cgroup,rcu: convert call_rcu(free_css_set_rcu) to kfree_rcu()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / cgroup.c
blobd5160a83fb35f6f4c25968fda7b6826b50867203
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/ctype.h>
31 #include <linux/errno.h>
32 #include <linux/fs.h>
33 #include <linux/kernel.h>
34 #include <linux/list.h>
35 #include <linux/mm.h>
36 #include <linux/mutex.h>
37 #include <linux/mount.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/rcupdate.h>
41 #include <linux/sched.h>
42 #include <linux/backing-dev.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/magic.h>
46 #include <linux/spinlock.h>
47 #include <linux/string.h>
48 #include <linux/sort.h>
49 #include <linux/kmod.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/cgroupstats.h>
53 #include <linux/hash.h>
54 #include <linux/namei.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/eventfd.h>
59 #include <linux/poll.h>
61 #include <asm/atomic.h>
63 static DEFINE_MUTEX(cgroup_mutex);
66 * Generate an array of cgroup subsystem pointers. At boot time, this is
67 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
68 * registered after that. The mutable section of this array is protected by
69 * cgroup_mutex.
71 #define SUBSYS(_x) &_x ## _subsys,
72 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
73 #include <linux/cgroup_subsys.h>
76 #define MAX_CGROUP_ROOT_NAMELEN 64
79 * A cgroupfs_root represents the root of a cgroup hierarchy,
80 * and may be associated with a superblock to form an active
81 * hierarchy
83 struct cgroupfs_root {
84 struct super_block *sb;
87 * The bitmask of subsystems intended to be attached to this
88 * hierarchy
90 unsigned long subsys_bits;
92 /* Unique id for this hierarchy. */
93 int hierarchy_id;
95 /* The bitmask of subsystems currently attached to this hierarchy */
96 unsigned long actual_subsys_bits;
98 /* A list running through the attached subsystems */
99 struct list_head subsys_list;
101 /* The root cgroup for this hierarchy */
102 struct cgroup top_cgroup;
104 /* Tracks how many cgroups are currently defined in hierarchy.*/
105 int number_of_cgroups;
107 /* A list running through the active hierarchies */
108 struct list_head root_list;
110 /* Hierarchy-specific flags */
111 unsigned long flags;
113 /* The path to use for release notifications. */
114 char release_agent_path[PATH_MAX];
116 /* The name for this hierarchy - may be empty */
117 char name[MAX_CGROUP_ROOT_NAMELEN];
121 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
122 * subsystems that are otherwise unattached - it never has more than a
123 * single cgroup, and all tasks are part of that cgroup.
125 static struct cgroupfs_root rootnode;
128 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
129 * cgroup_subsys->use_id != 0.
131 #define CSS_ID_MAX (65535)
132 struct css_id {
134 * The css to which this ID points. This pointer is set to valid value
135 * after cgroup is populated. If cgroup is removed, this will be NULL.
136 * This pointer is expected to be RCU-safe because destroy()
137 * is called after synchronize_rcu(). But for safe use, css_is_removed()
138 * css_tryget() should be used for avoiding race.
140 struct cgroup_subsys_state __rcu *css;
142 * ID of this css.
144 unsigned short id;
146 * Depth in hierarchy which this ID belongs to.
148 unsigned short depth;
150 * ID is freed by RCU. (and lookup routine is RCU safe.)
152 struct rcu_head rcu_head;
154 * Hierarchy of CSS ID belongs to.
156 unsigned short stack[0]; /* Array of Length (depth+1) */
160 * cgroup_event represents events which userspace want to receive.
162 struct cgroup_event {
164 * Cgroup which the event belongs to.
166 struct cgroup *cgrp;
168 * Control file which the event associated.
170 struct cftype *cft;
172 * eventfd to signal userspace about the event.
174 struct eventfd_ctx *eventfd;
176 * Each of these stored in a list by the cgroup.
178 struct list_head list;
180 * All fields below needed to unregister event when
181 * userspace closes eventfd.
183 poll_table pt;
184 wait_queue_head_t *wqh;
185 wait_queue_t wait;
186 struct work_struct remove;
189 /* The list of hierarchy roots */
191 static LIST_HEAD(roots);
192 static int root_count;
194 static DEFINE_IDA(hierarchy_ida);
195 static int next_hierarchy_id;
196 static DEFINE_SPINLOCK(hierarchy_id_lock);
198 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
199 #define dummytop (&rootnode.top_cgroup)
201 /* This flag indicates whether tasks in the fork and exit paths should
202 * check for fork/exit handlers to call. This avoids us having to do
203 * extra work in the fork/exit path if none of the subsystems need to
204 * be called.
206 static int need_forkexit_callback __read_mostly;
208 #ifdef CONFIG_PROVE_LOCKING
209 int cgroup_lock_is_held(void)
211 return lockdep_is_held(&cgroup_mutex);
213 #else /* #ifdef CONFIG_PROVE_LOCKING */
214 int cgroup_lock_is_held(void)
216 return mutex_is_locked(&cgroup_mutex);
218 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
220 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
222 /* convenient tests for these bits */
223 inline int cgroup_is_removed(const struct cgroup *cgrp)
225 return test_bit(CGRP_REMOVED, &cgrp->flags);
228 /* bits in struct cgroupfs_root flags field */
229 enum {
230 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
233 static int cgroup_is_releasable(const struct cgroup *cgrp)
235 const int bits =
236 (1 << CGRP_RELEASABLE) |
237 (1 << CGRP_NOTIFY_ON_RELEASE);
238 return (cgrp->flags & bits) == bits;
241 static int notify_on_release(const struct cgroup *cgrp)
243 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
246 static int clone_children(const struct cgroup *cgrp)
248 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
252 * for_each_subsys() allows you to iterate on each subsystem attached to
253 * an active hierarchy
255 #define for_each_subsys(_root, _ss) \
256 list_for_each_entry(_ss, &_root->subsys_list, sibling)
258 /* for_each_active_root() allows you to iterate across the active hierarchies */
259 #define for_each_active_root(_root) \
260 list_for_each_entry(_root, &roots, root_list)
262 /* the list of cgroups eligible for automatic release. Protected by
263 * release_list_lock */
264 static LIST_HEAD(release_list);
265 static DEFINE_SPINLOCK(release_list_lock);
266 static void cgroup_release_agent(struct work_struct *work);
267 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
268 static void check_for_release(struct cgroup *cgrp);
270 /* Link structure for associating css_set objects with cgroups */
271 struct cg_cgroup_link {
273 * List running through cg_cgroup_links associated with a
274 * cgroup, anchored on cgroup->css_sets
276 struct list_head cgrp_link_list;
277 struct cgroup *cgrp;
279 * List running through cg_cgroup_links pointing at a
280 * single css_set object, anchored on css_set->cg_links
282 struct list_head cg_link_list;
283 struct css_set *cg;
286 /* The default css_set - used by init and its children prior to any
287 * hierarchies being mounted. It contains a pointer to the root state
288 * for each subsystem. Also used to anchor the list of css_sets. Not
289 * reference-counted, to improve performance when child cgroups
290 * haven't been created.
293 static struct css_set init_css_set;
294 static struct cg_cgroup_link init_css_set_link;
296 static int cgroup_init_idr(struct cgroup_subsys *ss,
297 struct cgroup_subsys_state *css);
299 /* css_set_lock protects the list of css_set objects, and the
300 * chain of tasks off each css_set. Nests outside task->alloc_lock
301 * due to cgroup_iter_start() */
302 static DEFINE_RWLOCK(css_set_lock);
303 static int css_set_count;
306 * hash table for cgroup groups. This improves the performance to find
307 * an existing css_set. This hash doesn't (currently) take into
308 * account cgroups in empty hierarchies.
310 #define CSS_SET_HASH_BITS 7
311 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
312 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
314 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
316 int i;
317 int index;
318 unsigned long tmp = 0UL;
320 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
321 tmp += (unsigned long)css[i];
322 tmp = (tmp >> 16) ^ tmp;
324 index = hash_long(tmp, CSS_SET_HASH_BITS);
326 return &css_set_table[index];
329 /* We don't maintain the lists running through each css_set to its
330 * task until after the first call to cgroup_iter_start(). This
331 * reduces the fork()/exit() overhead for people who have cgroups
332 * compiled into their kernel but not actually in use */
333 static int use_task_css_set_links __read_mostly;
335 static void __put_css_set(struct css_set *cg, int taskexit)
337 struct cg_cgroup_link *link;
338 struct cg_cgroup_link *saved_link;
340 * Ensure that the refcount doesn't hit zero while any readers
341 * can see it. Similar to atomic_dec_and_lock(), but for an
342 * rwlock
344 if (atomic_add_unless(&cg->refcount, -1, 1))
345 return;
346 write_lock(&css_set_lock);
347 if (!atomic_dec_and_test(&cg->refcount)) {
348 write_unlock(&css_set_lock);
349 return;
352 /* This css_set is dead. unlink it and release cgroup refcounts */
353 hlist_del(&cg->hlist);
354 css_set_count--;
356 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
357 cg_link_list) {
358 struct cgroup *cgrp = link->cgrp;
359 list_del(&link->cg_link_list);
360 list_del(&link->cgrp_link_list);
361 if (atomic_dec_and_test(&cgrp->count) &&
362 notify_on_release(cgrp)) {
363 if (taskexit)
364 set_bit(CGRP_RELEASABLE, &cgrp->flags);
365 check_for_release(cgrp);
368 kfree(link);
371 write_unlock(&css_set_lock);
372 kfree_rcu(cg, rcu_head);
376 * refcounted get/put for css_set objects
378 static inline void get_css_set(struct css_set *cg)
380 atomic_inc(&cg->refcount);
383 static inline void put_css_set(struct css_set *cg)
385 __put_css_set(cg, 0);
388 static inline void put_css_set_taskexit(struct css_set *cg)
390 __put_css_set(cg, 1);
394 * compare_css_sets - helper function for find_existing_css_set().
395 * @cg: candidate css_set being tested
396 * @old_cg: existing css_set for a task
397 * @new_cgrp: cgroup that's being entered by the task
398 * @template: desired set of css pointers in css_set (pre-calculated)
400 * Returns true if "cg" matches "old_cg" except for the hierarchy
401 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
403 static bool compare_css_sets(struct css_set *cg,
404 struct css_set *old_cg,
405 struct cgroup *new_cgrp,
406 struct cgroup_subsys_state *template[])
408 struct list_head *l1, *l2;
410 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
411 /* Not all subsystems matched */
412 return false;
416 * Compare cgroup pointers in order to distinguish between
417 * different cgroups in heirarchies with no subsystems. We
418 * could get by with just this check alone (and skip the
419 * memcmp above) but on most setups the memcmp check will
420 * avoid the need for this more expensive check on almost all
421 * candidates.
424 l1 = &cg->cg_links;
425 l2 = &old_cg->cg_links;
426 while (1) {
427 struct cg_cgroup_link *cgl1, *cgl2;
428 struct cgroup *cg1, *cg2;
430 l1 = l1->next;
431 l2 = l2->next;
432 /* See if we reached the end - both lists are equal length. */
433 if (l1 == &cg->cg_links) {
434 BUG_ON(l2 != &old_cg->cg_links);
435 break;
436 } else {
437 BUG_ON(l2 == &old_cg->cg_links);
439 /* Locate the cgroups associated with these links. */
440 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
441 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
442 cg1 = cgl1->cgrp;
443 cg2 = cgl2->cgrp;
444 /* Hierarchies should be linked in the same order. */
445 BUG_ON(cg1->root != cg2->root);
448 * If this hierarchy is the hierarchy of the cgroup
449 * that's changing, then we need to check that this
450 * css_set points to the new cgroup; if it's any other
451 * hierarchy, then this css_set should point to the
452 * same cgroup as the old css_set.
454 if (cg1->root == new_cgrp->root) {
455 if (cg1 != new_cgrp)
456 return false;
457 } else {
458 if (cg1 != cg2)
459 return false;
462 return true;
466 * find_existing_css_set() is a helper for
467 * find_css_set(), and checks to see whether an existing
468 * css_set is suitable.
470 * oldcg: the cgroup group that we're using before the cgroup
471 * transition
473 * cgrp: the cgroup that we're moving into
475 * template: location in which to build the desired set of subsystem
476 * state objects for the new cgroup group
478 static struct css_set *find_existing_css_set(
479 struct css_set *oldcg,
480 struct cgroup *cgrp,
481 struct cgroup_subsys_state *template[])
483 int i;
484 struct cgroupfs_root *root = cgrp->root;
485 struct hlist_head *hhead;
486 struct hlist_node *node;
487 struct css_set *cg;
490 * Build the set of subsystem state objects that we want to see in the
491 * new css_set. while subsystems can change globally, the entries here
492 * won't change, so no need for locking.
494 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
495 if (root->subsys_bits & (1UL << i)) {
496 /* Subsystem is in this hierarchy. So we want
497 * the subsystem state from the new
498 * cgroup */
499 template[i] = cgrp->subsys[i];
500 } else {
501 /* Subsystem is not in this hierarchy, so we
502 * don't want to change the subsystem state */
503 template[i] = oldcg->subsys[i];
507 hhead = css_set_hash(template);
508 hlist_for_each_entry(cg, node, hhead, hlist) {
509 if (!compare_css_sets(cg, oldcg, cgrp, template))
510 continue;
512 /* This css_set matches what we need */
513 return cg;
516 /* No existing cgroup group matched */
517 return NULL;
520 static void free_cg_links(struct list_head *tmp)
522 struct cg_cgroup_link *link;
523 struct cg_cgroup_link *saved_link;
525 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
526 list_del(&link->cgrp_link_list);
527 kfree(link);
532 * allocate_cg_links() allocates "count" cg_cgroup_link structures
533 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
534 * success or a negative error
536 static int allocate_cg_links(int count, struct list_head *tmp)
538 struct cg_cgroup_link *link;
539 int i;
540 INIT_LIST_HEAD(tmp);
541 for (i = 0; i < count; i++) {
542 link = kmalloc(sizeof(*link), GFP_KERNEL);
543 if (!link) {
544 free_cg_links(tmp);
545 return -ENOMEM;
547 list_add(&link->cgrp_link_list, tmp);
549 return 0;
553 * link_css_set - a helper function to link a css_set to a cgroup
554 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
555 * @cg: the css_set to be linked
556 * @cgrp: the destination cgroup
558 static void link_css_set(struct list_head *tmp_cg_links,
559 struct css_set *cg, struct cgroup *cgrp)
561 struct cg_cgroup_link *link;
563 BUG_ON(list_empty(tmp_cg_links));
564 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
565 cgrp_link_list);
566 link->cg = cg;
567 link->cgrp = cgrp;
568 atomic_inc(&cgrp->count);
569 list_move(&link->cgrp_link_list, &cgrp->css_sets);
571 * Always add links to the tail of the list so that the list
572 * is sorted by order of hierarchy creation
574 list_add_tail(&link->cg_link_list, &cg->cg_links);
578 * find_css_set() takes an existing cgroup group and a
579 * cgroup object, and returns a css_set object that's
580 * equivalent to the old group, but with the given cgroup
581 * substituted into the appropriate hierarchy. Must be called with
582 * cgroup_mutex held
584 static struct css_set *find_css_set(
585 struct css_set *oldcg, struct cgroup *cgrp)
587 struct css_set *res;
588 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
590 struct list_head tmp_cg_links;
592 struct hlist_head *hhead;
593 struct cg_cgroup_link *link;
595 /* First see if we already have a cgroup group that matches
596 * the desired set */
597 read_lock(&css_set_lock);
598 res = find_existing_css_set(oldcg, cgrp, template);
599 if (res)
600 get_css_set(res);
601 read_unlock(&css_set_lock);
603 if (res)
604 return res;
606 res = kmalloc(sizeof(*res), GFP_KERNEL);
607 if (!res)
608 return NULL;
610 /* Allocate all the cg_cgroup_link objects that we'll need */
611 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
612 kfree(res);
613 return NULL;
616 atomic_set(&res->refcount, 1);
617 INIT_LIST_HEAD(&res->cg_links);
618 INIT_LIST_HEAD(&res->tasks);
619 INIT_HLIST_NODE(&res->hlist);
621 /* Copy the set of subsystem state objects generated in
622 * find_existing_css_set() */
623 memcpy(res->subsys, template, sizeof(res->subsys));
625 write_lock(&css_set_lock);
626 /* Add reference counts and links from the new css_set. */
627 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
628 struct cgroup *c = link->cgrp;
629 if (c->root == cgrp->root)
630 c = cgrp;
631 link_css_set(&tmp_cg_links, res, c);
634 BUG_ON(!list_empty(&tmp_cg_links));
636 css_set_count++;
638 /* Add this cgroup group to the hash table */
639 hhead = css_set_hash(res->subsys);
640 hlist_add_head(&res->hlist, hhead);
642 write_unlock(&css_set_lock);
644 return res;
648 * Return the cgroup for "task" from the given hierarchy. Must be
649 * called with cgroup_mutex held.
651 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
652 struct cgroupfs_root *root)
654 struct css_set *css;
655 struct cgroup *res = NULL;
657 BUG_ON(!mutex_is_locked(&cgroup_mutex));
658 read_lock(&css_set_lock);
660 * No need to lock the task - since we hold cgroup_mutex the
661 * task can't change groups, so the only thing that can happen
662 * is that it exits and its css is set back to init_css_set.
664 css = task->cgroups;
665 if (css == &init_css_set) {
666 res = &root->top_cgroup;
667 } else {
668 struct cg_cgroup_link *link;
669 list_for_each_entry(link, &css->cg_links, cg_link_list) {
670 struct cgroup *c = link->cgrp;
671 if (c->root == root) {
672 res = c;
673 break;
677 read_unlock(&css_set_lock);
678 BUG_ON(!res);
679 return res;
683 * There is one global cgroup mutex. We also require taking
684 * task_lock() when dereferencing a task's cgroup subsys pointers.
685 * See "The task_lock() exception", at the end of this comment.
687 * A task must hold cgroup_mutex to modify cgroups.
689 * Any task can increment and decrement the count field without lock.
690 * So in general, code holding cgroup_mutex can't rely on the count
691 * field not changing. However, if the count goes to zero, then only
692 * cgroup_attach_task() can increment it again. Because a count of zero
693 * means that no tasks are currently attached, therefore there is no
694 * way a task attached to that cgroup can fork (the other way to
695 * increment the count). So code holding cgroup_mutex can safely
696 * assume that if the count is zero, it will stay zero. Similarly, if
697 * a task holds cgroup_mutex on a cgroup with zero count, it
698 * knows that the cgroup won't be removed, as cgroup_rmdir()
699 * needs that mutex.
701 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
702 * (usually) take cgroup_mutex. These are the two most performance
703 * critical pieces of code here. The exception occurs on cgroup_exit(),
704 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
705 * is taken, and if the cgroup count is zero, a usermode call made
706 * to the release agent with the name of the cgroup (path relative to
707 * the root of cgroup file system) as the argument.
709 * A cgroup can only be deleted if both its 'count' of using tasks
710 * is zero, and its list of 'children' cgroups is empty. Since all
711 * tasks in the system use _some_ cgroup, and since there is always at
712 * least one task in the system (init, pid == 1), therefore, top_cgroup
713 * always has either children cgroups and/or using tasks. So we don't
714 * need a special hack to ensure that top_cgroup cannot be deleted.
716 * The task_lock() exception
718 * The need for this exception arises from the action of
719 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
720 * another. It does so using cgroup_mutex, however there are
721 * several performance critical places that need to reference
722 * task->cgroup without the expense of grabbing a system global
723 * mutex. Therefore except as noted below, when dereferencing or, as
724 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
725 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
726 * the task_struct routinely used for such matters.
728 * P.S. One more locking exception. RCU is used to guard the
729 * update of a tasks cgroup pointer by cgroup_attach_task()
733 * cgroup_lock - lock out any changes to cgroup structures
736 void cgroup_lock(void)
738 mutex_lock(&cgroup_mutex);
740 EXPORT_SYMBOL_GPL(cgroup_lock);
743 * cgroup_unlock - release lock on cgroup changes
745 * Undo the lock taken in a previous cgroup_lock() call.
747 void cgroup_unlock(void)
749 mutex_unlock(&cgroup_mutex);
751 EXPORT_SYMBOL_GPL(cgroup_unlock);
754 * A couple of forward declarations required, due to cyclic reference loop:
755 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
756 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
757 * -> cgroup_mkdir.
760 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
761 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
762 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
763 static int cgroup_populate_dir(struct cgroup *cgrp);
764 static const struct inode_operations cgroup_dir_inode_operations;
765 static const struct file_operations proc_cgroupstats_operations;
767 static struct backing_dev_info cgroup_backing_dev_info = {
768 .name = "cgroup",
769 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
772 static int alloc_css_id(struct cgroup_subsys *ss,
773 struct cgroup *parent, struct cgroup *child);
775 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
777 struct inode *inode = new_inode(sb);
779 if (inode) {
780 inode->i_ino = get_next_ino();
781 inode->i_mode = mode;
782 inode->i_uid = current_fsuid();
783 inode->i_gid = current_fsgid();
784 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
785 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
787 return inode;
791 * Call subsys's pre_destroy handler.
792 * This is called before css refcnt check.
794 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
796 struct cgroup_subsys *ss;
797 int ret = 0;
799 for_each_subsys(cgrp->root, ss)
800 if (ss->pre_destroy) {
801 ret = ss->pre_destroy(ss, cgrp);
802 if (ret)
803 break;
806 return ret;
809 static void free_cgroup_rcu(struct rcu_head *obj)
811 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
813 kfree(cgrp);
816 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
818 /* is dentry a directory ? if so, kfree() associated cgroup */
819 if (S_ISDIR(inode->i_mode)) {
820 struct cgroup *cgrp = dentry->d_fsdata;
821 struct cgroup_subsys *ss;
822 BUG_ON(!(cgroup_is_removed(cgrp)));
823 /* It's possible for external users to be holding css
824 * reference counts on a cgroup; css_put() needs to
825 * be able to access the cgroup after decrementing
826 * the reference count in order to know if it needs to
827 * queue the cgroup to be handled by the release
828 * agent */
829 synchronize_rcu();
831 mutex_lock(&cgroup_mutex);
833 * Release the subsystem state objects.
835 for_each_subsys(cgrp->root, ss)
836 ss->destroy(ss, cgrp);
838 cgrp->root->number_of_cgroups--;
839 mutex_unlock(&cgroup_mutex);
842 * Drop the active superblock reference that we took when we
843 * created the cgroup
845 deactivate_super(cgrp->root->sb);
848 * if we're getting rid of the cgroup, refcount should ensure
849 * that there are no pidlists left.
851 BUG_ON(!list_empty(&cgrp->pidlists));
853 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
855 iput(inode);
858 static int cgroup_delete(const struct dentry *d)
860 return 1;
863 static void remove_dir(struct dentry *d)
865 struct dentry *parent = dget(d->d_parent);
867 d_delete(d);
868 simple_rmdir(parent->d_inode, d);
869 dput(parent);
872 static void cgroup_clear_directory(struct dentry *dentry)
874 struct list_head *node;
876 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
877 spin_lock(&dentry->d_lock);
878 node = dentry->d_subdirs.next;
879 while (node != &dentry->d_subdirs) {
880 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
882 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
883 list_del_init(node);
884 if (d->d_inode) {
885 /* This should never be called on a cgroup
886 * directory with child cgroups */
887 BUG_ON(d->d_inode->i_mode & S_IFDIR);
888 dget_dlock(d);
889 spin_unlock(&d->d_lock);
890 spin_unlock(&dentry->d_lock);
891 d_delete(d);
892 simple_unlink(dentry->d_inode, d);
893 dput(d);
894 spin_lock(&dentry->d_lock);
895 } else
896 spin_unlock(&d->d_lock);
897 node = dentry->d_subdirs.next;
899 spin_unlock(&dentry->d_lock);
903 * NOTE : the dentry must have been dget()'ed
905 static void cgroup_d_remove_dir(struct dentry *dentry)
907 struct dentry *parent;
909 cgroup_clear_directory(dentry);
911 parent = dentry->d_parent;
912 spin_lock(&parent->d_lock);
913 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
914 list_del_init(&dentry->d_u.d_child);
915 spin_unlock(&dentry->d_lock);
916 spin_unlock(&parent->d_lock);
917 remove_dir(dentry);
921 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
922 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
923 * reference to css->refcnt. In general, this refcnt is expected to goes down
924 * to zero, soon.
926 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
928 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
930 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
932 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
933 wake_up_all(&cgroup_rmdir_waitq);
936 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
938 css_get(css);
941 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
943 cgroup_wakeup_rmdir_waiter(css->cgroup);
944 css_put(css);
948 * Call with cgroup_mutex held. Drops reference counts on modules, including
949 * any duplicate ones that parse_cgroupfs_options took. If this function
950 * returns an error, no reference counts are touched.
952 static int rebind_subsystems(struct cgroupfs_root *root,
953 unsigned long final_bits)
955 unsigned long added_bits, removed_bits;
956 struct cgroup *cgrp = &root->top_cgroup;
957 int i;
959 BUG_ON(!mutex_is_locked(&cgroup_mutex));
961 removed_bits = root->actual_subsys_bits & ~final_bits;
962 added_bits = final_bits & ~root->actual_subsys_bits;
963 /* Check that any added subsystems are currently free */
964 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
965 unsigned long bit = 1UL << i;
966 struct cgroup_subsys *ss = subsys[i];
967 if (!(bit & added_bits))
968 continue;
970 * Nobody should tell us to do a subsys that doesn't exist:
971 * parse_cgroupfs_options should catch that case and refcounts
972 * ensure that subsystems won't disappear once selected.
974 BUG_ON(ss == NULL);
975 if (ss->root != &rootnode) {
976 /* Subsystem isn't free */
977 return -EBUSY;
981 /* Currently we don't handle adding/removing subsystems when
982 * any child cgroups exist. This is theoretically supportable
983 * but involves complex error handling, so it's being left until
984 * later */
985 if (root->number_of_cgroups > 1)
986 return -EBUSY;
988 /* Process each subsystem */
989 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
990 struct cgroup_subsys *ss = subsys[i];
991 unsigned long bit = 1UL << i;
992 if (bit & added_bits) {
993 /* We're binding this subsystem to this hierarchy */
994 BUG_ON(ss == NULL);
995 BUG_ON(cgrp->subsys[i]);
996 BUG_ON(!dummytop->subsys[i]);
997 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
998 mutex_lock(&ss->hierarchy_mutex);
999 cgrp->subsys[i] = dummytop->subsys[i];
1000 cgrp->subsys[i]->cgroup = cgrp;
1001 list_move(&ss->sibling, &root->subsys_list);
1002 ss->root = root;
1003 if (ss->bind)
1004 ss->bind(ss, cgrp);
1005 mutex_unlock(&ss->hierarchy_mutex);
1006 /* refcount was already taken, and we're keeping it */
1007 } else if (bit & removed_bits) {
1008 /* We're removing this subsystem */
1009 BUG_ON(ss == NULL);
1010 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1011 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1012 mutex_lock(&ss->hierarchy_mutex);
1013 if (ss->bind)
1014 ss->bind(ss, dummytop);
1015 dummytop->subsys[i]->cgroup = dummytop;
1016 cgrp->subsys[i] = NULL;
1017 subsys[i]->root = &rootnode;
1018 list_move(&ss->sibling, &rootnode.subsys_list);
1019 mutex_unlock(&ss->hierarchy_mutex);
1020 /* subsystem is now free - drop reference on module */
1021 module_put(ss->module);
1022 } else if (bit & final_bits) {
1023 /* Subsystem state should already exist */
1024 BUG_ON(ss == NULL);
1025 BUG_ON(!cgrp->subsys[i]);
1027 * a refcount was taken, but we already had one, so
1028 * drop the extra reference.
1030 module_put(ss->module);
1031 #ifdef CONFIG_MODULE_UNLOAD
1032 BUG_ON(ss->module && !module_refcount(ss->module));
1033 #endif
1034 } else {
1035 /* Subsystem state shouldn't exist */
1036 BUG_ON(cgrp->subsys[i]);
1039 root->subsys_bits = root->actual_subsys_bits = final_bits;
1040 synchronize_rcu();
1042 return 0;
1045 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1047 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1048 struct cgroup_subsys *ss;
1050 mutex_lock(&cgroup_mutex);
1051 for_each_subsys(root, ss)
1052 seq_printf(seq, ",%s", ss->name);
1053 if (test_bit(ROOT_NOPREFIX, &root->flags))
1054 seq_puts(seq, ",noprefix");
1055 if (strlen(root->release_agent_path))
1056 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1057 if (clone_children(&root->top_cgroup))
1058 seq_puts(seq, ",clone_children");
1059 if (strlen(root->name))
1060 seq_printf(seq, ",name=%s", root->name);
1061 mutex_unlock(&cgroup_mutex);
1062 return 0;
1065 struct cgroup_sb_opts {
1066 unsigned long subsys_bits;
1067 unsigned long flags;
1068 char *release_agent;
1069 bool clone_children;
1070 char *name;
1071 /* User explicitly requested empty subsystem */
1072 bool none;
1074 struct cgroupfs_root *new_root;
1079 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1080 * with cgroup_mutex held to protect the subsys[] array. This function takes
1081 * refcounts on subsystems to be used, unless it returns error, in which case
1082 * no refcounts are taken.
1084 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1086 char *token, *o = data;
1087 bool all_ss = false, one_ss = false;
1088 unsigned long mask = (unsigned long)-1;
1089 int i;
1090 bool module_pin_failed = false;
1092 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1094 #ifdef CONFIG_CPUSETS
1095 mask = ~(1UL << cpuset_subsys_id);
1096 #endif
1098 memset(opts, 0, sizeof(*opts));
1100 while ((token = strsep(&o, ",")) != NULL) {
1101 if (!*token)
1102 return -EINVAL;
1103 if (!strcmp(token, "none")) {
1104 /* Explicitly have no subsystems */
1105 opts->none = true;
1106 continue;
1108 if (!strcmp(token, "all")) {
1109 /* Mutually exclusive option 'all' + subsystem name */
1110 if (one_ss)
1111 return -EINVAL;
1112 all_ss = true;
1113 continue;
1115 if (!strcmp(token, "noprefix")) {
1116 set_bit(ROOT_NOPREFIX, &opts->flags);
1117 continue;
1119 if (!strcmp(token, "clone_children")) {
1120 opts->clone_children = true;
1121 continue;
1123 if (!strncmp(token, "release_agent=", 14)) {
1124 /* Specifying two release agents is forbidden */
1125 if (opts->release_agent)
1126 return -EINVAL;
1127 opts->release_agent =
1128 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1129 if (!opts->release_agent)
1130 return -ENOMEM;
1131 continue;
1133 if (!strncmp(token, "name=", 5)) {
1134 const char *name = token + 5;
1135 /* Can't specify an empty name */
1136 if (!strlen(name))
1137 return -EINVAL;
1138 /* Must match [\w.-]+ */
1139 for (i = 0; i < strlen(name); i++) {
1140 char c = name[i];
1141 if (isalnum(c))
1142 continue;
1143 if ((c == '.') || (c == '-') || (c == '_'))
1144 continue;
1145 return -EINVAL;
1147 /* Specifying two names is forbidden */
1148 if (opts->name)
1149 return -EINVAL;
1150 opts->name = kstrndup(name,
1151 MAX_CGROUP_ROOT_NAMELEN - 1,
1152 GFP_KERNEL);
1153 if (!opts->name)
1154 return -ENOMEM;
1156 continue;
1159 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1160 struct cgroup_subsys *ss = subsys[i];
1161 if (ss == NULL)
1162 continue;
1163 if (strcmp(token, ss->name))
1164 continue;
1165 if (ss->disabled)
1166 continue;
1168 /* Mutually exclusive option 'all' + subsystem name */
1169 if (all_ss)
1170 return -EINVAL;
1171 set_bit(i, &opts->subsys_bits);
1172 one_ss = true;
1174 break;
1176 if (i == CGROUP_SUBSYS_COUNT)
1177 return -ENOENT;
1181 * If the 'all' option was specified select all the subsystems,
1182 * otherwise 'all, 'none' and a subsystem name options were not
1183 * specified, let's default to 'all'
1185 if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1186 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1187 struct cgroup_subsys *ss = subsys[i];
1188 if (ss == NULL)
1189 continue;
1190 if (ss->disabled)
1191 continue;
1192 set_bit(i, &opts->subsys_bits);
1196 /* Consistency checks */
1199 * Option noprefix was introduced just for backward compatibility
1200 * with the old cpuset, so we allow noprefix only if mounting just
1201 * the cpuset subsystem.
1203 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1204 (opts->subsys_bits & mask))
1205 return -EINVAL;
1208 /* Can't specify "none" and some subsystems */
1209 if (opts->subsys_bits && opts->none)
1210 return -EINVAL;
1213 * We either have to specify by name or by subsystems. (So all
1214 * empty hierarchies must have a name).
1216 if (!opts->subsys_bits && !opts->name)
1217 return -EINVAL;
1220 * Grab references on all the modules we'll need, so the subsystems
1221 * don't dance around before rebind_subsystems attaches them. This may
1222 * take duplicate reference counts on a subsystem that's already used,
1223 * but rebind_subsystems handles this case.
1225 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1226 unsigned long bit = 1UL << i;
1228 if (!(bit & opts->subsys_bits))
1229 continue;
1230 if (!try_module_get(subsys[i]->module)) {
1231 module_pin_failed = true;
1232 break;
1235 if (module_pin_failed) {
1237 * oops, one of the modules was going away. this means that we
1238 * raced with a module_delete call, and to the user this is
1239 * essentially a "subsystem doesn't exist" case.
1241 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1242 /* drop refcounts only on the ones we took */
1243 unsigned long bit = 1UL << i;
1245 if (!(bit & opts->subsys_bits))
1246 continue;
1247 module_put(subsys[i]->module);
1249 return -ENOENT;
1252 return 0;
1255 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1257 int i;
1258 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1259 unsigned long bit = 1UL << i;
1261 if (!(bit & subsys_bits))
1262 continue;
1263 module_put(subsys[i]->module);
1267 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1269 int ret = 0;
1270 struct cgroupfs_root *root = sb->s_fs_info;
1271 struct cgroup *cgrp = &root->top_cgroup;
1272 struct cgroup_sb_opts opts;
1274 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1275 mutex_lock(&cgroup_mutex);
1277 /* See what subsystems are wanted */
1278 ret = parse_cgroupfs_options(data, &opts);
1279 if (ret)
1280 goto out_unlock;
1282 /* Don't allow flags or name to change at remount */
1283 if (opts.flags != root->flags ||
1284 (opts.name && strcmp(opts.name, root->name))) {
1285 ret = -EINVAL;
1286 drop_parsed_module_refcounts(opts.subsys_bits);
1287 goto out_unlock;
1290 ret = rebind_subsystems(root, opts.subsys_bits);
1291 if (ret) {
1292 drop_parsed_module_refcounts(opts.subsys_bits);
1293 goto out_unlock;
1296 /* (re)populate subsystem files */
1297 cgroup_populate_dir(cgrp);
1299 if (opts.release_agent)
1300 strcpy(root->release_agent_path, opts.release_agent);
1301 out_unlock:
1302 kfree(opts.release_agent);
1303 kfree(opts.name);
1304 mutex_unlock(&cgroup_mutex);
1305 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1306 return ret;
1309 static const struct super_operations cgroup_ops = {
1310 .statfs = simple_statfs,
1311 .drop_inode = generic_delete_inode,
1312 .show_options = cgroup_show_options,
1313 .remount_fs = cgroup_remount,
1316 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1318 INIT_LIST_HEAD(&cgrp->sibling);
1319 INIT_LIST_HEAD(&cgrp->children);
1320 INIT_LIST_HEAD(&cgrp->css_sets);
1321 INIT_LIST_HEAD(&cgrp->release_list);
1322 INIT_LIST_HEAD(&cgrp->pidlists);
1323 mutex_init(&cgrp->pidlist_mutex);
1324 INIT_LIST_HEAD(&cgrp->event_list);
1325 spin_lock_init(&cgrp->event_list_lock);
1328 static void init_cgroup_root(struct cgroupfs_root *root)
1330 struct cgroup *cgrp = &root->top_cgroup;
1331 INIT_LIST_HEAD(&root->subsys_list);
1332 INIT_LIST_HEAD(&root->root_list);
1333 root->number_of_cgroups = 1;
1334 cgrp->root = root;
1335 cgrp->top_cgroup = cgrp;
1336 init_cgroup_housekeeping(cgrp);
1339 static bool init_root_id(struct cgroupfs_root *root)
1341 int ret = 0;
1343 do {
1344 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1345 return false;
1346 spin_lock(&hierarchy_id_lock);
1347 /* Try to allocate the next unused ID */
1348 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1349 &root->hierarchy_id);
1350 if (ret == -ENOSPC)
1351 /* Try again starting from 0 */
1352 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1353 if (!ret) {
1354 next_hierarchy_id = root->hierarchy_id + 1;
1355 } else if (ret != -EAGAIN) {
1356 /* Can only get here if the 31-bit IDR is full ... */
1357 BUG_ON(ret);
1359 spin_unlock(&hierarchy_id_lock);
1360 } while (ret);
1361 return true;
1364 static int cgroup_test_super(struct super_block *sb, void *data)
1366 struct cgroup_sb_opts *opts = data;
1367 struct cgroupfs_root *root = sb->s_fs_info;
1369 /* If we asked for a name then it must match */
1370 if (opts->name && strcmp(opts->name, root->name))
1371 return 0;
1374 * If we asked for subsystems (or explicitly for no
1375 * subsystems) then they must match
1377 if ((opts->subsys_bits || opts->none)
1378 && (opts->subsys_bits != root->subsys_bits))
1379 return 0;
1381 return 1;
1384 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1386 struct cgroupfs_root *root;
1388 if (!opts->subsys_bits && !opts->none)
1389 return NULL;
1391 root = kzalloc(sizeof(*root), GFP_KERNEL);
1392 if (!root)
1393 return ERR_PTR(-ENOMEM);
1395 if (!init_root_id(root)) {
1396 kfree(root);
1397 return ERR_PTR(-ENOMEM);
1399 init_cgroup_root(root);
1401 root->subsys_bits = opts->subsys_bits;
1402 root->flags = opts->flags;
1403 if (opts->release_agent)
1404 strcpy(root->release_agent_path, opts->release_agent);
1405 if (opts->name)
1406 strcpy(root->name, opts->name);
1407 if (opts->clone_children)
1408 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1409 return root;
1412 static void cgroup_drop_root(struct cgroupfs_root *root)
1414 if (!root)
1415 return;
1417 BUG_ON(!root->hierarchy_id);
1418 spin_lock(&hierarchy_id_lock);
1419 ida_remove(&hierarchy_ida, root->hierarchy_id);
1420 spin_unlock(&hierarchy_id_lock);
1421 kfree(root);
1424 static int cgroup_set_super(struct super_block *sb, void *data)
1426 int ret;
1427 struct cgroup_sb_opts *opts = data;
1429 /* If we don't have a new root, we can't set up a new sb */
1430 if (!opts->new_root)
1431 return -EINVAL;
1433 BUG_ON(!opts->subsys_bits && !opts->none);
1435 ret = set_anon_super(sb, NULL);
1436 if (ret)
1437 return ret;
1439 sb->s_fs_info = opts->new_root;
1440 opts->new_root->sb = sb;
1442 sb->s_blocksize = PAGE_CACHE_SIZE;
1443 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1444 sb->s_magic = CGROUP_SUPER_MAGIC;
1445 sb->s_op = &cgroup_ops;
1447 return 0;
1450 static int cgroup_get_rootdir(struct super_block *sb)
1452 static const struct dentry_operations cgroup_dops = {
1453 .d_iput = cgroup_diput,
1454 .d_delete = cgroup_delete,
1457 struct inode *inode =
1458 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1459 struct dentry *dentry;
1461 if (!inode)
1462 return -ENOMEM;
1464 inode->i_fop = &simple_dir_operations;
1465 inode->i_op = &cgroup_dir_inode_operations;
1466 /* directories start off with i_nlink == 2 (for "." entry) */
1467 inc_nlink(inode);
1468 dentry = d_alloc_root(inode);
1469 if (!dentry) {
1470 iput(inode);
1471 return -ENOMEM;
1473 sb->s_root = dentry;
1474 /* for everything else we want ->d_op set */
1475 sb->s_d_op = &cgroup_dops;
1476 return 0;
1479 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1480 int flags, const char *unused_dev_name,
1481 void *data)
1483 struct cgroup_sb_opts opts;
1484 struct cgroupfs_root *root;
1485 int ret = 0;
1486 struct super_block *sb;
1487 struct cgroupfs_root *new_root;
1489 /* First find the desired set of subsystems */
1490 mutex_lock(&cgroup_mutex);
1491 ret = parse_cgroupfs_options(data, &opts);
1492 mutex_unlock(&cgroup_mutex);
1493 if (ret)
1494 goto out_err;
1497 * Allocate a new cgroup root. We may not need it if we're
1498 * reusing an existing hierarchy.
1500 new_root = cgroup_root_from_opts(&opts);
1501 if (IS_ERR(new_root)) {
1502 ret = PTR_ERR(new_root);
1503 goto drop_modules;
1505 opts.new_root = new_root;
1507 /* Locate an existing or new sb for this hierarchy */
1508 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1509 if (IS_ERR(sb)) {
1510 ret = PTR_ERR(sb);
1511 cgroup_drop_root(opts.new_root);
1512 goto drop_modules;
1515 root = sb->s_fs_info;
1516 BUG_ON(!root);
1517 if (root == opts.new_root) {
1518 /* We used the new root structure, so this is a new hierarchy */
1519 struct list_head tmp_cg_links;
1520 struct cgroup *root_cgrp = &root->top_cgroup;
1521 struct inode *inode;
1522 struct cgroupfs_root *existing_root;
1523 int i;
1525 BUG_ON(sb->s_root != NULL);
1527 ret = cgroup_get_rootdir(sb);
1528 if (ret)
1529 goto drop_new_super;
1530 inode = sb->s_root->d_inode;
1532 mutex_lock(&inode->i_mutex);
1533 mutex_lock(&cgroup_mutex);
1535 if (strlen(root->name)) {
1536 /* Check for name clashes with existing mounts */
1537 for_each_active_root(existing_root) {
1538 if (!strcmp(existing_root->name, root->name)) {
1539 ret = -EBUSY;
1540 mutex_unlock(&cgroup_mutex);
1541 mutex_unlock(&inode->i_mutex);
1542 goto drop_new_super;
1548 * We're accessing css_set_count without locking
1549 * css_set_lock here, but that's OK - it can only be
1550 * increased by someone holding cgroup_lock, and
1551 * that's us. The worst that can happen is that we
1552 * have some link structures left over
1554 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1555 if (ret) {
1556 mutex_unlock(&cgroup_mutex);
1557 mutex_unlock(&inode->i_mutex);
1558 goto drop_new_super;
1561 ret = rebind_subsystems(root, root->subsys_bits);
1562 if (ret == -EBUSY) {
1563 mutex_unlock(&cgroup_mutex);
1564 mutex_unlock(&inode->i_mutex);
1565 free_cg_links(&tmp_cg_links);
1566 goto drop_new_super;
1569 * There must be no failure case after here, since rebinding
1570 * takes care of subsystems' refcounts, which are explicitly
1571 * dropped in the failure exit path.
1574 /* EBUSY should be the only error here */
1575 BUG_ON(ret);
1577 list_add(&root->root_list, &roots);
1578 root_count++;
1580 sb->s_root->d_fsdata = root_cgrp;
1581 root->top_cgroup.dentry = sb->s_root;
1583 /* Link the top cgroup in this hierarchy into all
1584 * the css_set objects */
1585 write_lock(&css_set_lock);
1586 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1587 struct hlist_head *hhead = &css_set_table[i];
1588 struct hlist_node *node;
1589 struct css_set *cg;
1591 hlist_for_each_entry(cg, node, hhead, hlist)
1592 link_css_set(&tmp_cg_links, cg, root_cgrp);
1594 write_unlock(&css_set_lock);
1596 free_cg_links(&tmp_cg_links);
1598 BUG_ON(!list_empty(&root_cgrp->sibling));
1599 BUG_ON(!list_empty(&root_cgrp->children));
1600 BUG_ON(root->number_of_cgroups != 1);
1602 cgroup_populate_dir(root_cgrp);
1603 mutex_unlock(&cgroup_mutex);
1604 mutex_unlock(&inode->i_mutex);
1605 } else {
1607 * We re-used an existing hierarchy - the new root (if
1608 * any) is not needed
1610 cgroup_drop_root(opts.new_root);
1611 /* no subsys rebinding, so refcounts don't change */
1612 drop_parsed_module_refcounts(opts.subsys_bits);
1615 kfree(opts.release_agent);
1616 kfree(opts.name);
1617 return dget(sb->s_root);
1619 drop_new_super:
1620 deactivate_locked_super(sb);
1621 drop_modules:
1622 drop_parsed_module_refcounts(opts.subsys_bits);
1623 out_err:
1624 kfree(opts.release_agent);
1625 kfree(opts.name);
1626 return ERR_PTR(ret);
1629 static void cgroup_kill_sb(struct super_block *sb) {
1630 struct cgroupfs_root *root = sb->s_fs_info;
1631 struct cgroup *cgrp = &root->top_cgroup;
1632 int ret;
1633 struct cg_cgroup_link *link;
1634 struct cg_cgroup_link *saved_link;
1636 BUG_ON(!root);
1638 BUG_ON(root->number_of_cgroups != 1);
1639 BUG_ON(!list_empty(&cgrp->children));
1640 BUG_ON(!list_empty(&cgrp->sibling));
1642 mutex_lock(&cgroup_mutex);
1644 /* Rebind all subsystems back to the default hierarchy */
1645 ret = rebind_subsystems(root, 0);
1646 /* Shouldn't be able to fail ... */
1647 BUG_ON(ret);
1650 * Release all the links from css_sets to this hierarchy's
1651 * root cgroup
1653 write_lock(&css_set_lock);
1655 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1656 cgrp_link_list) {
1657 list_del(&link->cg_link_list);
1658 list_del(&link->cgrp_link_list);
1659 kfree(link);
1661 write_unlock(&css_set_lock);
1663 if (!list_empty(&root->root_list)) {
1664 list_del(&root->root_list);
1665 root_count--;
1668 mutex_unlock(&cgroup_mutex);
1670 kill_litter_super(sb);
1671 cgroup_drop_root(root);
1674 static struct file_system_type cgroup_fs_type = {
1675 .name = "cgroup",
1676 .mount = cgroup_mount,
1677 .kill_sb = cgroup_kill_sb,
1680 static struct kobject *cgroup_kobj;
1682 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1684 return dentry->d_fsdata;
1687 static inline struct cftype *__d_cft(struct dentry *dentry)
1689 return dentry->d_fsdata;
1693 * cgroup_path - generate the path of a cgroup
1694 * @cgrp: the cgroup in question
1695 * @buf: the buffer to write the path into
1696 * @buflen: the length of the buffer
1698 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1699 * reference. Writes path of cgroup into buf. Returns 0 on success,
1700 * -errno on error.
1702 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1704 char *start;
1705 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1706 rcu_read_lock_held() ||
1707 cgroup_lock_is_held());
1709 if (!dentry || cgrp == dummytop) {
1711 * Inactive subsystems have no dentry for their root
1712 * cgroup
1714 strcpy(buf, "/");
1715 return 0;
1718 start = buf + buflen;
1720 *--start = '\0';
1721 for (;;) {
1722 int len = dentry->d_name.len;
1724 if ((start -= len) < buf)
1725 return -ENAMETOOLONG;
1726 memcpy(start, dentry->d_name.name, len);
1727 cgrp = cgrp->parent;
1728 if (!cgrp)
1729 break;
1731 dentry = rcu_dereference_check(cgrp->dentry,
1732 rcu_read_lock_held() ||
1733 cgroup_lock_is_held());
1734 if (!cgrp->parent)
1735 continue;
1736 if (--start < buf)
1737 return -ENAMETOOLONG;
1738 *start = '/';
1740 memmove(buf, start, buf + buflen - start);
1741 return 0;
1743 EXPORT_SYMBOL_GPL(cgroup_path);
1746 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1747 * @cgrp: the cgroup the task is attaching to
1748 * @tsk: the task to be attached
1750 * Call holding cgroup_mutex. May take task_lock of
1751 * the task 'tsk' during call.
1753 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1755 int retval = 0;
1756 struct cgroup_subsys *ss, *failed_ss = NULL;
1757 struct cgroup *oldcgrp;
1758 struct css_set *cg;
1759 struct css_set *newcg;
1760 struct cgroupfs_root *root = cgrp->root;
1762 /* Nothing to do if the task is already in that cgroup */
1763 oldcgrp = task_cgroup_from_root(tsk, root);
1764 if (cgrp == oldcgrp)
1765 return 0;
1767 for_each_subsys(root, ss) {
1768 if (ss->can_attach) {
1769 retval = ss->can_attach(ss, cgrp, tsk, false);
1770 if (retval) {
1772 * Remember on which subsystem the can_attach()
1773 * failed, so that we only call cancel_attach()
1774 * against the subsystems whose can_attach()
1775 * succeeded. (See below)
1777 failed_ss = ss;
1778 goto out;
1783 task_lock(tsk);
1784 cg = tsk->cgroups;
1785 get_css_set(cg);
1786 task_unlock(tsk);
1788 * Locate or allocate a new css_set for this task,
1789 * based on its final set of cgroups
1791 newcg = find_css_set(cg, cgrp);
1792 put_css_set(cg);
1793 if (!newcg) {
1794 retval = -ENOMEM;
1795 goto out;
1798 task_lock(tsk);
1799 if (tsk->flags & PF_EXITING) {
1800 task_unlock(tsk);
1801 put_css_set(newcg);
1802 retval = -ESRCH;
1803 goto out;
1805 rcu_assign_pointer(tsk->cgroups, newcg);
1806 task_unlock(tsk);
1808 /* Update the css_set linked lists if we're using them */
1809 write_lock(&css_set_lock);
1810 if (!list_empty(&tsk->cg_list))
1811 list_move(&tsk->cg_list, &newcg->tasks);
1812 write_unlock(&css_set_lock);
1814 for_each_subsys(root, ss) {
1815 if (ss->attach)
1816 ss->attach(ss, cgrp, oldcgrp, tsk, false);
1818 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1819 synchronize_rcu();
1820 put_css_set(cg);
1823 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1824 * is no longer empty.
1826 cgroup_wakeup_rmdir_waiter(cgrp);
1827 out:
1828 if (retval) {
1829 for_each_subsys(root, ss) {
1830 if (ss == failed_ss)
1832 * This subsystem was the one that failed the
1833 * can_attach() check earlier, so we don't need
1834 * to call cancel_attach() against it or any
1835 * remaining subsystems.
1837 break;
1838 if (ss->cancel_attach)
1839 ss->cancel_attach(ss, cgrp, tsk, false);
1842 return retval;
1846 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1847 * @from: attach to all cgroups of a given task
1848 * @tsk: the task to be attached
1850 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1852 struct cgroupfs_root *root;
1853 int retval = 0;
1855 cgroup_lock();
1856 for_each_active_root(root) {
1857 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1859 retval = cgroup_attach_task(from_cg, tsk);
1860 if (retval)
1861 break;
1863 cgroup_unlock();
1865 return retval;
1867 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1870 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1871 * held. May take task_lock of task
1873 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1875 struct task_struct *tsk;
1876 const struct cred *cred = current_cred(), *tcred;
1877 int ret;
1879 if (pid) {
1880 rcu_read_lock();
1881 tsk = find_task_by_vpid(pid);
1882 if (!tsk || tsk->flags & PF_EXITING) {
1883 rcu_read_unlock();
1884 return -ESRCH;
1887 tcred = __task_cred(tsk);
1888 if (cred->euid &&
1889 cred->euid != tcred->uid &&
1890 cred->euid != tcred->suid) {
1891 rcu_read_unlock();
1892 return -EACCES;
1894 get_task_struct(tsk);
1895 rcu_read_unlock();
1896 } else {
1897 tsk = current;
1898 get_task_struct(tsk);
1901 ret = cgroup_attach_task(cgrp, tsk);
1902 put_task_struct(tsk);
1903 return ret;
1906 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1908 int ret;
1909 if (!cgroup_lock_live_group(cgrp))
1910 return -ENODEV;
1911 ret = attach_task_by_pid(cgrp, pid);
1912 cgroup_unlock();
1913 return ret;
1917 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1918 * @cgrp: the cgroup to be checked for liveness
1920 * On success, returns true; the lock should be later released with
1921 * cgroup_unlock(). On failure returns false with no lock held.
1923 bool cgroup_lock_live_group(struct cgroup *cgrp)
1925 mutex_lock(&cgroup_mutex);
1926 if (cgroup_is_removed(cgrp)) {
1927 mutex_unlock(&cgroup_mutex);
1928 return false;
1930 return true;
1932 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
1934 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1935 const char *buffer)
1937 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1938 if (strlen(buffer) >= PATH_MAX)
1939 return -EINVAL;
1940 if (!cgroup_lock_live_group(cgrp))
1941 return -ENODEV;
1942 strcpy(cgrp->root->release_agent_path, buffer);
1943 cgroup_unlock();
1944 return 0;
1947 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1948 struct seq_file *seq)
1950 if (!cgroup_lock_live_group(cgrp))
1951 return -ENODEV;
1952 seq_puts(seq, cgrp->root->release_agent_path);
1953 seq_putc(seq, '\n');
1954 cgroup_unlock();
1955 return 0;
1958 /* A buffer size big enough for numbers or short strings */
1959 #define CGROUP_LOCAL_BUFFER_SIZE 64
1961 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1962 struct file *file,
1963 const char __user *userbuf,
1964 size_t nbytes, loff_t *unused_ppos)
1966 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1967 int retval = 0;
1968 char *end;
1970 if (!nbytes)
1971 return -EINVAL;
1972 if (nbytes >= sizeof(buffer))
1973 return -E2BIG;
1974 if (copy_from_user(buffer, userbuf, nbytes))
1975 return -EFAULT;
1977 buffer[nbytes] = 0; /* nul-terminate */
1978 if (cft->write_u64) {
1979 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
1980 if (*end)
1981 return -EINVAL;
1982 retval = cft->write_u64(cgrp, cft, val);
1983 } else {
1984 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
1985 if (*end)
1986 return -EINVAL;
1987 retval = cft->write_s64(cgrp, cft, val);
1989 if (!retval)
1990 retval = nbytes;
1991 return retval;
1994 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1995 struct file *file,
1996 const char __user *userbuf,
1997 size_t nbytes, loff_t *unused_ppos)
1999 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2000 int retval = 0;
2001 size_t max_bytes = cft->max_write_len;
2002 char *buffer = local_buffer;
2004 if (!max_bytes)
2005 max_bytes = sizeof(local_buffer) - 1;
2006 if (nbytes >= max_bytes)
2007 return -E2BIG;
2008 /* Allocate a dynamic buffer if we need one */
2009 if (nbytes >= sizeof(local_buffer)) {
2010 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2011 if (buffer == NULL)
2012 return -ENOMEM;
2014 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2015 retval = -EFAULT;
2016 goto out;
2019 buffer[nbytes] = 0; /* nul-terminate */
2020 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2021 if (!retval)
2022 retval = nbytes;
2023 out:
2024 if (buffer != local_buffer)
2025 kfree(buffer);
2026 return retval;
2029 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2030 size_t nbytes, loff_t *ppos)
2032 struct cftype *cft = __d_cft(file->f_dentry);
2033 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2035 if (cgroup_is_removed(cgrp))
2036 return -ENODEV;
2037 if (cft->write)
2038 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2039 if (cft->write_u64 || cft->write_s64)
2040 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2041 if (cft->write_string)
2042 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2043 if (cft->trigger) {
2044 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2045 return ret ? ret : nbytes;
2047 return -EINVAL;
2050 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2051 struct file *file,
2052 char __user *buf, size_t nbytes,
2053 loff_t *ppos)
2055 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2056 u64 val = cft->read_u64(cgrp, cft);
2057 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2059 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2062 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2063 struct file *file,
2064 char __user *buf, size_t nbytes,
2065 loff_t *ppos)
2067 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2068 s64 val = cft->read_s64(cgrp, cft);
2069 int len = sprintf(tmp, "%lld\n", (long long) val);
2071 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2074 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2075 size_t nbytes, loff_t *ppos)
2077 struct cftype *cft = __d_cft(file->f_dentry);
2078 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2080 if (cgroup_is_removed(cgrp))
2081 return -ENODEV;
2083 if (cft->read)
2084 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2085 if (cft->read_u64)
2086 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2087 if (cft->read_s64)
2088 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2089 return -EINVAL;
2093 * seqfile ops/methods for returning structured data. Currently just
2094 * supports string->u64 maps, but can be extended in future.
2097 struct cgroup_seqfile_state {
2098 struct cftype *cft;
2099 struct cgroup *cgroup;
2102 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2104 struct seq_file *sf = cb->state;
2105 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2108 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2110 struct cgroup_seqfile_state *state = m->private;
2111 struct cftype *cft = state->cft;
2112 if (cft->read_map) {
2113 struct cgroup_map_cb cb = {
2114 .fill = cgroup_map_add,
2115 .state = m,
2117 return cft->read_map(state->cgroup, cft, &cb);
2119 return cft->read_seq_string(state->cgroup, cft, m);
2122 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2124 struct seq_file *seq = file->private_data;
2125 kfree(seq->private);
2126 return single_release(inode, file);
2129 static const struct file_operations cgroup_seqfile_operations = {
2130 .read = seq_read,
2131 .write = cgroup_file_write,
2132 .llseek = seq_lseek,
2133 .release = cgroup_seqfile_release,
2136 static int cgroup_file_open(struct inode *inode, struct file *file)
2138 int err;
2139 struct cftype *cft;
2141 err = generic_file_open(inode, file);
2142 if (err)
2143 return err;
2144 cft = __d_cft(file->f_dentry);
2146 if (cft->read_map || cft->read_seq_string) {
2147 struct cgroup_seqfile_state *state =
2148 kzalloc(sizeof(*state), GFP_USER);
2149 if (!state)
2150 return -ENOMEM;
2151 state->cft = cft;
2152 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2153 file->f_op = &cgroup_seqfile_operations;
2154 err = single_open(file, cgroup_seqfile_show, state);
2155 if (err < 0)
2156 kfree(state);
2157 } else if (cft->open)
2158 err = cft->open(inode, file);
2159 else
2160 err = 0;
2162 return err;
2165 static int cgroup_file_release(struct inode *inode, struct file *file)
2167 struct cftype *cft = __d_cft(file->f_dentry);
2168 if (cft->release)
2169 return cft->release(inode, file);
2170 return 0;
2174 * cgroup_rename - Only allow simple rename of directories in place.
2176 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2177 struct inode *new_dir, struct dentry *new_dentry)
2179 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2180 return -ENOTDIR;
2181 if (new_dentry->d_inode)
2182 return -EEXIST;
2183 if (old_dir != new_dir)
2184 return -EIO;
2185 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2188 static const struct file_operations cgroup_file_operations = {
2189 .read = cgroup_file_read,
2190 .write = cgroup_file_write,
2191 .llseek = generic_file_llseek,
2192 .open = cgroup_file_open,
2193 .release = cgroup_file_release,
2196 static const struct inode_operations cgroup_dir_inode_operations = {
2197 .lookup = cgroup_lookup,
2198 .mkdir = cgroup_mkdir,
2199 .rmdir = cgroup_rmdir,
2200 .rename = cgroup_rename,
2203 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2205 if (dentry->d_name.len > NAME_MAX)
2206 return ERR_PTR(-ENAMETOOLONG);
2207 d_add(dentry, NULL);
2208 return NULL;
2212 * Check if a file is a control file
2214 static inline struct cftype *__file_cft(struct file *file)
2216 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2217 return ERR_PTR(-EINVAL);
2218 return __d_cft(file->f_dentry);
2221 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2222 struct super_block *sb)
2224 struct inode *inode;
2226 if (!dentry)
2227 return -ENOENT;
2228 if (dentry->d_inode)
2229 return -EEXIST;
2231 inode = cgroup_new_inode(mode, sb);
2232 if (!inode)
2233 return -ENOMEM;
2235 if (S_ISDIR(mode)) {
2236 inode->i_op = &cgroup_dir_inode_operations;
2237 inode->i_fop = &simple_dir_operations;
2239 /* start off with i_nlink == 2 (for "." entry) */
2240 inc_nlink(inode);
2242 /* start with the directory inode held, so that we can
2243 * populate it without racing with another mkdir */
2244 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2245 } else if (S_ISREG(mode)) {
2246 inode->i_size = 0;
2247 inode->i_fop = &cgroup_file_operations;
2249 d_instantiate(dentry, inode);
2250 dget(dentry); /* Extra count - pin the dentry in core */
2251 return 0;
2255 * cgroup_create_dir - create a directory for an object.
2256 * @cgrp: the cgroup we create the directory for. It must have a valid
2257 * ->parent field. And we are going to fill its ->dentry field.
2258 * @dentry: dentry of the new cgroup
2259 * @mode: mode to set on new directory.
2261 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2262 mode_t mode)
2264 struct dentry *parent;
2265 int error = 0;
2267 parent = cgrp->parent->dentry;
2268 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2269 if (!error) {
2270 dentry->d_fsdata = cgrp;
2271 inc_nlink(parent->d_inode);
2272 rcu_assign_pointer(cgrp->dentry, dentry);
2273 dget(dentry);
2275 dput(dentry);
2277 return error;
2281 * cgroup_file_mode - deduce file mode of a control file
2282 * @cft: the control file in question
2284 * returns cft->mode if ->mode is not 0
2285 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2286 * returns S_IRUGO if it has only a read handler
2287 * returns S_IWUSR if it has only a write hander
2289 static mode_t cgroup_file_mode(const struct cftype *cft)
2291 mode_t mode = 0;
2293 if (cft->mode)
2294 return cft->mode;
2296 if (cft->read || cft->read_u64 || cft->read_s64 ||
2297 cft->read_map || cft->read_seq_string)
2298 mode |= S_IRUGO;
2300 if (cft->write || cft->write_u64 || cft->write_s64 ||
2301 cft->write_string || cft->trigger)
2302 mode |= S_IWUSR;
2304 return mode;
2307 int cgroup_add_file(struct cgroup *cgrp,
2308 struct cgroup_subsys *subsys,
2309 const struct cftype *cft)
2311 struct dentry *dir = cgrp->dentry;
2312 struct dentry *dentry;
2313 int error;
2314 mode_t mode;
2316 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2317 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2318 strcpy(name, subsys->name);
2319 strcat(name, ".");
2321 strcat(name, cft->name);
2322 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2323 dentry = lookup_one_len(name, dir, strlen(name));
2324 if (!IS_ERR(dentry)) {
2325 mode = cgroup_file_mode(cft);
2326 error = cgroup_create_file(dentry, mode | S_IFREG,
2327 cgrp->root->sb);
2328 if (!error)
2329 dentry->d_fsdata = (void *)cft;
2330 dput(dentry);
2331 } else
2332 error = PTR_ERR(dentry);
2333 return error;
2335 EXPORT_SYMBOL_GPL(cgroup_add_file);
2337 int cgroup_add_files(struct cgroup *cgrp,
2338 struct cgroup_subsys *subsys,
2339 const struct cftype cft[],
2340 int count)
2342 int i, err;
2343 for (i = 0; i < count; i++) {
2344 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2345 if (err)
2346 return err;
2348 return 0;
2350 EXPORT_SYMBOL_GPL(cgroup_add_files);
2353 * cgroup_task_count - count the number of tasks in a cgroup.
2354 * @cgrp: the cgroup in question
2356 * Return the number of tasks in the cgroup.
2358 int cgroup_task_count(const struct cgroup *cgrp)
2360 int count = 0;
2361 struct cg_cgroup_link *link;
2363 read_lock(&css_set_lock);
2364 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2365 count += atomic_read(&link->cg->refcount);
2367 read_unlock(&css_set_lock);
2368 return count;
2372 * Advance a list_head iterator. The iterator should be positioned at
2373 * the start of a css_set
2375 static void cgroup_advance_iter(struct cgroup *cgrp,
2376 struct cgroup_iter *it)
2378 struct list_head *l = it->cg_link;
2379 struct cg_cgroup_link *link;
2380 struct css_set *cg;
2382 /* Advance to the next non-empty css_set */
2383 do {
2384 l = l->next;
2385 if (l == &cgrp->css_sets) {
2386 it->cg_link = NULL;
2387 return;
2389 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2390 cg = link->cg;
2391 } while (list_empty(&cg->tasks));
2392 it->cg_link = l;
2393 it->task = cg->tasks.next;
2397 * To reduce the fork() overhead for systems that are not actually
2398 * using their cgroups capability, we don't maintain the lists running
2399 * through each css_set to its tasks until we see the list actually
2400 * used - in other words after the first call to cgroup_iter_start().
2402 * The tasklist_lock is not held here, as do_each_thread() and
2403 * while_each_thread() are protected by RCU.
2405 static void cgroup_enable_task_cg_lists(void)
2407 struct task_struct *p, *g;
2408 write_lock(&css_set_lock);
2409 use_task_css_set_links = 1;
2410 do_each_thread(g, p) {
2411 task_lock(p);
2413 * We should check if the process is exiting, otherwise
2414 * it will race with cgroup_exit() in that the list
2415 * entry won't be deleted though the process has exited.
2417 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2418 list_add(&p->cg_list, &p->cgroups->tasks);
2419 task_unlock(p);
2420 } while_each_thread(g, p);
2421 write_unlock(&css_set_lock);
2424 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2427 * The first time anyone tries to iterate across a cgroup,
2428 * we need to enable the list linking each css_set to its
2429 * tasks, and fix up all existing tasks.
2431 if (!use_task_css_set_links)
2432 cgroup_enable_task_cg_lists();
2434 read_lock(&css_set_lock);
2435 it->cg_link = &cgrp->css_sets;
2436 cgroup_advance_iter(cgrp, it);
2439 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2440 struct cgroup_iter *it)
2442 struct task_struct *res;
2443 struct list_head *l = it->task;
2444 struct cg_cgroup_link *link;
2446 /* If the iterator cg is NULL, we have no tasks */
2447 if (!it->cg_link)
2448 return NULL;
2449 res = list_entry(l, struct task_struct, cg_list);
2450 /* Advance iterator to find next entry */
2451 l = l->next;
2452 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2453 if (l == &link->cg->tasks) {
2454 /* We reached the end of this task list - move on to
2455 * the next cg_cgroup_link */
2456 cgroup_advance_iter(cgrp, it);
2457 } else {
2458 it->task = l;
2460 return res;
2463 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2465 read_unlock(&css_set_lock);
2468 static inline int started_after_time(struct task_struct *t1,
2469 struct timespec *time,
2470 struct task_struct *t2)
2472 int start_diff = timespec_compare(&t1->start_time, time);
2473 if (start_diff > 0) {
2474 return 1;
2475 } else if (start_diff < 0) {
2476 return 0;
2477 } else {
2479 * Arbitrarily, if two processes started at the same
2480 * time, we'll say that the lower pointer value
2481 * started first. Note that t2 may have exited by now
2482 * so this may not be a valid pointer any longer, but
2483 * that's fine - it still serves to distinguish
2484 * between two tasks started (effectively) simultaneously.
2486 return t1 > t2;
2491 * This function is a callback from heap_insert() and is used to order
2492 * the heap.
2493 * In this case we order the heap in descending task start time.
2495 static inline int started_after(void *p1, void *p2)
2497 struct task_struct *t1 = p1;
2498 struct task_struct *t2 = p2;
2499 return started_after_time(t1, &t2->start_time, t2);
2503 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2504 * @scan: struct cgroup_scanner containing arguments for the scan
2506 * Arguments include pointers to callback functions test_task() and
2507 * process_task().
2508 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2509 * and if it returns true, call process_task() for it also.
2510 * The test_task pointer may be NULL, meaning always true (select all tasks).
2511 * Effectively duplicates cgroup_iter_{start,next,end}()
2512 * but does not lock css_set_lock for the call to process_task().
2513 * The struct cgroup_scanner may be embedded in any structure of the caller's
2514 * creation.
2515 * It is guaranteed that process_task() will act on every task that
2516 * is a member of the cgroup for the duration of this call. This
2517 * function may or may not call process_task() for tasks that exit
2518 * or move to a different cgroup during the call, or are forked or
2519 * move into the cgroup during the call.
2521 * Note that test_task() may be called with locks held, and may in some
2522 * situations be called multiple times for the same task, so it should
2523 * be cheap.
2524 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2525 * pre-allocated and will be used for heap operations (and its "gt" member will
2526 * be overwritten), else a temporary heap will be used (allocation of which
2527 * may cause this function to fail).
2529 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2531 int retval, i;
2532 struct cgroup_iter it;
2533 struct task_struct *p, *dropped;
2534 /* Never dereference latest_task, since it's not refcounted */
2535 struct task_struct *latest_task = NULL;
2536 struct ptr_heap tmp_heap;
2537 struct ptr_heap *heap;
2538 struct timespec latest_time = { 0, 0 };
2540 if (scan->heap) {
2541 /* The caller supplied our heap and pre-allocated its memory */
2542 heap = scan->heap;
2543 heap->gt = &started_after;
2544 } else {
2545 /* We need to allocate our own heap memory */
2546 heap = &tmp_heap;
2547 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2548 if (retval)
2549 /* cannot allocate the heap */
2550 return retval;
2553 again:
2555 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2556 * to determine which are of interest, and using the scanner's
2557 * "process_task" callback to process any of them that need an update.
2558 * Since we don't want to hold any locks during the task updates,
2559 * gather tasks to be processed in a heap structure.
2560 * The heap is sorted by descending task start time.
2561 * If the statically-sized heap fills up, we overflow tasks that
2562 * started later, and in future iterations only consider tasks that
2563 * started after the latest task in the previous pass. This
2564 * guarantees forward progress and that we don't miss any tasks.
2566 heap->size = 0;
2567 cgroup_iter_start(scan->cg, &it);
2568 while ((p = cgroup_iter_next(scan->cg, &it))) {
2570 * Only affect tasks that qualify per the caller's callback,
2571 * if he provided one
2573 if (scan->test_task && !scan->test_task(p, scan))
2574 continue;
2576 * Only process tasks that started after the last task
2577 * we processed
2579 if (!started_after_time(p, &latest_time, latest_task))
2580 continue;
2581 dropped = heap_insert(heap, p);
2582 if (dropped == NULL) {
2584 * The new task was inserted; the heap wasn't
2585 * previously full
2587 get_task_struct(p);
2588 } else if (dropped != p) {
2590 * The new task was inserted, and pushed out a
2591 * different task
2593 get_task_struct(p);
2594 put_task_struct(dropped);
2597 * Else the new task was newer than anything already in
2598 * the heap and wasn't inserted
2601 cgroup_iter_end(scan->cg, &it);
2603 if (heap->size) {
2604 for (i = 0; i < heap->size; i++) {
2605 struct task_struct *q = heap->ptrs[i];
2606 if (i == 0) {
2607 latest_time = q->start_time;
2608 latest_task = q;
2610 /* Process the task per the caller's callback */
2611 scan->process_task(q, scan);
2612 put_task_struct(q);
2615 * If we had to process any tasks at all, scan again
2616 * in case some of them were in the middle of forking
2617 * children that didn't get processed.
2618 * Not the most efficient way to do it, but it avoids
2619 * having to take callback_mutex in the fork path
2621 goto again;
2623 if (heap == &tmp_heap)
2624 heap_free(&tmp_heap);
2625 return 0;
2629 * Stuff for reading the 'tasks'/'procs' files.
2631 * Reading this file can return large amounts of data if a cgroup has
2632 * *lots* of attached tasks. So it may need several calls to read(),
2633 * but we cannot guarantee that the information we produce is correct
2634 * unless we produce it entirely atomically.
2639 * The following two functions "fix" the issue where there are more pids
2640 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2641 * TODO: replace with a kernel-wide solution to this problem
2643 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2644 static void *pidlist_allocate(int count)
2646 if (PIDLIST_TOO_LARGE(count))
2647 return vmalloc(count * sizeof(pid_t));
2648 else
2649 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2651 static void pidlist_free(void *p)
2653 if (is_vmalloc_addr(p))
2654 vfree(p);
2655 else
2656 kfree(p);
2658 static void *pidlist_resize(void *p, int newcount)
2660 void *newlist;
2661 /* note: if new alloc fails, old p will still be valid either way */
2662 if (is_vmalloc_addr(p)) {
2663 newlist = vmalloc(newcount * sizeof(pid_t));
2664 if (!newlist)
2665 return NULL;
2666 memcpy(newlist, p, newcount * sizeof(pid_t));
2667 vfree(p);
2668 } else {
2669 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
2671 return newlist;
2675 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2676 * If the new stripped list is sufficiently smaller and there's enough memory
2677 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2678 * number of unique elements.
2680 /* is the size difference enough that we should re-allocate the array? */
2681 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2682 static int pidlist_uniq(pid_t **p, int length)
2684 int src, dest = 1;
2685 pid_t *list = *p;
2686 pid_t *newlist;
2689 * we presume the 0th element is unique, so i starts at 1. trivial
2690 * edge cases first; no work needs to be done for either
2692 if (length == 0 || length == 1)
2693 return length;
2694 /* src and dest walk down the list; dest counts unique elements */
2695 for (src = 1; src < length; src++) {
2696 /* find next unique element */
2697 while (list[src] == list[src-1]) {
2698 src++;
2699 if (src == length)
2700 goto after;
2702 /* dest always points to where the next unique element goes */
2703 list[dest] = list[src];
2704 dest++;
2706 after:
2708 * if the length difference is large enough, we want to allocate a
2709 * smaller buffer to save memory. if this fails due to out of memory,
2710 * we'll just stay with what we've got.
2712 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
2713 newlist = pidlist_resize(list, dest);
2714 if (newlist)
2715 *p = newlist;
2717 return dest;
2720 static int cmppid(const void *a, const void *b)
2722 return *(pid_t *)a - *(pid_t *)b;
2726 * find the appropriate pidlist for our purpose (given procs vs tasks)
2727 * returns with the lock on that pidlist already held, and takes care
2728 * of the use count, or returns NULL with no locks held if we're out of
2729 * memory.
2731 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2732 enum cgroup_filetype type)
2734 struct cgroup_pidlist *l;
2735 /* don't need task_nsproxy() if we're looking at ourself */
2736 struct pid_namespace *ns = current->nsproxy->pid_ns;
2739 * We can't drop the pidlist_mutex before taking the l->mutex in case
2740 * the last ref-holder is trying to remove l from the list at the same
2741 * time. Holding the pidlist_mutex precludes somebody taking whichever
2742 * list we find out from under us - compare release_pid_array().
2744 mutex_lock(&cgrp->pidlist_mutex);
2745 list_for_each_entry(l, &cgrp->pidlists, links) {
2746 if (l->key.type == type && l->key.ns == ns) {
2747 /* make sure l doesn't vanish out from under us */
2748 down_write(&l->mutex);
2749 mutex_unlock(&cgrp->pidlist_mutex);
2750 return l;
2753 /* entry not found; create a new one */
2754 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
2755 if (!l) {
2756 mutex_unlock(&cgrp->pidlist_mutex);
2757 return l;
2759 init_rwsem(&l->mutex);
2760 down_write(&l->mutex);
2761 l->key.type = type;
2762 l->key.ns = get_pid_ns(ns);
2763 l->use_count = 0; /* don't increment here */
2764 l->list = NULL;
2765 l->owner = cgrp;
2766 list_add(&l->links, &cgrp->pidlists);
2767 mutex_unlock(&cgrp->pidlist_mutex);
2768 return l;
2772 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2774 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2775 struct cgroup_pidlist **lp)
2777 pid_t *array;
2778 int length;
2779 int pid, n = 0; /* used for populating the array */
2780 struct cgroup_iter it;
2781 struct task_struct *tsk;
2782 struct cgroup_pidlist *l;
2785 * If cgroup gets more users after we read count, we won't have
2786 * enough space - tough. This race is indistinguishable to the
2787 * caller from the case that the additional cgroup users didn't
2788 * show up until sometime later on.
2790 length = cgroup_task_count(cgrp);
2791 array = pidlist_allocate(length);
2792 if (!array)
2793 return -ENOMEM;
2794 /* now, populate the array */
2795 cgroup_iter_start(cgrp, &it);
2796 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2797 if (unlikely(n == length))
2798 break;
2799 /* get tgid or pid for procs or tasks file respectively */
2800 if (type == CGROUP_FILE_PROCS)
2801 pid = task_tgid_vnr(tsk);
2802 else
2803 pid = task_pid_vnr(tsk);
2804 if (pid > 0) /* make sure to only use valid results */
2805 array[n++] = pid;
2807 cgroup_iter_end(cgrp, &it);
2808 length = n;
2809 /* now sort & (if procs) strip out duplicates */
2810 sort(array, length, sizeof(pid_t), cmppid, NULL);
2811 if (type == CGROUP_FILE_PROCS)
2812 length = pidlist_uniq(&array, length);
2813 l = cgroup_pidlist_find(cgrp, type);
2814 if (!l) {
2815 pidlist_free(array);
2816 return -ENOMEM;
2818 /* store array, freeing old if necessary - lock already held */
2819 pidlist_free(l->list);
2820 l->list = array;
2821 l->length = length;
2822 l->use_count++;
2823 up_write(&l->mutex);
2824 *lp = l;
2825 return 0;
2829 * cgroupstats_build - build and fill cgroupstats
2830 * @stats: cgroupstats to fill information into
2831 * @dentry: A dentry entry belonging to the cgroup for which stats have
2832 * been requested.
2834 * Build and fill cgroupstats so that taskstats can export it to user
2835 * space.
2837 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2839 int ret = -EINVAL;
2840 struct cgroup *cgrp;
2841 struct cgroup_iter it;
2842 struct task_struct *tsk;
2845 * Validate dentry by checking the superblock operations,
2846 * and make sure it's a directory.
2848 if (dentry->d_sb->s_op != &cgroup_ops ||
2849 !S_ISDIR(dentry->d_inode->i_mode))
2850 goto err;
2852 ret = 0;
2853 cgrp = dentry->d_fsdata;
2855 cgroup_iter_start(cgrp, &it);
2856 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2857 switch (tsk->state) {
2858 case TASK_RUNNING:
2859 stats->nr_running++;
2860 break;
2861 case TASK_INTERRUPTIBLE:
2862 stats->nr_sleeping++;
2863 break;
2864 case TASK_UNINTERRUPTIBLE:
2865 stats->nr_uninterruptible++;
2866 break;
2867 case TASK_STOPPED:
2868 stats->nr_stopped++;
2869 break;
2870 default:
2871 if (delayacct_is_task_waiting_on_io(tsk))
2872 stats->nr_io_wait++;
2873 break;
2876 cgroup_iter_end(cgrp, &it);
2878 err:
2879 return ret;
2884 * seq_file methods for the tasks/procs files. The seq_file position is the
2885 * next pid to display; the seq_file iterator is a pointer to the pid
2886 * in the cgroup->l->list array.
2889 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
2892 * Initially we receive a position value that corresponds to
2893 * one more than the last pid shown (or 0 on the first call or
2894 * after a seek to the start). Use a binary-search to find the
2895 * next pid to display, if any
2897 struct cgroup_pidlist *l = s->private;
2898 int index = 0, pid = *pos;
2899 int *iter;
2901 down_read(&l->mutex);
2902 if (pid) {
2903 int end = l->length;
2905 while (index < end) {
2906 int mid = (index + end) / 2;
2907 if (l->list[mid] == pid) {
2908 index = mid;
2909 break;
2910 } else if (l->list[mid] <= pid)
2911 index = mid + 1;
2912 else
2913 end = mid;
2916 /* If we're off the end of the array, we're done */
2917 if (index >= l->length)
2918 return NULL;
2919 /* Update the abstract position to be the actual pid that we found */
2920 iter = l->list + index;
2921 *pos = *iter;
2922 return iter;
2925 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
2927 struct cgroup_pidlist *l = s->private;
2928 up_read(&l->mutex);
2931 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
2933 struct cgroup_pidlist *l = s->private;
2934 pid_t *p = v;
2935 pid_t *end = l->list + l->length;
2937 * Advance to the next pid in the array. If this goes off the
2938 * end, we're done
2940 p++;
2941 if (p >= end) {
2942 return NULL;
2943 } else {
2944 *pos = *p;
2945 return p;
2949 static int cgroup_pidlist_show(struct seq_file *s, void *v)
2951 return seq_printf(s, "%d\n", *(int *)v);
2955 * seq_operations functions for iterating on pidlists through seq_file -
2956 * independent of whether it's tasks or procs
2958 static const struct seq_operations cgroup_pidlist_seq_operations = {
2959 .start = cgroup_pidlist_start,
2960 .stop = cgroup_pidlist_stop,
2961 .next = cgroup_pidlist_next,
2962 .show = cgroup_pidlist_show,
2965 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
2968 * the case where we're the last user of this particular pidlist will
2969 * have us remove it from the cgroup's list, which entails taking the
2970 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2971 * pidlist_mutex, we have to take pidlist_mutex first.
2973 mutex_lock(&l->owner->pidlist_mutex);
2974 down_write(&l->mutex);
2975 BUG_ON(!l->use_count);
2976 if (!--l->use_count) {
2977 /* we're the last user if refcount is 0; remove and free */
2978 list_del(&l->links);
2979 mutex_unlock(&l->owner->pidlist_mutex);
2980 pidlist_free(l->list);
2981 put_pid_ns(l->key.ns);
2982 up_write(&l->mutex);
2983 kfree(l);
2984 return;
2986 mutex_unlock(&l->owner->pidlist_mutex);
2987 up_write(&l->mutex);
2990 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
2992 struct cgroup_pidlist *l;
2993 if (!(file->f_mode & FMODE_READ))
2994 return 0;
2996 * the seq_file will only be initialized if the file was opened for
2997 * reading; hence we check if it's not null only in that case.
2999 l = ((struct seq_file *)file->private_data)->private;
3000 cgroup_release_pid_array(l);
3001 return seq_release(inode, file);
3004 static const struct file_operations cgroup_pidlist_operations = {
3005 .read = seq_read,
3006 .llseek = seq_lseek,
3007 .write = cgroup_file_write,
3008 .release = cgroup_pidlist_release,
3012 * The following functions handle opens on a file that displays a pidlist
3013 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3014 * in the cgroup.
3016 /* helper function for the two below it */
3017 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3019 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3020 struct cgroup_pidlist *l;
3021 int retval;
3023 /* Nothing to do for write-only files */
3024 if (!(file->f_mode & FMODE_READ))
3025 return 0;
3027 /* have the array populated */
3028 retval = pidlist_array_load(cgrp, type, &l);
3029 if (retval)
3030 return retval;
3031 /* configure file information */
3032 file->f_op = &cgroup_pidlist_operations;
3034 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3035 if (retval) {
3036 cgroup_release_pid_array(l);
3037 return retval;
3039 ((struct seq_file *)file->private_data)->private = l;
3040 return 0;
3042 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3044 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3046 static int cgroup_procs_open(struct inode *unused, struct file *file)
3048 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3051 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3052 struct cftype *cft)
3054 return notify_on_release(cgrp);
3057 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3058 struct cftype *cft,
3059 u64 val)
3061 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3062 if (val)
3063 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3064 else
3065 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3066 return 0;
3070 * Unregister event and free resources.
3072 * Gets called from workqueue.
3074 static void cgroup_event_remove(struct work_struct *work)
3076 struct cgroup_event *event = container_of(work, struct cgroup_event,
3077 remove);
3078 struct cgroup *cgrp = event->cgrp;
3080 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3082 eventfd_ctx_put(event->eventfd);
3083 kfree(event);
3084 dput(cgrp->dentry);
3088 * Gets called on POLLHUP on eventfd when user closes it.
3090 * Called with wqh->lock held and interrupts disabled.
3092 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3093 int sync, void *key)
3095 struct cgroup_event *event = container_of(wait,
3096 struct cgroup_event, wait);
3097 struct cgroup *cgrp = event->cgrp;
3098 unsigned long flags = (unsigned long)key;
3100 if (flags & POLLHUP) {
3101 __remove_wait_queue(event->wqh, &event->wait);
3102 spin_lock(&cgrp->event_list_lock);
3103 list_del(&event->list);
3104 spin_unlock(&cgrp->event_list_lock);
3106 * We are in atomic context, but cgroup_event_remove() may
3107 * sleep, so we have to call it in workqueue.
3109 schedule_work(&event->remove);
3112 return 0;
3115 static void cgroup_event_ptable_queue_proc(struct file *file,
3116 wait_queue_head_t *wqh, poll_table *pt)
3118 struct cgroup_event *event = container_of(pt,
3119 struct cgroup_event, pt);
3121 event->wqh = wqh;
3122 add_wait_queue(wqh, &event->wait);
3126 * Parse input and register new cgroup event handler.
3128 * Input must be in format '<event_fd> <control_fd> <args>'.
3129 * Interpretation of args is defined by control file implementation.
3131 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3132 const char *buffer)
3134 struct cgroup_event *event = NULL;
3135 unsigned int efd, cfd;
3136 struct file *efile = NULL;
3137 struct file *cfile = NULL;
3138 char *endp;
3139 int ret;
3141 efd = simple_strtoul(buffer, &endp, 10);
3142 if (*endp != ' ')
3143 return -EINVAL;
3144 buffer = endp + 1;
3146 cfd = simple_strtoul(buffer, &endp, 10);
3147 if ((*endp != ' ') && (*endp != '\0'))
3148 return -EINVAL;
3149 buffer = endp + 1;
3151 event = kzalloc(sizeof(*event), GFP_KERNEL);
3152 if (!event)
3153 return -ENOMEM;
3154 event->cgrp = cgrp;
3155 INIT_LIST_HEAD(&event->list);
3156 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3157 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3158 INIT_WORK(&event->remove, cgroup_event_remove);
3160 efile = eventfd_fget(efd);
3161 if (IS_ERR(efile)) {
3162 ret = PTR_ERR(efile);
3163 goto fail;
3166 event->eventfd = eventfd_ctx_fileget(efile);
3167 if (IS_ERR(event->eventfd)) {
3168 ret = PTR_ERR(event->eventfd);
3169 goto fail;
3172 cfile = fget(cfd);
3173 if (!cfile) {
3174 ret = -EBADF;
3175 goto fail;
3178 /* the process need read permission on control file */
3179 ret = file_permission(cfile, MAY_READ);
3180 if (ret < 0)
3181 goto fail;
3183 event->cft = __file_cft(cfile);
3184 if (IS_ERR(event->cft)) {
3185 ret = PTR_ERR(event->cft);
3186 goto fail;
3189 if (!event->cft->register_event || !event->cft->unregister_event) {
3190 ret = -EINVAL;
3191 goto fail;
3194 ret = event->cft->register_event(cgrp, event->cft,
3195 event->eventfd, buffer);
3196 if (ret)
3197 goto fail;
3199 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3200 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3201 ret = 0;
3202 goto fail;
3206 * Events should be removed after rmdir of cgroup directory, but before
3207 * destroying subsystem state objects. Let's take reference to cgroup
3208 * directory dentry to do that.
3210 dget(cgrp->dentry);
3212 spin_lock(&cgrp->event_list_lock);
3213 list_add(&event->list, &cgrp->event_list);
3214 spin_unlock(&cgrp->event_list_lock);
3216 fput(cfile);
3217 fput(efile);
3219 return 0;
3221 fail:
3222 if (cfile)
3223 fput(cfile);
3225 if (event && event->eventfd && !IS_ERR(event->eventfd))
3226 eventfd_ctx_put(event->eventfd);
3228 if (!IS_ERR_OR_NULL(efile))
3229 fput(efile);
3231 kfree(event);
3233 return ret;
3236 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3237 struct cftype *cft)
3239 return clone_children(cgrp);
3242 static int cgroup_clone_children_write(struct cgroup *cgrp,
3243 struct cftype *cft,
3244 u64 val)
3246 if (val)
3247 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3248 else
3249 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3250 return 0;
3254 * for the common functions, 'private' gives the type of file
3256 /* for hysterical raisins, we can't put this on the older files */
3257 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3258 static struct cftype files[] = {
3260 .name = "tasks",
3261 .open = cgroup_tasks_open,
3262 .write_u64 = cgroup_tasks_write,
3263 .release = cgroup_pidlist_release,
3264 .mode = S_IRUGO | S_IWUSR,
3267 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3268 .open = cgroup_procs_open,
3269 /* .write_u64 = cgroup_procs_write, TODO */
3270 .release = cgroup_pidlist_release,
3271 .mode = S_IRUGO,
3274 .name = "notify_on_release",
3275 .read_u64 = cgroup_read_notify_on_release,
3276 .write_u64 = cgroup_write_notify_on_release,
3279 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3280 .write_string = cgroup_write_event_control,
3281 .mode = S_IWUGO,
3284 .name = "cgroup.clone_children",
3285 .read_u64 = cgroup_clone_children_read,
3286 .write_u64 = cgroup_clone_children_write,
3290 static struct cftype cft_release_agent = {
3291 .name = "release_agent",
3292 .read_seq_string = cgroup_release_agent_show,
3293 .write_string = cgroup_release_agent_write,
3294 .max_write_len = PATH_MAX,
3297 static int cgroup_populate_dir(struct cgroup *cgrp)
3299 int err;
3300 struct cgroup_subsys *ss;
3302 /* First clear out any existing files */
3303 cgroup_clear_directory(cgrp->dentry);
3305 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3306 if (err < 0)
3307 return err;
3309 if (cgrp == cgrp->top_cgroup) {
3310 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3311 return err;
3314 for_each_subsys(cgrp->root, ss) {
3315 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3316 return err;
3318 /* This cgroup is ready now */
3319 for_each_subsys(cgrp->root, ss) {
3320 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3322 * Update id->css pointer and make this css visible from
3323 * CSS ID functions. This pointer will be dereferened
3324 * from RCU-read-side without locks.
3326 if (css->id)
3327 rcu_assign_pointer(css->id->css, css);
3330 return 0;
3333 static void init_cgroup_css(struct cgroup_subsys_state *css,
3334 struct cgroup_subsys *ss,
3335 struct cgroup *cgrp)
3337 css->cgroup = cgrp;
3338 atomic_set(&css->refcnt, 1);
3339 css->flags = 0;
3340 css->id = NULL;
3341 if (cgrp == dummytop)
3342 set_bit(CSS_ROOT, &css->flags);
3343 BUG_ON(cgrp->subsys[ss->subsys_id]);
3344 cgrp->subsys[ss->subsys_id] = css;
3347 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3349 /* We need to take each hierarchy_mutex in a consistent order */
3350 int i;
3353 * No worry about a race with rebind_subsystems that might mess up the
3354 * locking order, since both parties are under cgroup_mutex.
3356 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3357 struct cgroup_subsys *ss = subsys[i];
3358 if (ss == NULL)
3359 continue;
3360 if (ss->root == root)
3361 mutex_lock(&ss->hierarchy_mutex);
3365 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3367 int i;
3369 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3370 struct cgroup_subsys *ss = subsys[i];
3371 if (ss == NULL)
3372 continue;
3373 if (ss->root == root)
3374 mutex_unlock(&ss->hierarchy_mutex);
3379 * cgroup_create - create a cgroup
3380 * @parent: cgroup that will be parent of the new cgroup
3381 * @dentry: dentry of the new cgroup
3382 * @mode: mode to set on new inode
3384 * Must be called with the mutex on the parent inode held
3386 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3387 mode_t mode)
3389 struct cgroup *cgrp;
3390 struct cgroupfs_root *root = parent->root;
3391 int err = 0;
3392 struct cgroup_subsys *ss;
3393 struct super_block *sb = root->sb;
3395 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3396 if (!cgrp)
3397 return -ENOMEM;
3399 /* Grab a reference on the superblock so the hierarchy doesn't
3400 * get deleted on unmount if there are child cgroups. This
3401 * can be done outside cgroup_mutex, since the sb can't
3402 * disappear while someone has an open control file on the
3403 * fs */
3404 atomic_inc(&sb->s_active);
3406 mutex_lock(&cgroup_mutex);
3408 init_cgroup_housekeeping(cgrp);
3410 cgrp->parent = parent;
3411 cgrp->root = parent->root;
3412 cgrp->top_cgroup = parent->top_cgroup;
3414 if (notify_on_release(parent))
3415 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3417 if (clone_children(parent))
3418 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3420 for_each_subsys(root, ss) {
3421 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3423 if (IS_ERR(css)) {
3424 err = PTR_ERR(css);
3425 goto err_destroy;
3427 init_cgroup_css(css, ss, cgrp);
3428 if (ss->use_id) {
3429 err = alloc_css_id(ss, parent, cgrp);
3430 if (err)
3431 goto err_destroy;
3433 /* At error, ->destroy() callback has to free assigned ID. */
3434 if (clone_children(parent) && ss->post_clone)
3435 ss->post_clone(ss, cgrp);
3438 cgroup_lock_hierarchy(root);
3439 list_add(&cgrp->sibling, &cgrp->parent->children);
3440 cgroup_unlock_hierarchy(root);
3441 root->number_of_cgroups++;
3443 err = cgroup_create_dir(cgrp, dentry, mode);
3444 if (err < 0)
3445 goto err_remove;
3447 /* The cgroup directory was pre-locked for us */
3448 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3450 err = cgroup_populate_dir(cgrp);
3451 /* If err < 0, we have a half-filled directory - oh well ;) */
3453 mutex_unlock(&cgroup_mutex);
3454 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3456 return 0;
3458 err_remove:
3460 cgroup_lock_hierarchy(root);
3461 list_del(&cgrp->sibling);
3462 cgroup_unlock_hierarchy(root);
3463 root->number_of_cgroups--;
3465 err_destroy:
3467 for_each_subsys(root, ss) {
3468 if (cgrp->subsys[ss->subsys_id])
3469 ss->destroy(ss, cgrp);
3472 mutex_unlock(&cgroup_mutex);
3474 /* Release the reference count that we took on the superblock */
3475 deactivate_super(sb);
3477 kfree(cgrp);
3478 return err;
3481 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3483 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3485 /* the vfs holds inode->i_mutex already */
3486 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3489 static int cgroup_has_css_refs(struct cgroup *cgrp)
3491 /* Check the reference count on each subsystem. Since we
3492 * already established that there are no tasks in the
3493 * cgroup, if the css refcount is also 1, then there should
3494 * be no outstanding references, so the subsystem is safe to
3495 * destroy. We scan across all subsystems rather than using
3496 * the per-hierarchy linked list of mounted subsystems since
3497 * we can be called via check_for_release() with no
3498 * synchronization other than RCU, and the subsystem linked
3499 * list isn't RCU-safe */
3500 int i;
3502 * We won't need to lock the subsys array, because the subsystems
3503 * we're concerned about aren't going anywhere since our cgroup root
3504 * has a reference on them.
3506 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3507 struct cgroup_subsys *ss = subsys[i];
3508 struct cgroup_subsys_state *css;
3509 /* Skip subsystems not present or not in this hierarchy */
3510 if (ss == NULL || ss->root != cgrp->root)
3511 continue;
3512 css = cgrp->subsys[ss->subsys_id];
3513 /* When called from check_for_release() it's possible
3514 * that by this point the cgroup has been removed
3515 * and the css deleted. But a false-positive doesn't
3516 * matter, since it can only happen if the cgroup
3517 * has been deleted and hence no longer needs the
3518 * release agent to be called anyway. */
3519 if (css && (atomic_read(&css->refcnt) > 1))
3520 return 1;
3522 return 0;
3526 * Atomically mark all (or else none) of the cgroup's CSS objects as
3527 * CSS_REMOVED. Return true on success, or false if the cgroup has
3528 * busy subsystems. Call with cgroup_mutex held
3531 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3533 struct cgroup_subsys *ss;
3534 unsigned long flags;
3535 bool failed = false;
3536 local_irq_save(flags);
3537 for_each_subsys(cgrp->root, ss) {
3538 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3539 int refcnt;
3540 while (1) {
3541 /* We can only remove a CSS with a refcnt==1 */
3542 refcnt = atomic_read(&css->refcnt);
3543 if (refcnt > 1) {
3544 failed = true;
3545 goto done;
3547 BUG_ON(!refcnt);
3549 * Drop the refcnt to 0 while we check other
3550 * subsystems. This will cause any racing
3551 * css_tryget() to spin until we set the
3552 * CSS_REMOVED bits or abort
3554 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3555 break;
3556 cpu_relax();
3559 done:
3560 for_each_subsys(cgrp->root, ss) {
3561 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3562 if (failed) {
3564 * Restore old refcnt if we previously managed
3565 * to clear it from 1 to 0
3567 if (!atomic_read(&css->refcnt))
3568 atomic_set(&css->refcnt, 1);
3569 } else {
3570 /* Commit the fact that the CSS is removed */
3571 set_bit(CSS_REMOVED, &css->flags);
3574 local_irq_restore(flags);
3575 return !failed;
3578 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3580 struct cgroup *cgrp = dentry->d_fsdata;
3581 struct dentry *d;
3582 struct cgroup *parent;
3583 DEFINE_WAIT(wait);
3584 struct cgroup_event *event, *tmp;
3585 int ret;
3587 /* the vfs holds both inode->i_mutex already */
3588 again:
3589 mutex_lock(&cgroup_mutex);
3590 if (atomic_read(&cgrp->count) != 0) {
3591 mutex_unlock(&cgroup_mutex);
3592 return -EBUSY;
3594 if (!list_empty(&cgrp->children)) {
3595 mutex_unlock(&cgroup_mutex);
3596 return -EBUSY;
3598 mutex_unlock(&cgroup_mutex);
3601 * In general, subsystem has no css->refcnt after pre_destroy(). But
3602 * in racy cases, subsystem may have to get css->refcnt after
3603 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3604 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3605 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3606 * and subsystem's reference count handling. Please see css_get/put
3607 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3609 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3612 * Call pre_destroy handlers of subsys. Notify subsystems
3613 * that rmdir() request comes.
3615 ret = cgroup_call_pre_destroy(cgrp);
3616 if (ret) {
3617 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3618 return ret;
3621 mutex_lock(&cgroup_mutex);
3622 parent = cgrp->parent;
3623 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3624 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3625 mutex_unlock(&cgroup_mutex);
3626 return -EBUSY;
3628 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3629 if (!cgroup_clear_css_refs(cgrp)) {
3630 mutex_unlock(&cgroup_mutex);
3632 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3633 * prepare_to_wait(), we need to check this flag.
3635 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3636 schedule();
3637 finish_wait(&cgroup_rmdir_waitq, &wait);
3638 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3639 if (signal_pending(current))
3640 return -EINTR;
3641 goto again;
3643 /* NO css_tryget() can success after here. */
3644 finish_wait(&cgroup_rmdir_waitq, &wait);
3645 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3647 spin_lock(&release_list_lock);
3648 set_bit(CGRP_REMOVED, &cgrp->flags);
3649 if (!list_empty(&cgrp->release_list))
3650 list_del_init(&cgrp->release_list);
3651 spin_unlock(&release_list_lock);
3653 cgroup_lock_hierarchy(cgrp->root);
3654 /* delete this cgroup from parent->children */
3655 list_del_init(&cgrp->sibling);
3656 cgroup_unlock_hierarchy(cgrp->root);
3658 d = dget(cgrp->dentry);
3660 cgroup_d_remove_dir(d);
3661 dput(d);
3663 set_bit(CGRP_RELEASABLE, &parent->flags);
3664 check_for_release(parent);
3667 * Unregister events and notify userspace.
3668 * Notify userspace about cgroup removing only after rmdir of cgroup
3669 * directory to avoid race between userspace and kernelspace
3671 spin_lock(&cgrp->event_list_lock);
3672 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
3673 list_del(&event->list);
3674 remove_wait_queue(event->wqh, &event->wait);
3675 eventfd_signal(event->eventfd, 1);
3676 schedule_work(&event->remove);
3678 spin_unlock(&cgrp->event_list_lock);
3680 mutex_unlock(&cgroup_mutex);
3681 return 0;
3684 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3686 struct cgroup_subsys_state *css;
3688 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3690 /* Create the top cgroup state for this subsystem */
3691 list_add(&ss->sibling, &rootnode.subsys_list);
3692 ss->root = &rootnode;
3693 css = ss->create(ss, dummytop);
3694 /* We don't handle early failures gracefully */
3695 BUG_ON(IS_ERR(css));
3696 init_cgroup_css(css, ss, dummytop);
3698 /* Update the init_css_set to contain a subsys
3699 * pointer to this state - since the subsystem is
3700 * newly registered, all tasks and hence the
3701 * init_css_set is in the subsystem's top cgroup. */
3702 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3704 need_forkexit_callback |= ss->fork || ss->exit;
3706 /* At system boot, before all subsystems have been
3707 * registered, no tasks have been forked, so we don't
3708 * need to invoke fork callbacks here. */
3709 BUG_ON(!list_empty(&init_task.tasks));
3711 mutex_init(&ss->hierarchy_mutex);
3712 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3713 ss->active = 1;
3715 /* this function shouldn't be used with modular subsystems, since they
3716 * need to register a subsys_id, among other things */
3717 BUG_ON(ss->module);
3721 * cgroup_load_subsys: load and register a modular subsystem at runtime
3722 * @ss: the subsystem to load
3724 * This function should be called in a modular subsystem's initcall. If the
3725 * subsystem is built as a module, it will be assigned a new subsys_id and set
3726 * up for use. If the subsystem is built-in anyway, work is delegated to the
3727 * simpler cgroup_init_subsys.
3729 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
3731 int i;
3732 struct cgroup_subsys_state *css;
3734 /* check name and function validity */
3735 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
3736 ss->create == NULL || ss->destroy == NULL)
3737 return -EINVAL;
3740 * we don't support callbacks in modular subsystems. this check is
3741 * before the ss->module check for consistency; a subsystem that could
3742 * be a module should still have no callbacks even if the user isn't
3743 * compiling it as one.
3745 if (ss->fork || ss->exit)
3746 return -EINVAL;
3749 * an optionally modular subsystem is built-in: we want to do nothing,
3750 * since cgroup_init_subsys will have already taken care of it.
3752 if (ss->module == NULL) {
3753 /* a few sanity checks */
3754 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
3755 BUG_ON(subsys[ss->subsys_id] != ss);
3756 return 0;
3760 * need to register a subsys id before anything else - for example,
3761 * init_cgroup_css needs it.
3763 mutex_lock(&cgroup_mutex);
3764 /* find the first empty slot in the array */
3765 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
3766 if (subsys[i] == NULL)
3767 break;
3769 if (i == CGROUP_SUBSYS_COUNT) {
3770 /* maximum number of subsystems already registered! */
3771 mutex_unlock(&cgroup_mutex);
3772 return -EBUSY;
3774 /* assign ourselves the subsys_id */
3775 ss->subsys_id = i;
3776 subsys[i] = ss;
3779 * no ss->create seems to need anything important in the ss struct, so
3780 * this can happen first (i.e. before the rootnode attachment).
3782 css = ss->create(ss, dummytop);
3783 if (IS_ERR(css)) {
3784 /* failure case - need to deassign the subsys[] slot. */
3785 subsys[i] = NULL;
3786 mutex_unlock(&cgroup_mutex);
3787 return PTR_ERR(css);
3790 list_add(&ss->sibling, &rootnode.subsys_list);
3791 ss->root = &rootnode;
3793 /* our new subsystem will be attached to the dummy hierarchy. */
3794 init_cgroup_css(css, ss, dummytop);
3795 /* init_idr must be after init_cgroup_css because it sets css->id. */
3796 if (ss->use_id) {
3797 int ret = cgroup_init_idr(ss, css);
3798 if (ret) {
3799 dummytop->subsys[ss->subsys_id] = NULL;
3800 ss->destroy(ss, dummytop);
3801 subsys[i] = NULL;
3802 mutex_unlock(&cgroup_mutex);
3803 return ret;
3808 * Now we need to entangle the css into the existing css_sets. unlike
3809 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3810 * will need a new pointer to it; done by iterating the css_set_table.
3811 * furthermore, modifying the existing css_sets will corrupt the hash
3812 * table state, so each changed css_set will need its hash recomputed.
3813 * this is all done under the css_set_lock.
3815 write_lock(&css_set_lock);
3816 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
3817 struct css_set *cg;
3818 struct hlist_node *node, *tmp;
3819 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
3821 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
3822 /* skip entries that we already rehashed */
3823 if (cg->subsys[ss->subsys_id])
3824 continue;
3825 /* remove existing entry */
3826 hlist_del(&cg->hlist);
3827 /* set new value */
3828 cg->subsys[ss->subsys_id] = css;
3829 /* recompute hash and restore entry */
3830 new_bucket = css_set_hash(cg->subsys);
3831 hlist_add_head(&cg->hlist, new_bucket);
3834 write_unlock(&css_set_lock);
3836 mutex_init(&ss->hierarchy_mutex);
3837 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3838 ss->active = 1;
3840 /* success! */
3841 mutex_unlock(&cgroup_mutex);
3842 return 0;
3844 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
3847 * cgroup_unload_subsys: unload a modular subsystem
3848 * @ss: the subsystem to unload
3850 * This function should be called in a modular subsystem's exitcall. When this
3851 * function is invoked, the refcount on the subsystem's module will be 0, so
3852 * the subsystem will not be attached to any hierarchy.
3854 void cgroup_unload_subsys(struct cgroup_subsys *ss)
3856 struct cg_cgroup_link *link;
3857 struct hlist_head *hhead;
3859 BUG_ON(ss->module == NULL);
3862 * we shouldn't be called if the subsystem is in use, and the use of
3863 * try_module_get in parse_cgroupfs_options should ensure that it
3864 * doesn't start being used while we're killing it off.
3866 BUG_ON(ss->root != &rootnode);
3868 mutex_lock(&cgroup_mutex);
3869 /* deassign the subsys_id */
3870 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
3871 subsys[ss->subsys_id] = NULL;
3873 /* remove subsystem from rootnode's list of subsystems */
3874 list_del_init(&ss->sibling);
3877 * disentangle the css from all css_sets attached to the dummytop. as
3878 * in loading, we need to pay our respects to the hashtable gods.
3880 write_lock(&css_set_lock);
3881 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
3882 struct css_set *cg = link->cg;
3884 hlist_del(&cg->hlist);
3885 BUG_ON(!cg->subsys[ss->subsys_id]);
3886 cg->subsys[ss->subsys_id] = NULL;
3887 hhead = css_set_hash(cg->subsys);
3888 hlist_add_head(&cg->hlist, hhead);
3890 write_unlock(&css_set_lock);
3893 * remove subsystem's css from the dummytop and free it - need to free
3894 * before marking as null because ss->destroy needs the cgrp->subsys
3895 * pointer to find their state. note that this also takes care of
3896 * freeing the css_id.
3898 ss->destroy(ss, dummytop);
3899 dummytop->subsys[ss->subsys_id] = NULL;
3901 mutex_unlock(&cgroup_mutex);
3903 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
3906 * cgroup_init_early - cgroup initialization at system boot
3908 * Initialize cgroups at system boot, and initialize any
3909 * subsystems that request early init.
3911 int __init cgroup_init_early(void)
3913 int i;
3914 atomic_set(&init_css_set.refcount, 1);
3915 INIT_LIST_HEAD(&init_css_set.cg_links);
3916 INIT_LIST_HEAD(&init_css_set.tasks);
3917 INIT_HLIST_NODE(&init_css_set.hlist);
3918 css_set_count = 1;
3919 init_cgroup_root(&rootnode);
3920 root_count = 1;
3921 init_task.cgroups = &init_css_set;
3923 init_css_set_link.cg = &init_css_set;
3924 init_css_set_link.cgrp = dummytop;
3925 list_add(&init_css_set_link.cgrp_link_list,
3926 &rootnode.top_cgroup.css_sets);
3927 list_add(&init_css_set_link.cg_link_list,
3928 &init_css_set.cg_links);
3930 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
3931 INIT_HLIST_HEAD(&css_set_table[i]);
3933 /* at bootup time, we don't worry about modular subsystems */
3934 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3935 struct cgroup_subsys *ss = subsys[i];
3937 BUG_ON(!ss->name);
3938 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
3939 BUG_ON(!ss->create);
3940 BUG_ON(!ss->destroy);
3941 if (ss->subsys_id != i) {
3942 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3943 ss->name, ss->subsys_id);
3944 BUG();
3947 if (ss->early_init)
3948 cgroup_init_subsys(ss);
3950 return 0;
3954 * cgroup_init - cgroup initialization
3956 * Register cgroup filesystem and /proc file, and initialize
3957 * any subsystems that didn't request early init.
3959 int __init cgroup_init(void)
3961 int err;
3962 int i;
3963 struct hlist_head *hhead;
3965 err = bdi_init(&cgroup_backing_dev_info);
3966 if (err)
3967 return err;
3969 /* at bootup time, we don't worry about modular subsystems */
3970 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3971 struct cgroup_subsys *ss = subsys[i];
3972 if (!ss->early_init)
3973 cgroup_init_subsys(ss);
3974 if (ss->use_id)
3975 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
3978 /* Add init_css_set to the hash table */
3979 hhead = css_set_hash(init_css_set.subsys);
3980 hlist_add_head(&init_css_set.hlist, hhead);
3981 BUG_ON(!init_root_id(&rootnode));
3983 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
3984 if (!cgroup_kobj) {
3985 err = -ENOMEM;
3986 goto out;
3989 err = register_filesystem(&cgroup_fs_type);
3990 if (err < 0) {
3991 kobject_put(cgroup_kobj);
3992 goto out;
3995 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
3997 out:
3998 if (err)
3999 bdi_destroy(&cgroup_backing_dev_info);
4001 return err;
4005 * proc_cgroup_show()
4006 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4007 * - Used for /proc/<pid>/cgroup.
4008 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4009 * doesn't really matter if tsk->cgroup changes after we read it,
4010 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4011 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4012 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4013 * cgroup to top_cgroup.
4016 /* TODO: Use a proper seq_file iterator */
4017 static int proc_cgroup_show(struct seq_file *m, void *v)
4019 struct pid *pid;
4020 struct task_struct *tsk;
4021 char *buf;
4022 int retval;
4023 struct cgroupfs_root *root;
4025 retval = -ENOMEM;
4026 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4027 if (!buf)
4028 goto out;
4030 retval = -ESRCH;
4031 pid = m->private;
4032 tsk = get_pid_task(pid, PIDTYPE_PID);
4033 if (!tsk)
4034 goto out_free;
4036 retval = 0;
4038 mutex_lock(&cgroup_mutex);
4040 for_each_active_root(root) {
4041 struct cgroup_subsys *ss;
4042 struct cgroup *cgrp;
4043 int count = 0;
4045 seq_printf(m, "%d:", root->hierarchy_id);
4046 for_each_subsys(root, ss)
4047 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4048 if (strlen(root->name))
4049 seq_printf(m, "%sname=%s", count ? "," : "",
4050 root->name);
4051 seq_putc(m, ':');
4052 cgrp = task_cgroup_from_root(tsk, root);
4053 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4054 if (retval < 0)
4055 goto out_unlock;
4056 seq_puts(m, buf);
4057 seq_putc(m, '\n');
4060 out_unlock:
4061 mutex_unlock(&cgroup_mutex);
4062 put_task_struct(tsk);
4063 out_free:
4064 kfree(buf);
4065 out:
4066 return retval;
4069 static int cgroup_open(struct inode *inode, struct file *file)
4071 struct pid *pid = PROC_I(inode)->pid;
4072 return single_open(file, proc_cgroup_show, pid);
4075 const struct file_operations proc_cgroup_operations = {
4076 .open = cgroup_open,
4077 .read = seq_read,
4078 .llseek = seq_lseek,
4079 .release = single_release,
4082 /* Display information about each subsystem and each hierarchy */
4083 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4085 int i;
4087 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4089 * ideally we don't want subsystems moving around while we do this.
4090 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4091 * subsys/hierarchy state.
4093 mutex_lock(&cgroup_mutex);
4094 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4095 struct cgroup_subsys *ss = subsys[i];
4096 if (ss == NULL)
4097 continue;
4098 seq_printf(m, "%s\t%d\t%d\t%d\n",
4099 ss->name, ss->root->hierarchy_id,
4100 ss->root->number_of_cgroups, !ss->disabled);
4102 mutex_unlock(&cgroup_mutex);
4103 return 0;
4106 static int cgroupstats_open(struct inode *inode, struct file *file)
4108 return single_open(file, proc_cgroupstats_show, NULL);
4111 static const struct file_operations proc_cgroupstats_operations = {
4112 .open = cgroupstats_open,
4113 .read = seq_read,
4114 .llseek = seq_lseek,
4115 .release = single_release,
4119 * cgroup_fork - attach newly forked task to its parents cgroup.
4120 * @child: pointer to task_struct of forking parent process.
4122 * Description: A task inherits its parent's cgroup at fork().
4124 * A pointer to the shared css_set was automatically copied in
4125 * fork.c by dup_task_struct(). However, we ignore that copy, since
4126 * it was not made under the protection of RCU or cgroup_mutex, so
4127 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4128 * have already changed current->cgroups, allowing the previously
4129 * referenced cgroup group to be removed and freed.
4131 * At the point that cgroup_fork() is called, 'current' is the parent
4132 * task, and the passed argument 'child' points to the child task.
4134 void cgroup_fork(struct task_struct *child)
4136 task_lock(current);
4137 child->cgroups = current->cgroups;
4138 get_css_set(child->cgroups);
4139 task_unlock(current);
4140 INIT_LIST_HEAD(&child->cg_list);
4144 * cgroup_fork_callbacks - run fork callbacks
4145 * @child: the new task
4147 * Called on a new task very soon before adding it to the
4148 * tasklist. No need to take any locks since no-one can
4149 * be operating on this task.
4151 void cgroup_fork_callbacks(struct task_struct *child)
4153 if (need_forkexit_callback) {
4154 int i;
4156 * forkexit callbacks are only supported for builtin
4157 * subsystems, and the builtin section of the subsys array is
4158 * immutable, so we don't need to lock the subsys array here.
4160 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4161 struct cgroup_subsys *ss = subsys[i];
4162 if (ss->fork)
4163 ss->fork(ss, child);
4169 * cgroup_post_fork - called on a new task after adding it to the task list
4170 * @child: the task in question
4172 * Adds the task to the list running through its css_set if necessary.
4173 * Has to be after the task is visible on the task list in case we race
4174 * with the first call to cgroup_iter_start() - to guarantee that the
4175 * new task ends up on its list.
4177 void cgroup_post_fork(struct task_struct *child)
4179 if (use_task_css_set_links) {
4180 write_lock(&css_set_lock);
4181 task_lock(child);
4182 if (list_empty(&child->cg_list))
4183 list_add(&child->cg_list, &child->cgroups->tasks);
4184 task_unlock(child);
4185 write_unlock(&css_set_lock);
4189 * cgroup_exit - detach cgroup from exiting task
4190 * @tsk: pointer to task_struct of exiting process
4191 * @run_callback: run exit callbacks?
4193 * Description: Detach cgroup from @tsk and release it.
4195 * Note that cgroups marked notify_on_release force every task in
4196 * them to take the global cgroup_mutex mutex when exiting.
4197 * This could impact scaling on very large systems. Be reluctant to
4198 * use notify_on_release cgroups where very high task exit scaling
4199 * is required on large systems.
4201 * the_top_cgroup_hack:
4203 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4205 * We call cgroup_exit() while the task is still competent to
4206 * handle notify_on_release(), then leave the task attached to the
4207 * root cgroup in each hierarchy for the remainder of its exit.
4209 * To do this properly, we would increment the reference count on
4210 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4211 * code we would add a second cgroup function call, to drop that
4212 * reference. This would just create an unnecessary hot spot on
4213 * the top_cgroup reference count, to no avail.
4215 * Normally, holding a reference to a cgroup without bumping its
4216 * count is unsafe. The cgroup could go away, or someone could
4217 * attach us to a different cgroup, decrementing the count on
4218 * the first cgroup that we never incremented. But in this case,
4219 * top_cgroup isn't going away, and either task has PF_EXITING set,
4220 * which wards off any cgroup_attach_task() attempts, or task is a failed
4221 * fork, never visible to cgroup_attach_task.
4223 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4225 struct css_set *cg;
4226 int i;
4229 * Unlink from the css_set task list if necessary.
4230 * Optimistically check cg_list before taking
4231 * css_set_lock
4233 if (!list_empty(&tsk->cg_list)) {
4234 write_lock(&css_set_lock);
4235 if (!list_empty(&tsk->cg_list))
4236 list_del_init(&tsk->cg_list);
4237 write_unlock(&css_set_lock);
4240 /* Reassign the task to the init_css_set. */
4241 task_lock(tsk);
4242 cg = tsk->cgroups;
4243 tsk->cgroups = &init_css_set;
4245 if (run_callbacks && need_forkexit_callback) {
4247 * modular subsystems can't use callbacks, so no need to lock
4248 * the subsys array
4250 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4251 struct cgroup_subsys *ss = subsys[i];
4252 if (ss->exit) {
4253 struct cgroup *old_cgrp =
4254 rcu_dereference_raw(cg->subsys[i])->cgroup;
4255 struct cgroup *cgrp = task_cgroup(tsk, i);
4256 ss->exit(ss, cgrp, old_cgrp, tsk);
4260 task_unlock(tsk);
4262 if (cg)
4263 put_css_set_taskexit(cg);
4267 * cgroup_clone - clone the cgroup the given subsystem is attached to
4268 * @tsk: the task to be moved
4269 * @subsys: the given subsystem
4270 * @nodename: the name for the new cgroup
4272 * Duplicate the current cgroup in the hierarchy that the given
4273 * subsystem is attached to, and move this task into the new
4274 * child.
4276 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
4277 char *nodename)
4279 struct dentry *dentry;
4280 int ret = 0;
4281 struct cgroup *parent, *child;
4282 struct inode *inode;
4283 struct css_set *cg;
4284 struct cgroupfs_root *root;
4285 struct cgroup_subsys *ss;
4287 /* We shouldn't be called by an unregistered subsystem */
4288 BUG_ON(!subsys->active);
4290 /* First figure out what hierarchy and cgroup we're dealing
4291 * with, and pin them so we can drop cgroup_mutex */
4292 mutex_lock(&cgroup_mutex);
4293 again:
4294 root = subsys->root;
4295 if (root == &rootnode) {
4296 mutex_unlock(&cgroup_mutex);
4297 return 0;
4300 /* Pin the hierarchy */
4301 if (!atomic_inc_not_zero(&root->sb->s_active)) {
4302 /* We race with the final deactivate_super() */
4303 mutex_unlock(&cgroup_mutex);
4304 return 0;
4307 /* Keep the cgroup alive */
4308 task_lock(tsk);
4309 parent = task_cgroup(tsk, subsys->subsys_id);
4310 cg = tsk->cgroups;
4311 get_css_set(cg);
4312 task_unlock(tsk);
4314 mutex_unlock(&cgroup_mutex);
4316 /* Now do the VFS work to create a cgroup */
4317 inode = parent->dentry->d_inode;
4319 /* Hold the parent directory mutex across this operation to
4320 * stop anyone else deleting the new cgroup */
4321 mutex_lock(&inode->i_mutex);
4322 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
4323 if (IS_ERR(dentry)) {
4324 printk(KERN_INFO
4325 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
4326 PTR_ERR(dentry));
4327 ret = PTR_ERR(dentry);
4328 goto out_release;
4331 /* Create the cgroup directory, which also creates the cgroup */
4332 ret = vfs_mkdir(inode, dentry, 0755);
4333 child = __d_cgrp(dentry);
4334 dput(dentry);
4335 if (ret) {
4336 printk(KERN_INFO
4337 "Failed to create cgroup %s: %d\n", nodename,
4338 ret);
4339 goto out_release;
4342 /* The cgroup now exists. Retake cgroup_mutex and check
4343 * that we're still in the same state that we thought we
4344 * were. */
4345 mutex_lock(&cgroup_mutex);
4346 if ((root != subsys->root) ||
4347 (parent != task_cgroup(tsk, subsys->subsys_id))) {
4348 /* Aargh, we raced ... */
4349 mutex_unlock(&inode->i_mutex);
4350 put_css_set(cg);
4352 deactivate_super(root->sb);
4353 /* The cgroup is still accessible in the VFS, but
4354 * we're not going to try to rmdir() it at this
4355 * point. */
4356 printk(KERN_INFO
4357 "Race in cgroup_clone() - leaking cgroup %s\n",
4358 nodename);
4359 goto again;
4362 /* do any required auto-setup */
4363 for_each_subsys(root, ss) {
4364 if (ss->post_clone)
4365 ss->post_clone(ss, child);
4368 /* All seems fine. Finish by moving the task into the new cgroup */
4369 ret = cgroup_attach_task(child, tsk);
4370 mutex_unlock(&cgroup_mutex);
4372 out_release:
4373 mutex_unlock(&inode->i_mutex);
4375 mutex_lock(&cgroup_mutex);
4376 put_css_set(cg);
4377 mutex_unlock(&cgroup_mutex);
4378 deactivate_super(root->sb);
4379 return ret;
4383 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4384 * @cgrp: the cgroup in question
4385 * @task: the task in question
4387 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4388 * hierarchy.
4390 * If we are sending in dummytop, then presumably we are creating
4391 * the top cgroup in the subsystem.
4393 * Called only by the ns (nsproxy) cgroup.
4395 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4397 int ret;
4398 struct cgroup *target;
4400 if (cgrp == dummytop)
4401 return 1;
4403 target = task_cgroup_from_root(task, cgrp->root);
4404 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4405 cgrp = cgrp->parent;
4406 ret = (cgrp == target);
4407 return ret;
4410 static void check_for_release(struct cgroup *cgrp)
4412 /* All of these checks rely on RCU to keep the cgroup
4413 * structure alive */
4414 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4415 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4416 /* Control Group is currently removeable. If it's not
4417 * already queued for a userspace notification, queue
4418 * it now */
4419 int need_schedule_work = 0;
4420 spin_lock(&release_list_lock);
4421 if (!cgroup_is_removed(cgrp) &&
4422 list_empty(&cgrp->release_list)) {
4423 list_add(&cgrp->release_list, &release_list);
4424 need_schedule_work = 1;
4426 spin_unlock(&release_list_lock);
4427 if (need_schedule_work)
4428 schedule_work(&release_agent_work);
4432 /* Caller must verify that the css is not for root cgroup */
4433 void __css_put(struct cgroup_subsys_state *css, int count)
4435 struct cgroup *cgrp = css->cgroup;
4436 int val;
4437 rcu_read_lock();
4438 val = atomic_sub_return(count, &css->refcnt);
4439 if (val == 1) {
4440 if (notify_on_release(cgrp)) {
4441 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4442 check_for_release(cgrp);
4444 cgroup_wakeup_rmdir_waiter(cgrp);
4446 rcu_read_unlock();
4447 WARN_ON_ONCE(val < 1);
4449 EXPORT_SYMBOL_GPL(__css_put);
4452 * Notify userspace when a cgroup is released, by running the
4453 * configured release agent with the name of the cgroup (path
4454 * relative to the root of cgroup file system) as the argument.
4456 * Most likely, this user command will try to rmdir this cgroup.
4458 * This races with the possibility that some other task will be
4459 * attached to this cgroup before it is removed, or that some other
4460 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4461 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4462 * unused, and this cgroup will be reprieved from its death sentence,
4463 * to continue to serve a useful existence. Next time it's released,
4464 * we will get notified again, if it still has 'notify_on_release' set.
4466 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4467 * means only wait until the task is successfully execve()'d. The
4468 * separate release agent task is forked by call_usermodehelper(),
4469 * then control in this thread returns here, without waiting for the
4470 * release agent task. We don't bother to wait because the caller of
4471 * this routine has no use for the exit status of the release agent
4472 * task, so no sense holding our caller up for that.
4474 static void cgroup_release_agent(struct work_struct *work)
4476 BUG_ON(work != &release_agent_work);
4477 mutex_lock(&cgroup_mutex);
4478 spin_lock(&release_list_lock);
4479 while (!list_empty(&release_list)) {
4480 char *argv[3], *envp[3];
4481 int i;
4482 char *pathbuf = NULL, *agentbuf = NULL;
4483 struct cgroup *cgrp = list_entry(release_list.next,
4484 struct cgroup,
4485 release_list);
4486 list_del_init(&cgrp->release_list);
4487 spin_unlock(&release_list_lock);
4488 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4489 if (!pathbuf)
4490 goto continue_free;
4491 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4492 goto continue_free;
4493 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4494 if (!agentbuf)
4495 goto continue_free;
4497 i = 0;
4498 argv[i++] = agentbuf;
4499 argv[i++] = pathbuf;
4500 argv[i] = NULL;
4502 i = 0;
4503 /* minimal command environment */
4504 envp[i++] = "HOME=/";
4505 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4506 envp[i] = NULL;
4508 /* Drop the lock while we invoke the usermode helper,
4509 * since the exec could involve hitting disk and hence
4510 * be a slow process */
4511 mutex_unlock(&cgroup_mutex);
4512 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4513 mutex_lock(&cgroup_mutex);
4514 continue_free:
4515 kfree(pathbuf);
4516 kfree(agentbuf);
4517 spin_lock(&release_list_lock);
4519 spin_unlock(&release_list_lock);
4520 mutex_unlock(&cgroup_mutex);
4523 static int __init cgroup_disable(char *str)
4525 int i;
4526 char *token;
4528 while ((token = strsep(&str, ",")) != NULL) {
4529 if (!*token)
4530 continue;
4532 * cgroup_disable, being at boot time, can't know about module
4533 * subsystems, so we don't worry about them.
4535 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4536 struct cgroup_subsys *ss = subsys[i];
4538 if (!strcmp(token, ss->name)) {
4539 ss->disabled = 1;
4540 printk(KERN_INFO "Disabling %s control group"
4541 " subsystem\n", ss->name);
4542 break;
4546 return 1;
4548 __setup("cgroup_disable=", cgroup_disable);
4551 * Functons for CSS ID.
4555 *To get ID other than 0, this should be called when !cgroup_is_removed().
4557 unsigned short css_id(struct cgroup_subsys_state *css)
4559 struct css_id *cssid;
4562 * This css_id() can return correct value when somone has refcnt
4563 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4564 * it's unchanged until freed.
4566 cssid = rcu_dereference_check(css->id,
4567 rcu_read_lock_held() || atomic_read(&css->refcnt));
4569 if (cssid)
4570 return cssid->id;
4571 return 0;
4573 EXPORT_SYMBOL_GPL(css_id);
4575 unsigned short css_depth(struct cgroup_subsys_state *css)
4577 struct css_id *cssid;
4579 cssid = rcu_dereference_check(css->id,
4580 rcu_read_lock_held() || atomic_read(&css->refcnt));
4582 if (cssid)
4583 return cssid->depth;
4584 return 0;
4586 EXPORT_SYMBOL_GPL(css_depth);
4589 * css_is_ancestor - test "root" css is an ancestor of "child"
4590 * @child: the css to be tested.
4591 * @root: the css supporsed to be an ancestor of the child.
4593 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4594 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4595 * But, considering usual usage, the csses should be valid objects after test.
4596 * Assuming that the caller will do some action to the child if this returns
4597 * returns true, the caller must take "child";s reference count.
4598 * If "child" is valid object and this returns true, "root" is valid, too.
4601 bool css_is_ancestor(struct cgroup_subsys_state *child,
4602 const struct cgroup_subsys_state *root)
4604 struct css_id *child_id;
4605 struct css_id *root_id;
4606 bool ret = true;
4608 rcu_read_lock();
4609 child_id = rcu_dereference(child->id);
4610 root_id = rcu_dereference(root->id);
4611 if (!child_id
4612 || !root_id
4613 || (child_id->depth < root_id->depth)
4614 || (child_id->stack[root_id->depth] != root_id->id))
4615 ret = false;
4616 rcu_read_unlock();
4617 return ret;
4620 static void __free_css_id_cb(struct rcu_head *head)
4622 struct css_id *id;
4624 id = container_of(head, struct css_id, rcu_head);
4625 kfree(id);
4628 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4630 struct css_id *id = css->id;
4631 /* When this is called before css_id initialization, id can be NULL */
4632 if (!id)
4633 return;
4635 BUG_ON(!ss->use_id);
4637 rcu_assign_pointer(id->css, NULL);
4638 rcu_assign_pointer(css->id, NULL);
4639 spin_lock(&ss->id_lock);
4640 idr_remove(&ss->idr, id->id);
4641 spin_unlock(&ss->id_lock);
4642 call_rcu(&id->rcu_head, __free_css_id_cb);
4644 EXPORT_SYMBOL_GPL(free_css_id);
4647 * This is called by init or create(). Then, calls to this function are
4648 * always serialized (By cgroup_mutex() at create()).
4651 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4653 struct css_id *newid;
4654 int myid, error, size;
4656 BUG_ON(!ss->use_id);
4658 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4659 newid = kzalloc(size, GFP_KERNEL);
4660 if (!newid)
4661 return ERR_PTR(-ENOMEM);
4662 /* get id */
4663 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4664 error = -ENOMEM;
4665 goto err_out;
4667 spin_lock(&ss->id_lock);
4668 /* Don't use 0. allocates an ID of 1-65535 */
4669 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4670 spin_unlock(&ss->id_lock);
4672 /* Returns error when there are no free spaces for new ID.*/
4673 if (error) {
4674 error = -ENOSPC;
4675 goto err_out;
4677 if (myid > CSS_ID_MAX)
4678 goto remove_idr;
4680 newid->id = myid;
4681 newid->depth = depth;
4682 return newid;
4683 remove_idr:
4684 error = -ENOSPC;
4685 spin_lock(&ss->id_lock);
4686 idr_remove(&ss->idr, myid);
4687 spin_unlock(&ss->id_lock);
4688 err_out:
4689 kfree(newid);
4690 return ERR_PTR(error);
4694 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4695 struct cgroup_subsys_state *rootcss)
4697 struct css_id *newid;
4699 spin_lock_init(&ss->id_lock);
4700 idr_init(&ss->idr);
4702 newid = get_new_cssid(ss, 0);
4703 if (IS_ERR(newid))
4704 return PTR_ERR(newid);
4706 newid->stack[0] = newid->id;
4707 newid->css = rootcss;
4708 rootcss->id = newid;
4709 return 0;
4712 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4713 struct cgroup *child)
4715 int subsys_id, i, depth = 0;
4716 struct cgroup_subsys_state *parent_css, *child_css;
4717 struct css_id *child_id, *parent_id;
4719 subsys_id = ss->subsys_id;
4720 parent_css = parent->subsys[subsys_id];
4721 child_css = child->subsys[subsys_id];
4722 parent_id = parent_css->id;
4723 depth = parent_id->depth + 1;
4725 child_id = get_new_cssid(ss, depth);
4726 if (IS_ERR(child_id))
4727 return PTR_ERR(child_id);
4729 for (i = 0; i < depth; i++)
4730 child_id->stack[i] = parent_id->stack[i];
4731 child_id->stack[depth] = child_id->id;
4733 * child_id->css pointer will be set after this cgroup is available
4734 * see cgroup_populate_dir()
4736 rcu_assign_pointer(child_css->id, child_id);
4738 return 0;
4742 * css_lookup - lookup css by id
4743 * @ss: cgroup subsys to be looked into.
4744 * @id: the id
4746 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4747 * NULL if not. Should be called under rcu_read_lock()
4749 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4751 struct css_id *cssid = NULL;
4753 BUG_ON(!ss->use_id);
4754 cssid = idr_find(&ss->idr, id);
4756 if (unlikely(!cssid))
4757 return NULL;
4759 return rcu_dereference(cssid->css);
4761 EXPORT_SYMBOL_GPL(css_lookup);
4764 * css_get_next - lookup next cgroup under specified hierarchy.
4765 * @ss: pointer to subsystem
4766 * @id: current position of iteration.
4767 * @root: pointer to css. search tree under this.
4768 * @foundid: position of found object.
4770 * Search next css under the specified hierarchy of rootid. Calling under
4771 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4773 struct cgroup_subsys_state *
4774 css_get_next(struct cgroup_subsys *ss, int id,
4775 struct cgroup_subsys_state *root, int *foundid)
4777 struct cgroup_subsys_state *ret = NULL;
4778 struct css_id *tmp;
4779 int tmpid;
4780 int rootid = css_id(root);
4781 int depth = css_depth(root);
4783 if (!rootid)
4784 return NULL;
4786 BUG_ON(!ss->use_id);
4787 /* fill start point for scan */
4788 tmpid = id;
4789 while (1) {
4791 * scan next entry from bitmap(tree), tmpid is updated after
4792 * idr_get_next().
4794 spin_lock(&ss->id_lock);
4795 tmp = idr_get_next(&ss->idr, &tmpid);
4796 spin_unlock(&ss->id_lock);
4798 if (!tmp)
4799 break;
4800 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
4801 ret = rcu_dereference(tmp->css);
4802 if (ret) {
4803 *foundid = tmpid;
4804 break;
4807 /* continue to scan from next id */
4808 tmpid = tmpid + 1;
4810 return ret;
4814 * get corresponding css from file open on cgroupfs directory
4816 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
4818 struct cgroup *cgrp;
4819 struct inode *inode;
4820 struct cgroup_subsys_state *css;
4822 inode = f->f_dentry->d_inode;
4823 /* check in cgroup filesystem dir */
4824 if (inode->i_op != &cgroup_dir_inode_operations)
4825 return ERR_PTR(-EBADF);
4827 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
4828 return ERR_PTR(-EINVAL);
4830 /* get cgroup */
4831 cgrp = __d_cgrp(f->f_dentry);
4832 css = cgrp->subsys[id];
4833 return css ? css : ERR_PTR(-ENOENT);
4836 #ifdef CONFIG_CGROUP_DEBUG
4837 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
4838 struct cgroup *cont)
4840 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4842 if (!css)
4843 return ERR_PTR(-ENOMEM);
4845 return css;
4848 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
4850 kfree(cont->subsys[debug_subsys_id]);
4853 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
4855 return atomic_read(&cont->count);
4858 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
4860 return cgroup_task_count(cont);
4863 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
4865 return (u64)(unsigned long)current->cgroups;
4868 static u64 current_css_set_refcount_read(struct cgroup *cont,
4869 struct cftype *cft)
4871 u64 count;
4873 rcu_read_lock();
4874 count = atomic_read(&current->cgroups->refcount);
4875 rcu_read_unlock();
4876 return count;
4879 static int current_css_set_cg_links_read(struct cgroup *cont,
4880 struct cftype *cft,
4881 struct seq_file *seq)
4883 struct cg_cgroup_link *link;
4884 struct css_set *cg;
4886 read_lock(&css_set_lock);
4887 rcu_read_lock();
4888 cg = rcu_dereference(current->cgroups);
4889 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
4890 struct cgroup *c = link->cgrp;
4891 const char *name;
4893 if (c->dentry)
4894 name = c->dentry->d_name.name;
4895 else
4896 name = "?";
4897 seq_printf(seq, "Root %d group %s\n",
4898 c->root->hierarchy_id, name);
4900 rcu_read_unlock();
4901 read_unlock(&css_set_lock);
4902 return 0;
4905 #define MAX_TASKS_SHOWN_PER_CSS 25
4906 static int cgroup_css_links_read(struct cgroup *cont,
4907 struct cftype *cft,
4908 struct seq_file *seq)
4910 struct cg_cgroup_link *link;
4912 read_lock(&css_set_lock);
4913 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
4914 struct css_set *cg = link->cg;
4915 struct task_struct *task;
4916 int count = 0;
4917 seq_printf(seq, "css_set %p\n", cg);
4918 list_for_each_entry(task, &cg->tasks, cg_list) {
4919 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4920 seq_puts(seq, " ...\n");
4921 break;
4922 } else {
4923 seq_printf(seq, " task %d\n",
4924 task_pid_vnr(task));
4928 read_unlock(&css_set_lock);
4929 return 0;
4932 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
4934 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
4937 static struct cftype debug_files[] = {
4939 .name = "cgroup_refcount",
4940 .read_u64 = cgroup_refcount_read,
4943 .name = "taskcount",
4944 .read_u64 = debug_taskcount_read,
4948 .name = "current_css_set",
4949 .read_u64 = current_css_set_read,
4953 .name = "current_css_set_refcount",
4954 .read_u64 = current_css_set_refcount_read,
4958 .name = "current_css_set_cg_links",
4959 .read_seq_string = current_css_set_cg_links_read,
4963 .name = "cgroup_css_links",
4964 .read_seq_string = cgroup_css_links_read,
4968 .name = "releasable",
4969 .read_u64 = releasable_read,
4973 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4975 return cgroup_add_files(cont, ss, debug_files,
4976 ARRAY_SIZE(debug_files));
4979 struct cgroup_subsys debug_subsys = {
4980 .name = "debug",
4981 .create = debug_create,
4982 .destroy = debug_destroy,
4983 .populate = debug_populate,
4984 .subsys_id = debug_subsys_id,
4986 #endif /* CONFIG_CGROUP_DEBUG */