_pages = 0;
6085 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6086 start_sector, GFP_NOFS);
6087 if (!bio)
6088 goto out_err;
6089 bio->bi_private = dip;
6090 bio->bi_end_io = btrfs_end_dio_bio;
6092 map_length = orig_bio->bi_size;
6093 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6094 &map_length, NULL, 0);
6095 if (ret) {
6096 bio_put(bio);
6097 goto out_err;
6099 } else {
6100 submit_len += bvec->bv_len;
6101 nr_pages ++;
6102 bvec++;
6106 submit:
6107 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6108 csums, async_submit);
6109 if (!ret)
6110 return 0;
6112 bio_put(bio);
6113 out_err:
6114 dip->errors = 1;
6116 * before atomic variable goto zero, we must
6117 * make sure dip->errors is perceived to be set.
6119 smp_mb__before_atomic_dec();
6120 if (atomic_dec_and_test(&dip->pending_bios))
6121 bio_io_error(dip->orig_bio);
6123 /* bio_end_io() will handle error, so we needn't return it */
6124 return 0;
6127 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6128 loff_t file_offset)
6130 struct btrfs_root *root = BTRFS_I(inode)->root;
6131 struct btrfs_dio_private *dip;
6132 struct bio_vec *bvec = bio->bi_io_vec;
6133 int skip_sum;
6134 int write = rw & REQ_WRITE;
6135 int ret = 0;
6137 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6139 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6140 if (!dip) {
6141 ret = -ENOMEM;
6142 goto free_ordered;
6144 dip->csums = NULL;
6146 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6147 if (!write && !skip_sum) {
6148 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6149 if (!dip->csums) {
6150 kfree(dip);
6151 ret = -ENOMEM;
6152 goto free_ordered;
6156 dip->private = bio->bi_private;
6157 dip->inode = inode;
6158 dip->logical_offset = file_offset;
6160 dip->bytes = 0;
6161 do {
6162 dip->bytes += bvec->bv_len;
6163 bvec++;
6164 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6166 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6167 bio->bi_private = dip;
6168 dip->errors = 0;
6169 dip->orig_bio = bio;
6170 atomic_set(&dip->pending_bios, 0);
6172 if (write)
6173 bio->bi_end_io = btrfs_endio_direct_write;
6174 else
6175 bio->bi_end_io = btrfs_endio_direct_read;
6177 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6178 if (!ret)
6179 return;
6180 free_ordered:
6182 * If this is a write, we need to clean up the reserved space and kill
6183 * the ordered extent.
6185 if (write) {
6186 struct btrfs_ordered_extent *ordered;
6187 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6188 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6189 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6190 btrfs_free_reserved_extent(root, ordered->start,
6191 ordered->disk_len);
6192 btrfs_put_ordered_extent(ordered);
6193 btrfs_put_ordered_extent(ordered);
6195 bio_endio(bio, ret);
6198 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6199 const struct iovec *iov, loff_t offset,
6200 unsigned long nr_segs)
6202 int seg;
6203 int i;
6204 size_t size;
6205 unsigned long addr;
6206 unsigned blocksize_mask = root->sectorsize - 1;
6207 ssize_t retval = -EINVAL;
6208 loff_t end = offset;
6210 if (offset & blocksize_mask)
6211 goto out;
6213 /* Check the memory alignment. Blocks cannot straddle pages */
6214 for (seg = 0; seg < nr_segs; seg++) {
6215 addr = (unsigned long)iov[seg].iov_base;
6216 size = iov[seg].iov_len;
6217 end += size;
6218 if ((addr & blocksize_mask) || (size & blocksize_mask))
6219 goto out;
6221 /* If this is a write we don't need to check anymore */
6222 if (rw & WRITE)
6223 continue;
6226 * Check to make sure we don't have duplicate iov_base's in this
6227 * iovec, if so return EINVAL, otherwise we'll get csum errors
6228 * when reading back.
6230 for (i = seg + 1; i < nr_segs; i++) {
6231 if (iov[seg].iov_base == iov[i].iov_base)
6232 goto out;
6235 retval = 0;
6236 out:
6237 return retval;
6239 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6240 const struct iovec *iov, loff_t offset,
6241 unsigned long nr_segs)
6243 struct file *file = iocb->ki_filp;
6244 struct inode *inode = file->f_mapping->host;
6245 struct btrfs_ordered_extent *ordered;
6246 struct extent_state *cached_state = NULL;
6247 u64 lockstart, lockend;
6248 ssize_t ret;
6249 int writing = rw & WRITE;
6250 int write_bits = 0;
6251 size_t count = iov_length(iov, nr_segs);
6253 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6254 offset, nr_segs)) {
6255 return 0;
6258 lockstart = offset;
6259 lockend = offset + count - 1;
6261 if (writing) {
6262 ret = btrfs_delalloc_reserve_space(inode, count);
6263 if (ret)
6264 goto out;
6267 while (1) {
6268 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6269 0, &cached_state, GFP_NOFS);
6271 * We're concerned with the entire range that we're going to be
6272 * doing DIO to, so we need to make sure theres no ordered
6273 * extents in this range.
6275 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6276 lockend - lockstart + 1);
6277 if (!ordered)
6278 break;
6279 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6280 &cached_state, GFP_NOFS);
6281 btrfs_start_ordered_extent(inode, ordered, 1);
6282 btrfs_put_ordered_extent(ordered);
6283 cond_resched();
6287 * we don't use btrfs_set_extent_delalloc because we don't want
6288 * the dirty or uptodate bits
6290 if (writing) {
6291 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6292 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6293 EXTENT_DELALLOC, 0, NULL, &cached_state,
6294 GFP_NOFS);
6295 if (ret) {
6296 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6297 lockend, EXTENT_LOCKED | write_bits,
6298 1, 0, &cached_state, GFP_NOFS);
6299 goto out;
6303 free_extent_state(cached_state);
6304 cached_state = NULL;
6306 ret = __blockdev_direct_IO(rw, iocb, inode,
6307 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6308 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6309 btrfs_submit_direct, 0);
6311 if (ret < 0 && ret != -EIOCBQUEUED) {
6312 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6313 offset + iov_length(iov, nr_segs) - 1,
6314 EXTENT_LOCKED | write_bits, 1, 0,
6315 &cached_state, GFP_NOFS);
6316 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6318 * We're falling back to buffered, unlock the section we didn't
6319 * do IO on.
6321 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6322 offset + iov_length(iov, nr_segs) - 1,
6323 EXTENT_LOCKED | write_bits, 1, 0,
6324 &cached_state, GFP_NOFS);
6326 out:
6327 free_extent_state(cached_state);
6328 return ret;
6331 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6332 __u64 start, __u64 len)
6334 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6337 int btrfs_readpage(struct file *file, struct page *page)
6339 struct extent_io_tree *tree;
6340 tree = &BTRFS_I(page->mapping->host)->io_tree;
6341 return extent_read_full_page(tree, page, btrfs_get_extent);
6344 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6346 struct extent_io_tree *tree;
6349 if (current->flags & PF_MEMALLOC) {
6350 redirty_page_for_writepage(wbc, page);
6351 unlock_page(page);
6352 return 0;
6354 tree = &BTRFS_I(page->mapping->host)->io_tree;
6355 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6358 int btrfs_writepages(struct address_space *mapping,
6359 struct writeback_control *wbc)
6361 struct extent_io_tree *tree;
6363 tree = &BTRFS_I(mapping->host)->io_tree;
6364 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6367 static int
6368 btrfs_readpages(struct file *file, struct address_space *mapping,
6369 struct list_head *pages, unsigned nr_pages)
6371 struct extent_io_tree *tree;
6372 tree = &BTRFS_I(mapping->host)->io_tree;
6373 return extent_readpages(tree, mapping, pages, nr_pages,
6374 btrfs_get_extent);
6376 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6378 struct extent_io_tree *tree;
6379 struct extent_map_tree *map;
6380 int ret;
6382 tree = &BTRFS_I(page->mapping->host)->io_tree;
6383 map = &BTRFS_I(page->mapping->host)->extent_tree;
6384 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6385 if (ret == 1) {
6386 ClearPagePrivate(page);
6387 set_page_private(page, 0);
6388 page_cache_release(page);
6390 return ret;
6393 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6395 if (PageWriteback(page) || PageDirty(page))
6396 return 0;
6397 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6400 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6402 struct extent_io_tree *tree;
6403 struct btrfs_ordered_extent *ordered;
6404 struct extent_state *cached_state = NULL;
6405 u64 page_start = page_offset(page);
6406 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6410 * we have the page locked, so new writeback can't start,
6411 * and the dirty bit won't be cleared while we are here.
6413 * Wait for IO on this page so that we can safely clear
6414 * the PagePrivate2 bit and do ordered accounting
6416 wait_on_page_writeback(page);
6418 tree = &BTRFS_I(page->mapping->host)->io_tree;
6419 if (offset) {
6420 btrfs_releasepage(page, GFP_NOFS);
6421 return;
6423 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6424 GFP_NOFS);
6425 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6426 page_offset(page));
6427 if (ordered) {
6429 * IO on this page will never be started, so we need
6430 * to account for any ordered extents now
6432 clear_extent_bit(tree, page_start, page_end,
6433 EXTENT_DIRTY | EXTENT_DELALLOC |
6434 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6435 &cached_state, GFP_NOFS);
6437 * whoever cleared the private bit is responsible
6438 * for the finish_ordered_io
6440 if (TestClearPagePrivate2(page)) {
6441 btrfs_finish_ordered_io(page->mapping->host,
6442 page_start, page_end);
6444 btrfs_put_ordered_extent(ordered);
6445 cached_state = NULL;
6446 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6447 GFP_NOFS);
6449 clear_extent_bit(tree, page_start, page_end,
6450 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6451 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6452 __btrfs_releasepage(page, GFP_NOFS);
6454 ClearPageChecked(page);
6455 if (PagePrivate(page)) {
6456 ClearPagePrivate(page);
6457 set_page_private(page, 0);
6458 page_cache_release(page);
6463 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6464 * called from a page fault handler when a page is first dirtied. Hence we must
6465 * be careful to check for EOF conditions here. We set the page up correctly
6466 * for a written page which means we get ENOSPC checking when writing into
6467 * holes and correct delalloc and unwritten extent mapping on filesystems that
6468 * support these features.
6470 * We are not allowed to take the i_mutex here so we have to play games to
6471 * protect against truncate races as the page could now be beyond EOF. Because
6472 * vmtruncate() writes the inode size before removing pages, once we have the
6473 * page lock we can determine safely if the page is beyond EOF. If it is not
6474 * beyond EOF, then the page is guaranteed safe against truncation until we
6475 * unlock the page.
6477 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6479 struct page *page = vmf->page;
6480 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6481 struct btrfs_root *root = BTRFS_I(inode)->root;
6482 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6483 struct btrfs_ordered_extent *ordered;
6484 struct extent_state *cached_state = NULL;
6485 char *kaddr;
6486 unsigned long zero_start;
6487 loff_t size;
6488 int ret;
6489 u64 page_start;
6490 u64 page_end;
6492 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6493 if (ret) {
6494 if (ret == -ENOMEM)
6495 ret = VM_FAULT_OOM;
6496 else /* -ENOSPC, -EIO, etc */
6497 ret = VM_FAULT_SIGBUS;
6498 goto out;
6501 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6502 again:
6503 lock_page(page);
6504 size = i_size_read(inode);
6505 page_start = page_offset(page);
6506 page_end = page_start + PAGE_CACHE_SIZE - 1;
6508 if ((page->mapping != inode->i_mapping) ||
6509 (page_start >= size)) {
6510 /* page got truncated out from underneath us */
6511 goto out_unlock;
6513 wait_on_page_writeback(page);
6515 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6516 GFP_NOFS);
6517 set_page_extent_mapped(page);
6520 * we can't set the delalloc bits if there are pending ordered
6521 * extents. Drop our locks and wait for them to finish
6523 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6524 if (ordered) {
6525 unlock_extent_cached(io_tree, page_start, page_end,
6526 &cached_state, GFP_NOFS);
6527 unlock_page(page);
6528 btrfs_start_ordered_extent(inode, ordered, 1);
6529 btrfs_put_ordered_extent(ordered);
6530 goto again;
6534 * XXX - page_mkwrite gets called every time the page is dirtied, even
6535 * if it was already dirty, so for space accounting reasons we need to
6536 * clear any delalloc bits for the range we are fixing to save. There
6537 * is probably a better way to do this, but for now keep consistent with
6538 * prepare_pages in the normal write path.
6540 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6541 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6542 0, 0, &cached_state, GFP_NOFS);
6544 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6545 &cached_state);
6546 if (ret) {
6547 unlock_extent_cached(io_tree, page_start, page_end,
6548 &cached_state, GFP_NOFS);
6549 ret = VM_FAULT_SIGBUS;
6550 goto out_unlock;
6552 ret = 0;
6554 /* page is wholly or partially inside EOF */
6555 if (page_start + PAGE_CACHE_SIZE > size)
6556 zero_start = size & ~PAGE_CACHE_MASK;
6557 else
6558 zero_start = PAGE_CACHE_SIZE;
6560 if (zero_start != PAGE_CACHE_SIZE) {
6561 kaddr = kmap(page);
6562 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6563 flush_dcache_page(page);
6564 kunmap(page);
6566 ClearPageChecked(page);
6567 set_page_dirty(page);
6568 SetPageUptodate(page);
6570 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6571 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6573 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6575 out_unlock:
6576 if (!ret)
6577 return VM_FAULT_LOCKED;
6578 unlock_page(page);
6579 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6580 out:
6581 return ret;
6584 static int btrfs_truncate(struct inode *inode)
6586 struct btrfs_root *root = BTRFS_I(inode)->root;
6587 int ret;
6588 int err = 0;
6589 struct btrfs_trans_handle *trans;
6590 unsigned long nr;
6591 u64 mask = root->sectorsize - 1;
6593 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6594 if (ret)
6595 return ret;
6597 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6598 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6600 trans = btrfs_start_transaction(root, 5);
6601 if (IS_ERR(trans))
6602 return PTR_ERR(trans);
6604 btrfs_set_trans_block_group(trans, inode);
6606 ret = btrfs_orphan_add(trans, inode);
6607 if (ret) {
6608 btrfs_end_transaction(trans, root);
6609 return ret;
6612 nr = trans->blocks_used;
6613 btrfs_end_transaction(trans, root);
6614 btrfs_btree_balance_dirty(root, nr);
6616 /* Now start a transaction for the truncate */
6617 trans = btrfs_start_transaction(root, 0);
6618 if (IS_ERR(trans))
6619 return PTR_ERR(trans);
6620 btrfs_set_trans_block_group(trans, inode);
6621 trans->block_rsv = root->orphan_block_rsv;
6624 * setattr is responsible for setting the ordered_data_close flag,
6625 * but that is only tested during the last file release. That
6626 * could happen well after the next commit, leaving a great big
6627 * window where new writes may get lost if someone chooses to write
6628 * to this file after truncating to zero
6630 * The inode doesn't have any dirty data here, and so if we commit
6631 * this is a noop. If someone immediately starts writing to the inode
6632 * it is very likely we'll catch some of their writes in this
6633 * transaction, and the commit will find this file on the ordered
6634 * data list with good things to send down.
6636 * This is a best effort solution, there is still a window where
6637 * using truncate to replace the contents of the file will
6638 * end up with a zero length file after a crash.
6640 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6641 btrfs_add_ordered_operation(trans, root, inode);
6643 while (1) {
6644 if (!trans) {
6645 trans = btrfs_start_transaction(root, 0);
6646 if (IS_ERR(trans))
6647 return PTR_ERR(trans);
6648 btrfs_set_trans_block_group(trans, inode);
6649 trans->block_rsv = root->orphan_block_rsv;
6652 ret = btrfs_block_rsv_check(trans, root,
6653 root->orphan_block_rsv, 0, 5);
6654 if (ret == -EAGAIN) {
6655 ret = btrfs_commit_transaction(trans, root);
6656 if (ret)
6657 return ret;
6658 trans = NULL;
6659 continue;
6660 } else if (ret) {
6661 err = ret;
6662 break;
6665 ret = btrfs_truncate_inode_items(trans, root, inode,
6666 inode->i_size,
6667 BTRFS_EXTENT_DATA_KEY);
6668 if (ret != -EAGAIN) {
6669 err = ret;
6670 break;
6673 ret = btrfs_update_inode(trans, root, inode);
6674 if (ret) {
6675 err = ret;
6676 break;
6679 nr = trans->blocks_used;
6680 btrfs_end_transaction(trans, root);
6681 trans = NULL;
6682 btrfs_btree_balance_dirty(root, nr);
6685 if (ret == 0 && inode->i_nlink > 0) {
6686 ret = btrfs_orphan_del(trans, inode);
6687 if (ret)
6688 err = ret;
6689 } else if (ret && inode->i_nlink > 0) {
6691 * Failed to do the truncate, remove us from the in memory
6692 * orphan list.
6694 ret = btrfs_orphan_del(NULL, inode);
6697 ret = btrfs_update_inode(trans, root, inode);
6698 if (ret && !err)
6699 err = ret;
6701 nr = trans->blocks_used;
6702 ret = btrfs_end_transaction_throttle(trans, root);
6703 if (ret && !err)
6704 err = ret;
6705 btrfs_btree_balance_dirty(root, nr);
6707 return err;
6711 * create a new subvolume directory/inode (helper for the ioctl).
6713 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6714 struct btrfs_root *new_root,
6715 u64 new_dirid, u64 alloc_hint)
6717 struct inode *inode;
6718 int err;
6719 u64 index = 0;
6721 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6722 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6723 if (IS_ERR(inode))
6724 return PTR_ERR(inode);
6725 inode->i_op = &btrfs_dir_inode_operations;
6726 inode->i_fop = &btrfs_dir_file_operations;
6728 inode->i_nlink = 1;
6729 btrfs_i_size_write(inode, 0);
6731 err = btrfs_update_inode(trans, new_root, inode);
6732 BUG_ON(err);
6734 iput(inode);
6735 return 0;
6738 /* helper function for file defrag and space balancing. This
6739 * forces readahead on a given range of bytes in an inode
6741 unsigned long btrfs_force_ra(struct address_space *mapping,
6742 struct file_ra_state *ra, struct file *file,
6743 pgoff_t offset, pgoff_t last_index)
6745 pgoff_t req_size = last_index - offset + 1;
6747 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6748 return offset + req_size;
6751 struct inode *btrfs_alloc_inode(struct super_block *sb)
6753 struct btrfs_inode *ei;
6754 struct inode *inode;
6756 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6757 if (!ei)
6758 return NULL;
6760 ei->root = NULL;
6761 ei->space_info = NULL;
6762 ei->generation = 0;
6763 ei->sequence = 0;
6764 ei->last_trans = 0;
6765 ei->last_sub_trans = 0;
6766 ei->logged_trans = 0;
6767 ei->delalloc_bytes = 0;
6768 ei->reserved_bytes = 0;
6769 ei->disk_i_size = 0;
6770 ei->flags = 0;
6771 ei->index_cnt = (u64)-1;
6772 ei->last_unlink_trans = 0;
6774 atomic_set(&ei->outstanding_extents, 0);
6775 atomic_set(&ei->reserved_extents, 0);
6777 ei->ordered_data_close = 0;
6778 ei->orphan_meta_reserved = 0;
6779 ei->dummy_inode = 0;
6780 ei->force_compress = BTRFS_COMPRESS_NONE;
6782 inode = &ei->vfs_inode;
6783 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6784 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6785 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6786 mutex_init(&ei->log_mutex);
6787 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6788 INIT_LIST_HEAD(&ei->i_orphan);
6789 INIT_LIST_HEAD(&ei->delalloc_inodes);
6790 INIT_LIST_HEAD(&ei->ordered_operations);
6791 RB_CLEAR_NODE(&ei->rb_node);
6793 return inode;
6796 static void btrfs_i_callback(struct rcu_head *head)
6798 struct inode *inode = container_of(head, struct inode, i_rcu);
6799 INIT_LIST_HEAD(&inode->i_dentry);
6800 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6803 void btrfs_destroy_inode(struct inode *inode)
6805 struct btrfs_ordered_extent *ordered;
6806 struct btrfs_root *root = BTRFS_I(inode)->root;
6808 WARN_ON(!list_empty(&inode->i_dentry));
6809 WARN_ON(inode->i_data.nrpages);
6810 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6811 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6814 * This can happen where we create an inode, but somebody else also
6815 * created the same inode and we need to destroy the one we already
6816 * created.
6818 if (!root)
6819 goto free;
6822 * Make sure we're properly removed from the ordered operation
6823 * lists.
6825 smp_mb();
6826 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6827 spin_lock(&root->fs_info->ordered_extent_lock);
6828 list_del_init(&BTRFS_I(inode)->ordered_operations);
6829 spin_unlock(&root->fs_info->ordered_extent_lock);
6832 if (root == root->fs_info->tree_root) {
6833 struct btrfs_block_group_cache *block_group;
6835 block_group = btrfs_lookup_block_group(root->fs_info,
6836 BTRFS_I(inode)->block_group);
6837 if (block_group && block_group->inode == inode) {
6838 spin_lock(&block_group->lock);
6839 block_group->inode = NULL;
6840 spin_unlock(&block_group->lock);
6841 btrfs_put_block_group(block_group);
6842 } else if (block_group) {
6843 btrfs_put_block_group(block_group);
6847 spin_lock(&root->orphan_lock);
6848 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6849 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6850 inode->i_ino);
6851 list_del_init(&BTRFS_I(inode)->i_orphan);
6853 spin_unlock(&root->orphan_lock);
6855 while (1) {
6856 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6857 if (!ordered)
6858 break;
6859 else {
6860 printk(KERN_ERR "btrfs found ordered "
6861 "extent %llu %llu on inode cleanup\n",
6862 (unsigned long long)ordered->file_offset,
6863 (unsigned long long)ordered->len);
6864 btrfs_remove_ordered_extent(inode, ordered);
6865 btrfs_put_ordered_extent(ordered);
6866 btrfs_put_ordered_extent(ordered);
6869 inode_tree_del(inode);
6870 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6871 free:
6872 call_rcu(&inode->i_rcu, btrfs_i_callback);
6875 int btrfs_drop_inode(struct inode *inode)
6877 struct btrfs_root *root = BTRFS_I(inode)->root;
6879 if (btrfs_root_refs(&root->root_item) == 0 &&
6880 root != root->fs_info->tree_root)
6881 return 1;
6882 else
6883 return generic_drop_inode(inode);
6886 static void init_once(void *foo)
6888 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6890 inode_init_once(&ei->vfs_inode);
6893 void btrfs_destroy_cachep(void)
6895 if (btrfs_inode_cachep)
6896 kmem_cache_destroy(btrfs_inode_cachep);
6897 if (btrfs_trans_handle_cachep)
6898 kmem_cache_destroy(btrfs_trans_handle_cachep);
6899 if (btrfs_transaction_cachep)
6900 kmem_cache_destroy(btrfs_transaction_cachep);
6901 if (btrfs_path_cachep)
6902 kmem_cache_destroy(btrfs_path_cachep);
6903 if (btrfs_free_space_cachep)
6904 kmem_cache_destroy(btrfs_free_space_cachep);
6907 int btrfs_init_cachep(void)
6909 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6910 sizeof(struct btrfs_inode), 0,
6911 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6912 if (!btrfs_inode_cachep)
6913 goto fail;
6915 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6916 sizeof(struct btrfs_trans_handle), 0,
6917 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6918 if (!btrfs_trans_handle_cachep)
6919 goto fail;
6921 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6922 sizeof(struct btrfs_transaction), 0,
6923 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6924 if (!btrfs_transaction_cachep)
6925 goto fail;
6927 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6928 sizeof(struct btrfs_path), 0,
6929 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6930 if (!btrfs_path_cachep)
6931 goto fail;
6933 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6934 sizeof(struct btrfs_free_space), 0,
6935 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6936 if (!btrfs_free_space_cachep)
6937 goto fail;
6939 return 0;
6940 fail:
6941 btrfs_destroy_cachep();
6942 return -ENOMEM;
6945 static int btrfs_getattr(struct vfsmount *mnt,
6946 struct dentry *dentry, struct kstat *stat)
6948 struct inode *inode = dentry->d_inode;
6949 generic_fillattr(inode, stat);
6950 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6951 stat->blksize = PAGE_CACHE_SIZE;
6952 stat->blocks = (inode_get_bytes(inode) +
6953 BTRFS_I(inode)->delalloc_bytes) >> 9;
6954 return 0;
6958 * If a file is moved, it will inherit the cow and compression flags of the new
6959 * directory.
6961 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6963 struct btrfs_inode *b_dir = BTRFS_I(dir);
6964 struct btrfs_inode *b_inode = BTRFS_I(inode);
6966 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6967 b_inode->flags |= BTRFS_INODE_NODATACOW;
6968 else
6969 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6971 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6972 b_inode->flags |= BTRFS_INODE_COMPRESS;
6973 else
6974 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6977 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6978 struct inode *new_dir, struct dentry *new_dentry)
6980 struct btrfs_trans_handle *trans;
6981 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6982 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6983 struct inode *new_inode = new_dentry->d_inode;
6984 struct inode *old_inode = old_dentry->d_inode;
6985 struct timespec ctime = CURRENT_TIME;
6986 u64 index = 0;
6987 u64 root_objectid;
6988 int ret;
6990 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6991 return -EPERM;
6993 /* we only allow rename subvolume link between subvolumes */
6994 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6995 return -EXDEV;
6997 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6998 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6999 return -ENOTEMPTY;
7001 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7002 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7003 return -ENOTEMPTY;
7005 * we're using rename to replace one file with another.
7006 * and the replacement file is large. Start IO on it now so
7007 * we don't add too much work to the end of the transaction
7009 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7010 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7011 filemap_flush(old_inode->i_mapping);
7013 /* close the racy window with snapshot create/destroy ioctl */
7014 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7015 down_read(&root->fs_info->subvol_sem);
7017 * We want to reserve the absolute worst case amount of items. So if
7018 * both inodes are subvols and we need to unlink them then that would
7019 * require 4 item modifications, but if they are both normal inodes it
7020 * would require 5 item modifications, so we'll assume their normal
7021 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7022 * should cover the worst case number of items we'll modify.
7024 trans = btrfs_start_transaction(root, 20);
7025 if (IS_ERR(trans)) {
7026 ret = PTR_ERR(trans);
7027 goto out_notrans;
7030 btrfs_set_trans_block_group(trans, new_dir);
7032 if (dest != root)
7033 btrfs_record_root_in_trans(trans, dest);
7035 ret = btrfs_set_inode_index(new_dir, &index);
7036 if (ret)
7037 goto out_fail;
7039 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7040 /* force full log commit if subvolume involved. */
7041 root->fs_info->last_trans_log_full_commit = trans->transid;
7042 } else {
7043 ret = btrfs_insert_inode_ref(trans, dest,
7044 new_dentry->d_name.name,
7045 new_dentry->d_name.len,
7046 old_inode->i_ino,
7047 new_dir->i_ino, index);
7048 if (ret)
7049 goto out_fail;
7051 * this is an ugly little race, but the rename is required
7052 * to make sure that if we crash, the inode is either at the
7053 * old name or the new one. pinning the log transaction lets
7054 * us make sure we don't allow a log commit to come in after
7055 * we unlink the name but before we add the new name back in.
7057 btrfs_pin_log_trans(root);
7060 * make sure the inode gets flushed if it is replacing
7061 * something.
7063 if (new_inode && new_inode->i_size &&
7064 old_inode && S_ISREG(old_inode->i_mode)) {
7065 btrfs_add_ordered_operation(trans, root, old_inode);
7068 old_dir->i_ctime = old_dir->i_mtime = ctime;
7069 new_dir->i_ctime = new_dir->i_mtime = ctime;
7070 old_inode->i_ctime = ctime;
7072 if (old_dentry->d_parent != new_dentry->d_parent)
7073 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7075 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7076 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7077 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7078 old_dentry->d_name.name,
7079 old_dentry->d_name.len);
7080 } else {
7081 ret = __btrfs_unlink_inode(trans, root, old_dir,
7082 old_dentry->d_inode,
7083 old_dentry->d_name.name,
7084 old_dentry->d_name.len);
7085 if (!ret)
7086 ret = btrfs_update_inode(trans, root, old_inode);
7088 BUG_ON(ret);
7090 if (new_inode) {
7091 new_inode->i_ctime = CURRENT_TIME;
7092 if (unlikely(new_inode->i_ino ==
7093 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7094 root_objectid = BTRFS_I(new_inode)->location.objectid;
7095 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7096 root_objectid,
7097 new_dentry->d_name.name,
7098 new_dentry->d_name.len);
7099 BUG_ON(new_inode->i_nlink == 0);
7100 } else {
7101 ret = btrfs_unlink_inode(trans, dest, new_dir,
7102 new_dentry->d_inode,
7103 new_dentry->d_name.name,
7104 new_dentry->d_name.len);
7106 BUG_ON(ret);
7107 if (new_inode->i_nlink == 0) {
7108 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7109 BUG_ON(ret);
7113 fixup_inode_flags(new_dir, old_inode);
7115 ret = btrfs_add_link(trans, new_dir, old_inode,
7116 new_dentry->d_name.name,
7117 new_dentry->d_name.len, 0, index);
7118 BUG_ON(ret);
7120 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
7121 struct dentry *parent = dget_parent(new_dentry);
7122 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7123 dput(parent);
7124 btrfs_end_log_trans(root);
7126 out_fail:
7127 btrfs_end_transaction_throttle(trans, root);
7128 out_notrans:
7129 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7130 up_read(&root->fs_info->subvol_sem);
7132 return ret;
7136 * some fairly slow code that needs optimization. This walks the list
7137 * of all the inodes with pending delalloc and forces them to disk.
7139 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7141 struct list_head *head = &root->fs_info->delalloc_inodes;
7142 struct btrfs_inode *binode;
7143 struct inode *inode;
7145 if (root->fs_info->sb->s_flags & MS_RDONLY)
7146 return -EROFS;
7148 spin_lock(&root->fs_info->delalloc_lock);
7149 while (!list_empty(head)) {
7150 binode = list_entry(head->next, struct btrfs_inode,
7151 delalloc_inodes);
7152 inode = igrab(&binode->vfs_inode);
7153 if (!inode)
7154 list_del_init(&binode->delalloc_inodes);
7155 spin_unlock(&root->fs_info->delalloc_lock);
7156 if (inode) {
7157 filemap_flush(inode->i_mapping);
7158 if (delay_iput)
7159 btrfs_add_delayed_iput(inode);
7160 else
7161 iput(inode);
7163 cond_resched();
7164 spin_lock(&root->fs_info->delalloc_lock);
7166 spin_unlock(&root->fs_info->delalloc_lock);
7168 /* the filemap_flush will queue IO into the worker threads, but
7169 * we have to make sure the IO is actually started and that
7170 * ordered extents get created before we return
7172 atomic_inc(&root->fs_info->async_submit_draining);
7173 while (atomic_read(&root->fs_info->nr_async_submits) ||
7174 atomic_read(&root->fs_info->async_delalloc_pages)) {
7175 wait_event(root->fs_info->async_submit_wait,
7176 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7177 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7179 atomic_dec(&root->fs_info->async_submit_draining);
7180 return 0;
7183 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7184 int sync)
7186 struct btrfs_inode *binode;
7187 struct inode *inode = NULL;
7189 spin_lock(&root->fs_info->delalloc_lock);
7190 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7191 binode = list_entry(root->fs_info->delalloc_inodes.next,
7192 struct btrfs_inode, delalloc_inodes);
7193 inode = igrab(&binode->vfs_inode);
7194 if (inode) {
7195 list_move_tail(&binode->delalloc_inodes,
7196 &root->fs_info->delalloc_inodes);
7197 break;
7200 list_del_init(&binode->delalloc_inodes);
7201 cond_resched_lock(&root->fs_info->delalloc_lock);
7203 spin_unlock(&root->fs_info->delalloc_lock);
7205 if (inode) {
7206 if (sync) {
7207 filemap_write_and_wait(inode->i_mapping);
7209 * We have to do this because compression doesn't
7210 * actually set PG_writeback until it submits the pages
7211 * for IO, which happens in an async thread, so we could
7212 * race and not actually wait for any writeback pages
7213 * because they've not been submitted yet. Technically
7214 * this could still be the case for the ordered stuff
7215 * since the async thread may not have started to do its
7216 * work yet. If this becomes the case then we need to
7217 * figure out a way to make sure that in writepage we
7218 * wait for any async pages to be submitted before
7219 * returning so that fdatawait does what its supposed to
7220 * do.
7222 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7223 } else {
7224 filemap_flush(inode->i_mapping);
7226 if (delay_iput)
7227 btrfs_add_delayed_iput(inode);
7228 else
7229 iput(inode);
7230 return 1;
7232 return 0;
7235 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7236 const char *symname)
7238 struct btrfs_trans_handle *trans;
7239 struct btrfs_root *root = BTRFS_I(dir)->root;
7240 struct btrfs_path *path;
7241 struct btrfs_key key;
7242 struct inode *inode = NULL;
7243 int err;
7244 int drop_inode = 0;
7245 u64 objectid;
7246 u64 index = 0 ;
7247 int name_len;
7248 int datasize;
7249 unsigned long ptr;
7250 struct btrfs_file_extent_item *ei;
7251 struct extent_buffer *leaf;
7252 unsigned long nr = 0;
7254 name_len = strlen(symname) + 1;
7255 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7256 return -ENAMETOOLONG;
7258 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7259 if (err)
7260 return err;
7262 * 2 items for inode item and ref
7263 * 2 items for dir items
7264 * 1 item for xattr if selinux is on
7266 trans = btrfs_start_transaction(root, 5);
7267 if (IS_ERR(trans))
7268 return PTR_ERR(trans);
7270 btrfs_set_trans_block_group(trans, dir);
7272 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7273 dentry->d_name.len, dir->i_ino, objectid,
7274 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7275 &index);
7276 err = PTR_ERR(inode);
7277 if (IS_ERR(inode))
7278 goto out_unlock;
7280 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7281 if (err) {
7282 drop_inode = 1;
7283 goto out_unlock;
7286 btrfs_set_trans_block_group(trans, inode);
7287 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7288 if (err)
7289 drop_inode = 1;
7290 else {
7291 inode->i_mapping->a_ops = &btrfs_aops;
7292 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7293 inode->i_fop = &btrfs_file_operations;
7294 inode->i_op = &btrfs_file_inode_operations;
7295 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7297 btrfs_update_inode_block_group(trans, inode);
7298 btrfs_update_inode_block_group(trans, dir);
7299 if (drop_inode)
7300 goto out_unlock;
7302 path = btrfs_alloc_path();
7303 BUG_ON(!path);
7304 key.objectid = inode->i_ino;
7305 key.offset = 0;
7306 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7307 datasize = btrfs_file_extent_calc_inline_size(name_len);
7308 err = btrfs_insert_empty_item(trans, root, path, &key,
7309 datasize);
7310 if (err) {
7311 drop_inode = 1;
7312 goto out_unlock;
7314 leaf = path->nodes[0];
7315 ei = btrfs_item_ptr(leaf, path->slots[0],
7316 struct btrfs_file_extent_item);
7317 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7318 btrfs_set_file_extent_type(leaf, ei,
7319 BTRFS_FILE_EXTENT_INLINE);
7320 btrfs_set_file_extent_encryption(leaf, ei, 0);
7321 btrfs_set_file_extent_compression(leaf, ei, 0);
7322 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7323 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7325 ptr = btrfs_file_extent_inline_start(ei);
7326 write_extent_buffer(leaf, symname, ptr, name_len);
7327 btrfs_mark_buffer_dirty(leaf);
7328 btrfs_free_path(path);
7330 inode->i_op = &btrfs_symlink_inode_operations;
7331 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7332 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7333 inode_set_bytes(inode, name_len);
7334 btrfs_i_size_write(inode, name_len - 1);
7335 err = btrfs_update_inode(trans, root, inode);
7336 if (err)
7337 drop_inode = 1;
7339 out_unlock:
7340 nr = trans->blocks_used;
7341 btrfs_end_transaction_throttle(trans, root);
7342 if (drop_inode) {
7343 inode_dec_link_count(inode);
7344 iput(inode);
7346 btrfs_btree_balance_dirty(root, nr);
7347 return err;
7350 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7351 u64 start, u64 num_bytes, u64 min_size,
7352 loff_t actual_len, u64 *alloc_hint,
7353 struct btrfs_trans_handle *trans)
7355 struct btrfs_root *root = BTRFS_I(inode)->root;
7356 struct btrfs_key ins;
7357 u64 cur_offset = start;
7358 u64 i_size;
7359 int ret = 0;
7360 bool own_trans = true;
7362 if (trans)
7363 own_trans = false;
7364 while (num_bytes > 0) {
7365 if (own_trans) {
7366 trans = btrfs_start_transaction(root, 3);
7367 if (IS_ERR(trans)) {
7368 ret = PTR_ERR(trans);
7369 break;
7373 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7374 0, *alloc_hint, (u64)-1, &ins, 1);
7375 if (ret) {
7376 if (own_trans)
7377 btrfs_end_transaction(trans, root);
7378 break;
7381 ret = insert_reserved_file_extent(trans, inode,
7382 cur_offset, ins.objectid,
7383 ins.offset, ins.offset,
7384 ins.offset, 0, 0, 0,
7385 BTRFS_FILE_EXTENT_PREALLOC);
7386 BUG_ON(ret);
7387 btrfs_drop_extent_cache(inode, cur_offset,
7388 cur_offset + ins.offset -1, 0);
7390 num_bytes -= ins.offset;
7391 cur_offset += ins.offset;
7392 *alloc_hint = ins.objectid + ins.offset;
7394 inode->i_ctime = CURRENT_TIME;
7395 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7396 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7397 (actual_len > inode->i_size) &&
7398 (cur_offset > inode->i_size)) {
7399 if (cur_offset > actual_len)
7400 i_size = actual_len;
7401 else
7402 i_size = cur_offset;
7403 i_size_write(inode, i_size);
7404 btrfs_ordered_update_i_size(inode, i_size, NULL);
7407 ret = btrfs_update_inode(trans, root, inode);
7408 BUG_ON(ret);
7410 if (own_trans)
7411 btrfs_end_transaction(trans, root);
7413 return ret;
7416 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7417 u64 start, u64 num_bytes, u64 min_size,
7418 loff_t actual_len, u64 *alloc_hint)
7420 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7421 min_size, actual_len, alloc_hint,
7422 NULL);
7425 int btrfs_prealloc_file_range_trans(struct inode *inode,
7426 struct btrfs_trans_handle *trans, int mode,
7427 u64 start, u64 num_bytes, u64 min_size,
7428 loff_t actual_len, u64 *alloc_hint)
7430 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7431 min_size, actual_len, alloc_hint, trans);
7434 static int btrfs_set_page_dirty(struct page *page)
7436 return __set_page_dirty_nobuffers(page);
7439 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7441 struct btrfs_root *root = BTRFS_I(inode)->root;
7443 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7444 return -EROFS;
7445 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7446 return -EACCES;
7447 return generic_permission(inode, mask, flags, btrfs_check_acl);
7450 static const struct inode_operations btrfs_dir_inode_operations = {
7451 .getattr = btrfs_getattr,
7452 .lookup = btrfs_lookup,
7453 .create = btrfs_create,
7454 .unlink = btrfs_unlink,
7455 .link = btrfs_link,
7456 .mkdir = btrfs_mkdir,
7457 .rmdir = btrfs_rmdir,
7458 .rename = btrfs_rename,
7459 .symlink = btrfs_symlink,
7460 .setattr = btrfs_setattr,
7461 .mknod = btrfs_mknod,
7462 .setxattr = btrfs_setxattr,
7463 .getxattr = btrfs_getxattr,
7464 .listxattr = btrfs_listxattr,
7465 .removexattr = btrfs_removexattr,
7466 .permission = btrfs_permission,
7468 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7469 .lookup = btrfs_lookup,
7470 .permission = btrfs_permission,
7473 static const struct file_operations btrfs_dir_file_operations = {
7474 .llseek = generic_file_llseek,
7475 .read = generic_read_dir,
7476 .readdir = btrfs_real_readdir,
7477 .unlocked_ioctl = btrfs_ioctl,
7478 #ifdef CONFIG_COMPAT
7479 .compat_ioctl = btrfs_ioctl,
7480 #endif
7481 .release = btrfs_release_file,
7482 .fsync = btrfs_sync_file,
7485 static struct extent_io_ops btrfs_extent_io_ops = {
7486 .fill_delalloc = run_delalloc_range,
7487 .submit_bio_hook = btrfs_submit_bio_hook,
7488 .merge_bio_hook = btrfs_merge_bio_hook,
7489 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7490 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7491 .writepage_start_hook = btrfs_writepage_start_hook,
7492 .readpage_io_failed_hook = btrfs_io_failed_hook,
7493 .set_bit_hook = btrfs_set_bit_hook,
7494 .clear_bit_hook = btrfs_clear_bit_hook,
7495 .merge_extent_hook = btrfs_merge_extent_hook,
7496 .split_extent_hook = btrfs_split_extent_hook,
7500 * btrfs doesn't support the bmap operation because swapfiles
7501 * use bmap to make a mapping of extents in the file. They assume
7502 * these extents won't change over the life of the file and they
7503 * use the bmap result to do IO directly to the drive.
7505 * the btrfs bmap call would return logical addresses that aren't
7506 * suitable for IO and they also will change frequently as COW
7507 * operations happen. So, swapfile + btrfs == corruption.
7509 * For now we're avoiding this by dropping bmap.
7511 static const struct address_space_operations btrfs_aops = {
7512 .readpage = btrfs_readpage,
7513 .writepage = btrfs_writepage,
7514 .writepages = btrfs_writepages,
7515 .readpages = btrfs_readpages,
7516 .direct_IO = btrfs_direct_IO,
7517 .invalidatepage = btrfs_invalidatepage,
7518 .releasepage = btrfs_releasepage,
7519 .set_page_dirty = btrfs_set_page_dirty,
7520 .error_remove_page = generic_error_remove_page,
7523 static const struct address_space_operations btrfs_symlink_aops = {
7524 .readpage = btrfs_readpage,
7525 .writepage = btrfs_writepage,
7526 .invalidatepage = btrfs_invalidatepage,
7527 .releasepage = btrfs_releasepage,
7530 static const struct inode_operations btrfs_file_inode_operations = {
7531 .getattr = btrfs_getattr,
7532 .setattr = btrfs_setattr,
7533 .setxattr = btrfs_setxattr,
7534 .getxattr = btrfs_getxattr,
7535 .listxattr = btrfs_listxattr,
7536 .removexattr = btrfs_removexattr,
7537 .permission = btrfs_permission,
7538 .fiemap = btrfs_fiemap,
7540 static const struct inode_operations btrfs_special_inode_operations = {
7541 .getattr = btrfs_getattr,
7542 .setattr = btrfs_setattr,
7543 .permission = btrfs_permission,
7544 .setxattr = btrfs_setxattr,
7545 .getxattr = btrfs_getxattr,
7546 .listxattr = btrfs_listxattr,
7547 .removexattr = btrfs_removexattr,
7549 static const struct inode_operations btrfs_symlink_inode_operations = {
7550 .readlink = generic_readlink,
7551 .follow_link = page_follow_link_light,
7552 .put_link = page_put_link,
7553 .getattr = btrfs_getattr,
7554 .permission = btrfs_permission,
7555 .setxattr = btrfs_setxattr,
7556 .getxattr = btrfs_getxattr,
7557 .listxattr = btrfs_listxattr,
7558 .removexattr = btrfs_removexattr,
7561 const struct dentry_operations btrfs_dentry_operations = {
7562 .d_delete = btrfs_dentry_delete,