3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
119 #include <asm/cacheflush.h>
120 #include <asm/tlbflush.h>
121 #include <asm/page.h>
124 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
125 * 0 for faster, smaller code (especially in the critical paths).
127 * STATS - 1 to collect stats for /proc/slabinfo.
128 * 0 for faster, smaller code (especially in the critical paths).
130 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
133 #ifdef CONFIG_DEBUG_SLAB
136 #define FORCED_DEBUG 1
140 #define FORCED_DEBUG 0
143 /* Shouldn't this be in a header file somewhere? */
144 #define BYTES_PER_WORD sizeof(void *)
145 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
147 #ifndef ARCH_KMALLOC_FLAGS
148 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
151 /* Legal flag mask for kmem_cache_create(). */
153 # define CREATE_MASK (SLAB_RED_ZONE | \
154 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
157 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
158 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
159 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
161 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
163 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
164 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
165 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
171 * Bufctl's are used for linking objs within a slab
174 * This implementation relies on "struct page" for locating the cache &
175 * slab an object belongs to.
176 * This allows the bufctl structure to be small (one int), but limits
177 * the number of objects a slab (not a cache) can contain when off-slab
178 * bufctls are used. The limit is the size of the largest general cache
179 * that does not use off-slab slabs.
180 * For 32bit archs with 4 kB pages, is this 56.
181 * This is not serious, as it is only for large objects, when it is unwise
182 * to have too many per slab.
183 * Note: This limit can be raised by introducing a general cache whose size
184 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
187 typedef unsigned int kmem_bufctl_t
;
188 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
189 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
190 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
191 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
196 * Manages the objs in a slab. Placed either at the beginning of mem allocated
197 * for a slab, or allocated from an general cache.
198 * Slabs are chained into three list: fully used, partial, fully free slabs.
201 struct list_head list
;
202 unsigned long colouroff
;
203 void *s_mem
; /* including colour offset */
204 unsigned int inuse
; /* num of objs active in slab */
206 unsigned short nodeid
;
212 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
213 * arrange for kmem_freepages to be called via RCU. This is useful if
214 * we need to approach a kernel structure obliquely, from its address
215 * obtained without the usual locking. We can lock the structure to
216 * stabilize it and check it's still at the given address, only if we
217 * can be sure that the memory has not been meanwhile reused for some
218 * other kind of object (which our subsystem's lock might corrupt).
220 * rcu_read_lock before reading the address, then rcu_read_unlock after
221 * taking the spinlock within the structure expected at that address.
223 * We assume struct slab_rcu can overlay struct slab when destroying.
226 struct rcu_head head
;
227 struct kmem_cache
*cachep
;
235 * - LIFO ordering, to hand out cache-warm objects from _alloc
236 * - reduce the number of linked list operations
237 * - reduce spinlock operations
239 * The limit is stored in the per-cpu structure to reduce the data cache
246 unsigned int batchcount
;
247 unsigned int touched
;
250 * Must have this definition in here for the proper
251 * alignment of array_cache. Also simplifies accessing
257 * bootstrap: The caches do not work without cpuarrays anymore, but the
258 * cpuarrays are allocated from the generic caches...
260 #define BOOT_CPUCACHE_ENTRIES 1
261 struct arraycache_init
{
262 struct array_cache cache
;
263 void *entries
[BOOT_CPUCACHE_ENTRIES
];
267 * The slab lists for all objects.
270 struct list_head slabs_partial
; /* partial list first, better asm code */
271 struct list_head slabs_full
;
272 struct list_head slabs_free
;
273 unsigned long free_objects
;
274 unsigned int free_limit
;
275 unsigned int colour_next
; /* Per-node cache coloring */
276 spinlock_t list_lock
;
277 struct array_cache
*shared
; /* shared per node */
278 struct array_cache
**alien
; /* on other nodes */
279 unsigned long next_reap
; /* updated without locking */
280 int free_touched
; /* updated without locking */
284 * Need this for bootstrapping a per node allocator.
286 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
287 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
288 #define CACHE_CACHE 0
289 #define SIZE_AC MAX_NUMNODES
290 #define SIZE_L3 (2 * MAX_NUMNODES)
292 static int drain_freelist(struct kmem_cache
*cache
,
293 struct kmem_list3
*l3
, int tofree
);
294 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
296 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
297 static void cache_reap(struct work_struct
*unused
);
300 * This function must be completely optimized away if a constant is passed to
301 * it. Mostly the same as what is in linux/slab.h except it returns an index.
303 static __always_inline
int index_of(const size_t size
)
305 extern void __bad_size(void);
307 if (__builtin_constant_p(size
)) {
315 #include <linux/kmalloc_sizes.h>
323 static int slab_early_init
= 1;
325 #define INDEX_AC index_of(sizeof(struct arraycache_init))
326 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
328 static void kmem_list3_init(struct kmem_list3
*parent
)
330 INIT_LIST_HEAD(&parent
->slabs_full
);
331 INIT_LIST_HEAD(&parent
->slabs_partial
);
332 INIT_LIST_HEAD(&parent
->slabs_free
);
333 parent
->shared
= NULL
;
334 parent
->alien
= NULL
;
335 parent
->colour_next
= 0;
336 spin_lock_init(&parent
->list_lock
);
337 parent
->free_objects
= 0;
338 parent
->free_touched
= 0;
341 #define MAKE_LIST(cachep, listp, slab, nodeid) \
343 INIT_LIST_HEAD(listp); \
344 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
347 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
349 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
350 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
351 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
354 #define CFLGS_OFF_SLAB (0x80000000UL)
355 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
357 #define BATCHREFILL_LIMIT 16
359 * Optimization question: fewer reaps means less probability for unnessary
360 * cpucache drain/refill cycles.
362 * OTOH the cpuarrays can contain lots of objects,
363 * which could lock up otherwise freeable slabs.
365 #define REAPTIMEOUT_CPUC (2*HZ)
366 #define REAPTIMEOUT_LIST3 (4*HZ)
369 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
370 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
371 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
372 #define STATS_INC_GROWN(x) ((x)->grown++)
373 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
374 #define STATS_SET_HIGH(x) \
376 if ((x)->num_active > (x)->high_mark) \
377 (x)->high_mark = (x)->num_active; \
379 #define STATS_INC_ERR(x) ((x)->errors++)
380 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
381 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
382 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
383 #define STATS_SET_FREEABLE(x, i) \
385 if ((x)->max_freeable < i) \
386 (x)->max_freeable = i; \
388 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
389 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
390 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
391 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
393 #define STATS_INC_ACTIVE(x) do { } while (0)
394 #define STATS_DEC_ACTIVE(x) do { } while (0)
395 #define STATS_INC_ALLOCED(x) do { } while (0)
396 #define STATS_INC_GROWN(x) do { } while (0)
397 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
398 #define STATS_SET_HIGH(x) do { } while (0)
399 #define STATS_INC_ERR(x) do { } while (0)
400 #define STATS_INC_NODEALLOCS(x) do { } while (0)
401 #define STATS_INC_NODEFREES(x) do { } while (0)
402 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
403 #define STATS_SET_FREEABLE(x, i) do { } while (0)
404 #define STATS_INC_ALLOCHIT(x) do { } while (0)
405 #define STATS_INC_ALLOCMISS(x) do { } while (0)
406 #define STATS_INC_FREEHIT(x) do { } while (0)
407 #define STATS_INC_FREEMISS(x) do { } while (0)
413 * memory layout of objects:
415 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
416 * the end of an object is aligned with the end of the real
417 * allocation. Catches writes behind the end of the allocation.
418 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
420 * cachep->obj_offset: The real object.
421 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
422 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
423 * [BYTES_PER_WORD long]
425 static int obj_offset(struct kmem_cache
*cachep
)
427 return cachep
->obj_offset
;
430 static int obj_size(struct kmem_cache
*cachep
)
432 return cachep
->obj_size
;
435 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
437 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
438 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
439 sizeof(unsigned long long));
442 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
444 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
445 if (cachep
->flags
& SLAB_STORE_USER
)
446 return (unsigned long long *)(objp
+ cachep
->buffer_size
-
447 sizeof(unsigned long long) -
449 return (unsigned long long *) (objp
+ cachep
->buffer_size
-
450 sizeof(unsigned long long));
453 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
455 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
456 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
461 #define obj_offset(x) 0
462 #define obj_size(cachep) (cachep->buffer_size)
463 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
464 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
465 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
469 #ifdef CONFIG_TRACING
470 size_t slab_buffer_size(struct kmem_cache
*cachep
)
472 return cachep
->buffer_size
;
474 EXPORT_SYMBOL(slab_buffer_size
);
478 * Do not go above this order unless 0 objects fit into the slab.
480 #define BREAK_GFP_ORDER_HI 1
481 #define BREAK_GFP_ORDER_LO 0
482 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
485 * Functions for storing/retrieving the cachep and or slab from the page
486 * allocator. These are used to find the slab an obj belongs to. With kfree(),
487 * these are used to find the cache which an obj belongs to.
489 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
491 page
->lru
.next
= (struct list_head
*)cache
;
494 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
496 page
= compound_head(page
);
497 BUG_ON(!PageSlab(page
));
498 return (struct kmem_cache
*)page
->lru
.next
;
501 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
503 page
->lru
.prev
= (struct list_head
*)slab
;
506 static inline struct slab
*page_get_slab(struct page
*page
)
508 BUG_ON(!PageSlab(page
));
509 return (struct slab
*)page
->lru
.prev
;
512 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
514 struct page
*page
= virt_to_head_page(obj
);
515 return page_get_cache(page
);
518 static inline struct slab
*virt_to_slab(const void *obj
)
520 struct page
*page
= virt_to_head_page(obj
);
521 return page_get_slab(page
);
524 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
527 return slab
->s_mem
+ cache
->buffer_size
* idx
;
531 * We want to avoid an expensive divide : (offset / cache->buffer_size)
532 * Using the fact that buffer_size is a constant for a particular cache,
533 * we can replace (offset / cache->buffer_size) by
534 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
536 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
537 const struct slab
*slab
, void *obj
)
539 u32 offset
= (obj
- slab
->s_mem
);
540 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
544 * These are the default caches for kmalloc. Custom caches can have other sizes.
546 struct cache_sizes malloc_sizes
[] = {
547 #define CACHE(x) { .cs_size = (x) },
548 #include <linux/kmalloc_sizes.h>
552 EXPORT_SYMBOL(malloc_sizes
);
554 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
560 static struct cache_names __initdata cache_names
[] = {
561 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
562 #include <linux/kmalloc_sizes.h>
567 static struct arraycache_init initarray_cache __initdata
=
568 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
569 static struct arraycache_init initarray_generic
=
570 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
572 /* internal cache of cache description objs */
573 static struct kmem_cache cache_cache
= {
575 .limit
= BOOT_CPUCACHE_ENTRIES
,
577 .buffer_size
= sizeof(struct kmem_cache
),
578 .name
= "kmem_cache",
581 #define BAD_ALIEN_MAGIC 0x01020304ul
584 * chicken and egg problem: delay the per-cpu array allocation
585 * until the general caches are up.
596 * used by boot code to determine if it can use slab based allocator
598 int slab_is_available(void)
600 return g_cpucache_up
>= EARLY
;
603 #ifdef CONFIG_LOCKDEP
606 * Slab sometimes uses the kmalloc slabs to store the slab headers
607 * for other slabs "off slab".
608 * The locking for this is tricky in that it nests within the locks
609 * of all other slabs in a few places; to deal with this special
610 * locking we put on-slab caches into a separate lock-class.
612 * We set lock class for alien array caches which are up during init.
613 * The lock annotation will be lost if all cpus of a node goes down and
614 * then comes back up during hotplug
616 static struct lock_class_key on_slab_l3_key
;
617 static struct lock_class_key on_slab_alc_key
;
619 static void init_node_lock_keys(int q
)
621 struct cache_sizes
*s
= malloc_sizes
;
623 if (g_cpucache_up
!= FULL
)
626 for (s
= malloc_sizes
; s
->cs_size
!= ULONG_MAX
; s
++) {
627 struct array_cache
**alc
;
628 struct kmem_list3
*l3
;
631 l3
= s
->cs_cachep
->nodelists
[q
];
632 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
634 lockdep_set_class(&l3
->list_lock
, &on_slab_l3_key
);
637 * FIXME: This check for BAD_ALIEN_MAGIC
638 * should go away when common slab code is taught to
639 * work even without alien caches.
640 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
641 * for alloc_alien_cache,
643 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
647 lockdep_set_class(&alc
[r
]->lock
,
653 static inline void init_lock_keys(void)
658 init_node_lock_keys(node
);
661 static void init_node_lock_keys(int q
)
665 static inline void init_lock_keys(void)
671 * Guard access to the cache-chain.
673 static DEFINE_MUTEX(cache_chain_mutex
);
674 static struct list_head cache_chain
;
676 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
678 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
680 return cachep
->array
[smp_processor_id()];
683 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
686 struct cache_sizes
*csizep
= malloc_sizes
;
689 /* This happens if someone tries to call
690 * kmem_cache_create(), or __kmalloc(), before
691 * the generic caches are initialized.
693 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
696 return ZERO_SIZE_PTR
;
698 while (size
> csizep
->cs_size
)
702 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
703 * has cs_{dma,}cachep==NULL. Thus no special case
704 * for large kmalloc calls required.
706 #ifdef CONFIG_ZONE_DMA
707 if (unlikely(gfpflags
& GFP_DMA
))
708 return csizep
->cs_dmacachep
;
710 return csizep
->cs_cachep
;
713 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
715 return __find_general_cachep(size
, gfpflags
);
718 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
720 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
724 * Calculate the number of objects and left-over bytes for a given buffer size.
726 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
727 size_t align
, int flags
, size_t *left_over
,
732 size_t slab_size
= PAGE_SIZE
<< gfporder
;
735 * The slab management structure can be either off the slab or
736 * on it. For the latter case, the memory allocated for a
740 * - One kmem_bufctl_t for each object
741 * - Padding to respect alignment of @align
742 * - @buffer_size bytes for each object
744 * If the slab management structure is off the slab, then the
745 * alignment will already be calculated into the size. Because
746 * the slabs are all pages aligned, the objects will be at the
747 * correct alignment when allocated.
749 if (flags
& CFLGS_OFF_SLAB
) {
751 nr_objs
= slab_size
/ buffer_size
;
753 if (nr_objs
> SLAB_LIMIT
)
754 nr_objs
= SLAB_LIMIT
;
757 * Ignore padding for the initial guess. The padding
758 * is at most @align-1 bytes, and @buffer_size is at
759 * least @align. In the worst case, this result will
760 * be one greater than the number of objects that fit
761 * into the memory allocation when taking the padding
764 nr_objs
= (slab_size
- sizeof(struct slab
)) /
765 (buffer_size
+ sizeof(kmem_bufctl_t
));
768 * This calculated number will be either the right
769 * amount, or one greater than what we want.
771 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
775 if (nr_objs
> SLAB_LIMIT
)
776 nr_objs
= SLAB_LIMIT
;
778 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
781 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
784 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
786 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
789 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
790 function
, cachep
->name
, msg
);
795 * By default on NUMA we use alien caches to stage the freeing of
796 * objects allocated from other nodes. This causes massive memory
797 * inefficiencies when using fake NUMA setup to split memory into a
798 * large number of small nodes, so it can be disabled on the command
802 static int use_alien_caches __read_mostly
= 1;
803 static int __init
noaliencache_setup(char *s
)
805 use_alien_caches
= 0;
808 __setup("noaliencache", noaliencache_setup
);
812 * Special reaping functions for NUMA systems called from cache_reap().
813 * These take care of doing round robin flushing of alien caches (containing
814 * objects freed on different nodes from which they were allocated) and the
815 * flushing of remote pcps by calling drain_node_pages.
817 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
819 static void init_reap_node(int cpu
)
823 node
= next_node(cpu_to_mem(cpu
), node_online_map
);
824 if (node
== MAX_NUMNODES
)
825 node
= first_node(node_online_map
);
827 per_cpu(slab_reap_node
, cpu
) = node
;
830 static void next_reap_node(void)
832 int node
= __this_cpu_read(slab_reap_node
);
834 node
= next_node(node
, node_online_map
);
835 if (unlikely(node
>= MAX_NUMNODES
))
836 node
= first_node(node_online_map
);
837 __this_cpu_write(slab_reap_node
, node
);
841 #define init_reap_node(cpu) do { } while (0)
842 #define next_reap_node(void) do { } while (0)
846 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
847 * via the workqueue/eventd.
848 * Add the CPU number into the expiration time to minimize the possibility of
849 * the CPUs getting into lockstep and contending for the global cache chain
852 static void __cpuinit
start_cpu_timer(int cpu
)
854 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
857 * When this gets called from do_initcalls via cpucache_init(),
858 * init_workqueues() has already run, so keventd will be setup
861 if (keventd_up() && reap_work
->work
.func
== NULL
) {
863 INIT_DELAYED_WORK_DEFERRABLE(reap_work
, cache_reap
);
864 schedule_delayed_work_on(cpu
, reap_work
,
865 __round_jiffies_relative(HZ
, cpu
));
869 static struct array_cache
*alloc_arraycache(int node
, int entries
,
870 int batchcount
, gfp_t gfp
)
872 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
873 struct array_cache
*nc
= NULL
;
875 nc
= kmalloc_node(memsize
, gfp
, node
);
877 * The array_cache structures contain pointers to free object.
878 * However, when such objects are allocated or transfered to another
879 * cache the pointers are not cleared and they could be counted as
880 * valid references during a kmemleak scan. Therefore, kmemleak must
881 * not scan such objects.
883 kmemleak_no_scan(nc
);
887 nc
->batchcount
= batchcount
;
889 spin_lock_init(&nc
->lock
);
895 * Transfer objects in one arraycache to another.
896 * Locking must be handled by the caller.
898 * Return the number of entries transferred.
900 static int transfer_objects(struct array_cache
*to
,
901 struct array_cache
*from
, unsigned int max
)
903 /* Figure out how many entries to transfer */
904 int nr
= min3(from
->avail
, max
, to
->limit
- to
->avail
);
909 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
919 #define drain_alien_cache(cachep, alien) do { } while (0)
920 #define reap_alien(cachep, l3) do { } while (0)
922 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
924 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
927 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
931 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
936 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
942 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
943 gfp_t flags
, int nodeid
)
948 #else /* CONFIG_NUMA */
950 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
951 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
953 static struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
955 struct array_cache
**ac_ptr
;
956 int memsize
= sizeof(void *) * nr_node_ids
;
961 ac_ptr
= kzalloc_node(memsize
, gfp
, node
);
964 if (i
== node
|| !node_online(i
))
966 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d, gfp
);
968 for (i
--; i
>= 0; i
--)
978 static void free_alien_cache(struct array_cache
**ac_ptr
)
989 static void __drain_alien_cache(struct kmem_cache
*cachep
,
990 struct array_cache
*ac
, int node
)
992 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
995 spin_lock(&rl3
->list_lock
);
997 * Stuff objects into the remote nodes shared array first.
998 * That way we could avoid the overhead of putting the objects
999 * into the free lists and getting them back later.
1002 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1004 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1006 spin_unlock(&rl3
->list_lock
);
1011 * Called from cache_reap() to regularly drain alien caches round robin.
1013 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1015 int node
= __this_cpu_read(slab_reap_node
);
1018 struct array_cache
*ac
= l3
->alien
[node
];
1020 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1021 __drain_alien_cache(cachep
, ac
, node
);
1022 spin_unlock_irq(&ac
->lock
);
1027 static void drain_alien_cache(struct kmem_cache
*cachep
,
1028 struct array_cache
**alien
)
1031 struct array_cache
*ac
;
1032 unsigned long flags
;
1034 for_each_online_node(i
) {
1037 spin_lock_irqsave(&ac
->lock
, flags
);
1038 __drain_alien_cache(cachep
, ac
, i
);
1039 spin_unlock_irqrestore(&ac
->lock
, flags
);
1044 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1046 struct slab
*slabp
= virt_to_slab(objp
);
1047 int nodeid
= slabp
->nodeid
;
1048 struct kmem_list3
*l3
;
1049 struct array_cache
*alien
= NULL
;
1052 node
= numa_mem_id();
1055 * Make sure we are not freeing a object from another node to the array
1056 * cache on this cpu.
1058 if (likely(slabp
->nodeid
== node
))
1061 l3
= cachep
->nodelists
[node
];
1062 STATS_INC_NODEFREES(cachep
);
1063 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1064 alien
= l3
->alien
[nodeid
];
1065 spin_lock(&alien
->lock
);
1066 if (unlikely(alien
->avail
== alien
->limit
)) {
1067 STATS_INC_ACOVERFLOW(cachep
);
1068 __drain_alien_cache(cachep
, alien
, nodeid
);
1070 alien
->entry
[alien
->avail
++] = objp
;
1071 spin_unlock(&alien
->lock
);
1073 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1074 free_block(cachep
, &objp
, 1, nodeid
);
1075 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1082 * Allocates and initializes nodelists for a node on each slab cache, used for
1083 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1084 * will be allocated off-node since memory is not yet online for the new node.
1085 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1088 * Must hold cache_chain_mutex.
1090 static int init_cache_nodelists_node(int node
)
1092 struct kmem_cache
*cachep
;
1093 struct kmem_list3
*l3
;
1094 const int memsize
= sizeof(struct kmem_list3
);
1096 list_for_each_entry(cachep
, &cache_chain
, next
) {
1098 * Set up the size64 kmemlist for cpu before we can
1099 * begin anything. Make sure some other cpu on this
1100 * node has not already allocated this
1102 if (!cachep
->nodelists
[node
]) {
1103 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1106 kmem_list3_init(l3
);
1107 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1108 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1111 * The l3s don't come and go as CPUs come and
1112 * go. cache_chain_mutex is sufficient
1115 cachep
->nodelists
[node
] = l3
;
1118 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1119 cachep
->nodelists
[node
]->free_limit
=
1120 (1 + nr_cpus_node(node
)) *
1121 cachep
->batchcount
+ cachep
->num
;
1122 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1127 static void __cpuinit
cpuup_canceled(long cpu
)
1129 struct kmem_cache
*cachep
;
1130 struct kmem_list3
*l3
= NULL
;
1131 int node
= cpu_to_mem(cpu
);
1132 const struct cpumask
*mask
= cpumask_of_node(node
);
1134 list_for_each_entry(cachep
, &cache_chain
, next
) {
1135 struct array_cache
*nc
;
1136 struct array_cache
*shared
;
1137 struct array_cache
**alien
;
1139 /* cpu is dead; no one can alloc from it. */
1140 nc
= cachep
->array
[cpu
];
1141 cachep
->array
[cpu
] = NULL
;
1142 l3
= cachep
->nodelists
[node
];
1145 goto free_array_cache
;
1147 spin_lock_irq(&l3
->list_lock
);
1149 /* Free limit for this kmem_list3 */
1150 l3
->free_limit
-= cachep
->batchcount
;
1152 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1154 if (!cpumask_empty(mask
)) {
1155 spin_unlock_irq(&l3
->list_lock
);
1156 goto free_array_cache
;
1159 shared
= l3
->shared
;
1161 free_block(cachep
, shared
->entry
,
1162 shared
->avail
, node
);
1169 spin_unlock_irq(&l3
->list_lock
);
1173 drain_alien_cache(cachep
, alien
);
1174 free_alien_cache(alien
);
1180 * In the previous loop, all the objects were freed to
1181 * the respective cache's slabs, now we can go ahead and
1182 * shrink each nodelist to its limit.
1184 list_for_each_entry(cachep
, &cache_chain
, next
) {
1185 l3
= cachep
->nodelists
[node
];
1188 drain_freelist(cachep
, l3
, l3
->free_objects
);
1192 static int __cpuinit
cpuup_prepare(long cpu
)
1194 struct kmem_cache
*cachep
;
1195 struct kmem_list3
*l3
= NULL
;
1196 int node
= cpu_to_mem(cpu
);
1200 * We need to do this right in the beginning since
1201 * alloc_arraycache's are going to use this list.
1202 * kmalloc_node allows us to add the slab to the right
1203 * kmem_list3 and not this cpu's kmem_list3
1205 err
= init_cache_nodelists_node(node
);
1210 * Now we can go ahead with allocating the shared arrays and
1213 list_for_each_entry(cachep
, &cache_chain
, next
) {
1214 struct array_cache
*nc
;
1215 struct array_cache
*shared
= NULL
;
1216 struct array_cache
**alien
= NULL
;
1218 nc
= alloc_arraycache(node
, cachep
->limit
,
1219 cachep
->batchcount
, GFP_KERNEL
);
1222 if (cachep
->shared
) {
1223 shared
= alloc_arraycache(node
,
1224 cachep
->shared
* cachep
->batchcount
,
1225 0xbaadf00d, GFP_KERNEL
);
1231 if (use_alien_caches
) {
1232 alien
= alloc_alien_cache(node
, cachep
->limit
, GFP_KERNEL
);
1239 cachep
->array
[cpu
] = nc
;
1240 l3
= cachep
->nodelists
[node
];
1243 spin_lock_irq(&l3
->list_lock
);
1246 * We are serialised from CPU_DEAD or
1247 * CPU_UP_CANCELLED by the cpucontrol lock
1249 l3
->shared
= shared
;
1258 spin_unlock_irq(&l3
->list_lock
);
1260 free_alien_cache(alien
);
1262 init_node_lock_keys(node
);
1266 cpuup_canceled(cpu
);
1270 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1271 unsigned long action
, void *hcpu
)
1273 long cpu
= (long)hcpu
;
1277 case CPU_UP_PREPARE
:
1278 case CPU_UP_PREPARE_FROZEN
:
1279 mutex_lock(&cache_chain_mutex
);
1280 err
= cpuup_prepare(cpu
);
1281 mutex_unlock(&cache_chain_mutex
);
1284 case CPU_ONLINE_FROZEN
:
1285 start_cpu_timer(cpu
);
1287 #ifdef CONFIG_HOTPLUG_CPU
1288 case CPU_DOWN_PREPARE
:
1289 case CPU_DOWN_PREPARE_FROZEN
:
1291 * Shutdown cache reaper. Note that the cache_chain_mutex is
1292 * held so that if cache_reap() is invoked it cannot do
1293 * anything expensive but will only modify reap_work
1294 * and reschedule the timer.
1296 cancel_delayed_work_sync(&per_cpu(slab_reap_work
, cpu
));
1297 /* Now the cache_reaper is guaranteed to be not running. */
1298 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1300 case CPU_DOWN_FAILED
:
1301 case CPU_DOWN_FAILED_FROZEN
:
1302 start_cpu_timer(cpu
);
1305 case CPU_DEAD_FROZEN
:
1307 * Even if all the cpus of a node are down, we don't free the
1308 * kmem_list3 of any cache. This to avoid a race between
1309 * cpu_down, and a kmalloc allocation from another cpu for
1310 * memory from the node of the cpu going down. The list3
1311 * structure is usually allocated from kmem_cache_create() and
1312 * gets destroyed at kmem_cache_destroy().
1316 case CPU_UP_CANCELED
:
1317 case CPU_UP_CANCELED_FROZEN
:
1318 mutex_lock(&cache_chain_mutex
);
1319 cpuup_canceled(cpu
);
1320 mutex_unlock(&cache_chain_mutex
);
1323 return notifier_from_errno(err
);
1326 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1327 &cpuup_callback
, NULL
, 0
1330 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1332 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1333 * Returns -EBUSY if all objects cannot be drained so that the node is not
1336 * Must hold cache_chain_mutex.
1338 static int __meminit
drain_cache_nodelists_node(int node
)
1340 struct kmem_cache
*cachep
;
1343 list_for_each_entry(cachep
, &cache_chain
, next
) {
1344 struct kmem_list3
*l3
;
1346 l3
= cachep
->nodelists
[node
];
1350 drain_freelist(cachep
, l3
, l3
->free_objects
);
1352 if (!list_empty(&l3
->slabs_full
) ||
1353 !list_empty(&l3
->slabs_partial
)) {
1361 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1362 unsigned long action
, void *arg
)
1364 struct memory_notify
*mnb
= arg
;
1368 nid
= mnb
->status_change_nid
;
1373 case MEM_GOING_ONLINE
:
1374 mutex_lock(&cache_chain_mutex
);
1375 ret
= init_cache_nodelists_node(nid
);
1376 mutex_unlock(&cache_chain_mutex
);
1378 case MEM_GOING_OFFLINE
:
1379 mutex_lock(&cache_chain_mutex
);
1380 ret
= drain_cache_nodelists_node(nid
);
1381 mutex_unlock(&cache_chain_mutex
);
1385 case MEM_CANCEL_ONLINE
:
1386 case MEM_CANCEL_OFFLINE
:
1390 return ret
? notifier_from_errno(ret
) : NOTIFY_OK
;
1392 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1395 * swap the static kmem_list3 with kmalloced memory
1397 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1400 struct kmem_list3
*ptr
;
1402 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_NOWAIT
, nodeid
);
1405 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1407 * Do not assume that spinlocks can be initialized via memcpy:
1409 spin_lock_init(&ptr
->list_lock
);
1411 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1412 cachep
->nodelists
[nodeid
] = ptr
;
1416 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1417 * size of kmem_list3.
1419 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1423 for_each_online_node(node
) {
1424 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1425 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1427 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1432 * Initialisation. Called after the page allocator have been initialised and
1433 * before smp_init().
1435 void __init
kmem_cache_init(void)
1438 struct cache_sizes
*sizes
;
1439 struct cache_names
*names
;
1444 if (num_possible_nodes() == 1)
1445 use_alien_caches
= 0;
1447 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1448 kmem_list3_init(&initkmem_list3
[i
]);
1449 if (i
< MAX_NUMNODES
)
1450 cache_cache
.nodelists
[i
] = NULL
;
1452 set_up_list3s(&cache_cache
, CACHE_CACHE
);
1455 * Fragmentation resistance on low memory - only use bigger
1456 * page orders on machines with more than 32MB of memory.
1458 if (totalram_pages
> (32 << 20) >> PAGE_SHIFT
)
1459 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1461 /* Bootstrap is tricky, because several objects are allocated
1462 * from caches that do not exist yet:
1463 * 1) initialize the cache_cache cache: it contains the struct
1464 * kmem_cache structures of all caches, except cache_cache itself:
1465 * cache_cache is statically allocated.
1466 * Initially an __init data area is used for the head array and the
1467 * kmem_list3 structures, it's replaced with a kmalloc allocated
1468 * array at the end of the bootstrap.
1469 * 2) Create the first kmalloc cache.
1470 * The struct kmem_cache for the new cache is allocated normally.
1471 * An __init data area is used for the head array.
1472 * 3) Create the remaining kmalloc caches, with minimally sized
1474 * 4) Replace the __init data head arrays for cache_cache and the first
1475 * kmalloc cache with kmalloc allocated arrays.
1476 * 5) Replace the __init data for kmem_list3 for cache_cache and
1477 * the other cache's with kmalloc allocated memory.
1478 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1481 node
= numa_mem_id();
1483 /* 1) create the cache_cache */
1484 INIT_LIST_HEAD(&cache_chain
);
1485 list_add(&cache_cache
.next
, &cache_chain
);
1486 cache_cache
.colour_off
= cache_line_size();
1487 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1488 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
+ node
];
1491 * struct kmem_cache size depends on nr_node_ids, which
1492 * can be less than MAX_NUMNODES.
1494 cache_cache
.buffer_size
= offsetof(struct kmem_cache
, nodelists
) +
1495 nr_node_ids
* sizeof(struct kmem_list3
*);
1497 cache_cache
.obj_size
= cache_cache
.buffer_size
;
1499 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1501 cache_cache
.reciprocal_buffer_size
=
1502 reciprocal_value(cache_cache
.buffer_size
);
1504 for (order
= 0; order
< MAX_ORDER
; order
++) {
1505 cache_estimate(order
, cache_cache
.buffer_size
,
1506 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1507 if (cache_cache
.num
)
1510 BUG_ON(!cache_cache
.num
);
1511 cache_cache
.gfporder
= order
;
1512 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1513 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1514 sizeof(struct slab
), cache_line_size());
1516 /* 2+3) create the kmalloc caches */
1517 sizes
= malloc_sizes
;
1518 names
= cache_names
;
1521 * Initialize the caches that provide memory for the array cache and the
1522 * kmem_list3 structures first. Without this, further allocations will
1526 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1527 sizes
[INDEX_AC
].cs_size
,
1528 ARCH_KMALLOC_MINALIGN
,
1529 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1532 if (INDEX_AC
!= INDEX_L3
) {
1533 sizes
[INDEX_L3
].cs_cachep
=
1534 kmem_cache_create(names
[INDEX_L3
].name
,
1535 sizes
[INDEX_L3
].cs_size
,
1536 ARCH_KMALLOC_MINALIGN
,
1537 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1541 slab_early_init
= 0;
1543 while (sizes
->cs_size
!= ULONG_MAX
) {
1545 * For performance, all the general caches are L1 aligned.
1546 * This should be particularly beneficial on SMP boxes, as it
1547 * eliminates "false sharing".
1548 * Note for systems short on memory removing the alignment will
1549 * allow tighter packing of the smaller caches.
1551 if (!sizes
->cs_cachep
) {
1552 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1554 ARCH_KMALLOC_MINALIGN
,
1555 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1558 #ifdef CONFIG_ZONE_DMA
1559 sizes
->cs_dmacachep
= kmem_cache_create(
1562 ARCH_KMALLOC_MINALIGN
,
1563 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1570 /* 4) Replace the bootstrap head arrays */
1572 struct array_cache
*ptr
;
1574 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1576 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1577 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1578 sizeof(struct arraycache_init
));
1580 * Do not assume that spinlocks can be initialized via memcpy:
1582 spin_lock_init(&ptr
->lock
);
1584 cache_cache
.array
[smp_processor_id()] = ptr
;
1586 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1588 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1589 != &initarray_generic
.cache
);
1590 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1591 sizeof(struct arraycache_init
));
1593 * Do not assume that spinlocks can be initialized via memcpy:
1595 spin_lock_init(&ptr
->lock
);
1597 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1600 /* 5) Replace the bootstrap kmem_list3's */
1604 for_each_online_node(nid
) {
1605 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
+ nid
], nid
);
1607 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1608 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1610 if (INDEX_AC
!= INDEX_L3
) {
1611 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1612 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1617 g_cpucache_up
= EARLY
;
1620 void __init
kmem_cache_init_late(void)
1622 struct kmem_cache
*cachep
;
1624 /* 6) resize the head arrays to their final sizes */
1625 mutex_lock(&cache_chain_mutex
);
1626 list_for_each_entry(cachep
, &cache_chain
, next
)
1627 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1629 mutex_unlock(&cache_chain_mutex
);
1632 g_cpucache_up
= FULL
;
1634 /* Annotate slab for lockdep -- annotate the malloc caches */
1638 * Register a cpu startup notifier callback that initializes
1639 * cpu_cache_get for all new cpus
1641 register_cpu_notifier(&cpucache_notifier
);
1645 * Register a memory hotplug callback that initializes and frees
1648 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1652 * The reap timers are started later, with a module init call: That part
1653 * of the kernel is not yet operational.
1657 static int __init
cpucache_init(void)
1662 * Register the timers that return unneeded pages to the page allocator
1664 for_each_online_cpu(cpu
)
1665 start_cpu_timer(cpu
);
1668 __initcall(cpucache_init
);
1671 * Interface to system's page allocator. No need to hold the cache-lock.
1673 * If we requested dmaable memory, we will get it. Even if we
1674 * did not request dmaable memory, we might get it, but that
1675 * would be relatively rare and ignorable.
1677 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1685 * Nommu uses slab's for process anonymous memory allocations, and thus
1686 * requires __GFP_COMP to properly refcount higher order allocations
1688 flags
|= __GFP_COMP
;
1691 flags
|= cachep
->gfpflags
;
1692 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1693 flags
|= __GFP_RECLAIMABLE
;
1695 page
= alloc_pages_exact_node(nodeid
, flags
| __GFP_NOTRACK
, cachep
->gfporder
);
1699 nr_pages
= (1 << cachep
->gfporder
);
1700 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1701 add_zone_page_state(page_zone(page
),
1702 NR_SLAB_RECLAIMABLE
, nr_pages
);
1704 add_zone_page_state(page_zone(page
),
1705 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1706 for (i
= 0; i
< nr_pages
; i
++)
1707 __SetPageSlab(page
+ i
);
1709 if (kmemcheck_enabled
&& !(cachep
->flags
& SLAB_NOTRACK
)) {
1710 kmemcheck_alloc_shadow(page
, cachep
->gfporder
, flags
, nodeid
);
1713 kmemcheck_mark_uninitialized_pages(page
, nr_pages
);
1715 kmemcheck_mark_unallocated_pages(page
, nr_pages
);
1718 return page_address(page
);
1722 * Interface to system's page release.
1724 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1726 unsigned long i
= (1 << cachep
->gfporder
);
1727 struct page
*page
= virt_to_page(addr
);
1728 const unsigned long nr_freed
= i
;
1730 kmemcheck_free_shadow(page
, cachep
->gfporder
);
1732 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1733 sub_zone_page_state(page_zone(page
),
1734 NR_SLAB_RECLAIMABLE
, nr_freed
);
1736 sub_zone_page_state(page_zone(page
),
1737 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1739 BUG_ON(!PageSlab(page
));
1740 __ClearPageSlab(page
);
1743 if (current
->reclaim_state
)
1744 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1745 free_pages((unsigned long)addr
, cachep
->gfporder
);
1748 static void kmem_rcu_free(struct rcu_head
*head
)
1750 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1751 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1753 kmem_freepages(cachep
, slab_rcu
->addr
);
1754 if (OFF_SLAB(cachep
))
1755 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1760 #ifdef CONFIG_DEBUG_PAGEALLOC
1761 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1762 unsigned long caller
)
1764 int size
= obj_size(cachep
);
1766 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1768 if (size
< 5 * sizeof(unsigned long))
1771 *addr
++ = 0x12345678;
1773 *addr
++ = smp_processor_id();
1774 size
-= 3 * sizeof(unsigned long);
1776 unsigned long *sptr
= &caller
;
1777 unsigned long svalue
;
1779 while (!kstack_end(sptr
)) {
1781 if (kernel_text_address(svalue
)) {
1783 size
-= sizeof(unsigned long);
1784 if (size
<= sizeof(unsigned long))
1790 *addr
++ = 0x87654321;
1794 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1796 int size
= obj_size(cachep
);
1797 addr
= &((char *)addr
)[obj_offset(cachep
)];
1799 memset(addr
, val
, size
);
1800 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1803 static void dump_line(char *data
, int offset
, int limit
)
1806 unsigned char error
= 0;
1809 printk(KERN_ERR
"%03x:", offset
);
1810 for (i
= 0; i
< limit
; i
++) {
1811 if (data
[offset
+ i
] != POISON_FREE
) {
1812 error
= data
[offset
+ i
];
1815 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1819 if (bad_count
== 1) {
1820 error
^= POISON_FREE
;
1821 if (!(error
& (error
- 1))) {
1822 printk(KERN_ERR
"Single bit error detected. Probably "
1825 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1828 printk(KERN_ERR
"Run a memory test tool.\n");
1837 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1842 if (cachep
->flags
& SLAB_RED_ZONE
) {
1843 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1844 *dbg_redzone1(cachep
, objp
),
1845 *dbg_redzone2(cachep
, objp
));
1848 if (cachep
->flags
& SLAB_STORE_USER
) {
1849 printk(KERN_ERR
"Last user: [<%p>]",
1850 *dbg_userword(cachep
, objp
));
1851 print_symbol("(%s)",
1852 (unsigned long)*dbg_userword(cachep
, objp
));
1855 realobj
= (char *)objp
+ obj_offset(cachep
);
1856 size
= obj_size(cachep
);
1857 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1860 if (i
+ limit
> size
)
1862 dump_line(realobj
, i
, limit
);
1866 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1872 realobj
= (char *)objp
+ obj_offset(cachep
);
1873 size
= obj_size(cachep
);
1875 for (i
= 0; i
< size
; i
++) {
1876 char exp
= POISON_FREE
;
1879 if (realobj
[i
] != exp
) {
1885 "Slab corruption: %s start=%p, len=%d\n",
1886 cachep
->name
, realobj
, size
);
1887 print_objinfo(cachep
, objp
, 0);
1889 /* Hexdump the affected line */
1892 if (i
+ limit
> size
)
1894 dump_line(realobj
, i
, limit
);
1897 /* Limit to 5 lines */
1903 /* Print some data about the neighboring objects, if they
1906 struct slab
*slabp
= virt_to_slab(objp
);
1909 objnr
= obj_to_index(cachep
, slabp
, objp
);
1911 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1912 realobj
= (char *)objp
+ obj_offset(cachep
);
1913 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1915 print_objinfo(cachep
, objp
, 2);
1917 if (objnr
+ 1 < cachep
->num
) {
1918 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1919 realobj
= (char *)objp
+ obj_offset(cachep
);
1920 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1922 print_objinfo(cachep
, objp
, 2);
1929 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1932 for (i
= 0; i
< cachep
->num
; i
++) {
1933 void *objp
= index_to_obj(cachep
, slabp
, i
);
1935 if (cachep
->flags
& SLAB_POISON
) {
1936 #ifdef CONFIG_DEBUG_PAGEALLOC
1937 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1939 kernel_map_pages(virt_to_page(objp
),
1940 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1942 check_poison_obj(cachep
, objp
);
1944 check_poison_obj(cachep
, objp
);
1947 if (cachep
->flags
& SLAB_RED_ZONE
) {
1948 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1949 slab_error(cachep
, "start of a freed object "
1951 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1952 slab_error(cachep
, "end of a freed object "
1958 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1964 * slab_destroy - destroy and release all objects in a slab
1965 * @cachep: cache pointer being destroyed
1966 * @slabp: slab pointer being destroyed
1968 * Destroy all the objs in a slab, and release the mem back to the system.
1969 * Before calling the slab must have been unlinked from the cache. The
1970 * cache-lock is not held/needed.
1972 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1974 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1976 slab_destroy_debugcheck(cachep
, slabp
);
1977 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1978 struct slab_rcu
*slab_rcu
;
1980 slab_rcu
= (struct slab_rcu
*)slabp
;
1981 slab_rcu
->cachep
= cachep
;
1982 slab_rcu
->addr
= addr
;
1983 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1985 kmem_freepages(cachep
, addr
);
1986 if (OFF_SLAB(cachep
))
1987 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1991 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
1994 struct kmem_list3
*l3
;
1996 for_each_online_cpu(i
)
1997 kfree(cachep
->array
[i
]);
1999 /* NUMA: free the list3 structures */
2000 for_each_online_node(i
) {
2001 l3
= cachep
->nodelists
[i
];
2004 free_alien_cache(l3
->alien
);
2008 kmem_cache_free(&cache_cache
, cachep
);
2013 * calculate_slab_order - calculate size (page order) of slabs
2014 * @cachep: pointer to the cache that is being created
2015 * @size: size of objects to be created in this cache.
2016 * @align: required alignment for the objects.
2017 * @flags: slab allocation flags
2019 * Also calculates the number of objects per slab.
2021 * This could be made much more intelligent. For now, try to avoid using
2022 * high order pages for slabs. When the gfp() functions are more friendly
2023 * towards high-order requests, this should be changed.
2025 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2026 size_t size
, size_t align
, unsigned long flags
)
2028 unsigned long offslab_limit
;
2029 size_t left_over
= 0;
2032 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2036 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2040 if (flags
& CFLGS_OFF_SLAB
) {
2042 * Max number of objs-per-slab for caches which
2043 * use off-slab slabs. Needed to avoid a possible
2044 * looping condition in cache_grow().
2046 offslab_limit
= size
- sizeof(struct slab
);
2047 offslab_limit
/= sizeof(kmem_bufctl_t
);
2049 if (num
> offslab_limit
)
2053 /* Found something acceptable - save it away */
2055 cachep
->gfporder
= gfporder
;
2056 left_over
= remainder
;
2059 * A VFS-reclaimable slab tends to have most allocations
2060 * as GFP_NOFS and we really don't want to have to be allocating
2061 * higher-order pages when we are unable to shrink dcache.
2063 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2067 * Large number of objects is good, but very large slabs are
2068 * currently bad for the gfp()s.
2070 if (gfporder
>= slab_break_gfp_order
)
2074 * Acceptable internal fragmentation?
2076 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2082 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2084 if (g_cpucache_up
== FULL
)
2085 return enable_cpucache(cachep
, gfp
);
2087 if (g_cpucache_up
== NONE
) {
2089 * Note: the first kmem_cache_create must create the cache
2090 * that's used by kmalloc(24), otherwise the creation of
2091 * further caches will BUG().
2093 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2096 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2097 * the first cache, then we need to set up all its list3s,
2098 * otherwise the creation of further caches will BUG().
2100 set_up_list3s(cachep
, SIZE_AC
);
2101 if (INDEX_AC
== INDEX_L3
)
2102 g_cpucache_up
= PARTIAL_L3
;
2104 g_cpucache_up
= PARTIAL_AC
;
2106 cachep
->array
[smp_processor_id()] =
2107 kmalloc(sizeof(struct arraycache_init
), gfp
);
2109 if (g_cpucache_up
== PARTIAL_AC
) {
2110 set_up_list3s(cachep
, SIZE_L3
);
2111 g_cpucache_up
= PARTIAL_L3
;
2114 for_each_online_node(node
) {
2115 cachep
->nodelists
[node
] =
2116 kmalloc_node(sizeof(struct kmem_list3
),
2118 BUG_ON(!cachep
->nodelists
[node
]);
2119 kmem_list3_init(cachep
->nodelists
[node
]);
2123 cachep
->nodelists
[numa_mem_id()]->next_reap
=
2124 jiffies
+ REAPTIMEOUT_LIST3
+
2125 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2127 cpu_cache_get(cachep
)->avail
= 0;
2128 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2129 cpu_cache_get(cachep
)->batchcount
= 1;
2130 cpu_cache_get(cachep
)->touched
= 0;
2131 cachep
->batchcount
= 1;
2132 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2137 * kmem_cache_create - Create a cache.
2138 * @name: A string which is used in /proc/slabinfo to identify this cache.
2139 * @size: The size of objects to be created in this cache.
2140 * @align: The required alignment for the objects.
2141 * @flags: SLAB flags
2142 * @ctor: A constructor for the objects.
2144 * Returns a ptr to the cache on success, NULL on failure.
2145 * Cannot be called within a int, but can be interrupted.
2146 * The @ctor is run when new pages are allocated by the cache.
2148 * @name must be valid until the cache is destroyed. This implies that
2149 * the module calling this has to destroy the cache before getting unloaded.
2150 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2151 * therefore applications must manage it themselves.
2155 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2156 * to catch references to uninitialised memory.
2158 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2159 * for buffer overruns.
2161 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2162 * cacheline. This can be beneficial if you're counting cycles as closely
2166 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2167 unsigned long flags
, void (*ctor
)(void *))
2169 size_t left_over
, slab_size
, ralign
;
2170 struct kmem_cache
*cachep
= NULL
, *pc
;
2174 * Sanity checks... these are all serious usage bugs.
2176 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2177 size
> KMALLOC_MAX_SIZE
) {
2178 printk(KERN_ERR
"%s: Early error in slab %s\n", __func__
,
2184 * We use cache_chain_mutex to ensure a consistent view of
2185 * cpu_online_mask as well. Please see cpuup_callback
2187 if (slab_is_available()) {
2189 mutex_lock(&cache_chain_mutex
);
2192 list_for_each_entry(pc
, &cache_chain
, next
) {
2197 * This happens when the module gets unloaded and doesn't
2198 * destroy its slab cache and no-one else reuses the vmalloc
2199 * area of the module. Print a warning.
2201 res
= probe_kernel_address(pc
->name
, tmp
);
2204 "SLAB: cache with size %d has lost its name\n",
2209 if (!strcmp(pc
->name
, name
)) {
2211 "kmem_cache_create: duplicate cache %s\n", name
);
2218 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2221 * Enable redzoning and last user accounting, except for caches with
2222 * large objects, if the increased size would increase the object size
2223 * above the next power of two: caches with object sizes just above a
2224 * power of two have a significant amount of internal fragmentation.
2226 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2227 2 * sizeof(unsigned long long)))
2228 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2229 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2230 flags
|= SLAB_POISON
;
2232 if (flags
& SLAB_DESTROY_BY_RCU
)
2233 BUG_ON(flags
& SLAB_POISON
);
2236 * Always checks flags, a caller might be expecting debug support which
2239 BUG_ON(flags
& ~CREATE_MASK
);
2242 * Check that size is in terms of words. This is needed to avoid
2243 * unaligned accesses for some archs when redzoning is used, and makes
2244 * sure any on-slab bufctl's are also correctly aligned.
2246 if (size
& (BYTES_PER_WORD
- 1)) {
2247 size
+= (BYTES_PER_WORD
- 1);
2248 size
&= ~(BYTES_PER_WORD
- 1);
2251 /* calculate the final buffer alignment: */
2253 /* 1) arch recommendation: can be overridden for debug */
2254 if (flags
& SLAB_HWCACHE_ALIGN
) {
2256 * Default alignment: as specified by the arch code. Except if
2257 * an object is really small, then squeeze multiple objects into
2260 ralign
= cache_line_size();
2261 while (size
<= ralign
/ 2)
2264 ralign
= BYTES_PER_WORD
;
2268 * Redzoning and user store require word alignment or possibly larger.
2269 * Note this will be overridden by architecture or caller mandated
2270 * alignment if either is greater than BYTES_PER_WORD.
2272 if (flags
& SLAB_STORE_USER
)
2273 ralign
= BYTES_PER_WORD
;
2275 if (flags
& SLAB_RED_ZONE
) {
2276 ralign
= REDZONE_ALIGN
;
2277 /* If redzoning, ensure that the second redzone is suitably
2278 * aligned, by adjusting the object size accordingly. */
2279 size
+= REDZONE_ALIGN
- 1;
2280 size
&= ~(REDZONE_ALIGN
- 1);
2283 /* 2) arch mandated alignment */
2284 if (ralign
< ARCH_SLAB_MINALIGN
) {
2285 ralign
= ARCH_SLAB_MINALIGN
;
2287 /* 3) caller mandated alignment */
2288 if (ralign
< align
) {
2291 /* disable debug if not aligning with REDZONE_ALIGN */
2292 if (ralign
& (__alignof__(unsigned long long) - 1))
2293 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2299 if (slab_is_available())
2304 /* Get cache's description obj. */
2305 cachep
= kmem_cache_zalloc(&cache_cache
, gfp
);
2310 cachep
->obj_size
= size
;
2313 * Both debugging options require word-alignment which is calculated
2316 if (flags
& SLAB_RED_ZONE
) {
2317 /* add space for red zone words */
2318 cachep
->obj_offset
+= align
;
2319 size
+= align
+ sizeof(unsigned long long);
2321 if (flags
& SLAB_STORE_USER
) {
2322 /* user store requires one word storage behind the end of
2323 * the real object. But if the second red zone needs to be
2324 * aligned to 64 bits, we must allow that much space.
2326 if (flags
& SLAB_RED_ZONE
)
2327 size
+= REDZONE_ALIGN
;
2329 size
+= BYTES_PER_WORD
;
2331 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2332 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2333 && cachep
->obj_size
> cache_line_size() && ALIGN(size
, align
) < PAGE_SIZE
) {
2334 cachep
->obj_offset
+= PAGE_SIZE
- ALIGN(size
, align
);
2341 * Determine if the slab management is 'on' or 'off' slab.
2342 * (bootstrapping cannot cope with offslab caches so don't do
2343 * it too early on. Always use on-slab management when
2344 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2346 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
&&
2347 !(flags
& SLAB_NOLEAKTRACE
))
2349 * Size is large, assume best to place the slab management obj
2350 * off-slab (should allow better packing of objs).
2352 flags
|= CFLGS_OFF_SLAB
;
2354 size
= ALIGN(size
, align
);
2356 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2360 "kmem_cache_create: couldn't create cache %s.\n", name
);
2361 kmem_cache_free(&cache_cache
, cachep
);
2365 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2366 + sizeof(struct slab
), align
);
2369 * If the slab has been placed off-slab, and we have enough space then
2370 * move it on-slab. This is at the expense of any extra colouring.
2372 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2373 flags
&= ~CFLGS_OFF_SLAB
;
2374 left_over
-= slab_size
;
2377 if (flags
& CFLGS_OFF_SLAB
) {
2378 /* really off slab. No need for manual alignment */
2380 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2382 #ifdef CONFIG_PAGE_POISONING
2383 /* If we're going to use the generic kernel_map_pages()
2384 * poisoning, then it's going to smash the contents of
2385 * the redzone and userword anyhow, so switch them off.
2387 if (size
% PAGE_SIZE
== 0 && flags
& SLAB_POISON
)
2388 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2392 cachep
->colour_off
= cache_line_size();
2393 /* Offset must be a multiple of the alignment. */
2394 if (cachep
->colour_off
< align
)
2395 cachep
->colour_off
= align
;
2396 cachep
->colour
= left_over
/ cachep
->colour_off
;
2397 cachep
->slab_size
= slab_size
;
2398 cachep
->flags
= flags
;
2399 cachep
->gfpflags
= 0;
2400 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2401 cachep
->gfpflags
|= GFP_DMA
;
2402 cachep
->buffer_size
= size
;
2403 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2405 if (flags
& CFLGS_OFF_SLAB
) {
2406 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2408 * This is a possibility for one of the malloc_sizes caches.
2409 * But since we go off slab only for object size greater than
2410 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2411 * this should not happen at all.
2412 * But leave a BUG_ON for some lucky dude.
2414 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2416 cachep
->ctor
= ctor
;
2417 cachep
->name
= name
;
2419 if (setup_cpu_cache(cachep
, gfp
)) {
2420 __kmem_cache_destroy(cachep
);
2425 /* cache setup completed, link it into the list */
2426 list_add(&cachep
->next
, &cache_chain
);
2428 if (!cachep
&& (flags
& SLAB_PANIC
))
2429 panic("kmem_cache_create(): failed to create slab `%s'\n",
2431 if (slab_is_available()) {
2432 mutex_unlock(&cache_chain_mutex
);
2437 EXPORT_SYMBOL(kmem_cache_create
);
2440 static void check_irq_off(void)
2442 BUG_ON(!irqs_disabled());
2445 static void check_irq_on(void)
2447 BUG_ON(irqs_disabled());
2450 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2454 assert_spin_locked(&cachep
->nodelists
[numa_mem_id()]->list_lock
);
2458 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2462 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2467 #define check_irq_off() do { } while(0)
2468 #define check_irq_on() do { } while(0)
2469 #define check_spinlock_acquired(x) do { } while(0)
2470 #define check_spinlock_acquired_node(x, y) do { } while(0)
2473 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2474 struct array_cache
*ac
,
2475 int force
, int node
);
2477 static void do_drain(void *arg
)
2479 struct kmem_cache
*cachep
= arg
;
2480 struct array_cache
*ac
;
2481 int node
= numa_mem_id();
2484 ac
= cpu_cache_get(cachep
);
2485 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2486 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2487 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2491 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2493 struct kmem_list3
*l3
;
2496 on_each_cpu(do_drain
, cachep
, 1);
2498 for_each_online_node(node
) {
2499 l3
= cachep
->nodelists
[node
];
2500 if (l3
&& l3
->alien
)
2501 drain_alien_cache(cachep
, l3
->alien
);
2504 for_each_online_node(node
) {
2505 l3
= cachep
->nodelists
[node
];
2507 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2512 * Remove slabs from the list of free slabs.
2513 * Specify the number of slabs to drain in tofree.
2515 * Returns the actual number of slabs released.
2517 static int drain_freelist(struct kmem_cache
*cache
,
2518 struct kmem_list3
*l3
, int tofree
)
2520 struct list_head
*p
;
2525 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2527 spin_lock_irq(&l3
->list_lock
);
2528 p
= l3
->slabs_free
.prev
;
2529 if (p
== &l3
->slabs_free
) {
2530 spin_unlock_irq(&l3
->list_lock
);
2534 slabp
= list_entry(p
, struct slab
, list
);
2536 BUG_ON(slabp
->inuse
);
2538 list_del(&slabp
->list
);
2540 * Safe to drop the lock. The slab is no longer linked
2543 l3
->free_objects
-= cache
->num
;
2544 spin_unlock_irq(&l3
->list_lock
);
2545 slab_destroy(cache
, slabp
);
2552 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2553 static int __cache_shrink(struct kmem_cache
*cachep
)
2556 struct kmem_list3
*l3
;
2558 drain_cpu_caches(cachep
);
2561 for_each_online_node(i
) {
2562 l3
= cachep
->nodelists
[i
];
2566 drain_freelist(cachep
, l3
, l3
->free_objects
);
2568 ret
+= !list_empty(&l3
->slabs_full
) ||
2569 !list_empty(&l3
->slabs_partial
);
2571 return (ret
? 1 : 0);
2575 * kmem_cache_shrink - Shrink a cache.
2576 * @cachep: The cache to shrink.
2578 * Releases as many slabs as possible for a cache.
2579 * To help debugging, a zero exit status indicates all slabs were released.
2581 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2584 BUG_ON(!cachep
|| in_interrupt());
2587 mutex_lock(&cache_chain_mutex
);
2588 ret
= __cache_shrink(cachep
);
2589 mutex_unlock(&cache_chain_mutex
);
2593 EXPORT_SYMBOL(kmem_cache_shrink
);
2596 * kmem_cache_destroy - delete a cache
2597 * @cachep: the cache to destroy
2599 * Remove a &struct kmem_cache object from the slab cache.
2601 * It is expected this function will be called by a module when it is
2602 * unloaded. This will remove the cache completely, and avoid a duplicate
2603 * cache being allocated each time a module is loaded and unloaded, if the
2604 * module doesn't have persistent in-kernel storage across loads and unloads.
2606 * The cache must be empty before calling this function.
2608 * The caller must guarantee that noone will allocate memory from the cache
2609 * during the kmem_cache_destroy().
2611 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2613 BUG_ON(!cachep
|| in_interrupt());
2615 /* Find the cache in the chain of caches. */
2617 mutex_lock(&cache_chain_mutex
);
2619 * the chain is never empty, cache_cache is never destroyed
2621 list_del(&cachep
->next
);
2622 if (__cache_shrink(cachep
)) {
2623 slab_error(cachep
, "Can't free all objects");
2624 list_add(&cachep
->next
, &cache_chain
);
2625 mutex_unlock(&cache_chain_mutex
);
2630 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2633 __kmem_cache_destroy(cachep
);
2634 mutex_unlock(&cache_chain_mutex
);
2637 EXPORT_SYMBOL(kmem_cache_destroy
);
2640 * Get the memory for a slab management obj.
2641 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2642 * always come from malloc_sizes caches. The slab descriptor cannot
2643 * come from the same cache which is getting created because,
2644 * when we are searching for an appropriate cache for these
2645 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2646 * If we are creating a malloc_sizes cache here it would not be visible to
2647 * kmem_find_general_cachep till the initialization is complete.
2648 * Hence we cannot have slabp_cache same as the original cache.
2650 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2651 int colour_off
, gfp_t local_flags
,
2656 if (OFF_SLAB(cachep
)) {
2657 /* Slab management obj is off-slab. */
2658 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2659 local_flags
, nodeid
);
2661 * If the first object in the slab is leaked (it's allocated
2662 * but no one has a reference to it), we want to make sure
2663 * kmemleak does not treat the ->s_mem pointer as a reference
2664 * to the object. Otherwise we will not report the leak.
2666 kmemleak_scan_area(&slabp
->list
, sizeof(struct list_head
),
2671 slabp
= objp
+ colour_off
;
2672 colour_off
+= cachep
->slab_size
;
2675 slabp
->colouroff
= colour_off
;
2676 slabp
->s_mem
= objp
+ colour_off
;
2677 slabp
->nodeid
= nodeid
;
2682 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2684 return (kmem_bufctl_t
*) (slabp
+ 1);
2687 static void cache_init_objs(struct kmem_cache
*cachep
,
2692 for (i
= 0; i
< cachep
->num
; i
++) {
2693 void *objp
= index_to_obj(cachep
, slabp
, i
);
2695 /* need to poison the objs? */
2696 if (cachep
->flags
& SLAB_POISON
)
2697 poison_obj(cachep
, objp
, POISON_FREE
);
2698 if (cachep
->flags
& SLAB_STORE_USER
)
2699 *dbg_userword(cachep
, objp
) = NULL
;
2701 if (cachep
->flags
& SLAB_RED_ZONE
) {
2702 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2703 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2706 * Constructors are not allowed to allocate memory from the same
2707 * cache which they are a constructor for. Otherwise, deadlock.
2708 * They must also be threaded.
2710 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2711 cachep
->ctor(objp
+ obj_offset(cachep
));
2713 if (cachep
->flags
& SLAB_RED_ZONE
) {
2714 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2715 slab_error(cachep
, "constructor overwrote the"
2716 " end of an object");
2717 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2718 slab_error(cachep
, "constructor overwrote the"
2719 " start of an object");
2721 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2722 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2723 kernel_map_pages(virt_to_page(objp
),
2724 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2729 slab_bufctl(slabp
)[i
] = i
+ 1;
2731 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2734 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2736 if (CONFIG_ZONE_DMA_FLAG
) {
2737 if (flags
& GFP_DMA
)
2738 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2740 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2744 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2747 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2751 next
= slab_bufctl(slabp
)[slabp
->free
];
2753 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2754 WARN_ON(slabp
->nodeid
!= nodeid
);
2761 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2762 void *objp
, int nodeid
)
2764 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2767 /* Verify that the slab belongs to the intended node */
2768 WARN_ON(slabp
->nodeid
!= nodeid
);
2770 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2771 printk(KERN_ERR
"slab: double free detected in cache "
2772 "'%s', objp %p\n", cachep
->name
, objp
);
2776 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2777 slabp
->free
= objnr
;
2782 * Map pages beginning at addr to the given cache and slab. This is required
2783 * for the slab allocator to be able to lookup the cache and slab of a
2784 * virtual address for kfree, ksize, and slab debugging.
2786 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2792 page
= virt_to_page(addr
);
2795 if (likely(!PageCompound(page
)))
2796 nr_pages
<<= cache
->gfporder
;
2799 page_set_cache(page
, cache
);
2800 page_set_slab(page
, slab
);
2802 } while (--nr_pages
);
2806 * Grow (by 1) the number of slabs within a cache. This is called by
2807 * kmem_cache_alloc() when there are no active objs left in a cache.
2809 static int cache_grow(struct kmem_cache
*cachep
,
2810 gfp_t flags
, int nodeid
, void *objp
)
2815 struct kmem_list3
*l3
;
2818 * Be lazy and only check for valid flags here, keeping it out of the
2819 * critical path in kmem_cache_alloc().
2821 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2822 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2824 /* Take the l3 list lock to change the colour_next on this node */
2826 l3
= cachep
->nodelists
[nodeid
];
2827 spin_lock(&l3
->list_lock
);
2829 /* Get colour for the slab, and cal the next value. */
2830 offset
= l3
->colour_next
;
2832 if (l3
->colour_next
>= cachep
->colour
)
2833 l3
->colour_next
= 0;
2834 spin_unlock(&l3
->list_lock
);
2836 offset
*= cachep
->colour_off
;
2838 if (local_flags
& __GFP_WAIT
)
2842 * The test for missing atomic flag is performed here, rather than
2843 * the more obvious place, simply to reduce the critical path length
2844 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2845 * will eventually be caught here (where it matters).
2847 kmem_flagcheck(cachep
, flags
);
2850 * Get mem for the objs. Attempt to allocate a physical page from
2854 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2858 /* Get slab management. */
2859 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2860 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2864 slab_map_pages(cachep
, slabp
, objp
);
2866 cache_init_objs(cachep
, slabp
);
2868 if (local_flags
& __GFP_WAIT
)
2869 local_irq_disable();
2871 spin_lock(&l3
->list_lock
);
2873 /* Make slab active. */
2874 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2875 STATS_INC_GROWN(cachep
);
2876 l3
->free_objects
+= cachep
->num
;
2877 spin_unlock(&l3
->list_lock
);
2880 kmem_freepages(cachep
, objp
);
2882 if (local_flags
& __GFP_WAIT
)
2883 local_irq_disable();
2890 * Perform extra freeing checks:
2891 * - detect bad pointers.
2892 * - POISON/RED_ZONE checking
2894 static void kfree_debugcheck(const void *objp
)
2896 if (!virt_addr_valid(objp
)) {
2897 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2898 (unsigned long)objp
);
2903 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2905 unsigned long long redzone1
, redzone2
;
2907 redzone1
= *dbg_redzone1(cache
, obj
);
2908 redzone2
= *dbg_redzone2(cache
, obj
);
2913 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2916 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2917 slab_error(cache
, "double free detected");
2919 slab_error(cache
, "memory outside object was overwritten");
2921 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2922 obj
, redzone1
, redzone2
);
2925 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2932 BUG_ON(virt_to_cache(objp
) != cachep
);
2934 objp
-= obj_offset(cachep
);
2935 kfree_debugcheck(objp
);
2936 page
= virt_to_head_page(objp
);
2938 slabp
= page_get_slab(page
);
2940 if (cachep
->flags
& SLAB_RED_ZONE
) {
2941 verify_redzone_free(cachep
, objp
);
2942 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2943 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2945 if (cachep
->flags
& SLAB_STORE_USER
)
2946 *dbg_userword(cachep
, objp
) = caller
;
2948 objnr
= obj_to_index(cachep
, slabp
, objp
);
2950 BUG_ON(objnr
>= cachep
->num
);
2951 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2953 #ifdef CONFIG_DEBUG_SLAB_LEAK
2954 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2956 if (cachep
->flags
& SLAB_POISON
) {
2957 #ifdef CONFIG_DEBUG_PAGEALLOC
2958 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2959 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2960 kernel_map_pages(virt_to_page(objp
),
2961 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2963 poison_obj(cachep
, objp
, POISON_FREE
);
2966 poison_obj(cachep
, objp
, POISON_FREE
);
2972 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2977 /* Check slab's freelist to see if this obj is there. */
2978 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2980 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2983 if (entries
!= cachep
->num
- slabp
->inuse
) {
2985 printk(KERN_ERR
"slab: Internal list corruption detected in "
2986 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2987 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2989 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2992 printk("\n%03x:", i
);
2993 printk(" %02x", ((unsigned char *)slabp
)[i
]);
3000 #define kfree_debugcheck(x) do { } while(0)
3001 #define cache_free_debugcheck(x,objp,z) (objp)
3002 #define check_slabp(x,y) do { } while(0)
3005 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
3008 struct kmem_list3
*l3
;
3009 struct array_cache
*ac
;
3014 node
= numa_mem_id();
3015 ac
= cpu_cache_get(cachep
);
3016 batchcount
= ac
->batchcount
;
3017 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
3019 * If there was little recent activity on this cache, then
3020 * perform only a partial refill. Otherwise we could generate
3023 batchcount
= BATCHREFILL_LIMIT
;
3025 l3
= cachep
->nodelists
[node
];
3027 BUG_ON(ac
->avail
> 0 || !l3
);
3028 spin_lock(&l3
->list_lock
);
3030 /* See if we can refill from the shared array */
3031 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
)) {
3032 l3
->shared
->touched
= 1;
3036 while (batchcount
> 0) {
3037 struct list_head
*entry
;
3039 /* Get slab alloc is to come from. */
3040 entry
= l3
->slabs_partial
.next
;
3041 if (entry
== &l3
->slabs_partial
) {
3042 l3
->free_touched
= 1;
3043 entry
= l3
->slabs_free
.next
;
3044 if (entry
== &l3
->slabs_free
)
3048 slabp
= list_entry(entry
, struct slab
, list
);
3049 check_slabp(cachep
, slabp
);
3050 check_spinlock_acquired(cachep
);
3053 * The slab was either on partial or free list so
3054 * there must be at least one object available for
3057 BUG_ON(slabp
->inuse
>= cachep
->num
);
3059 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
3060 STATS_INC_ALLOCED(cachep
);
3061 STATS_INC_ACTIVE(cachep
);
3062 STATS_SET_HIGH(cachep
);
3064 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
3067 check_slabp(cachep
, slabp
);
3069 /* move slabp to correct slabp list: */
3070 list_del(&slabp
->list
);
3071 if (slabp
->free
== BUFCTL_END
)
3072 list_add(&slabp
->list
, &l3
->slabs_full
);
3074 list_add(&slabp
->list
, &l3
->slabs_partial
);
3078 l3
->free_objects
-= ac
->avail
;
3080 spin_unlock(&l3
->list_lock
);
3082 if (unlikely(!ac
->avail
)) {
3084 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3086 /* cache_grow can reenable interrupts, then ac could change. */
3087 ac
= cpu_cache_get(cachep
);
3088 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3091 if (!ac
->avail
) /* objects refilled by interrupt? */
3095 return ac
->entry
[--ac
->avail
];
3098 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3101 might_sleep_if(flags
& __GFP_WAIT
);
3103 kmem_flagcheck(cachep
, flags
);
3108 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3109 gfp_t flags
, void *objp
, void *caller
)
3113 if (cachep
->flags
& SLAB_POISON
) {
3114 #ifdef CONFIG_DEBUG_PAGEALLOC
3115 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3116 kernel_map_pages(virt_to_page(objp
),
3117 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3119 check_poison_obj(cachep
, objp
);
3121 check_poison_obj(cachep
, objp
);
3123 poison_obj(cachep
, objp
, POISON_INUSE
);
3125 if (cachep
->flags
& SLAB_STORE_USER
)
3126 *dbg_userword(cachep
, objp
) = caller
;
3128 if (cachep
->flags
& SLAB_RED_ZONE
) {
3129 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3130 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3131 slab_error(cachep
, "double free, or memory outside"
3132 " object was overwritten");
3134 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3135 objp
, *dbg_redzone1(cachep
, objp
),
3136 *dbg_redzone2(cachep
, objp
));
3138 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3139 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3141 #ifdef CONFIG_DEBUG_SLAB_LEAK
3146 slabp
= page_get_slab(virt_to_head_page(objp
));
3147 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3148 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3151 objp
+= obj_offset(cachep
);
3152 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3154 #if ARCH_SLAB_MINALIGN
3155 if ((u32
)objp
& (ARCH_SLAB_MINALIGN
-1)) {
3156 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3157 objp
, ARCH_SLAB_MINALIGN
);
3163 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3166 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3168 if (cachep
== &cache_cache
)
3171 return should_failslab(obj_size(cachep
), flags
, cachep
->flags
);
3174 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3177 struct array_cache
*ac
;
3181 ac
= cpu_cache_get(cachep
);
3182 if (likely(ac
->avail
)) {
3183 STATS_INC_ALLOCHIT(cachep
);
3185 objp
= ac
->entry
[--ac
->avail
];
3187 STATS_INC_ALLOCMISS(cachep
);
3188 objp
= cache_alloc_refill(cachep
, flags
);
3190 * the 'ac' may be updated by cache_alloc_refill(),
3191 * and kmemleak_erase() requires its correct value.
3193 ac
= cpu_cache_get(cachep
);
3196 * To avoid a false negative, if an object that is in one of the
3197 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3198 * treat the array pointers as a reference to the object.
3201 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3207 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3209 * If we are in_interrupt, then process context, including cpusets and
3210 * mempolicy, may not apply and should not be used for allocation policy.
3212 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3214 int nid_alloc
, nid_here
;
3216 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3218 nid_alloc
= nid_here
= numa_mem_id();
3220 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3221 nid_alloc
= cpuset_slab_spread_node();
3222 else if (current
->mempolicy
)
3223 nid_alloc
= slab_node(current
->mempolicy
);
3225 if (nid_alloc
!= nid_here
)
3226 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3231 * Fallback function if there was no memory available and no objects on a
3232 * certain node and fall back is permitted. First we scan all the
3233 * available nodelists for available objects. If that fails then we
3234 * perform an allocation without specifying a node. This allows the page
3235 * allocator to do its reclaim / fallback magic. We then insert the
3236 * slab into the proper nodelist and then allocate from it.
3238 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3240 struct zonelist
*zonelist
;
3244 enum zone_type high_zoneidx
= gfp_zone(flags
);
3248 if (flags
& __GFP_THISNODE
)
3252 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
3253 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3257 * Look through allowed nodes for objects available
3258 * from existing per node queues.
3260 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3261 nid
= zone_to_nid(zone
);
3263 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3264 cache
->nodelists
[nid
] &&
3265 cache
->nodelists
[nid
]->free_objects
) {
3266 obj
= ____cache_alloc_node(cache
,
3267 flags
| GFP_THISNODE
, nid
);
3275 * This allocation will be performed within the constraints
3276 * of the current cpuset / memory policy requirements.
3277 * We may trigger various forms of reclaim on the allowed
3278 * set and go into memory reserves if necessary.
3280 if (local_flags
& __GFP_WAIT
)
3282 kmem_flagcheck(cache
, flags
);
3283 obj
= kmem_getpages(cache
, local_flags
, numa_mem_id());
3284 if (local_flags
& __GFP_WAIT
)
3285 local_irq_disable();
3288 * Insert into the appropriate per node queues
3290 nid
= page_to_nid(virt_to_page(obj
));
3291 if (cache_grow(cache
, flags
, nid
, obj
)) {
3292 obj
= ____cache_alloc_node(cache
,
3293 flags
| GFP_THISNODE
, nid
);
3296 * Another processor may allocate the
3297 * objects in the slab since we are
3298 * not holding any locks.
3302 /* cache_grow already freed obj */
3312 * A interface to enable slab creation on nodeid
3314 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3317 struct list_head
*entry
;
3319 struct kmem_list3
*l3
;
3323 l3
= cachep
->nodelists
[nodeid
];
3328 spin_lock(&l3
->list_lock
);
3329 entry
= l3
->slabs_partial
.next
;
3330 if (entry
== &l3
->slabs_partial
) {
3331 l3
->free_touched
= 1;
3332 entry
= l3
->slabs_free
.next
;
3333 if (entry
== &l3
->slabs_free
)
3337 slabp
= list_entry(entry
, struct slab
, list
);
3338 check_spinlock_acquired_node(cachep
, nodeid
);
3339 check_slabp(cachep
, slabp
);
3341 STATS_INC_NODEALLOCS(cachep
);
3342 STATS_INC_ACTIVE(cachep
);
3343 STATS_SET_HIGH(cachep
);
3345 BUG_ON(slabp
->inuse
== cachep
->num
);
3347 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3348 check_slabp(cachep
, slabp
);
3350 /* move slabp to correct slabp list: */
3351 list_del(&slabp
->list
);
3353 if (slabp
->free
== BUFCTL_END
)
3354 list_add(&slabp
->list
, &l3
->slabs_full
);
3356 list_add(&slabp
->list
, &l3
->slabs_partial
);
3358 spin_unlock(&l3
->list_lock
);
3362 spin_unlock(&l3
->list_lock
);
3363 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3367 return fallback_alloc(cachep
, flags
);
3374 * kmem_cache_alloc_node - Allocate an object on the specified node
3375 * @cachep: The cache to allocate from.
3376 * @flags: See kmalloc().
3377 * @nodeid: node number of the target node.
3378 * @caller: return address of caller, used for debug information
3380 * Identical to kmem_cache_alloc but it will allocate memory on the given
3381 * node, which can improve the performance for cpu bound structures.
3383 * Fallback to other node is possible if __GFP_THISNODE is not set.
3385 static __always_inline
void *
3386 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3389 unsigned long save_flags
;
3391 int slab_node
= numa_mem_id();
3393 flags
&= gfp_allowed_mask
;
3395 lockdep_trace_alloc(flags
);
3397 if (slab_should_failslab(cachep
, flags
))
3400 cache_alloc_debugcheck_before(cachep
, flags
);
3401 local_irq_save(save_flags
);
3406 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3407 /* Node not bootstrapped yet */
3408 ptr
= fallback_alloc(cachep
, flags
);
3412 if (nodeid
== slab_node
) {
3414 * Use the locally cached objects if possible.
3415 * However ____cache_alloc does not allow fallback
3416 * to other nodes. It may fail while we still have
3417 * objects on other nodes available.
3419 ptr
= ____cache_alloc(cachep
, flags
);
3423 /* ___cache_alloc_node can fall back to other nodes */
3424 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3426 local_irq_restore(save_flags
);
3427 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3428 kmemleak_alloc_recursive(ptr
, obj_size(cachep
), 1, cachep
->flags
,
3432 kmemcheck_slab_alloc(cachep
, flags
, ptr
, obj_size(cachep
));
3434 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3435 memset(ptr
, 0, obj_size(cachep
));
3440 static __always_inline
void *
3441 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3445 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3446 objp
= alternate_node_alloc(cache
, flags
);
3450 objp
= ____cache_alloc(cache
, flags
);
3453 * We may just have run out of memory on the local node.
3454 * ____cache_alloc_node() knows how to locate memory on other nodes
3457 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3464 static __always_inline
void *
3465 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3467 return ____cache_alloc(cachep
, flags
);
3470 #endif /* CONFIG_NUMA */
3472 static __always_inline
void *
3473 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3475 unsigned long save_flags
;
3478 flags
&= gfp_allowed_mask
;
3480 lockdep_trace_alloc(flags
);
3482 if (slab_should_failslab(cachep
, flags
))
3485 cache_alloc_debugcheck_before(cachep
, flags
);
3486 local_irq_save(save_flags
);
3487 objp
= __do_cache_alloc(cachep
, flags
);
3488 local_irq_restore(save_flags
);
3489 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3490 kmemleak_alloc_recursive(objp
, obj_size(cachep
), 1, cachep
->flags
,
3495 kmemcheck_slab_alloc(cachep
, flags
, objp
, obj_size(cachep
));
3497 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3498 memset(objp
, 0, obj_size(cachep
));
3504 * Caller needs to acquire correct kmem_list's list_lock
3506 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3510 struct kmem_list3
*l3
;
3512 for (i
= 0; i
< nr_objects
; i
++) {
3513 void *objp
= objpp
[i
];
3516 slabp
= virt_to_slab(objp
);
3517 l3
= cachep
->nodelists
[node
];
3518 list_del(&slabp
->list
);
3519 check_spinlock_acquired_node(cachep
, node
);
3520 check_slabp(cachep
, slabp
);
3521 slab_put_obj(cachep
, slabp
, objp
, node
);
3522 STATS_DEC_ACTIVE(cachep
);
3524 check_slabp(cachep
, slabp
);
3526 /* fixup slab chains */
3527 if (slabp
->inuse
== 0) {
3528 if (l3
->free_objects
> l3
->free_limit
) {
3529 l3
->free_objects
-= cachep
->num
;
3530 /* No need to drop any previously held
3531 * lock here, even if we have a off-slab slab
3532 * descriptor it is guaranteed to come from
3533 * a different cache, refer to comments before
3536 slab_destroy(cachep
, slabp
);
3538 list_add(&slabp
->list
, &l3
->slabs_free
);
3541 /* Unconditionally move a slab to the end of the
3542 * partial list on free - maximum time for the
3543 * other objects to be freed, too.
3545 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3550 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3553 struct kmem_list3
*l3
;
3554 int node
= numa_mem_id();
3556 batchcount
= ac
->batchcount
;
3558 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3561 l3
= cachep
->nodelists
[node
];
3562 spin_lock(&l3
->list_lock
);
3564 struct array_cache
*shared_array
= l3
->shared
;
3565 int max
= shared_array
->limit
- shared_array
->avail
;
3567 if (batchcount
> max
)
3569 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3570 ac
->entry
, sizeof(void *) * batchcount
);
3571 shared_array
->avail
+= batchcount
;
3576 free_block(cachep
, ac
->entry
, batchcount
, node
);
3581 struct list_head
*p
;
3583 p
= l3
->slabs_free
.next
;
3584 while (p
!= &(l3
->slabs_free
)) {
3587 slabp
= list_entry(p
, struct slab
, list
);
3588 BUG_ON(slabp
->inuse
);
3593 STATS_SET_FREEABLE(cachep
, i
);
3596 spin_unlock(&l3
->list_lock
);
3597 ac
->avail
-= batchcount
;
3598 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3602 * Release an obj back to its cache. If the obj has a constructed state, it must
3603 * be in this state _before_ it is released. Called with disabled ints.
3605 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3607 struct array_cache
*ac
= cpu_cache_get(cachep
);
3610 kmemleak_free_recursive(objp
, cachep
->flags
);
3611 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3613 kmemcheck_slab_free(cachep
, objp
, obj_size(cachep
));
3616 * Skip calling cache_free_alien() when the platform is not numa.
3617 * This will avoid cache misses that happen while accessing slabp (which
3618 * is per page memory reference) to get nodeid. Instead use a global
3619 * variable to skip the call, which is mostly likely to be present in
3622 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3625 if (likely(ac
->avail
< ac
->limit
)) {
3626 STATS_INC_FREEHIT(cachep
);
3627 ac
->entry
[ac
->avail
++] = objp
;
3630 STATS_INC_FREEMISS(cachep
);
3631 cache_flusharray(cachep
, ac
);
3632 ac
->entry
[ac
->avail
++] = objp
;
3637 * kmem_cache_alloc - Allocate an object
3638 * @cachep: The cache to allocate from.
3639 * @flags: See kmalloc().
3641 * Allocate an object from this cache. The flags are only relevant
3642 * if the cache has no available objects.
3644 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3646 void *ret
= __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3648 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3649 obj_size(cachep
), cachep
->buffer_size
, flags
);
3653 EXPORT_SYMBOL(kmem_cache_alloc
);
3655 #ifdef CONFIG_TRACING
3657 kmem_cache_alloc_trace(size_t size
, struct kmem_cache
*cachep
, gfp_t flags
)
3661 ret
= __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3663 trace_kmalloc(_RET_IP_
, ret
,
3664 size
, slab_buffer_size(cachep
), flags
);
3667 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
3671 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3673 void *ret
= __cache_alloc_node(cachep
, flags
, nodeid
,
3674 __builtin_return_address(0));
3676 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3677 obj_size(cachep
), cachep
->buffer_size
,
3682 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3684 #ifdef CONFIG_TRACING
3685 void *kmem_cache_alloc_node_trace(size_t size
,
3686 struct kmem_cache
*cachep
,
3692 ret
= __cache_alloc_node(cachep
, flags
, nodeid
,
3693 __builtin_return_address(0));
3694 trace_kmalloc_node(_RET_IP_
, ret
,
3695 size
, slab_buffer_size(cachep
),
3699 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
3702 static __always_inline
void *
3703 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3705 struct kmem_cache
*cachep
;
3707 cachep
= kmem_find_general_cachep(size
, flags
);
3708 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3710 return kmem_cache_alloc_node_trace(size
, cachep
, flags
, node
);
3713 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3714 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3716 return __do_kmalloc_node(size
, flags
, node
,
3717 __builtin_return_address(0));
3719 EXPORT_SYMBOL(__kmalloc_node
);
3721 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3722 int node
, unsigned long caller
)
3724 return __do_kmalloc_node(size
, flags
, node
, (void *)caller
);
3726 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3728 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3730 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3732 EXPORT_SYMBOL(__kmalloc_node
);
3733 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3734 #endif /* CONFIG_NUMA */
3737 * __do_kmalloc - allocate memory
3738 * @size: how many bytes of memory are required.
3739 * @flags: the type of memory to allocate (see kmalloc).
3740 * @caller: function caller for debug tracking of the caller
3742 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3745 struct kmem_cache
*cachep
;
3748 /* If you want to save a few bytes .text space: replace
3750 * Then kmalloc uses the uninlined functions instead of the inline
3753 cachep
= __find_general_cachep(size
, flags
);
3754 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3756 ret
= __cache_alloc(cachep
, flags
, caller
);
3758 trace_kmalloc((unsigned long) caller
, ret
,
3759 size
, cachep
->buffer_size
, flags
);
3765 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3766 void *__kmalloc(size_t size
, gfp_t flags
)
3768 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3770 EXPORT_SYMBOL(__kmalloc
);
3772 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3774 return __do_kmalloc(size
, flags
, (void *)caller
);
3776 EXPORT_SYMBOL(__kmalloc_track_caller
);
3779 void *__kmalloc(size_t size
, gfp_t flags
)
3781 return __do_kmalloc(size
, flags
, NULL
);
3783 EXPORT_SYMBOL(__kmalloc
);
3787 * kmem_cache_free - Deallocate an object
3788 * @cachep: The cache the allocation was from.
3789 * @objp: The previously allocated object.
3791 * Free an object which was previously allocated from this
3794 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3796 unsigned long flags
;
3798 local_irq_save(flags
);
3799 debug_check_no_locks_freed(objp
, obj_size(cachep
));
3800 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3801 debug_check_no_obj_freed(objp
, obj_size(cachep
));
3802 __cache_free(cachep
, objp
);
3803 local_irq_restore(flags
);
3805 trace_kmem_cache_free(_RET_IP_
, objp
);
3807 EXPORT_SYMBOL(kmem_cache_free
);
3810 * kfree - free previously allocated memory
3811 * @objp: pointer returned by kmalloc.
3813 * If @objp is NULL, no operation is performed.
3815 * Don't free memory not originally allocated by kmalloc()
3816 * or you will run into trouble.
3818 void kfree(const void *objp
)
3820 struct kmem_cache
*c
;
3821 unsigned long flags
;
3823 trace_kfree(_RET_IP_
, objp
);
3825 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3827 local_irq_save(flags
);
3828 kfree_debugcheck(objp
);
3829 c
= virt_to_cache(objp
);
3830 debug_check_no_locks_freed(objp
, obj_size(c
));
3831 debug_check_no_obj_freed(objp
, obj_size(c
));
3832 __cache_free(c
, (void *)objp
);
3833 local_irq_restore(flags
);
3835 EXPORT_SYMBOL(kfree
);
3837 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3839 return obj_size(cachep
);
3841 EXPORT_SYMBOL(kmem_cache_size
);
3843 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3845 return cachep
->name
;
3847 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3850 * This initializes kmem_list3 or resizes various caches for all nodes.
3852 static int alloc_kmemlist(struct kmem_cache
*cachep
, gfp_t gfp
)
3855 struct kmem_list3
*l3
;
3856 struct array_cache
*new_shared
;
3857 struct array_cache
**new_alien
= NULL
;
3859 for_each_online_node(node
) {
3861 if (use_alien_caches
) {
3862 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
3868 if (cachep
->shared
) {
3869 new_shared
= alloc_arraycache(node
,
3870 cachep
->shared
*cachep
->batchcount
,
3873 free_alien_cache(new_alien
);
3878 l3
= cachep
->nodelists
[node
];
3880 struct array_cache
*shared
= l3
->shared
;
3882 spin_lock_irq(&l3
->list_lock
);
3885 free_block(cachep
, shared
->entry
,
3886 shared
->avail
, node
);
3888 l3
->shared
= new_shared
;
3890 l3
->alien
= new_alien
;
3893 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3894 cachep
->batchcount
+ cachep
->num
;
3895 spin_unlock_irq(&l3
->list_lock
);
3897 free_alien_cache(new_alien
);
3900 l3
= kmalloc_node(sizeof(struct kmem_list3
), gfp
, node
);
3902 free_alien_cache(new_alien
);
3907 kmem_list3_init(l3
);
3908 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3909 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3910 l3
->shared
= new_shared
;
3911 l3
->alien
= new_alien
;
3912 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3913 cachep
->batchcount
+ cachep
->num
;
3914 cachep
->nodelists
[node
] = l3
;
3919 if (!cachep
->next
.next
) {
3920 /* Cache is not active yet. Roll back what we did */
3923 if (cachep
->nodelists
[node
]) {
3924 l3
= cachep
->nodelists
[node
];
3927 free_alien_cache(l3
->alien
);
3929 cachep
->nodelists
[node
] = NULL
;
3937 struct ccupdate_struct
{
3938 struct kmem_cache
*cachep
;
3939 struct array_cache
*new[NR_CPUS
];
3942 static void do_ccupdate_local(void *info
)
3944 struct ccupdate_struct
*new = info
;
3945 struct array_cache
*old
;
3948 old
= cpu_cache_get(new->cachep
);
3950 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3951 new->new[smp_processor_id()] = old
;
3954 /* Always called with the cache_chain_mutex held */
3955 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3956 int batchcount
, int shared
, gfp_t gfp
)
3958 struct ccupdate_struct
*new;
3961 new = kzalloc(sizeof(*new), gfp
);
3965 for_each_online_cpu(i
) {
3966 new->new[i
] = alloc_arraycache(cpu_to_mem(i
), limit
,
3969 for (i
--; i
>= 0; i
--)
3975 new->cachep
= cachep
;
3977 on_each_cpu(do_ccupdate_local
, (void *)new, 1);
3980 cachep
->batchcount
= batchcount
;
3981 cachep
->limit
= limit
;
3982 cachep
->shared
= shared
;
3984 for_each_online_cpu(i
) {
3985 struct array_cache
*ccold
= new->new[i
];
3988 spin_lock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
3989 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_mem(i
));
3990 spin_unlock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
3994 return alloc_kmemlist(cachep
, gfp
);
3997 /* Called with cache_chain_mutex held always */
3998 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
4004 * The head array serves three purposes:
4005 * - create a LIFO ordering, i.e. return objects that are cache-warm
4006 * - reduce the number of spinlock operations.
4007 * - reduce the number of linked list operations on the slab and
4008 * bufctl chains: array operations are cheaper.
4009 * The numbers are guessed, we should auto-tune as described by
4012 if (cachep
->buffer_size
> 131072)
4014 else if (cachep
->buffer_size
> PAGE_SIZE
)
4016 else if (cachep
->buffer_size
> 1024)
4018 else if (cachep
->buffer_size
> 256)
4024 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4025 * allocation behaviour: Most allocs on one cpu, most free operations
4026 * on another cpu. For these cases, an efficient object passing between
4027 * cpus is necessary. This is provided by a shared array. The array
4028 * replaces Bonwick's magazine layer.
4029 * On uniprocessor, it's functionally equivalent (but less efficient)
4030 * to a larger limit. Thus disabled by default.
4033 if (cachep
->buffer_size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
4038 * With debugging enabled, large batchcount lead to excessively long
4039 * periods with disabled local interrupts. Limit the batchcount
4044 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
, gfp
);
4046 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4047 cachep
->name
, -err
);
4052 * Drain an array if it contains any elements taking the l3 lock only if
4053 * necessary. Note that the l3 listlock also protects the array_cache
4054 * if drain_array() is used on the shared array.
4056 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4057 struct array_cache
*ac
, int force
, int node
)
4061 if (!ac
|| !ac
->avail
)
4063 if (ac
->touched
&& !force
) {
4066 spin_lock_irq(&l3
->list_lock
);
4068 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4069 if (tofree
> ac
->avail
)
4070 tofree
= (ac
->avail
+ 1) / 2;
4071 free_block(cachep
, ac
->entry
, tofree
, node
);
4072 ac
->avail
-= tofree
;
4073 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4074 sizeof(void *) * ac
->avail
);
4076 spin_unlock_irq(&l3
->list_lock
);
4081 * cache_reap - Reclaim memory from caches.
4082 * @w: work descriptor
4084 * Called from workqueue/eventd every few seconds.
4086 * - clear the per-cpu caches for this CPU.
4087 * - return freeable pages to the main free memory pool.
4089 * If we cannot acquire the cache chain mutex then just give up - we'll try
4090 * again on the next iteration.
4092 static void cache_reap(struct work_struct
*w
)
4094 struct kmem_cache
*searchp
;
4095 struct kmem_list3
*l3
;
4096 int node
= numa_mem_id();
4097 struct delayed_work
*work
= to_delayed_work(w
);
4099 if (!mutex_trylock(&cache_chain_mutex
))
4100 /* Give up. Setup the next iteration. */
4103 list_for_each_entry(searchp
, &cache_chain
, next
) {
4107 * We only take the l3 lock if absolutely necessary and we
4108 * have established with reasonable certainty that
4109 * we can do some work if the lock was obtained.
4111 l3
= searchp
->nodelists
[node
];
4113 reap_alien(searchp
, l3
);
4115 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4118 * These are racy checks but it does not matter
4119 * if we skip one check or scan twice.
4121 if (time_after(l3
->next_reap
, jiffies
))
4124 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4126 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4128 if (l3
->free_touched
)
4129 l3
->free_touched
= 0;
4133 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4134 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4135 STATS_ADD_REAPED(searchp
, freed
);
4141 mutex_unlock(&cache_chain_mutex
);
4144 /* Set up the next iteration */
4145 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4148 #ifdef CONFIG_SLABINFO
4150 static void print_slabinfo_header(struct seq_file
*m
)
4153 * Output format version, so at least we can change it
4154 * without _too_ many complaints.
4157 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4159 seq_puts(m
, "slabinfo - version: 2.1\n");
4161 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4162 "<objperslab> <pagesperslab>");
4163 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4164 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4166 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4167 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4168 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4173 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4177 mutex_lock(&cache_chain_mutex
);
4179 print_slabinfo_header(m
);
4181 return seq_list_start(&cache_chain
, *pos
);
4184 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4186 return seq_list_next(p
, &cache_chain
, pos
);
4189 static void s_stop(struct seq_file
*m
, void *p
)
4191 mutex_unlock(&cache_chain_mutex
);
4194 static int s_show(struct seq_file
*m
, void *p
)
4196 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4198 unsigned long active_objs
;
4199 unsigned long num_objs
;
4200 unsigned long active_slabs
= 0;
4201 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4205 struct kmem_list3
*l3
;
4209 for_each_online_node(node
) {
4210 l3
= cachep
->nodelists
[node
];
4215 spin_lock_irq(&l3
->list_lock
);
4217 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4218 if (slabp
->inuse
!= cachep
->num
&& !error
)
4219 error
= "slabs_full accounting error";
4220 active_objs
+= cachep
->num
;
4223 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4224 if (slabp
->inuse
== cachep
->num
&& !error
)
4225 error
= "slabs_partial inuse accounting error";
4226 if (!slabp
->inuse
&& !error
)
4227 error
= "slabs_partial/inuse accounting error";
4228 active_objs
+= slabp
->inuse
;
4231 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4232 if (slabp
->inuse
&& !error
)
4233 error
= "slabs_free/inuse accounting error";
4236 free_objects
+= l3
->free_objects
;
4238 shared_avail
+= l3
->shared
->avail
;
4240 spin_unlock_irq(&l3
->list_lock
);
4242 num_slabs
+= active_slabs
;
4243 num_objs
= num_slabs
* cachep
->num
;
4244 if (num_objs
- active_objs
!= free_objects
&& !error
)
4245 error
= "free_objects accounting error";
4247 name
= cachep
->name
;
4249 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4251 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4252 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4253 cachep
->num
, (1 << cachep
->gfporder
));
4254 seq_printf(m
, " : tunables %4u %4u %4u",
4255 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4256 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4257 active_slabs
, num_slabs
, shared_avail
);
4260 unsigned long high
= cachep
->high_mark
;
4261 unsigned long allocs
= cachep
->num_allocations
;
4262 unsigned long grown
= cachep
->grown
;
4263 unsigned long reaped
= cachep
->reaped
;
4264 unsigned long errors
= cachep
->errors
;
4265 unsigned long max_freeable
= cachep
->max_freeable
;
4266 unsigned long node_allocs
= cachep
->node_allocs
;
4267 unsigned long node_frees
= cachep
->node_frees
;
4268 unsigned long overflows
= cachep
->node_overflow
;
4270 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu "
4271 "%4lu %4lu %4lu %4lu %4lu",
4272 allocs
, high
, grown
,
4273 reaped
, errors
, max_freeable
, node_allocs
,
4274 node_frees
, overflows
);
4278 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4279 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4280 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4281 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4283 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4284 allochit
, allocmiss
, freehit
, freemiss
);
4292 * slabinfo_op - iterator that generates /proc/slabinfo
4301 * num-pages-per-slab
4302 * + further values on SMP and with statistics enabled
4305 static const struct seq_operations slabinfo_op
= {
4312 #define MAX_SLABINFO_WRITE 128
4314 * slabinfo_write - Tuning for the slab allocator
4316 * @buffer: user buffer
4317 * @count: data length
4320 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4321 size_t count
, loff_t
*ppos
)
4323 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4324 int limit
, batchcount
, shared
, res
;
4325 struct kmem_cache
*cachep
;
4327 if (count
> MAX_SLABINFO_WRITE
)
4329 if (copy_from_user(&kbuf
, buffer
, count
))
4331 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4333 tmp
= strchr(kbuf
, ' ');
4338 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4341 /* Find the cache in the chain of caches. */
4342 mutex_lock(&cache_chain_mutex
);
4344 list_for_each_entry(cachep
, &cache_chain
, next
) {
4345 if (!strcmp(cachep
->name
, kbuf
)) {
4346 if (limit
< 1 || batchcount
< 1 ||
4347 batchcount
> limit
|| shared
< 0) {
4350 res
= do_tune_cpucache(cachep
, limit
,
4357 mutex_unlock(&cache_chain_mutex
);
4363 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4365 return seq_open(file
, &slabinfo_op
);
4368 static const struct file_operations proc_slabinfo_operations
= {
4369 .open
= slabinfo_open
,
4371 .write
= slabinfo_write
,
4372 .llseek
= seq_lseek
,
4373 .release
= seq_release
,
4376 #ifdef CONFIG_DEBUG_SLAB_LEAK
4378 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4380 mutex_lock(&cache_chain_mutex
);
4381 return seq_list_start(&cache_chain
, *pos
);
4384 static inline int add_caller(unsigned long *n
, unsigned long v
)
4394 unsigned long *q
= p
+ 2 * i
;
4408 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4414 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4420 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4421 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4423 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4428 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4430 #ifdef CONFIG_KALLSYMS
4431 unsigned long offset
, size
;
4432 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4434 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4435 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4437 seq_printf(m
, " [%s]", modname
);
4441 seq_printf(m
, "%p", (void *)address
);
4444 static int leaks_show(struct seq_file
*m
, void *p
)
4446 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4448 struct kmem_list3
*l3
;
4450 unsigned long *n
= m
->private;
4454 if (!(cachep
->flags
& SLAB_STORE_USER
))
4456 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4459 /* OK, we can do it */
4463 for_each_online_node(node
) {
4464 l3
= cachep
->nodelists
[node
];
4469 spin_lock_irq(&l3
->list_lock
);
4471 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4472 handle_slab(n
, cachep
, slabp
);
4473 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4474 handle_slab(n
, cachep
, slabp
);
4475 spin_unlock_irq(&l3
->list_lock
);
4477 name
= cachep
->name
;
4479 /* Increase the buffer size */
4480 mutex_unlock(&cache_chain_mutex
);
4481 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4483 /* Too bad, we are really out */
4485 mutex_lock(&cache_chain_mutex
);
4488 *(unsigned long *)m
->private = n
[0] * 2;
4490 mutex_lock(&cache_chain_mutex
);
4491 /* Now make sure this entry will be retried */
4495 for (i
= 0; i
< n
[1]; i
++) {
4496 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4497 show_symbol(m
, n
[2*i
+2]);
4504 static const struct seq_operations slabstats_op
= {
4505 .start
= leaks_start
,
4511 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4513 unsigned long *n
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
4516 ret
= seq_open(file
, &slabstats_op
);
4518 struct seq_file
*m
= file
->private_data
;
4519 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4528 static const struct file_operations proc_slabstats_operations
= {
4529 .open
= slabstats_open
,
4531 .llseek
= seq_lseek
,
4532 .release
= seq_release_private
,
4536 static int __init
slab_proc_init(void)
4538 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4539 #ifdef CONFIG_DEBUG_SLAB_LEAK
4540 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4544 module_init(slab_proc_init
);
4548 * ksize - get the actual amount of memory allocated for a given object
4549 * @objp: Pointer to the object
4551 * kmalloc may internally round up allocations and return more memory
4552 * than requested. ksize() can be used to determine the actual amount of
4553 * memory allocated. The caller may use this additional memory, even though
4554 * a smaller amount of memory was initially specified with the kmalloc call.
4555 * The caller must guarantee that objp points to a valid object previously
4556 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4557 * must not be freed during the duration of the call.
4559 size_t ksize(const void *objp
)
4562 if (unlikely(objp
== ZERO_SIZE_PTR
))
4565 return obj_size(virt_to_cache(objp
));
4567 EXPORT_SYMBOL(ksize
);