drm/i915: Clear the vblank status bit before polling for the next vblank
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
blob3fc767bcbaa0ebb598bed542975d9e66fa502069
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
40 #include "drm_crtc_helper.h"
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc);
49 typedef struct {
50 /* given values */
51 int n;
52 int m1, m2;
53 int p1, p2;
54 /* derived values */
55 int dot;
56 int vco;
57 int m;
58 int p;
59 } intel_clock_t;
61 typedef struct {
62 int min, max;
63 } intel_range_t;
65 typedef struct {
66 int dot_limit;
67 int p2_slow, p2_fast;
68 } intel_p2_t;
70 #define INTEL_P2_NUM 2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73 intel_range_t dot, vco, n, m, m1, m2, p, p1;
74 intel_p2_t p2;
75 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76 int, int, intel_clock_t *);
79 #define I8XX_DOT_MIN 25000
80 #define I8XX_DOT_MAX 350000
81 #define I8XX_VCO_MIN 930000
82 #define I8XX_VCO_MAX 1400000
83 #define I8XX_N_MIN 3
84 #define I8XX_N_MAX 16
85 #define I8XX_M_MIN 96
86 #define I8XX_M_MAX 140
87 #define I8XX_M1_MIN 18
88 #define I8XX_M1_MAX 26
89 #define I8XX_M2_MIN 6
90 #define I8XX_M2_MAX 16
91 #define I8XX_P_MIN 4
92 #define I8XX_P_MAX 128
93 #define I8XX_P1_MIN 2
94 #define I8XX_P1_MAX 33
95 #define I8XX_P1_LVDS_MIN 1
96 #define I8XX_P1_LVDS_MAX 6
97 #define I8XX_P2_SLOW 4
98 #define I8XX_P2_FAST 2
99 #define I8XX_P2_LVDS_SLOW 14
100 #define I8XX_P2_LVDS_FAST 7
101 #define I8XX_P2_SLOW_LIMIT 165000
103 #define I9XX_DOT_MIN 20000
104 #define I9XX_DOT_MAX 400000
105 #define I9XX_VCO_MIN 1400000
106 #define I9XX_VCO_MAX 2800000
107 #define PINEVIEW_VCO_MIN 1700000
108 #define PINEVIEW_VCO_MAX 3500000
109 #define I9XX_N_MIN 1
110 #define I9XX_N_MAX 6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN 3
113 #define PINEVIEW_N_MAX 6
114 #define I9XX_M_MIN 70
115 #define I9XX_M_MAX 120
116 #define PINEVIEW_M_MIN 2
117 #define PINEVIEW_M_MAX 256
118 #define I9XX_M1_MIN 10
119 #define I9XX_M1_MAX 22
120 #define I9XX_M2_MIN 5
121 #define I9XX_M2_MAX 9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN 0
124 #define PINEVIEW_M1_MAX 0
125 #define PINEVIEW_M2_MIN 0
126 #define PINEVIEW_M2_MAX 254
127 #define I9XX_P_SDVO_DAC_MIN 5
128 #define I9XX_P_SDVO_DAC_MAX 80
129 #define I9XX_P_LVDS_MIN 7
130 #define I9XX_P_LVDS_MAX 98
131 #define PINEVIEW_P_LVDS_MIN 7
132 #define PINEVIEW_P_LVDS_MAX 112
133 #define I9XX_P1_MIN 1
134 #define I9XX_P1_MAX 8
135 #define I9XX_P2_SDVO_DAC_SLOW 10
136 #define I9XX_P2_SDVO_DAC_FAST 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
138 #define I9XX_P2_LVDS_SLOW 14
139 #define I9XX_P2_LVDS_FAST 7
140 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN 25000
144 #define G4X_DOT_SDVO_MAX 270000
145 #define G4X_VCO_MIN 1750000
146 #define G4X_VCO_MAX 3500000
147 #define G4X_N_SDVO_MIN 1
148 #define G4X_N_SDVO_MAX 4
149 #define G4X_M_SDVO_MIN 104
150 #define G4X_M_SDVO_MAX 138
151 #define G4X_M1_SDVO_MIN 17
152 #define G4X_M1_SDVO_MAX 23
153 #define G4X_M2_SDVO_MIN 5
154 #define G4X_M2_SDVO_MAX 11
155 #define G4X_P_SDVO_MIN 10
156 #define G4X_P_SDVO_MAX 30
157 #define G4X_P1_SDVO_MIN 1
158 #define G4X_P1_SDVO_MAX 3
159 #define G4X_P2_SDVO_SLOW 10
160 #define G4X_P2_SDVO_FAST 10
161 #define G4X_P2_SDVO_LIMIT 270000
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN 22000
165 #define G4X_DOT_HDMI_DAC_MAX 400000
166 #define G4X_N_HDMI_DAC_MIN 1
167 #define G4X_N_HDMI_DAC_MAX 4
168 #define G4X_M_HDMI_DAC_MIN 104
169 #define G4X_M_HDMI_DAC_MAX 138
170 #define G4X_M1_HDMI_DAC_MIN 16
171 #define G4X_M1_HDMI_DAC_MAX 23
172 #define G4X_M2_HDMI_DAC_MIN 5
173 #define G4X_M2_HDMI_DAC_MAX 11
174 #define G4X_P_HDMI_DAC_MIN 5
175 #define G4X_P_HDMI_DAC_MAX 80
176 #define G4X_P1_HDMI_DAC_MIN 1
177 #define G4X_P1_HDMI_DAC_MAX 8
178 #define G4X_P2_HDMI_DAC_SLOW 10
179 #define G4X_P2_HDMI_DAC_FAST 5
180 #define G4X_P2_HDMI_DAC_LIMIT 165000
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN 161670
222 #define G4X_DOT_DISPLAY_PORT_MAX 227000
223 #define G4X_N_DISPLAY_PORT_MIN 1
224 #define G4X_N_DISPLAY_PORT_MAX 2
225 #define G4X_M_DISPLAY_PORT_MIN 97
226 #define G4X_M_DISPLAY_PORT_MAX 108
227 #define G4X_M1_DISPLAY_PORT_MIN 0x10
228 #define G4X_M1_DISPLAY_PORT_MAX 0x12
229 #define G4X_M2_DISPLAY_PORT_MIN 0x05
230 #define G4X_M2_DISPLAY_PORT_MAX 0x06
231 #define G4X_P_DISPLAY_PORT_MIN 10
232 #define G4X_P_DISPLAY_PORT_MAX 20
233 #define G4X_P1_DISPLAY_PORT_MIN 1
234 #define G4X_P1_DISPLAY_PORT_MAX 2
235 #define G4X_P2_DISPLAY_PORT_SLOW 10
236 #define G4X_P2_DISPLAY_PORT_FAST 10
237 #define G4X_P2_DISPLAY_PORT_LIMIT 0
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241 N/M1/M2, so here the range value for them is (actual_value-2).
243 #define IRONLAKE_DOT_MIN 25000
244 #define IRONLAKE_DOT_MAX 350000
245 #define IRONLAKE_VCO_MIN 1760000
246 #define IRONLAKE_VCO_MAX 3510000
247 #define IRONLAKE_M1_MIN 12
248 #define IRONLAKE_M1_MAX 22
249 #define IRONLAKE_M2_MIN 5
250 #define IRONLAKE_M2_MAX 9
251 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
253 /* We have parameter ranges for different type of outputs. */
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN 1
257 #define IRONLAKE_DAC_N_MAX 5
258 #define IRONLAKE_DAC_M_MIN 79
259 #define IRONLAKE_DAC_M_MAX 127
260 #define IRONLAKE_DAC_P_MIN 5
261 #define IRONLAKE_DAC_P_MAX 80
262 #define IRONLAKE_DAC_P1_MIN 1
263 #define IRONLAKE_DAC_P1_MAX 8
264 #define IRONLAKE_DAC_P2_SLOW 10
265 #define IRONLAKE_DAC_P2_FAST 5
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN 1
269 #define IRONLAKE_LVDS_S_N_MAX 3
270 #define IRONLAKE_LVDS_S_M_MIN 79
271 #define IRONLAKE_LVDS_S_M_MAX 118
272 #define IRONLAKE_LVDS_S_P_MIN 28
273 #define IRONLAKE_LVDS_S_P_MAX 112
274 #define IRONLAKE_LVDS_S_P1_MIN 2
275 #define IRONLAKE_LVDS_S_P1_MAX 8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN 1
281 #define IRONLAKE_LVDS_D_N_MAX 3
282 #define IRONLAKE_LVDS_D_M_MIN 79
283 #define IRONLAKE_LVDS_D_M_MAX 127
284 #define IRONLAKE_LVDS_D_P_MIN 14
285 #define IRONLAKE_LVDS_D_P_MAX 56
286 #define IRONLAKE_LVDS_D_P1_MIN 2
287 #define IRONLAKE_LVDS_D_P1_MAX 8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN 1
317 #define IRONLAKE_DP_N_MAX 2
318 #define IRONLAKE_DP_M_MIN 81
319 #define IRONLAKE_DP_M_MAX 90
320 #define IRONLAKE_DP_P_MIN 10
321 #define IRONLAKE_DP_P_MAX 20
322 #define IRONLAKE_DP_P2_FAST 10
323 #define IRONLAKE_DP_P2_SLOW 10
324 #define IRONLAKE_DP_P2_LIMIT 0
325 #define IRONLAKE_DP_P1_MIN 1
326 #define IRONLAKE_DP_P1_MAX 2
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333 int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336 int target, int refclk, intel_clock_t *best_clock);
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340 int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343 int target, int refclk, intel_clock_t *best_clock);
345 static const intel_limit_t intel_limits_i8xx_dvo = {
346 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
347 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
348 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
349 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
350 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
351 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
352 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
353 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
354 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
355 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
356 .find_pll = intel_find_best_PLL,
359 static const intel_limit_t intel_limits_i8xx_lvds = {
360 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
361 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
362 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
363 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
364 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
365 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
366 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
367 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
368 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
369 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
370 .find_pll = intel_find_best_PLL,
373 static const intel_limit_t intel_limits_i9xx_sdvo = {
374 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
375 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
376 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
377 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
378 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
379 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
380 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
381 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
382 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
383 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
384 .find_pll = intel_find_best_PLL,
387 static const intel_limit_t intel_limits_i9xx_lvds = {
388 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
389 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
390 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
391 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
392 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
393 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
394 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
395 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
396 /* The single-channel range is 25-112Mhz, and dual-channel
397 * is 80-224Mhz. Prefer single channel as much as possible.
399 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
400 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
401 .find_pll = intel_find_best_PLL,
404 /* below parameter and function is for G4X Chipset Family*/
405 static const intel_limit_t intel_limits_g4x_sdvo = {
406 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
407 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
408 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
409 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
410 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
411 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
412 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
413 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
414 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
415 .p2_slow = G4X_P2_SDVO_SLOW,
416 .p2_fast = G4X_P2_SDVO_FAST
418 .find_pll = intel_g4x_find_best_PLL,
421 static const intel_limit_t intel_limits_g4x_hdmi = {
422 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
423 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
424 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
425 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
426 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
427 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
428 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
429 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
430 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
431 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
432 .p2_fast = G4X_P2_HDMI_DAC_FAST
434 .find_pll = intel_g4x_find_best_PLL,
437 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
438 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
439 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
440 .vco = { .min = G4X_VCO_MIN,
441 .max = G4X_VCO_MAX },
442 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
443 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
444 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
445 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
446 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
447 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
448 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
449 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
450 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
451 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
452 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
453 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
454 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
455 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
456 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
458 .find_pll = intel_g4x_find_best_PLL,
461 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
462 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
463 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
464 .vco = { .min = G4X_VCO_MIN,
465 .max = G4X_VCO_MAX },
466 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
467 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
468 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
469 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
470 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
471 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
472 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
473 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
474 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
475 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
476 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
477 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
478 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
479 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
480 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
482 .find_pll = intel_g4x_find_best_PLL,
485 static const intel_limit_t intel_limits_g4x_display_port = {
486 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
487 .max = G4X_DOT_DISPLAY_PORT_MAX },
488 .vco = { .min = G4X_VCO_MIN,
489 .max = G4X_VCO_MAX},
490 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
491 .max = G4X_N_DISPLAY_PORT_MAX },
492 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
493 .max = G4X_M_DISPLAY_PORT_MAX },
494 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
495 .max = G4X_M1_DISPLAY_PORT_MAX },
496 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
497 .max = G4X_M2_DISPLAY_PORT_MAX },
498 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
499 .max = G4X_P_DISPLAY_PORT_MAX },
500 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
501 .max = G4X_P1_DISPLAY_PORT_MAX},
502 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
503 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
504 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
505 .find_pll = intel_find_pll_g4x_dp,
508 static const intel_limit_t intel_limits_pineview_sdvo = {
509 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
510 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
511 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
512 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
513 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
514 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
515 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
516 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
517 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
518 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
519 .find_pll = intel_find_best_PLL,
522 static const intel_limit_t intel_limits_pineview_lvds = {
523 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
524 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
525 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
526 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
527 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
528 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
529 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
530 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
531 /* Pineview only supports single-channel mode. */
532 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
533 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
534 .find_pll = intel_find_best_PLL,
537 static const intel_limit_t intel_limits_ironlake_dac = {
538 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
539 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
540 .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
541 .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
542 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
543 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
544 .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
545 .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
546 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
547 .p2_slow = IRONLAKE_DAC_P2_SLOW,
548 .p2_fast = IRONLAKE_DAC_P2_FAST },
549 .find_pll = intel_g4x_find_best_PLL,
552 static const intel_limit_t intel_limits_ironlake_single_lvds = {
553 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
554 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
555 .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
556 .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
557 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
558 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
559 .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
560 .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
561 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
562 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
563 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
564 .find_pll = intel_g4x_find_best_PLL,
567 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
568 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
569 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
570 .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
571 .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
572 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
573 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
574 .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
575 .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
576 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
577 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
578 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
579 .find_pll = intel_g4x_find_best_PLL,
582 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
583 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
584 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
585 .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
586 .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
587 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
588 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
589 .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
590 .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
591 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
592 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
593 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
594 .find_pll = intel_g4x_find_best_PLL,
597 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
598 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
599 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
600 .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
601 .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
602 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
603 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
604 .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
605 .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
606 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
607 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
608 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
609 .find_pll = intel_g4x_find_best_PLL,
612 static const intel_limit_t intel_limits_ironlake_display_port = {
613 .dot = { .min = IRONLAKE_DOT_MIN,
614 .max = IRONLAKE_DOT_MAX },
615 .vco = { .min = IRONLAKE_VCO_MIN,
616 .max = IRONLAKE_VCO_MAX},
617 .n = { .min = IRONLAKE_DP_N_MIN,
618 .max = IRONLAKE_DP_N_MAX },
619 .m = { .min = IRONLAKE_DP_M_MIN,
620 .max = IRONLAKE_DP_M_MAX },
621 .m1 = { .min = IRONLAKE_M1_MIN,
622 .max = IRONLAKE_M1_MAX },
623 .m2 = { .min = IRONLAKE_M2_MIN,
624 .max = IRONLAKE_M2_MAX },
625 .p = { .min = IRONLAKE_DP_P_MIN,
626 .max = IRONLAKE_DP_P_MAX },
627 .p1 = { .min = IRONLAKE_DP_P1_MIN,
628 .max = IRONLAKE_DP_P1_MAX},
629 .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
630 .p2_slow = IRONLAKE_DP_P2_SLOW,
631 .p2_fast = IRONLAKE_DP_P2_FAST },
632 .find_pll = intel_find_pll_ironlake_dp,
635 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
637 struct drm_device *dev = crtc->dev;
638 struct drm_i915_private *dev_priv = dev->dev_private;
639 const intel_limit_t *limit;
640 int refclk = 120;
642 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
643 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
644 refclk = 100;
646 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
647 LVDS_CLKB_POWER_UP) {
648 /* LVDS dual channel */
649 if (refclk == 100)
650 limit = &intel_limits_ironlake_dual_lvds_100m;
651 else
652 limit = &intel_limits_ironlake_dual_lvds;
653 } else {
654 if (refclk == 100)
655 limit = &intel_limits_ironlake_single_lvds_100m;
656 else
657 limit = &intel_limits_ironlake_single_lvds;
659 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
660 HAS_eDP)
661 limit = &intel_limits_ironlake_display_port;
662 else
663 limit = &intel_limits_ironlake_dac;
665 return limit;
668 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
670 struct drm_device *dev = crtc->dev;
671 struct drm_i915_private *dev_priv = dev->dev_private;
672 const intel_limit_t *limit;
674 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
675 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
676 LVDS_CLKB_POWER_UP)
677 /* LVDS with dual channel */
678 limit = &intel_limits_g4x_dual_channel_lvds;
679 else
680 /* LVDS with dual channel */
681 limit = &intel_limits_g4x_single_channel_lvds;
682 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
683 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
684 limit = &intel_limits_g4x_hdmi;
685 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
686 limit = &intel_limits_g4x_sdvo;
687 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
688 limit = &intel_limits_g4x_display_port;
689 } else /* The option is for other outputs */
690 limit = &intel_limits_i9xx_sdvo;
692 return limit;
695 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
697 struct drm_device *dev = crtc->dev;
698 const intel_limit_t *limit;
700 if (HAS_PCH_SPLIT(dev))
701 limit = intel_ironlake_limit(crtc);
702 else if (IS_G4X(dev)) {
703 limit = intel_g4x_limit(crtc);
704 } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
705 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
706 limit = &intel_limits_i9xx_lvds;
707 else
708 limit = &intel_limits_i9xx_sdvo;
709 } else if (IS_PINEVIEW(dev)) {
710 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
711 limit = &intel_limits_pineview_lvds;
712 else
713 limit = &intel_limits_pineview_sdvo;
714 } else {
715 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
716 limit = &intel_limits_i8xx_lvds;
717 else
718 limit = &intel_limits_i8xx_dvo;
720 return limit;
723 /* m1 is reserved as 0 in Pineview, n is a ring counter */
724 static void pineview_clock(int refclk, intel_clock_t *clock)
726 clock->m = clock->m2 + 2;
727 clock->p = clock->p1 * clock->p2;
728 clock->vco = refclk * clock->m / clock->n;
729 clock->dot = clock->vco / clock->p;
732 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
734 if (IS_PINEVIEW(dev)) {
735 pineview_clock(refclk, clock);
736 return;
738 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
739 clock->p = clock->p1 * clock->p2;
740 clock->vco = refclk * clock->m / (clock->n + 2);
741 clock->dot = clock->vco / clock->p;
745 * Returns whether any output on the specified pipe is of the specified type
747 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
749 struct drm_device *dev = crtc->dev;
750 struct drm_mode_config *mode_config = &dev->mode_config;
751 struct drm_encoder *l_entry;
753 list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
754 if (l_entry && l_entry->crtc == crtc) {
755 struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
756 if (intel_encoder->type == type)
757 return true;
760 return false;
763 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
765 * Returns whether the given set of divisors are valid for a given refclk with
766 * the given connectors.
769 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
771 const intel_limit_t *limit = intel_limit (crtc);
772 struct drm_device *dev = crtc->dev;
774 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
775 INTELPllInvalid ("p1 out of range\n");
776 if (clock->p < limit->p.min || limit->p.max < clock->p)
777 INTELPllInvalid ("p out of range\n");
778 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
779 INTELPllInvalid ("m2 out of range\n");
780 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
781 INTELPllInvalid ("m1 out of range\n");
782 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
783 INTELPllInvalid ("m1 <= m2\n");
784 if (clock->m < limit->m.min || limit->m.max < clock->m)
785 INTELPllInvalid ("m out of range\n");
786 if (clock->n < limit->n.min || limit->n.max < clock->n)
787 INTELPllInvalid ("n out of range\n");
788 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
789 INTELPllInvalid ("vco out of range\n");
790 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
791 * connector, etc., rather than just a single range.
793 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
794 INTELPllInvalid ("dot out of range\n");
796 return true;
799 static bool
800 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
801 int target, int refclk, intel_clock_t *best_clock)
804 struct drm_device *dev = crtc->dev;
805 struct drm_i915_private *dev_priv = dev->dev_private;
806 intel_clock_t clock;
807 int err = target;
809 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
810 (I915_READ(LVDS)) != 0) {
812 * For LVDS, if the panel is on, just rely on its current
813 * settings for dual-channel. We haven't figured out how to
814 * reliably set up different single/dual channel state, if we
815 * even can.
817 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
818 LVDS_CLKB_POWER_UP)
819 clock.p2 = limit->p2.p2_fast;
820 else
821 clock.p2 = limit->p2.p2_slow;
822 } else {
823 if (target < limit->p2.dot_limit)
824 clock.p2 = limit->p2.p2_slow;
825 else
826 clock.p2 = limit->p2.p2_fast;
829 memset (best_clock, 0, sizeof (*best_clock));
831 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
832 clock.m1++) {
833 for (clock.m2 = limit->m2.min;
834 clock.m2 <= limit->m2.max; clock.m2++) {
835 /* m1 is always 0 in Pineview */
836 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
837 break;
838 for (clock.n = limit->n.min;
839 clock.n <= limit->n.max; clock.n++) {
840 for (clock.p1 = limit->p1.min;
841 clock.p1 <= limit->p1.max; clock.p1++) {
842 int this_err;
844 intel_clock(dev, refclk, &clock);
846 if (!intel_PLL_is_valid(crtc, &clock))
847 continue;
849 this_err = abs(clock.dot - target);
850 if (this_err < err) {
851 *best_clock = clock;
852 err = this_err;
859 return (err != target);
862 static bool
863 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
864 int target, int refclk, intel_clock_t *best_clock)
866 struct drm_device *dev = crtc->dev;
867 struct drm_i915_private *dev_priv = dev->dev_private;
868 intel_clock_t clock;
869 int max_n;
870 bool found;
871 /* approximately equals target * 0.00585 */
872 int err_most = (target >> 8) + (target >> 9);
873 found = false;
875 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
876 int lvds_reg;
878 if (HAS_PCH_SPLIT(dev))
879 lvds_reg = PCH_LVDS;
880 else
881 lvds_reg = LVDS;
882 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
883 LVDS_CLKB_POWER_UP)
884 clock.p2 = limit->p2.p2_fast;
885 else
886 clock.p2 = limit->p2.p2_slow;
887 } else {
888 if (target < limit->p2.dot_limit)
889 clock.p2 = limit->p2.p2_slow;
890 else
891 clock.p2 = limit->p2.p2_fast;
894 memset(best_clock, 0, sizeof(*best_clock));
895 max_n = limit->n.max;
896 /* based on hardware requirement, prefer smaller n to precision */
897 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
898 /* based on hardware requirement, prefere larger m1,m2 */
899 for (clock.m1 = limit->m1.max;
900 clock.m1 >= limit->m1.min; clock.m1--) {
901 for (clock.m2 = limit->m2.max;
902 clock.m2 >= limit->m2.min; clock.m2--) {
903 for (clock.p1 = limit->p1.max;
904 clock.p1 >= limit->p1.min; clock.p1--) {
905 int this_err;
907 intel_clock(dev, refclk, &clock);
908 if (!intel_PLL_is_valid(crtc, &clock))
909 continue;
910 this_err = abs(clock.dot - target) ;
911 if (this_err < err_most) {
912 *best_clock = clock;
913 err_most = this_err;
914 max_n = clock.n;
915 found = true;
921 return found;
924 static bool
925 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
926 int target, int refclk, intel_clock_t *best_clock)
928 struct drm_device *dev = crtc->dev;
929 intel_clock_t clock;
931 /* return directly when it is eDP */
932 if (HAS_eDP)
933 return true;
935 if (target < 200000) {
936 clock.n = 1;
937 clock.p1 = 2;
938 clock.p2 = 10;
939 clock.m1 = 12;
940 clock.m2 = 9;
941 } else {
942 clock.n = 2;
943 clock.p1 = 1;
944 clock.p2 = 10;
945 clock.m1 = 14;
946 clock.m2 = 8;
948 intel_clock(dev, refclk, &clock);
949 memcpy(best_clock, &clock, sizeof(intel_clock_t));
950 return true;
953 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
954 static bool
955 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
956 int target, int refclk, intel_clock_t *best_clock)
958 intel_clock_t clock;
959 if (target < 200000) {
960 clock.p1 = 2;
961 clock.p2 = 10;
962 clock.n = 2;
963 clock.m1 = 23;
964 clock.m2 = 8;
965 } else {
966 clock.p1 = 1;
967 clock.p2 = 10;
968 clock.n = 1;
969 clock.m1 = 14;
970 clock.m2 = 2;
972 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
973 clock.p = (clock.p1 * clock.p2);
974 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
975 clock.vco = 0;
976 memcpy(best_clock, &clock, sizeof(intel_clock_t));
977 return true;
981 * intel_wait_for_vblank - wait for vblank on a given pipe
982 * @dev: drm device
983 * @pipe: pipe to wait for
985 * Wait for vblank to occur on a given pipe. Needed for various bits of
986 * mode setting code.
988 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
990 struct drm_i915_private *dev_priv = dev->dev_private;
991 int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
993 /* Clear existing vblank status. Note this will clear any other
994 * sticky status fields as well.
996 * This races with i915_driver_irq_handler() with the result
997 * that either function could miss a vblank event. Here it is not
998 * fatal, as we will either wait upon the next vblank interrupt or
999 * timeout. Generally speaking intel_wait_for_vblank() is only
1000 * called during modeset at which time the GPU should be idle and
1001 * should *not* be performing page flips and thus not waiting on
1002 * vblanks...
1003 * Currently, the result of us stealing a vblank from the irq
1004 * handler is that a single frame will be skipped during swapbuffers.
1006 I915_WRITE(pipestat_reg,
1007 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1009 /* Wait for vblank interrupt bit to set */
1010 if (wait_for((I915_READ(pipestat_reg) &
1011 PIPE_VBLANK_INTERRUPT_STATUS),
1012 50, 0))
1013 DRM_DEBUG_KMS("vblank wait timed out\n");
1017 * intel_wait_for_vblank_off - wait for vblank after disabling a pipe
1018 * @dev: drm device
1019 * @pipe: pipe to wait for
1021 * After disabling a pipe, we can't wait for vblank in the usual way,
1022 * spinning on the vblank interrupt status bit, since we won't actually
1023 * see an interrupt when the pipe is disabled.
1025 * So this function waits for the display line value to settle (it
1026 * usually ends up stopping at the start of the next frame).
1028 void intel_wait_for_vblank_off(struct drm_device *dev, int pipe)
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 int pipedsl_reg = (pipe == 0 ? PIPEADSL : PIPEBDSL);
1032 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1033 u32 last_line;
1035 /* Wait for the display line to settle */
1036 do {
1037 last_line = I915_READ(pipedsl_reg) & DSL_LINEMASK;
1038 mdelay(5);
1039 } while (((I915_READ(pipedsl_reg) & DSL_LINEMASK) != last_line) &&
1040 time_after(timeout, jiffies));
1042 if (time_after(jiffies, timeout))
1043 DRM_DEBUG_KMS("vblank wait timed out\n");
1046 /* Parameters have changed, update FBC info */
1047 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1049 struct drm_device *dev = crtc->dev;
1050 struct drm_i915_private *dev_priv = dev->dev_private;
1051 struct drm_framebuffer *fb = crtc->fb;
1052 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1053 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1054 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1055 int plane, i;
1056 u32 fbc_ctl, fbc_ctl2;
1058 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1060 if (fb->pitch < dev_priv->cfb_pitch)
1061 dev_priv->cfb_pitch = fb->pitch;
1063 /* FBC_CTL wants 64B units */
1064 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1065 dev_priv->cfb_fence = obj_priv->fence_reg;
1066 dev_priv->cfb_plane = intel_crtc->plane;
1067 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1069 /* Clear old tags */
1070 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1071 I915_WRITE(FBC_TAG + (i * 4), 0);
1073 /* Set it up... */
1074 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1075 if (obj_priv->tiling_mode != I915_TILING_NONE)
1076 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1077 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1078 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1080 /* enable it... */
1081 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1082 if (IS_I945GM(dev))
1083 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1084 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1085 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1086 if (obj_priv->tiling_mode != I915_TILING_NONE)
1087 fbc_ctl |= dev_priv->cfb_fence;
1088 I915_WRITE(FBC_CONTROL, fbc_ctl);
1090 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1091 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1094 void i8xx_disable_fbc(struct drm_device *dev)
1096 struct drm_i915_private *dev_priv = dev->dev_private;
1097 u32 fbc_ctl;
1099 if (!I915_HAS_FBC(dev))
1100 return;
1102 if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
1103 return; /* Already off, just return */
1105 /* Disable compression */
1106 fbc_ctl = I915_READ(FBC_CONTROL);
1107 fbc_ctl &= ~FBC_CTL_EN;
1108 I915_WRITE(FBC_CONTROL, fbc_ctl);
1110 /* Wait for compressing bit to clear */
1111 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10, 0)) {
1112 DRM_DEBUG_KMS("FBC idle timed out\n");
1113 return;
1116 DRM_DEBUG_KMS("disabled FBC\n");
1119 static bool i8xx_fbc_enabled(struct drm_device *dev)
1121 struct drm_i915_private *dev_priv = dev->dev_private;
1123 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1126 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1128 struct drm_device *dev = crtc->dev;
1129 struct drm_i915_private *dev_priv = dev->dev_private;
1130 struct drm_framebuffer *fb = crtc->fb;
1131 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1132 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1133 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1134 int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1135 DPFC_CTL_PLANEB);
1136 unsigned long stall_watermark = 200;
1137 u32 dpfc_ctl;
1139 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1140 dev_priv->cfb_fence = obj_priv->fence_reg;
1141 dev_priv->cfb_plane = intel_crtc->plane;
1143 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1144 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1145 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1146 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1147 } else {
1148 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1151 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1152 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1153 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1154 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1155 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1157 /* enable it... */
1158 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1160 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1163 void g4x_disable_fbc(struct drm_device *dev)
1165 struct drm_i915_private *dev_priv = dev->dev_private;
1166 u32 dpfc_ctl;
1168 /* Disable compression */
1169 dpfc_ctl = I915_READ(DPFC_CONTROL);
1170 dpfc_ctl &= ~DPFC_CTL_EN;
1171 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1173 DRM_DEBUG_KMS("disabled FBC\n");
1176 static bool g4x_fbc_enabled(struct drm_device *dev)
1178 struct drm_i915_private *dev_priv = dev->dev_private;
1180 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1183 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1185 struct drm_device *dev = crtc->dev;
1186 struct drm_i915_private *dev_priv = dev->dev_private;
1187 struct drm_framebuffer *fb = crtc->fb;
1188 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1189 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1190 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1191 int plane = (intel_crtc->plane == 0) ? DPFC_CTL_PLANEA :
1192 DPFC_CTL_PLANEB;
1193 unsigned long stall_watermark = 200;
1194 u32 dpfc_ctl;
1196 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1197 dev_priv->cfb_fence = obj_priv->fence_reg;
1198 dev_priv->cfb_plane = intel_crtc->plane;
1200 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1201 dpfc_ctl &= DPFC_RESERVED;
1202 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1203 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1204 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1205 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1206 } else {
1207 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1210 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1211 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1212 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1213 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1214 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1215 I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1216 /* enable it... */
1217 I915_WRITE(ILK_DPFC_CONTROL, I915_READ(ILK_DPFC_CONTROL) |
1218 DPFC_CTL_EN);
1220 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1223 void ironlake_disable_fbc(struct drm_device *dev)
1225 struct drm_i915_private *dev_priv = dev->dev_private;
1226 u32 dpfc_ctl;
1228 /* Disable compression */
1229 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1230 dpfc_ctl &= ~DPFC_CTL_EN;
1231 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1233 DRM_DEBUG_KMS("disabled FBC\n");
1236 static bool ironlake_fbc_enabled(struct drm_device *dev)
1238 struct drm_i915_private *dev_priv = dev->dev_private;
1240 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1243 bool intel_fbc_enabled(struct drm_device *dev)
1245 struct drm_i915_private *dev_priv = dev->dev_private;
1247 if (!dev_priv->display.fbc_enabled)
1248 return false;
1250 return dev_priv->display.fbc_enabled(dev);
1253 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1255 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1257 if (!dev_priv->display.enable_fbc)
1258 return;
1260 dev_priv->display.enable_fbc(crtc, interval);
1263 void intel_disable_fbc(struct drm_device *dev)
1265 struct drm_i915_private *dev_priv = dev->dev_private;
1267 if (!dev_priv->display.disable_fbc)
1268 return;
1270 dev_priv->display.disable_fbc(dev);
1274 * intel_update_fbc - enable/disable FBC as needed
1275 * @crtc: CRTC to point the compressor at
1276 * @mode: mode in use
1278 * Set up the framebuffer compression hardware at mode set time. We
1279 * enable it if possible:
1280 * - plane A only (on pre-965)
1281 * - no pixel mulitply/line duplication
1282 * - no alpha buffer discard
1283 * - no dual wide
1284 * - framebuffer <= 2048 in width, 1536 in height
1286 * We can't assume that any compression will take place (worst case),
1287 * so the compressed buffer has to be the same size as the uncompressed
1288 * one. It also must reside (along with the line length buffer) in
1289 * stolen memory.
1291 * We need to enable/disable FBC on a global basis.
1293 static void intel_update_fbc(struct drm_crtc *crtc,
1294 struct drm_display_mode *mode)
1296 struct drm_device *dev = crtc->dev;
1297 struct drm_i915_private *dev_priv = dev->dev_private;
1298 struct drm_framebuffer *fb = crtc->fb;
1299 struct intel_framebuffer *intel_fb;
1300 struct drm_i915_gem_object *obj_priv;
1301 struct drm_crtc *tmp_crtc;
1302 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1303 int plane = intel_crtc->plane;
1304 int crtcs_enabled = 0;
1306 DRM_DEBUG_KMS("\n");
1308 if (!i915_powersave)
1309 return;
1311 if (!I915_HAS_FBC(dev))
1312 return;
1314 if (!crtc->fb)
1315 return;
1317 intel_fb = to_intel_framebuffer(fb);
1318 obj_priv = to_intel_bo(intel_fb->obj);
1321 * If FBC is already on, we just have to verify that we can
1322 * keep it that way...
1323 * Need to disable if:
1324 * - more than one pipe is active
1325 * - changing FBC params (stride, fence, mode)
1326 * - new fb is too large to fit in compressed buffer
1327 * - going to an unsupported config (interlace, pixel multiply, etc.)
1329 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1330 if (tmp_crtc->enabled)
1331 crtcs_enabled++;
1333 DRM_DEBUG_KMS("%d pipes active\n", crtcs_enabled);
1334 if (crtcs_enabled > 1) {
1335 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1336 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1337 goto out_disable;
1339 if (intel_fb->obj->size > dev_priv->cfb_size) {
1340 DRM_DEBUG_KMS("framebuffer too large, disabling "
1341 "compression\n");
1342 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1343 goto out_disable;
1345 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1346 (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1347 DRM_DEBUG_KMS("mode incompatible with compression, "
1348 "disabling\n");
1349 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1350 goto out_disable;
1352 if ((mode->hdisplay > 2048) ||
1353 (mode->vdisplay > 1536)) {
1354 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1355 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1356 goto out_disable;
1358 if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1359 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1360 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1361 goto out_disable;
1363 if (obj_priv->tiling_mode != I915_TILING_X) {
1364 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1365 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1366 goto out_disable;
1369 /* If the kernel debugger is active, always disable compression */
1370 if (in_dbg_master())
1371 goto out_disable;
1373 if (intel_fbc_enabled(dev)) {
1374 /* We can re-enable it in this case, but need to update pitch */
1375 if ((fb->pitch > dev_priv->cfb_pitch) ||
1376 (obj_priv->fence_reg != dev_priv->cfb_fence) ||
1377 (plane != dev_priv->cfb_plane))
1378 intel_disable_fbc(dev);
1381 /* Now try to turn it back on if possible */
1382 if (!intel_fbc_enabled(dev))
1383 intel_enable_fbc(crtc, 500);
1385 return;
1387 out_disable:
1388 /* Multiple disables should be harmless */
1389 if (intel_fbc_enabled(dev)) {
1390 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1391 intel_disable_fbc(dev);
1396 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1398 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1399 u32 alignment;
1400 int ret;
1402 switch (obj_priv->tiling_mode) {
1403 case I915_TILING_NONE:
1404 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1405 alignment = 128 * 1024;
1406 else if (IS_I965G(dev))
1407 alignment = 4 * 1024;
1408 else
1409 alignment = 64 * 1024;
1410 break;
1411 case I915_TILING_X:
1412 /* pin() will align the object as required by fence */
1413 alignment = 0;
1414 break;
1415 case I915_TILING_Y:
1416 /* FIXME: Is this true? */
1417 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1418 return -EINVAL;
1419 default:
1420 BUG();
1423 ret = i915_gem_object_pin(obj, alignment);
1424 if (ret != 0)
1425 return ret;
1427 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1428 * fence, whereas 965+ only requires a fence if using
1429 * framebuffer compression. For simplicity, we always install
1430 * a fence as the cost is not that onerous.
1432 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1433 obj_priv->tiling_mode != I915_TILING_NONE) {
1434 ret = i915_gem_object_get_fence_reg(obj);
1435 if (ret != 0) {
1436 i915_gem_object_unpin(obj);
1437 return ret;
1441 return 0;
1444 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1445 static int
1446 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1447 int x, int y)
1449 struct drm_device *dev = crtc->dev;
1450 struct drm_i915_private *dev_priv = dev->dev_private;
1451 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1452 struct intel_framebuffer *intel_fb;
1453 struct drm_i915_gem_object *obj_priv;
1454 struct drm_gem_object *obj;
1455 int plane = intel_crtc->plane;
1456 unsigned long Start, Offset;
1457 int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1458 int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1459 int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1460 int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1461 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1462 u32 dspcntr;
1464 switch (plane) {
1465 case 0:
1466 case 1:
1467 break;
1468 default:
1469 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1470 return -EINVAL;
1473 intel_fb = to_intel_framebuffer(fb);
1474 obj = intel_fb->obj;
1475 obj_priv = to_intel_bo(obj);
1477 dspcntr = I915_READ(dspcntr_reg);
1478 /* Mask out pixel format bits in case we change it */
1479 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1480 switch (fb->bits_per_pixel) {
1481 case 8:
1482 dspcntr |= DISPPLANE_8BPP;
1483 break;
1484 case 16:
1485 if (fb->depth == 15)
1486 dspcntr |= DISPPLANE_15_16BPP;
1487 else
1488 dspcntr |= DISPPLANE_16BPP;
1489 break;
1490 case 24:
1491 case 32:
1492 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1493 break;
1494 default:
1495 DRM_ERROR("Unknown color depth\n");
1496 return -EINVAL;
1498 if (IS_I965G(dev)) {
1499 if (obj_priv->tiling_mode != I915_TILING_NONE)
1500 dspcntr |= DISPPLANE_TILED;
1501 else
1502 dspcntr &= ~DISPPLANE_TILED;
1505 if (IS_IRONLAKE(dev))
1506 /* must disable */
1507 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1509 I915_WRITE(dspcntr_reg, dspcntr);
1511 Start = obj_priv->gtt_offset;
1512 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1514 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1515 I915_WRITE(dspstride, fb->pitch);
1516 if (IS_I965G(dev)) {
1517 I915_WRITE(dspbase, Offset);
1518 I915_READ(dspbase);
1519 I915_WRITE(dspsurf, Start);
1520 I915_READ(dspsurf);
1521 I915_WRITE(dsptileoff, (y << 16) | x);
1522 } else {
1523 I915_WRITE(dspbase, Start + Offset);
1524 I915_READ(dspbase);
1527 if ((IS_I965G(dev) || plane == 0))
1528 intel_update_fbc(crtc, &crtc->mode);
1530 intel_wait_for_vblank(dev, intel_crtc->pipe);
1531 intel_increase_pllclock(crtc, true);
1533 return 0;
1536 static int
1537 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1538 struct drm_framebuffer *old_fb)
1540 struct drm_device *dev = crtc->dev;
1541 struct drm_i915_private *dev_priv = dev->dev_private;
1542 struct drm_i915_master_private *master_priv;
1543 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1544 struct intel_framebuffer *intel_fb;
1545 struct drm_i915_gem_object *obj_priv;
1546 struct drm_gem_object *obj;
1547 int pipe = intel_crtc->pipe;
1548 int plane = intel_crtc->plane;
1549 unsigned long Start, Offset;
1550 int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1551 int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1552 int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1553 int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1554 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1555 u32 dspcntr;
1556 int ret;
1558 /* no fb bound */
1559 if (!crtc->fb) {
1560 DRM_DEBUG_KMS("No FB bound\n");
1561 return 0;
1564 switch (plane) {
1565 case 0:
1566 case 1:
1567 break;
1568 default:
1569 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1570 return -EINVAL;
1573 intel_fb = to_intel_framebuffer(crtc->fb);
1574 obj = intel_fb->obj;
1575 obj_priv = to_intel_bo(obj);
1577 mutex_lock(&dev->struct_mutex);
1578 ret = intel_pin_and_fence_fb_obj(dev, obj);
1579 if (ret != 0) {
1580 mutex_unlock(&dev->struct_mutex);
1581 return ret;
1584 ret = i915_gem_object_set_to_display_plane(obj);
1585 if (ret != 0) {
1586 i915_gem_object_unpin(obj);
1587 mutex_unlock(&dev->struct_mutex);
1588 return ret;
1591 dspcntr = I915_READ(dspcntr_reg);
1592 /* Mask out pixel format bits in case we change it */
1593 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1594 switch (crtc->fb->bits_per_pixel) {
1595 case 8:
1596 dspcntr |= DISPPLANE_8BPP;
1597 break;
1598 case 16:
1599 if (crtc->fb->depth == 15)
1600 dspcntr |= DISPPLANE_15_16BPP;
1601 else
1602 dspcntr |= DISPPLANE_16BPP;
1603 break;
1604 case 24:
1605 case 32:
1606 if (crtc->fb->depth == 30)
1607 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1608 else
1609 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1610 break;
1611 default:
1612 DRM_ERROR("Unknown color depth\n");
1613 i915_gem_object_unpin(obj);
1614 mutex_unlock(&dev->struct_mutex);
1615 return -EINVAL;
1617 if (IS_I965G(dev)) {
1618 if (obj_priv->tiling_mode != I915_TILING_NONE)
1619 dspcntr |= DISPPLANE_TILED;
1620 else
1621 dspcntr &= ~DISPPLANE_TILED;
1624 if (HAS_PCH_SPLIT(dev))
1625 /* must disable */
1626 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1628 I915_WRITE(dspcntr_reg, dspcntr);
1630 Start = obj_priv->gtt_offset;
1631 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1633 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1634 Start, Offset, x, y, crtc->fb->pitch);
1635 I915_WRITE(dspstride, crtc->fb->pitch);
1636 if (IS_I965G(dev)) {
1637 I915_WRITE(dspsurf, Start);
1638 I915_WRITE(dsptileoff, (y << 16) | x);
1639 I915_WRITE(dspbase, Offset);
1640 } else {
1641 I915_WRITE(dspbase, Start + Offset);
1643 POSTING_READ(dspbase);
1645 if ((IS_I965G(dev) || plane == 0))
1646 intel_update_fbc(crtc, &crtc->mode);
1648 intel_wait_for_vblank(dev, pipe);
1650 if (old_fb) {
1651 intel_fb = to_intel_framebuffer(old_fb);
1652 obj_priv = to_intel_bo(intel_fb->obj);
1653 i915_gem_object_unpin(intel_fb->obj);
1655 intel_increase_pllclock(crtc, true);
1657 mutex_unlock(&dev->struct_mutex);
1659 if (!dev->primary->master)
1660 return 0;
1662 master_priv = dev->primary->master->driver_priv;
1663 if (!master_priv->sarea_priv)
1664 return 0;
1666 if (pipe) {
1667 master_priv->sarea_priv->pipeB_x = x;
1668 master_priv->sarea_priv->pipeB_y = y;
1669 } else {
1670 master_priv->sarea_priv->pipeA_x = x;
1671 master_priv->sarea_priv->pipeA_y = y;
1674 return 0;
1677 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1679 struct drm_device *dev = crtc->dev;
1680 struct drm_i915_private *dev_priv = dev->dev_private;
1681 u32 dpa_ctl;
1683 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1684 dpa_ctl = I915_READ(DP_A);
1685 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1687 if (clock < 200000) {
1688 u32 temp;
1689 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1690 /* workaround for 160Mhz:
1691 1) program 0x4600c bits 15:0 = 0x8124
1692 2) program 0x46010 bit 0 = 1
1693 3) program 0x46034 bit 24 = 1
1694 4) program 0x64000 bit 14 = 1
1696 temp = I915_READ(0x4600c);
1697 temp &= 0xffff0000;
1698 I915_WRITE(0x4600c, temp | 0x8124);
1700 temp = I915_READ(0x46010);
1701 I915_WRITE(0x46010, temp | 1);
1703 temp = I915_READ(0x46034);
1704 I915_WRITE(0x46034, temp | (1 << 24));
1705 } else {
1706 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1708 I915_WRITE(DP_A, dpa_ctl);
1710 udelay(500);
1713 /* The FDI link training functions for ILK/Ibexpeak. */
1714 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1716 struct drm_device *dev = crtc->dev;
1717 struct drm_i915_private *dev_priv = dev->dev_private;
1718 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1719 int pipe = intel_crtc->pipe;
1720 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1721 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1722 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1723 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1724 u32 temp, tries = 0;
1726 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1727 for train result */
1728 temp = I915_READ(fdi_rx_imr_reg);
1729 temp &= ~FDI_RX_SYMBOL_LOCK;
1730 temp &= ~FDI_RX_BIT_LOCK;
1731 I915_WRITE(fdi_rx_imr_reg, temp);
1732 I915_READ(fdi_rx_imr_reg);
1733 udelay(150);
1735 /* enable CPU FDI TX and PCH FDI RX */
1736 temp = I915_READ(fdi_tx_reg);
1737 temp |= FDI_TX_ENABLE;
1738 temp &= ~(7 << 19);
1739 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1740 temp &= ~FDI_LINK_TRAIN_NONE;
1741 temp |= FDI_LINK_TRAIN_PATTERN_1;
1742 I915_WRITE(fdi_tx_reg, temp);
1743 I915_READ(fdi_tx_reg);
1745 temp = I915_READ(fdi_rx_reg);
1746 temp &= ~FDI_LINK_TRAIN_NONE;
1747 temp |= FDI_LINK_TRAIN_PATTERN_1;
1748 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1749 I915_READ(fdi_rx_reg);
1750 udelay(150);
1752 for (tries = 0; tries < 5; tries++) {
1753 temp = I915_READ(fdi_rx_iir_reg);
1754 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1756 if ((temp & FDI_RX_BIT_LOCK)) {
1757 DRM_DEBUG_KMS("FDI train 1 done.\n");
1758 I915_WRITE(fdi_rx_iir_reg,
1759 temp | FDI_RX_BIT_LOCK);
1760 break;
1763 if (tries == 5)
1764 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1766 /* Train 2 */
1767 temp = I915_READ(fdi_tx_reg);
1768 temp &= ~FDI_LINK_TRAIN_NONE;
1769 temp |= FDI_LINK_TRAIN_PATTERN_2;
1770 I915_WRITE(fdi_tx_reg, temp);
1772 temp = I915_READ(fdi_rx_reg);
1773 temp &= ~FDI_LINK_TRAIN_NONE;
1774 temp |= FDI_LINK_TRAIN_PATTERN_2;
1775 I915_WRITE(fdi_rx_reg, temp);
1776 udelay(150);
1778 tries = 0;
1780 for (tries = 0; tries < 5; tries++) {
1781 temp = I915_READ(fdi_rx_iir_reg);
1782 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1784 if (temp & FDI_RX_SYMBOL_LOCK) {
1785 I915_WRITE(fdi_rx_iir_reg,
1786 temp | FDI_RX_SYMBOL_LOCK);
1787 DRM_DEBUG_KMS("FDI train 2 done.\n");
1788 break;
1791 if (tries == 5)
1792 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1794 DRM_DEBUG_KMS("FDI train done\n");
1797 static int snb_b_fdi_train_param [] = {
1798 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1799 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1800 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1801 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1804 /* The FDI link training functions for SNB/Cougarpoint. */
1805 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1807 struct drm_device *dev = crtc->dev;
1808 struct drm_i915_private *dev_priv = dev->dev_private;
1809 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1810 int pipe = intel_crtc->pipe;
1811 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1812 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1813 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1814 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1815 u32 temp, i;
1817 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1818 for train result */
1819 temp = I915_READ(fdi_rx_imr_reg);
1820 temp &= ~FDI_RX_SYMBOL_LOCK;
1821 temp &= ~FDI_RX_BIT_LOCK;
1822 I915_WRITE(fdi_rx_imr_reg, temp);
1823 I915_READ(fdi_rx_imr_reg);
1824 udelay(150);
1826 /* enable CPU FDI TX and PCH FDI RX */
1827 temp = I915_READ(fdi_tx_reg);
1828 temp |= FDI_TX_ENABLE;
1829 temp &= ~(7 << 19);
1830 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1831 temp &= ~FDI_LINK_TRAIN_NONE;
1832 temp |= FDI_LINK_TRAIN_PATTERN_1;
1833 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1834 /* SNB-B */
1835 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1836 I915_WRITE(fdi_tx_reg, temp);
1837 I915_READ(fdi_tx_reg);
1839 temp = I915_READ(fdi_rx_reg);
1840 if (HAS_PCH_CPT(dev)) {
1841 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1842 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1843 } else {
1844 temp &= ~FDI_LINK_TRAIN_NONE;
1845 temp |= FDI_LINK_TRAIN_PATTERN_1;
1847 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1848 I915_READ(fdi_rx_reg);
1849 udelay(150);
1851 for (i = 0; i < 4; i++ ) {
1852 temp = I915_READ(fdi_tx_reg);
1853 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1854 temp |= snb_b_fdi_train_param[i];
1855 I915_WRITE(fdi_tx_reg, temp);
1856 udelay(500);
1858 temp = I915_READ(fdi_rx_iir_reg);
1859 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1861 if (temp & FDI_RX_BIT_LOCK) {
1862 I915_WRITE(fdi_rx_iir_reg,
1863 temp | FDI_RX_BIT_LOCK);
1864 DRM_DEBUG_KMS("FDI train 1 done.\n");
1865 break;
1868 if (i == 4)
1869 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1871 /* Train 2 */
1872 temp = I915_READ(fdi_tx_reg);
1873 temp &= ~FDI_LINK_TRAIN_NONE;
1874 temp |= FDI_LINK_TRAIN_PATTERN_2;
1875 if (IS_GEN6(dev)) {
1876 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1877 /* SNB-B */
1878 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1880 I915_WRITE(fdi_tx_reg, temp);
1882 temp = I915_READ(fdi_rx_reg);
1883 if (HAS_PCH_CPT(dev)) {
1884 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1885 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1886 } else {
1887 temp &= ~FDI_LINK_TRAIN_NONE;
1888 temp |= FDI_LINK_TRAIN_PATTERN_2;
1890 I915_WRITE(fdi_rx_reg, temp);
1891 udelay(150);
1893 for (i = 0; i < 4; i++ ) {
1894 temp = I915_READ(fdi_tx_reg);
1895 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1896 temp |= snb_b_fdi_train_param[i];
1897 I915_WRITE(fdi_tx_reg, temp);
1898 udelay(500);
1900 temp = I915_READ(fdi_rx_iir_reg);
1901 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1903 if (temp & FDI_RX_SYMBOL_LOCK) {
1904 I915_WRITE(fdi_rx_iir_reg,
1905 temp | FDI_RX_SYMBOL_LOCK);
1906 DRM_DEBUG_KMS("FDI train 2 done.\n");
1907 break;
1910 if (i == 4)
1911 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1913 DRM_DEBUG_KMS("FDI train done.\n");
1916 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1918 struct drm_device *dev = crtc->dev;
1919 struct drm_i915_private *dev_priv = dev->dev_private;
1920 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1921 int pipe = intel_crtc->pipe;
1922 int plane = intel_crtc->plane;
1923 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1924 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1925 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1926 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1927 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1928 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1929 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1930 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1931 int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1932 int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1933 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1934 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1935 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1936 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1937 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1938 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1939 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1940 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1941 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1942 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1943 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1944 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1945 int trans_dpll_sel = (pipe == 0) ? 0 : 1;
1946 u32 temp;
1947 u32 pipe_bpc;
1949 temp = I915_READ(pipeconf_reg);
1950 pipe_bpc = temp & PIPE_BPC_MASK;
1952 /* XXX: When our outputs are all unaware of DPMS modes other than off
1953 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1955 switch (mode) {
1956 case DRM_MODE_DPMS_ON:
1957 case DRM_MODE_DPMS_STANDBY:
1958 case DRM_MODE_DPMS_SUSPEND:
1959 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
1961 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1962 temp = I915_READ(PCH_LVDS);
1963 if ((temp & LVDS_PORT_EN) == 0) {
1964 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1965 POSTING_READ(PCH_LVDS);
1969 if (!HAS_eDP) {
1971 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1972 temp = I915_READ(fdi_rx_reg);
1974 * make the BPC in FDI Rx be consistent with that in
1975 * pipeconf reg.
1977 temp &= ~(0x7 << 16);
1978 temp |= (pipe_bpc << 11);
1979 temp &= ~(7 << 19);
1980 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1981 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
1982 I915_READ(fdi_rx_reg);
1983 udelay(200);
1985 /* Switch from Rawclk to PCDclk */
1986 temp = I915_READ(fdi_rx_reg);
1987 I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
1988 I915_READ(fdi_rx_reg);
1989 udelay(200);
1991 /* Enable CPU FDI TX PLL, always on for Ironlake */
1992 temp = I915_READ(fdi_tx_reg);
1993 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1994 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1995 I915_READ(fdi_tx_reg);
1996 udelay(100);
2000 /* Enable panel fitting for LVDS */
2001 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)
2002 || HAS_eDP || intel_pch_has_edp(crtc)) {
2003 if (dev_priv->pch_pf_size) {
2004 temp = I915_READ(pf_ctl_reg);
2005 I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
2006 I915_WRITE(pf_win_pos, dev_priv->pch_pf_pos);
2007 I915_WRITE(pf_win_size, dev_priv->pch_pf_size);
2008 } else
2009 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
2012 /* Enable CPU pipe */
2013 temp = I915_READ(pipeconf_reg);
2014 if ((temp & PIPEACONF_ENABLE) == 0) {
2015 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2016 I915_READ(pipeconf_reg);
2017 udelay(100);
2020 /* configure and enable CPU plane */
2021 temp = I915_READ(dspcntr_reg);
2022 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2023 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2024 /* Flush the plane changes */
2025 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2028 if (!HAS_eDP) {
2029 /* For PCH output, training FDI link */
2030 if (IS_GEN6(dev))
2031 gen6_fdi_link_train(crtc);
2032 else
2033 ironlake_fdi_link_train(crtc);
2035 /* enable PCH DPLL */
2036 temp = I915_READ(pch_dpll_reg);
2037 if ((temp & DPLL_VCO_ENABLE) == 0) {
2038 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
2039 I915_READ(pch_dpll_reg);
2041 udelay(200);
2043 if (HAS_PCH_CPT(dev)) {
2044 /* Be sure PCH DPLL SEL is set */
2045 temp = I915_READ(PCH_DPLL_SEL);
2046 if (trans_dpll_sel == 0 &&
2047 (temp & TRANSA_DPLL_ENABLE) == 0)
2048 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2049 else if (trans_dpll_sel == 1 &&
2050 (temp & TRANSB_DPLL_ENABLE) == 0)
2051 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2052 I915_WRITE(PCH_DPLL_SEL, temp);
2053 I915_READ(PCH_DPLL_SEL);
2056 /* set transcoder timing */
2057 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
2058 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
2059 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
2061 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
2062 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
2063 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
2065 /* enable normal train */
2066 temp = I915_READ(fdi_tx_reg);
2067 temp &= ~FDI_LINK_TRAIN_NONE;
2068 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
2069 FDI_TX_ENHANCE_FRAME_ENABLE);
2070 I915_READ(fdi_tx_reg);
2072 temp = I915_READ(fdi_rx_reg);
2073 if (HAS_PCH_CPT(dev)) {
2074 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2075 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2076 } else {
2077 temp &= ~FDI_LINK_TRAIN_NONE;
2078 temp |= FDI_LINK_TRAIN_NONE;
2080 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2081 I915_READ(fdi_rx_reg);
2083 /* wait one idle pattern time */
2084 udelay(100);
2086 /* For PCH DP, enable TRANS_DP_CTL */
2087 if (HAS_PCH_CPT(dev) &&
2088 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2089 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2090 int reg;
2092 reg = I915_READ(trans_dp_ctl);
2093 reg &= ~(TRANS_DP_PORT_SEL_MASK |
2094 TRANS_DP_SYNC_MASK);
2095 reg |= (TRANS_DP_OUTPUT_ENABLE |
2096 TRANS_DP_ENH_FRAMING);
2098 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2099 reg |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2100 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2101 reg |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2103 switch (intel_trans_dp_port_sel(crtc)) {
2104 case PCH_DP_B:
2105 reg |= TRANS_DP_PORT_SEL_B;
2106 break;
2107 case PCH_DP_C:
2108 reg |= TRANS_DP_PORT_SEL_C;
2109 break;
2110 case PCH_DP_D:
2111 reg |= TRANS_DP_PORT_SEL_D;
2112 break;
2113 default:
2114 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2115 reg |= TRANS_DP_PORT_SEL_B;
2116 break;
2119 I915_WRITE(trans_dp_ctl, reg);
2120 POSTING_READ(trans_dp_ctl);
2123 /* enable PCH transcoder */
2124 temp = I915_READ(transconf_reg);
2126 * make the BPC in transcoder be consistent with
2127 * that in pipeconf reg.
2129 temp &= ~PIPE_BPC_MASK;
2130 temp |= pipe_bpc;
2131 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
2132 I915_READ(transconf_reg);
2134 if (wait_for(I915_READ(transconf_reg) & TRANS_STATE_ENABLE, 10, 0))
2135 DRM_ERROR("failed to enable transcoder\n");
2138 intel_crtc_load_lut(crtc);
2140 intel_update_fbc(crtc, &crtc->mode);
2141 break;
2143 case DRM_MODE_DPMS_OFF:
2144 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2146 drm_vblank_off(dev, pipe);
2147 /* Disable display plane */
2148 temp = I915_READ(dspcntr_reg);
2149 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2150 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2151 /* Flush the plane changes */
2152 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2153 I915_READ(dspbase_reg);
2156 if (dev_priv->cfb_plane == plane &&
2157 dev_priv->display.disable_fbc)
2158 dev_priv->display.disable_fbc(dev);
2160 /* disable cpu pipe, disable after all planes disabled */
2161 temp = I915_READ(pipeconf_reg);
2162 if ((temp & PIPEACONF_ENABLE) != 0) {
2163 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2165 /* wait for cpu pipe off, pipe state */
2166 if (wait_for((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) == 0, 50, 1))
2167 DRM_ERROR("failed to turn off cpu pipe\n");
2168 } else
2169 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
2171 udelay(100);
2173 /* Disable PF */
2174 temp = I915_READ(pf_ctl_reg);
2175 if ((temp & PF_ENABLE) != 0) {
2176 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
2177 I915_READ(pf_ctl_reg);
2179 I915_WRITE(pf_win_size, 0);
2180 POSTING_READ(pf_win_size);
2183 /* disable CPU FDI tx and PCH FDI rx */
2184 temp = I915_READ(fdi_tx_reg);
2185 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
2186 I915_READ(fdi_tx_reg);
2188 temp = I915_READ(fdi_rx_reg);
2189 /* BPC in FDI rx is consistent with that in pipeconf */
2190 temp &= ~(0x07 << 16);
2191 temp |= (pipe_bpc << 11);
2192 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
2193 I915_READ(fdi_rx_reg);
2195 udelay(100);
2197 /* still set train pattern 1 */
2198 temp = I915_READ(fdi_tx_reg);
2199 temp &= ~FDI_LINK_TRAIN_NONE;
2200 temp |= FDI_LINK_TRAIN_PATTERN_1;
2201 I915_WRITE(fdi_tx_reg, temp);
2202 POSTING_READ(fdi_tx_reg);
2204 temp = I915_READ(fdi_rx_reg);
2205 if (HAS_PCH_CPT(dev)) {
2206 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2207 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2208 } else {
2209 temp &= ~FDI_LINK_TRAIN_NONE;
2210 temp |= FDI_LINK_TRAIN_PATTERN_1;
2212 I915_WRITE(fdi_rx_reg, temp);
2213 POSTING_READ(fdi_rx_reg);
2215 udelay(100);
2217 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2218 temp = I915_READ(PCH_LVDS);
2219 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2220 I915_READ(PCH_LVDS);
2221 udelay(100);
2224 /* disable PCH transcoder */
2225 temp = I915_READ(transconf_reg);
2226 if ((temp & TRANS_ENABLE) != 0) {
2227 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
2229 /* wait for PCH transcoder off, transcoder state */
2230 if (wait_for((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0, 50, 1))
2231 DRM_ERROR("failed to disable transcoder\n");
2234 temp = I915_READ(transconf_reg);
2235 /* BPC in transcoder is consistent with that in pipeconf */
2236 temp &= ~PIPE_BPC_MASK;
2237 temp |= pipe_bpc;
2238 I915_WRITE(transconf_reg, temp);
2239 I915_READ(transconf_reg);
2240 udelay(100);
2242 if (HAS_PCH_CPT(dev)) {
2243 /* disable TRANS_DP_CTL */
2244 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2245 int reg;
2247 reg = I915_READ(trans_dp_ctl);
2248 reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2249 I915_WRITE(trans_dp_ctl, reg);
2250 POSTING_READ(trans_dp_ctl);
2252 /* disable DPLL_SEL */
2253 temp = I915_READ(PCH_DPLL_SEL);
2254 if (trans_dpll_sel == 0)
2255 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2256 else
2257 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2258 I915_WRITE(PCH_DPLL_SEL, temp);
2259 I915_READ(PCH_DPLL_SEL);
2263 /* disable PCH DPLL */
2264 temp = I915_READ(pch_dpll_reg);
2265 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
2266 I915_READ(pch_dpll_reg);
2268 /* Switch from PCDclk to Rawclk */
2269 temp = I915_READ(fdi_rx_reg);
2270 temp &= ~FDI_SEL_PCDCLK;
2271 I915_WRITE(fdi_rx_reg, temp);
2272 I915_READ(fdi_rx_reg);
2274 /* Disable CPU FDI TX PLL */
2275 temp = I915_READ(fdi_tx_reg);
2276 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
2277 I915_READ(fdi_tx_reg);
2278 udelay(100);
2280 temp = I915_READ(fdi_rx_reg);
2281 temp &= ~FDI_RX_PLL_ENABLE;
2282 I915_WRITE(fdi_rx_reg, temp);
2283 I915_READ(fdi_rx_reg);
2285 /* Wait for the clocks to turn off. */
2286 udelay(100);
2287 break;
2291 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2293 struct intel_overlay *overlay;
2294 int ret;
2296 if (!enable && intel_crtc->overlay) {
2297 overlay = intel_crtc->overlay;
2298 mutex_lock(&overlay->dev->struct_mutex);
2299 for (;;) {
2300 ret = intel_overlay_switch_off(overlay);
2301 if (ret == 0)
2302 break;
2304 ret = intel_overlay_recover_from_interrupt(overlay, 0);
2305 if (ret != 0) {
2306 /* overlay doesn't react anymore. Usually
2307 * results in a black screen and an unkillable
2308 * X server. */
2309 BUG();
2310 overlay->hw_wedged = HW_WEDGED;
2311 break;
2314 mutex_unlock(&overlay->dev->struct_mutex);
2316 /* Let userspace switch the overlay on again. In most cases userspace
2317 * has to recompute where to put it anyway. */
2319 return;
2322 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2324 struct drm_device *dev = crtc->dev;
2325 struct drm_i915_private *dev_priv = dev->dev_private;
2326 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 int pipe = intel_crtc->pipe;
2328 int plane = intel_crtc->plane;
2329 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2330 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2331 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
2332 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2333 u32 temp;
2335 /* XXX: When our outputs are all unaware of DPMS modes other than off
2336 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2338 switch (mode) {
2339 case DRM_MODE_DPMS_ON:
2340 case DRM_MODE_DPMS_STANDBY:
2341 case DRM_MODE_DPMS_SUSPEND:
2342 /* Enable the DPLL */
2343 temp = I915_READ(dpll_reg);
2344 if ((temp & DPLL_VCO_ENABLE) == 0) {
2345 I915_WRITE(dpll_reg, temp);
2346 I915_READ(dpll_reg);
2347 /* Wait for the clocks to stabilize. */
2348 udelay(150);
2349 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2350 I915_READ(dpll_reg);
2351 /* Wait for the clocks to stabilize. */
2352 udelay(150);
2353 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2354 I915_READ(dpll_reg);
2355 /* Wait for the clocks to stabilize. */
2356 udelay(150);
2359 /* Enable the pipe */
2360 temp = I915_READ(pipeconf_reg);
2361 if ((temp & PIPEACONF_ENABLE) == 0)
2362 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2364 /* Enable the plane */
2365 temp = I915_READ(dspcntr_reg);
2366 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2367 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2368 /* Flush the plane changes */
2369 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2372 intel_crtc_load_lut(crtc);
2374 if ((IS_I965G(dev) || plane == 0))
2375 intel_update_fbc(crtc, &crtc->mode);
2377 /* Give the overlay scaler a chance to enable if it's on this pipe */
2378 intel_crtc_dpms_overlay(intel_crtc, true);
2379 break;
2380 case DRM_MODE_DPMS_OFF:
2381 /* Give the overlay scaler a chance to disable if it's on this pipe */
2382 intel_crtc_dpms_overlay(intel_crtc, false);
2383 drm_vblank_off(dev, pipe);
2385 if (dev_priv->cfb_plane == plane &&
2386 dev_priv->display.disable_fbc)
2387 dev_priv->display.disable_fbc(dev);
2389 /* Disable display plane */
2390 temp = I915_READ(dspcntr_reg);
2391 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2392 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2393 /* Flush the plane changes */
2394 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2395 I915_READ(dspbase_reg);
2398 /* Wait for vblank for the disable to take effect */
2399 intel_wait_for_vblank_off(dev, pipe);
2401 /* Don't disable pipe A or pipe A PLLs if needed */
2402 if (pipeconf_reg == PIPEACONF &&
2403 (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2404 goto skip_pipe_off;
2406 /* Next, disable display pipes */
2407 temp = I915_READ(pipeconf_reg);
2408 if ((temp & PIPEACONF_ENABLE) != 0) {
2409 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2410 I915_READ(pipeconf_reg);
2413 /* Wait for vblank for the disable to take effect. */
2414 intel_wait_for_vblank_off(dev, pipe);
2416 temp = I915_READ(dpll_reg);
2417 if ((temp & DPLL_VCO_ENABLE) != 0) {
2418 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2419 I915_READ(dpll_reg);
2421 skip_pipe_off:
2422 /* Wait for the clocks to turn off. */
2423 udelay(150);
2424 break;
2429 * Sets the power management mode of the pipe and plane.
2431 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2433 struct drm_device *dev = crtc->dev;
2434 struct drm_i915_private *dev_priv = dev->dev_private;
2435 struct drm_i915_master_private *master_priv;
2436 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2437 int pipe = intel_crtc->pipe;
2438 bool enabled;
2440 intel_crtc->dpms_mode = mode;
2441 intel_crtc->cursor_on = mode == DRM_MODE_DPMS_ON;
2443 /* When switching on the display, ensure that SR is disabled
2444 * with multiple pipes prior to enabling to new pipe.
2446 * When switching off the display, make sure the cursor is
2447 * properly hidden prior to disabling the pipe.
2449 if (mode == DRM_MODE_DPMS_ON)
2450 intel_update_watermarks(dev);
2451 else
2452 intel_crtc_update_cursor(crtc);
2454 dev_priv->display.dpms(crtc, mode);
2456 if (mode == DRM_MODE_DPMS_ON)
2457 intel_crtc_update_cursor(crtc);
2458 else
2459 intel_update_watermarks(dev);
2461 if (!dev->primary->master)
2462 return;
2464 master_priv = dev->primary->master->driver_priv;
2465 if (!master_priv->sarea_priv)
2466 return;
2468 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2470 switch (pipe) {
2471 case 0:
2472 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2473 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2474 break;
2475 case 1:
2476 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2477 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2478 break;
2479 default:
2480 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2481 break;
2485 static void intel_crtc_prepare (struct drm_crtc *crtc)
2487 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2488 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2491 static void intel_crtc_commit (struct drm_crtc *crtc)
2493 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2494 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2497 void intel_encoder_prepare (struct drm_encoder *encoder)
2499 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2500 /* lvds has its own version of prepare see intel_lvds_prepare */
2501 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2504 void intel_encoder_commit (struct drm_encoder *encoder)
2506 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2507 /* lvds has its own version of commit see intel_lvds_commit */
2508 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2511 void intel_encoder_destroy(struct drm_encoder *encoder)
2513 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
2515 if (intel_encoder->ddc_bus)
2516 intel_i2c_destroy(intel_encoder->ddc_bus);
2518 if (intel_encoder->i2c_bus)
2519 intel_i2c_destroy(intel_encoder->i2c_bus);
2521 drm_encoder_cleanup(encoder);
2522 kfree(intel_encoder);
2525 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2526 struct drm_display_mode *mode,
2527 struct drm_display_mode *adjusted_mode)
2529 struct drm_device *dev = crtc->dev;
2530 if (HAS_PCH_SPLIT(dev)) {
2531 /* FDI link clock is fixed at 2.7G */
2532 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2533 return false;
2535 return true;
2538 static int i945_get_display_clock_speed(struct drm_device *dev)
2540 return 400000;
2543 static int i915_get_display_clock_speed(struct drm_device *dev)
2545 return 333000;
2548 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2550 return 200000;
2553 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2555 u16 gcfgc = 0;
2557 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2559 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2560 return 133000;
2561 else {
2562 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2563 case GC_DISPLAY_CLOCK_333_MHZ:
2564 return 333000;
2565 default:
2566 case GC_DISPLAY_CLOCK_190_200_MHZ:
2567 return 190000;
2572 static int i865_get_display_clock_speed(struct drm_device *dev)
2574 return 266000;
2577 static int i855_get_display_clock_speed(struct drm_device *dev)
2579 u16 hpllcc = 0;
2580 /* Assume that the hardware is in the high speed state. This
2581 * should be the default.
2583 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2584 case GC_CLOCK_133_200:
2585 case GC_CLOCK_100_200:
2586 return 200000;
2587 case GC_CLOCK_166_250:
2588 return 250000;
2589 case GC_CLOCK_100_133:
2590 return 133000;
2593 /* Shouldn't happen */
2594 return 0;
2597 static int i830_get_display_clock_speed(struct drm_device *dev)
2599 return 133000;
2603 * Return the pipe currently connected to the panel fitter,
2604 * or -1 if the panel fitter is not present or not in use
2606 int intel_panel_fitter_pipe (struct drm_device *dev)
2608 struct drm_i915_private *dev_priv = dev->dev_private;
2609 u32 pfit_control;
2611 /* i830 doesn't have a panel fitter */
2612 if (IS_I830(dev))
2613 return -1;
2615 pfit_control = I915_READ(PFIT_CONTROL);
2617 /* See if the panel fitter is in use */
2618 if ((pfit_control & PFIT_ENABLE) == 0)
2619 return -1;
2621 /* 965 can place panel fitter on either pipe */
2622 if (IS_I965G(dev))
2623 return (pfit_control >> 29) & 0x3;
2625 /* older chips can only use pipe 1 */
2626 return 1;
2629 struct fdi_m_n {
2630 u32 tu;
2631 u32 gmch_m;
2632 u32 gmch_n;
2633 u32 link_m;
2634 u32 link_n;
2637 static void
2638 fdi_reduce_ratio(u32 *num, u32 *den)
2640 while (*num > 0xffffff || *den > 0xffffff) {
2641 *num >>= 1;
2642 *den >>= 1;
2646 #define DATA_N 0x800000
2647 #define LINK_N 0x80000
2649 static void
2650 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2651 int link_clock, struct fdi_m_n *m_n)
2653 u64 temp;
2655 m_n->tu = 64; /* default size */
2657 temp = (u64) DATA_N * pixel_clock;
2658 temp = div_u64(temp, link_clock);
2659 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2660 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2661 m_n->gmch_n = DATA_N;
2662 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2664 temp = (u64) LINK_N * pixel_clock;
2665 m_n->link_m = div_u64(temp, link_clock);
2666 m_n->link_n = LINK_N;
2667 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2671 struct intel_watermark_params {
2672 unsigned long fifo_size;
2673 unsigned long max_wm;
2674 unsigned long default_wm;
2675 unsigned long guard_size;
2676 unsigned long cacheline_size;
2679 /* Pineview has different values for various configs */
2680 static struct intel_watermark_params pineview_display_wm = {
2681 PINEVIEW_DISPLAY_FIFO,
2682 PINEVIEW_MAX_WM,
2683 PINEVIEW_DFT_WM,
2684 PINEVIEW_GUARD_WM,
2685 PINEVIEW_FIFO_LINE_SIZE
2687 static struct intel_watermark_params pineview_display_hplloff_wm = {
2688 PINEVIEW_DISPLAY_FIFO,
2689 PINEVIEW_MAX_WM,
2690 PINEVIEW_DFT_HPLLOFF_WM,
2691 PINEVIEW_GUARD_WM,
2692 PINEVIEW_FIFO_LINE_SIZE
2694 static struct intel_watermark_params pineview_cursor_wm = {
2695 PINEVIEW_CURSOR_FIFO,
2696 PINEVIEW_CURSOR_MAX_WM,
2697 PINEVIEW_CURSOR_DFT_WM,
2698 PINEVIEW_CURSOR_GUARD_WM,
2699 PINEVIEW_FIFO_LINE_SIZE,
2701 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2702 PINEVIEW_CURSOR_FIFO,
2703 PINEVIEW_CURSOR_MAX_WM,
2704 PINEVIEW_CURSOR_DFT_WM,
2705 PINEVIEW_CURSOR_GUARD_WM,
2706 PINEVIEW_FIFO_LINE_SIZE
2708 static struct intel_watermark_params g4x_wm_info = {
2709 G4X_FIFO_SIZE,
2710 G4X_MAX_WM,
2711 G4X_MAX_WM,
2713 G4X_FIFO_LINE_SIZE,
2715 static struct intel_watermark_params g4x_cursor_wm_info = {
2716 I965_CURSOR_FIFO,
2717 I965_CURSOR_MAX_WM,
2718 I965_CURSOR_DFT_WM,
2720 G4X_FIFO_LINE_SIZE,
2722 static struct intel_watermark_params i965_cursor_wm_info = {
2723 I965_CURSOR_FIFO,
2724 I965_CURSOR_MAX_WM,
2725 I965_CURSOR_DFT_WM,
2727 I915_FIFO_LINE_SIZE,
2729 static struct intel_watermark_params i945_wm_info = {
2730 I945_FIFO_SIZE,
2731 I915_MAX_WM,
2734 I915_FIFO_LINE_SIZE
2736 static struct intel_watermark_params i915_wm_info = {
2737 I915_FIFO_SIZE,
2738 I915_MAX_WM,
2741 I915_FIFO_LINE_SIZE
2743 static struct intel_watermark_params i855_wm_info = {
2744 I855GM_FIFO_SIZE,
2745 I915_MAX_WM,
2748 I830_FIFO_LINE_SIZE
2750 static struct intel_watermark_params i830_wm_info = {
2751 I830_FIFO_SIZE,
2752 I915_MAX_WM,
2755 I830_FIFO_LINE_SIZE
2758 static struct intel_watermark_params ironlake_display_wm_info = {
2759 ILK_DISPLAY_FIFO,
2760 ILK_DISPLAY_MAXWM,
2761 ILK_DISPLAY_DFTWM,
2763 ILK_FIFO_LINE_SIZE
2766 static struct intel_watermark_params ironlake_cursor_wm_info = {
2767 ILK_CURSOR_FIFO,
2768 ILK_CURSOR_MAXWM,
2769 ILK_CURSOR_DFTWM,
2771 ILK_FIFO_LINE_SIZE
2774 static struct intel_watermark_params ironlake_display_srwm_info = {
2775 ILK_DISPLAY_SR_FIFO,
2776 ILK_DISPLAY_MAX_SRWM,
2777 ILK_DISPLAY_DFT_SRWM,
2779 ILK_FIFO_LINE_SIZE
2782 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2783 ILK_CURSOR_SR_FIFO,
2784 ILK_CURSOR_MAX_SRWM,
2785 ILK_CURSOR_DFT_SRWM,
2787 ILK_FIFO_LINE_SIZE
2791 * intel_calculate_wm - calculate watermark level
2792 * @clock_in_khz: pixel clock
2793 * @wm: chip FIFO params
2794 * @pixel_size: display pixel size
2795 * @latency_ns: memory latency for the platform
2797 * Calculate the watermark level (the level at which the display plane will
2798 * start fetching from memory again). Each chip has a different display
2799 * FIFO size and allocation, so the caller needs to figure that out and pass
2800 * in the correct intel_watermark_params structure.
2802 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2803 * on the pixel size. When it reaches the watermark level, it'll start
2804 * fetching FIFO line sized based chunks from memory until the FIFO fills
2805 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2806 * will occur, and a display engine hang could result.
2808 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2809 struct intel_watermark_params *wm,
2810 int pixel_size,
2811 unsigned long latency_ns)
2813 long entries_required, wm_size;
2816 * Note: we need to make sure we don't overflow for various clock &
2817 * latency values.
2818 * clocks go from a few thousand to several hundred thousand.
2819 * latency is usually a few thousand
2821 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2822 1000;
2823 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2825 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2827 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2829 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2831 /* Don't promote wm_size to unsigned... */
2832 if (wm_size > (long)wm->max_wm)
2833 wm_size = wm->max_wm;
2834 if (wm_size <= 0) {
2835 wm_size = wm->default_wm;
2836 DRM_ERROR("Insufficient FIFO for plane, expect flickering:"
2837 " entries required = %ld, available = %lu.\n",
2838 entries_required + wm->guard_size,
2839 wm->fifo_size);
2842 return wm_size;
2845 struct cxsr_latency {
2846 int is_desktop;
2847 int is_ddr3;
2848 unsigned long fsb_freq;
2849 unsigned long mem_freq;
2850 unsigned long display_sr;
2851 unsigned long display_hpll_disable;
2852 unsigned long cursor_sr;
2853 unsigned long cursor_hpll_disable;
2856 static const struct cxsr_latency cxsr_latency_table[] = {
2857 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2858 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2859 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2860 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
2861 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
2863 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2864 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2865 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2866 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
2867 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
2869 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2870 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2871 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2872 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
2873 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
2875 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2876 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2877 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2878 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
2879 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
2881 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2882 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2883 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2884 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
2885 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
2887 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2888 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2889 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2890 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
2891 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
2894 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2895 int is_ddr3,
2896 int fsb,
2897 int mem)
2899 const struct cxsr_latency *latency;
2900 int i;
2902 if (fsb == 0 || mem == 0)
2903 return NULL;
2905 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2906 latency = &cxsr_latency_table[i];
2907 if (is_desktop == latency->is_desktop &&
2908 is_ddr3 == latency->is_ddr3 &&
2909 fsb == latency->fsb_freq && mem == latency->mem_freq)
2910 return latency;
2913 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2915 return NULL;
2918 static void pineview_disable_cxsr(struct drm_device *dev)
2920 struct drm_i915_private *dev_priv = dev->dev_private;
2922 /* deactivate cxsr */
2923 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
2927 * Latency for FIFO fetches is dependent on several factors:
2928 * - memory configuration (speed, channels)
2929 * - chipset
2930 * - current MCH state
2931 * It can be fairly high in some situations, so here we assume a fairly
2932 * pessimal value. It's a tradeoff between extra memory fetches (if we
2933 * set this value too high, the FIFO will fetch frequently to stay full)
2934 * and power consumption (set it too low to save power and we might see
2935 * FIFO underruns and display "flicker").
2937 * A value of 5us seems to be a good balance; safe for very low end
2938 * platforms but not overly aggressive on lower latency configs.
2940 static const int latency_ns = 5000;
2942 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2944 struct drm_i915_private *dev_priv = dev->dev_private;
2945 uint32_t dsparb = I915_READ(DSPARB);
2946 int size;
2948 size = dsparb & 0x7f;
2949 if (plane)
2950 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
2952 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2953 plane ? "B" : "A", size);
2955 return size;
2958 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2960 struct drm_i915_private *dev_priv = dev->dev_private;
2961 uint32_t dsparb = I915_READ(DSPARB);
2962 int size;
2964 size = dsparb & 0x1ff;
2965 if (plane)
2966 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
2967 size >>= 1; /* Convert to cachelines */
2969 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2970 plane ? "B" : "A", size);
2972 return size;
2975 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2977 struct drm_i915_private *dev_priv = dev->dev_private;
2978 uint32_t dsparb = I915_READ(DSPARB);
2979 int size;
2981 size = dsparb & 0x7f;
2982 size >>= 2; /* Convert to cachelines */
2984 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2985 plane ? "B" : "A",
2986 size);
2988 return size;
2991 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2993 struct drm_i915_private *dev_priv = dev->dev_private;
2994 uint32_t dsparb = I915_READ(DSPARB);
2995 int size;
2997 size = dsparb & 0x7f;
2998 size >>= 1; /* Convert to cachelines */
3000 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3001 plane ? "B" : "A", size);
3003 return size;
3006 static void pineview_update_wm(struct drm_device *dev, int planea_clock,
3007 int planeb_clock, int sr_hdisplay, int unused,
3008 int pixel_size)
3010 struct drm_i915_private *dev_priv = dev->dev_private;
3011 const struct cxsr_latency *latency;
3012 u32 reg;
3013 unsigned long wm;
3014 int sr_clock;
3016 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3017 dev_priv->fsb_freq, dev_priv->mem_freq);
3018 if (!latency) {
3019 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3020 pineview_disable_cxsr(dev);
3021 return;
3024 if (!planea_clock || !planeb_clock) {
3025 sr_clock = planea_clock ? planea_clock : planeb_clock;
3027 /* Display SR */
3028 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3029 pixel_size, latency->display_sr);
3030 reg = I915_READ(DSPFW1);
3031 reg &= ~DSPFW_SR_MASK;
3032 reg |= wm << DSPFW_SR_SHIFT;
3033 I915_WRITE(DSPFW1, reg);
3034 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3036 /* cursor SR */
3037 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3038 pixel_size, latency->cursor_sr);
3039 reg = I915_READ(DSPFW3);
3040 reg &= ~DSPFW_CURSOR_SR_MASK;
3041 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3042 I915_WRITE(DSPFW3, reg);
3044 /* Display HPLL off SR */
3045 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3046 pixel_size, latency->display_hpll_disable);
3047 reg = I915_READ(DSPFW3);
3048 reg &= ~DSPFW_HPLL_SR_MASK;
3049 reg |= wm & DSPFW_HPLL_SR_MASK;
3050 I915_WRITE(DSPFW3, reg);
3052 /* cursor HPLL off SR */
3053 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3054 pixel_size, latency->cursor_hpll_disable);
3055 reg = I915_READ(DSPFW3);
3056 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3057 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3058 I915_WRITE(DSPFW3, reg);
3059 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3061 /* activate cxsr */
3062 I915_WRITE(DSPFW3,
3063 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3064 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3065 } else {
3066 pineview_disable_cxsr(dev);
3067 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3071 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
3072 int planeb_clock, int sr_hdisplay, int sr_htotal,
3073 int pixel_size)
3075 struct drm_i915_private *dev_priv = dev->dev_private;
3076 int total_size, cacheline_size;
3077 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3078 struct intel_watermark_params planea_params, planeb_params;
3079 unsigned long line_time_us;
3080 int sr_clock, sr_entries = 0, entries_required;
3082 /* Create copies of the base settings for each pipe */
3083 planea_params = planeb_params = g4x_wm_info;
3085 /* Grab a couple of global values before we overwrite them */
3086 total_size = planea_params.fifo_size;
3087 cacheline_size = planea_params.cacheline_size;
3090 * Note: we need to make sure we don't overflow for various clock &
3091 * latency values.
3092 * clocks go from a few thousand to several hundred thousand.
3093 * latency is usually a few thousand
3095 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3096 1000;
3097 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3098 planea_wm = entries_required + planea_params.guard_size;
3100 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3101 1000;
3102 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3103 planeb_wm = entries_required + planeb_params.guard_size;
3105 cursora_wm = cursorb_wm = 16;
3106 cursor_sr = 32;
3108 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3110 /* Calc sr entries for one plane configs */
3111 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3112 /* self-refresh has much higher latency */
3113 static const int sr_latency_ns = 12000;
3115 sr_clock = planea_clock ? planea_clock : planeb_clock;
3116 line_time_us = ((sr_htotal * 1000) / sr_clock);
3118 /* Use ns/us then divide to preserve precision */
3119 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3120 pixel_size * sr_hdisplay;
3121 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3123 entries_required = (((sr_latency_ns / line_time_us) +
3124 1000) / 1000) * pixel_size * 64;
3125 entries_required = DIV_ROUND_UP(entries_required,
3126 g4x_cursor_wm_info.cacheline_size);
3127 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3129 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3130 cursor_sr = g4x_cursor_wm_info.max_wm;
3131 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3132 "cursor %d\n", sr_entries, cursor_sr);
3134 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3135 } else {
3136 /* Turn off self refresh if both pipes are enabled */
3137 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3138 & ~FW_BLC_SELF_EN);
3141 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3142 planea_wm, planeb_wm, sr_entries);
3144 planea_wm &= 0x3f;
3145 planeb_wm &= 0x3f;
3147 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3148 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3149 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3150 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3151 (cursora_wm << DSPFW_CURSORA_SHIFT));
3152 /* HPLL off in SR has some issues on G4x... disable it */
3153 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3154 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3157 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3158 int planeb_clock, int sr_hdisplay, int sr_htotal,
3159 int pixel_size)
3161 struct drm_i915_private *dev_priv = dev->dev_private;
3162 unsigned long line_time_us;
3163 int sr_clock, sr_entries, srwm = 1;
3164 int cursor_sr = 16;
3166 /* Calc sr entries for one plane configs */
3167 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3168 /* self-refresh has much higher latency */
3169 static const int sr_latency_ns = 12000;
3171 sr_clock = planea_clock ? planea_clock : planeb_clock;
3172 line_time_us = ((sr_htotal * 1000) / sr_clock);
3174 /* Use ns/us then divide to preserve precision */
3175 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3176 pixel_size * sr_hdisplay;
3177 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3178 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3179 srwm = I965_FIFO_SIZE - sr_entries;
3180 if (srwm < 0)
3181 srwm = 1;
3182 srwm &= 0x1ff;
3184 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3185 pixel_size * 64;
3186 sr_entries = DIV_ROUND_UP(sr_entries,
3187 i965_cursor_wm_info.cacheline_size);
3188 cursor_sr = i965_cursor_wm_info.fifo_size -
3189 (sr_entries + i965_cursor_wm_info.guard_size);
3191 if (cursor_sr > i965_cursor_wm_info.max_wm)
3192 cursor_sr = i965_cursor_wm_info.max_wm;
3194 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3195 "cursor %d\n", srwm, cursor_sr);
3197 if (IS_I965GM(dev))
3198 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3199 } else {
3200 /* Turn off self refresh if both pipes are enabled */
3201 if (IS_I965GM(dev))
3202 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3203 & ~FW_BLC_SELF_EN);
3206 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3207 srwm);
3209 /* 965 has limitations... */
3210 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3211 (8 << 0));
3212 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3213 /* update cursor SR watermark */
3214 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3217 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3218 int planeb_clock, int sr_hdisplay, int sr_htotal,
3219 int pixel_size)
3221 struct drm_i915_private *dev_priv = dev->dev_private;
3222 uint32_t fwater_lo;
3223 uint32_t fwater_hi;
3224 int total_size, cacheline_size, cwm, srwm = 1;
3225 int planea_wm, planeb_wm;
3226 struct intel_watermark_params planea_params, planeb_params;
3227 unsigned long line_time_us;
3228 int sr_clock, sr_entries = 0;
3230 /* Create copies of the base settings for each pipe */
3231 if (IS_I965GM(dev) || IS_I945GM(dev))
3232 planea_params = planeb_params = i945_wm_info;
3233 else if (IS_I9XX(dev))
3234 planea_params = planeb_params = i915_wm_info;
3235 else
3236 planea_params = planeb_params = i855_wm_info;
3238 /* Grab a couple of global values before we overwrite them */
3239 total_size = planea_params.fifo_size;
3240 cacheline_size = planea_params.cacheline_size;
3242 /* Update per-plane FIFO sizes */
3243 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3244 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3246 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3247 pixel_size, latency_ns);
3248 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3249 pixel_size, latency_ns);
3250 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3253 * Overlay gets an aggressive default since video jitter is bad.
3255 cwm = 2;
3257 /* Calc sr entries for one plane configs */
3258 if (HAS_FW_BLC(dev) && sr_hdisplay &&
3259 (!planea_clock || !planeb_clock)) {
3260 /* self-refresh has much higher latency */
3261 static const int sr_latency_ns = 6000;
3263 sr_clock = planea_clock ? planea_clock : planeb_clock;
3264 line_time_us = ((sr_htotal * 1000) / sr_clock);
3266 /* Use ns/us then divide to preserve precision */
3267 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3268 pixel_size * sr_hdisplay;
3269 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3270 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3271 srwm = total_size - sr_entries;
3272 if (srwm < 0)
3273 srwm = 1;
3275 if (IS_I945G(dev) || IS_I945GM(dev))
3276 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3277 else if (IS_I915GM(dev)) {
3278 /* 915M has a smaller SRWM field */
3279 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3280 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3282 } else {
3283 /* Turn off self refresh if both pipes are enabled */
3284 if (IS_I945G(dev) || IS_I945GM(dev)) {
3285 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3286 & ~FW_BLC_SELF_EN);
3287 } else if (IS_I915GM(dev)) {
3288 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3292 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3293 planea_wm, planeb_wm, cwm, srwm);
3295 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3296 fwater_hi = (cwm & 0x1f);
3298 /* Set request length to 8 cachelines per fetch */
3299 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3300 fwater_hi = fwater_hi | (1 << 8);
3302 I915_WRITE(FW_BLC, fwater_lo);
3303 I915_WRITE(FW_BLC2, fwater_hi);
3306 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3307 int unused2, int unused3, int pixel_size)
3309 struct drm_i915_private *dev_priv = dev->dev_private;
3310 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3311 int planea_wm;
3313 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3315 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3316 pixel_size, latency_ns);
3317 fwater_lo |= (3<<8) | planea_wm;
3319 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3321 I915_WRITE(FW_BLC, fwater_lo);
3324 #define ILK_LP0_PLANE_LATENCY 700
3325 #define ILK_LP0_CURSOR_LATENCY 1300
3327 static void ironlake_update_wm(struct drm_device *dev, int planea_clock,
3328 int planeb_clock, int sr_hdisplay, int sr_htotal,
3329 int pixel_size)
3331 struct drm_i915_private *dev_priv = dev->dev_private;
3332 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3333 int sr_wm, cursor_wm;
3334 unsigned long line_time_us;
3335 int sr_clock, entries_required;
3336 u32 reg_value;
3337 int line_count;
3338 int planea_htotal = 0, planeb_htotal = 0;
3339 struct drm_crtc *crtc;
3341 /* Need htotal for all active display plane */
3342 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3343 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3344 if (intel_crtc->dpms_mode == DRM_MODE_DPMS_ON) {
3345 if (intel_crtc->plane == 0)
3346 planea_htotal = crtc->mode.htotal;
3347 else
3348 planeb_htotal = crtc->mode.htotal;
3352 /* Calculate and update the watermark for plane A */
3353 if (planea_clock) {
3354 entries_required = ((planea_clock / 1000) * pixel_size *
3355 ILK_LP0_PLANE_LATENCY) / 1000;
3356 entries_required = DIV_ROUND_UP(entries_required,
3357 ironlake_display_wm_info.cacheline_size);
3358 planea_wm = entries_required +
3359 ironlake_display_wm_info.guard_size;
3361 if (planea_wm > (int)ironlake_display_wm_info.max_wm)
3362 planea_wm = ironlake_display_wm_info.max_wm;
3364 /* Use the large buffer method to calculate cursor watermark */
3365 line_time_us = (planea_htotal * 1000) / planea_clock;
3367 /* Use ns/us then divide to preserve precision */
3368 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3370 /* calculate the cursor watermark for cursor A */
3371 entries_required = line_count * 64 * pixel_size;
3372 entries_required = DIV_ROUND_UP(entries_required,
3373 ironlake_cursor_wm_info.cacheline_size);
3374 cursora_wm = entries_required + ironlake_cursor_wm_info.guard_size;
3375 if (cursora_wm > ironlake_cursor_wm_info.max_wm)
3376 cursora_wm = ironlake_cursor_wm_info.max_wm;
3378 reg_value = I915_READ(WM0_PIPEA_ILK);
3379 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3380 reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
3381 (cursora_wm & WM0_PIPE_CURSOR_MASK);
3382 I915_WRITE(WM0_PIPEA_ILK, reg_value);
3383 DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
3384 "cursor: %d\n", planea_wm, cursora_wm);
3386 /* Calculate and update the watermark for plane B */
3387 if (planeb_clock) {
3388 entries_required = ((planeb_clock / 1000) * pixel_size *
3389 ILK_LP0_PLANE_LATENCY) / 1000;
3390 entries_required = DIV_ROUND_UP(entries_required,
3391 ironlake_display_wm_info.cacheline_size);
3392 planeb_wm = entries_required +
3393 ironlake_display_wm_info.guard_size;
3395 if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
3396 planeb_wm = ironlake_display_wm_info.max_wm;
3398 /* Use the large buffer method to calculate cursor watermark */
3399 line_time_us = (planeb_htotal * 1000) / planeb_clock;
3401 /* Use ns/us then divide to preserve precision */
3402 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3404 /* calculate the cursor watermark for cursor B */
3405 entries_required = line_count * 64 * pixel_size;
3406 entries_required = DIV_ROUND_UP(entries_required,
3407 ironlake_cursor_wm_info.cacheline_size);
3408 cursorb_wm = entries_required + ironlake_cursor_wm_info.guard_size;
3409 if (cursorb_wm > ironlake_cursor_wm_info.max_wm)
3410 cursorb_wm = ironlake_cursor_wm_info.max_wm;
3412 reg_value = I915_READ(WM0_PIPEB_ILK);
3413 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3414 reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
3415 (cursorb_wm & WM0_PIPE_CURSOR_MASK);
3416 I915_WRITE(WM0_PIPEB_ILK, reg_value);
3417 DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
3418 "cursor: %d\n", planeb_wm, cursorb_wm);
3422 * Calculate and update the self-refresh watermark only when one
3423 * display plane is used.
3425 if (!planea_clock || !planeb_clock) {
3427 /* Read the self-refresh latency. The unit is 0.5us */
3428 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3430 sr_clock = planea_clock ? planea_clock : planeb_clock;
3431 line_time_us = ((sr_htotal * 1000) / sr_clock);
3433 /* Use ns/us then divide to preserve precision */
3434 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3435 / 1000;
3437 /* calculate the self-refresh watermark for display plane */
3438 entries_required = line_count * sr_hdisplay * pixel_size;
3439 entries_required = DIV_ROUND_UP(entries_required,
3440 ironlake_display_srwm_info.cacheline_size);
3441 sr_wm = entries_required +
3442 ironlake_display_srwm_info.guard_size;
3444 /* calculate the self-refresh watermark for display cursor */
3445 entries_required = line_count * pixel_size * 64;
3446 entries_required = DIV_ROUND_UP(entries_required,
3447 ironlake_cursor_srwm_info.cacheline_size);
3448 cursor_wm = entries_required +
3449 ironlake_cursor_srwm_info.guard_size;
3451 /* configure watermark and enable self-refresh */
3452 reg_value = I915_READ(WM1_LP_ILK);
3453 reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
3454 WM1_LP_CURSOR_MASK);
3455 reg_value |= WM1_LP_SR_EN |
3456 (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3457 (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
3459 I915_WRITE(WM1_LP_ILK, reg_value);
3460 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3461 "cursor %d\n", sr_wm, cursor_wm);
3463 } else {
3464 /* Turn off self refresh if both pipes are enabled */
3465 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
3469 * intel_update_watermarks - update FIFO watermark values based on current modes
3471 * Calculate watermark values for the various WM regs based on current mode
3472 * and plane configuration.
3474 * There are several cases to deal with here:
3475 * - normal (i.e. non-self-refresh)
3476 * - self-refresh (SR) mode
3477 * - lines are large relative to FIFO size (buffer can hold up to 2)
3478 * - lines are small relative to FIFO size (buffer can hold more than 2
3479 * lines), so need to account for TLB latency
3481 * The normal calculation is:
3482 * watermark = dotclock * bytes per pixel * latency
3483 * where latency is platform & configuration dependent (we assume pessimal
3484 * values here).
3486 * The SR calculation is:
3487 * watermark = (trunc(latency/line time)+1) * surface width *
3488 * bytes per pixel
3489 * where
3490 * line time = htotal / dotclock
3491 * surface width = hdisplay for normal plane and 64 for cursor
3492 * and latency is assumed to be high, as above.
3494 * The final value programmed to the register should always be rounded up,
3495 * and include an extra 2 entries to account for clock crossings.
3497 * We don't use the sprite, so we can ignore that. And on Crestline we have
3498 * to set the non-SR watermarks to 8.
3500 static void intel_update_watermarks(struct drm_device *dev)
3502 struct drm_i915_private *dev_priv = dev->dev_private;
3503 struct drm_crtc *crtc;
3504 int sr_hdisplay = 0;
3505 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3506 int enabled = 0, pixel_size = 0;
3507 int sr_htotal = 0;
3509 if (!dev_priv->display.update_wm)
3510 return;
3512 /* Get the clock config from both planes */
3513 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3514 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3515 if (intel_crtc->dpms_mode == DRM_MODE_DPMS_ON) {
3516 enabled++;
3517 if (intel_crtc->plane == 0) {
3518 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3519 intel_crtc->pipe, crtc->mode.clock);
3520 planea_clock = crtc->mode.clock;
3521 } else {
3522 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3523 intel_crtc->pipe, crtc->mode.clock);
3524 planeb_clock = crtc->mode.clock;
3526 sr_hdisplay = crtc->mode.hdisplay;
3527 sr_clock = crtc->mode.clock;
3528 sr_htotal = crtc->mode.htotal;
3529 if (crtc->fb)
3530 pixel_size = crtc->fb->bits_per_pixel / 8;
3531 else
3532 pixel_size = 4; /* by default */
3536 if (enabled <= 0)
3537 return;
3539 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3540 sr_hdisplay, sr_htotal, pixel_size);
3543 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3544 struct drm_display_mode *mode,
3545 struct drm_display_mode *adjusted_mode,
3546 int x, int y,
3547 struct drm_framebuffer *old_fb)
3549 struct drm_device *dev = crtc->dev;
3550 struct drm_i915_private *dev_priv = dev->dev_private;
3551 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3552 int pipe = intel_crtc->pipe;
3553 int plane = intel_crtc->plane;
3554 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
3555 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3556 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
3557 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
3558 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
3559 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
3560 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
3561 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
3562 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
3563 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
3564 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
3565 int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
3566 int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
3567 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
3568 int refclk, num_connectors = 0;
3569 intel_clock_t clock, reduced_clock;
3570 u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
3571 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3572 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3573 bool is_edp = false;
3574 struct drm_mode_config *mode_config = &dev->mode_config;
3575 struct drm_encoder *encoder;
3576 struct intel_encoder *intel_encoder = NULL;
3577 const intel_limit_t *limit;
3578 int ret;
3579 struct fdi_m_n m_n = {0};
3580 int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
3581 int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
3582 int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
3583 int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
3584 int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
3585 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
3586 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
3587 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
3588 int trans_dpll_sel = (pipe == 0) ? 0 : 1;
3589 int lvds_reg = LVDS;
3590 u32 temp;
3591 int sdvo_pixel_multiply;
3592 int target_clock;
3594 drm_vblank_pre_modeset(dev, pipe);
3596 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
3598 if (!encoder || encoder->crtc != crtc)
3599 continue;
3601 intel_encoder = enc_to_intel_encoder(encoder);
3603 switch (intel_encoder->type) {
3604 case INTEL_OUTPUT_LVDS:
3605 is_lvds = true;
3606 break;
3607 case INTEL_OUTPUT_SDVO:
3608 case INTEL_OUTPUT_HDMI:
3609 is_sdvo = true;
3610 if (intel_encoder->needs_tv_clock)
3611 is_tv = true;
3612 break;
3613 case INTEL_OUTPUT_DVO:
3614 is_dvo = true;
3615 break;
3616 case INTEL_OUTPUT_TVOUT:
3617 is_tv = true;
3618 break;
3619 case INTEL_OUTPUT_ANALOG:
3620 is_crt = true;
3621 break;
3622 case INTEL_OUTPUT_DISPLAYPORT:
3623 is_dp = true;
3624 break;
3625 case INTEL_OUTPUT_EDP:
3626 is_edp = true;
3627 break;
3630 num_connectors++;
3633 if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3634 refclk = dev_priv->lvds_ssc_freq * 1000;
3635 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3636 refclk / 1000);
3637 } else if (IS_I9XX(dev)) {
3638 refclk = 96000;
3639 if (HAS_PCH_SPLIT(dev))
3640 refclk = 120000; /* 120Mhz refclk */
3641 } else {
3642 refclk = 48000;
3647 * Returns a set of divisors for the desired target clock with the given
3648 * refclk, or FALSE. The returned values represent the clock equation:
3649 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3651 limit = intel_limit(crtc);
3652 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3653 if (!ok) {
3654 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3655 drm_vblank_post_modeset(dev, pipe);
3656 return -EINVAL;
3659 /* Ensure that the cursor is valid for the new mode before changing... */
3660 intel_crtc_update_cursor(crtc);
3662 if (is_lvds && dev_priv->lvds_downclock_avail) {
3663 has_reduced_clock = limit->find_pll(limit, crtc,
3664 dev_priv->lvds_downclock,
3665 refclk,
3666 &reduced_clock);
3667 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3669 * If the different P is found, it means that we can't
3670 * switch the display clock by using the FP0/FP1.
3671 * In such case we will disable the LVDS downclock
3672 * feature.
3674 DRM_DEBUG_KMS("Different P is found for "
3675 "LVDS clock/downclock\n");
3676 has_reduced_clock = 0;
3679 /* SDVO TV has fixed PLL values depend on its clock range,
3680 this mirrors vbios setting. */
3681 if (is_sdvo && is_tv) {
3682 if (adjusted_mode->clock >= 100000
3683 && adjusted_mode->clock < 140500) {
3684 clock.p1 = 2;
3685 clock.p2 = 10;
3686 clock.n = 3;
3687 clock.m1 = 16;
3688 clock.m2 = 8;
3689 } else if (adjusted_mode->clock >= 140500
3690 && adjusted_mode->clock <= 200000) {
3691 clock.p1 = 1;
3692 clock.p2 = 10;
3693 clock.n = 6;
3694 clock.m1 = 12;
3695 clock.m2 = 8;
3699 /* FDI link */
3700 if (HAS_PCH_SPLIT(dev)) {
3701 int lane = 0, link_bw, bpp;
3702 /* eDP doesn't require FDI link, so just set DP M/N
3703 according to current link config */
3704 if (is_edp) {
3705 target_clock = mode->clock;
3706 intel_edp_link_config(intel_encoder,
3707 &lane, &link_bw);
3708 } else {
3709 /* DP over FDI requires target mode clock
3710 instead of link clock */
3711 if (is_dp)
3712 target_clock = mode->clock;
3713 else
3714 target_clock = adjusted_mode->clock;
3715 link_bw = 270000;
3718 /* determine panel color depth */
3719 temp = I915_READ(pipeconf_reg);
3720 temp &= ~PIPE_BPC_MASK;
3721 if (is_lvds) {
3722 int lvds_reg = I915_READ(PCH_LVDS);
3723 /* the BPC will be 6 if it is 18-bit LVDS panel */
3724 if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3725 temp |= PIPE_8BPC;
3726 else
3727 temp |= PIPE_6BPC;
3728 } else if (is_edp || (is_dp && intel_pch_has_edp(crtc))) {
3729 switch (dev_priv->edp_bpp/3) {
3730 case 8:
3731 temp |= PIPE_8BPC;
3732 break;
3733 case 10:
3734 temp |= PIPE_10BPC;
3735 break;
3736 case 6:
3737 temp |= PIPE_6BPC;
3738 break;
3739 case 12:
3740 temp |= PIPE_12BPC;
3741 break;
3743 } else
3744 temp |= PIPE_8BPC;
3745 I915_WRITE(pipeconf_reg, temp);
3746 I915_READ(pipeconf_reg);
3748 switch (temp & PIPE_BPC_MASK) {
3749 case PIPE_8BPC:
3750 bpp = 24;
3751 break;
3752 case PIPE_10BPC:
3753 bpp = 30;
3754 break;
3755 case PIPE_6BPC:
3756 bpp = 18;
3757 break;
3758 case PIPE_12BPC:
3759 bpp = 36;
3760 break;
3761 default:
3762 DRM_ERROR("unknown pipe bpc value\n");
3763 bpp = 24;
3766 if (!lane) {
3768 * Account for spread spectrum to avoid
3769 * oversubscribing the link. Max center spread
3770 * is 2.5%; use 5% for safety's sake.
3772 u32 bps = target_clock * bpp * 21 / 20;
3773 lane = bps / (link_bw * 8) + 1;
3776 intel_crtc->fdi_lanes = lane;
3778 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3781 /* Ironlake: try to setup display ref clock before DPLL
3782 * enabling. This is only under driver's control after
3783 * PCH B stepping, previous chipset stepping should be
3784 * ignoring this setting.
3786 if (HAS_PCH_SPLIT(dev)) {
3787 temp = I915_READ(PCH_DREF_CONTROL);
3788 /* Always enable nonspread source */
3789 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3790 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3791 I915_WRITE(PCH_DREF_CONTROL, temp);
3792 POSTING_READ(PCH_DREF_CONTROL);
3794 temp &= ~DREF_SSC_SOURCE_MASK;
3795 temp |= DREF_SSC_SOURCE_ENABLE;
3796 I915_WRITE(PCH_DREF_CONTROL, temp);
3797 POSTING_READ(PCH_DREF_CONTROL);
3799 udelay(200);
3801 if (is_edp) {
3802 if (dev_priv->lvds_use_ssc) {
3803 temp |= DREF_SSC1_ENABLE;
3804 I915_WRITE(PCH_DREF_CONTROL, temp);
3805 POSTING_READ(PCH_DREF_CONTROL);
3807 udelay(200);
3809 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3810 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3811 I915_WRITE(PCH_DREF_CONTROL, temp);
3812 POSTING_READ(PCH_DREF_CONTROL);
3813 } else {
3814 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3815 I915_WRITE(PCH_DREF_CONTROL, temp);
3816 POSTING_READ(PCH_DREF_CONTROL);
3821 if (IS_PINEVIEW(dev)) {
3822 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3823 if (has_reduced_clock)
3824 fp2 = (1 << reduced_clock.n) << 16 |
3825 reduced_clock.m1 << 8 | reduced_clock.m2;
3826 } else {
3827 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3828 if (has_reduced_clock)
3829 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3830 reduced_clock.m2;
3833 if (!HAS_PCH_SPLIT(dev))
3834 dpll = DPLL_VGA_MODE_DIS;
3836 if (IS_I9XX(dev)) {
3837 if (is_lvds)
3838 dpll |= DPLLB_MODE_LVDS;
3839 else
3840 dpll |= DPLLB_MODE_DAC_SERIAL;
3841 if (is_sdvo) {
3842 dpll |= DPLL_DVO_HIGH_SPEED;
3843 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3844 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3845 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3846 else if (HAS_PCH_SPLIT(dev))
3847 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3849 if (is_dp)
3850 dpll |= DPLL_DVO_HIGH_SPEED;
3852 /* compute bitmask from p1 value */
3853 if (IS_PINEVIEW(dev))
3854 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3855 else {
3856 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3857 /* also FPA1 */
3858 if (HAS_PCH_SPLIT(dev))
3859 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3860 if (IS_G4X(dev) && has_reduced_clock)
3861 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3863 switch (clock.p2) {
3864 case 5:
3865 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3866 break;
3867 case 7:
3868 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3869 break;
3870 case 10:
3871 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3872 break;
3873 case 14:
3874 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3875 break;
3877 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3878 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3879 } else {
3880 if (is_lvds) {
3881 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3882 } else {
3883 if (clock.p1 == 2)
3884 dpll |= PLL_P1_DIVIDE_BY_TWO;
3885 else
3886 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3887 if (clock.p2 == 4)
3888 dpll |= PLL_P2_DIVIDE_BY_4;
3892 if (is_sdvo && is_tv)
3893 dpll |= PLL_REF_INPUT_TVCLKINBC;
3894 else if (is_tv)
3895 /* XXX: just matching BIOS for now */
3896 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3897 dpll |= 3;
3898 else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3899 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3900 else
3901 dpll |= PLL_REF_INPUT_DREFCLK;
3903 /* setup pipeconf */
3904 pipeconf = I915_READ(pipeconf_reg);
3906 /* Set up the display plane register */
3907 dspcntr = DISPPLANE_GAMMA_ENABLE;
3909 /* Ironlake's plane is forced to pipe, bit 24 is to
3910 enable color space conversion */
3911 if (!HAS_PCH_SPLIT(dev)) {
3912 if (pipe == 0)
3913 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3914 else
3915 dspcntr |= DISPPLANE_SEL_PIPE_B;
3918 if (pipe == 0 && !IS_I965G(dev)) {
3919 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3920 * core speed.
3922 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3923 * pipe == 0 check?
3925 if (mode->clock >
3926 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3927 pipeconf |= PIPEACONF_DOUBLE_WIDE;
3928 else
3929 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3932 dspcntr |= DISPLAY_PLANE_ENABLE;
3933 pipeconf |= PIPEACONF_ENABLE;
3934 dpll |= DPLL_VCO_ENABLE;
3937 /* Disable the panel fitter if it was on our pipe */
3938 if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3939 I915_WRITE(PFIT_CONTROL, 0);
3941 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3942 drm_mode_debug_printmodeline(mode);
3944 /* assign to Ironlake registers */
3945 if (HAS_PCH_SPLIT(dev)) {
3946 fp_reg = pch_fp_reg;
3947 dpll_reg = pch_dpll_reg;
3950 if (!is_edp) {
3951 I915_WRITE(fp_reg, fp);
3952 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3953 I915_READ(dpll_reg);
3954 udelay(150);
3957 /* enable transcoder DPLL */
3958 if (HAS_PCH_CPT(dev)) {
3959 temp = I915_READ(PCH_DPLL_SEL);
3960 if (trans_dpll_sel == 0)
3961 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3962 else
3963 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3964 I915_WRITE(PCH_DPLL_SEL, temp);
3965 I915_READ(PCH_DPLL_SEL);
3966 udelay(150);
3969 if (HAS_PCH_SPLIT(dev)) {
3970 pipeconf &= ~PIPE_ENABLE_DITHER;
3971 pipeconf &= ~PIPE_DITHER_TYPE_MASK;
3974 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3975 * This is an exception to the general rule that mode_set doesn't turn
3976 * things on.
3978 if (is_lvds) {
3979 u32 lvds;
3981 if (HAS_PCH_SPLIT(dev))
3982 lvds_reg = PCH_LVDS;
3984 lvds = I915_READ(lvds_reg);
3985 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3986 if (pipe == 1) {
3987 if (HAS_PCH_CPT(dev))
3988 lvds |= PORT_TRANS_B_SEL_CPT;
3989 else
3990 lvds |= LVDS_PIPEB_SELECT;
3991 } else {
3992 if (HAS_PCH_CPT(dev))
3993 lvds &= ~PORT_TRANS_SEL_MASK;
3994 else
3995 lvds &= ~LVDS_PIPEB_SELECT;
3997 /* set the corresponsding LVDS_BORDER bit */
3998 lvds |= dev_priv->lvds_border_bits;
3999 /* Set the B0-B3 data pairs corresponding to whether we're going to
4000 * set the DPLLs for dual-channel mode or not.
4002 if (clock.p2 == 7)
4003 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4004 else
4005 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4007 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4008 * appropriately here, but we need to look more thoroughly into how
4009 * panels behave in the two modes.
4011 /* set the dithering flag */
4012 if (IS_I965G(dev)) {
4013 if (dev_priv->lvds_dither) {
4014 if (HAS_PCH_SPLIT(dev)) {
4015 pipeconf |= PIPE_ENABLE_DITHER;
4016 pipeconf |= PIPE_DITHER_TYPE_ST01;
4017 } else
4018 lvds |= LVDS_ENABLE_DITHER;
4019 } else {
4020 if (!HAS_PCH_SPLIT(dev)) {
4021 lvds &= ~LVDS_ENABLE_DITHER;
4025 I915_WRITE(lvds_reg, lvds);
4026 I915_READ(lvds_reg);
4028 if (is_dp)
4029 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4030 else if (HAS_PCH_SPLIT(dev)) {
4031 /* For non-DP output, clear any trans DP clock recovery setting.*/
4032 if (pipe == 0) {
4033 I915_WRITE(TRANSA_DATA_M1, 0);
4034 I915_WRITE(TRANSA_DATA_N1, 0);
4035 I915_WRITE(TRANSA_DP_LINK_M1, 0);
4036 I915_WRITE(TRANSA_DP_LINK_N1, 0);
4037 } else {
4038 I915_WRITE(TRANSB_DATA_M1, 0);
4039 I915_WRITE(TRANSB_DATA_N1, 0);
4040 I915_WRITE(TRANSB_DP_LINK_M1, 0);
4041 I915_WRITE(TRANSB_DP_LINK_N1, 0);
4045 if (!is_edp) {
4046 I915_WRITE(fp_reg, fp);
4047 I915_WRITE(dpll_reg, dpll);
4048 I915_READ(dpll_reg);
4049 /* Wait for the clocks to stabilize. */
4050 udelay(150);
4052 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
4053 if (is_sdvo) {
4054 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
4055 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
4056 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
4057 } else
4058 I915_WRITE(dpll_md_reg, 0);
4059 } else {
4060 /* write it again -- the BIOS does, after all */
4061 I915_WRITE(dpll_reg, dpll);
4063 I915_READ(dpll_reg);
4064 /* Wait for the clocks to stabilize. */
4065 udelay(150);
4068 if (is_lvds && has_reduced_clock && i915_powersave) {
4069 I915_WRITE(fp_reg + 4, fp2);
4070 intel_crtc->lowfreq_avail = true;
4071 if (HAS_PIPE_CXSR(dev)) {
4072 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4073 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4075 } else {
4076 I915_WRITE(fp_reg + 4, fp);
4077 intel_crtc->lowfreq_avail = false;
4078 if (HAS_PIPE_CXSR(dev)) {
4079 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4080 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4084 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4085 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4086 /* the chip adds 2 halflines automatically */
4087 adjusted_mode->crtc_vdisplay -= 1;
4088 adjusted_mode->crtc_vtotal -= 1;
4089 adjusted_mode->crtc_vblank_start -= 1;
4090 adjusted_mode->crtc_vblank_end -= 1;
4091 adjusted_mode->crtc_vsync_end -= 1;
4092 adjusted_mode->crtc_vsync_start -= 1;
4093 } else
4094 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4096 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
4097 ((adjusted_mode->crtc_htotal - 1) << 16));
4098 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
4099 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4100 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
4101 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4102 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
4103 ((adjusted_mode->crtc_vtotal - 1) << 16));
4104 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
4105 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4106 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
4107 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4108 /* pipesrc and dspsize control the size that is scaled from, which should
4109 * always be the user's requested size.
4111 if (!HAS_PCH_SPLIT(dev)) {
4112 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
4113 (mode->hdisplay - 1));
4114 I915_WRITE(dsppos_reg, 0);
4116 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4118 if (HAS_PCH_SPLIT(dev)) {
4119 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
4120 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
4121 I915_WRITE(link_m1_reg, m_n.link_m);
4122 I915_WRITE(link_n1_reg, m_n.link_n);
4124 if (is_edp) {
4125 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4126 } else {
4127 /* enable FDI RX PLL too */
4128 temp = I915_READ(fdi_rx_reg);
4129 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
4130 I915_READ(fdi_rx_reg);
4131 udelay(200);
4133 /* enable FDI TX PLL too */
4134 temp = I915_READ(fdi_tx_reg);
4135 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
4136 I915_READ(fdi_tx_reg);
4138 /* enable FDI RX PCDCLK */
4139 temp = I915_READ(fdi_rx_reg);
4140 I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
4141 I915_READ(fdi_rx_reg);
4142 udelay(200);
4146 I915_WRITE(pipeconf_reg, pipeconf);
4147 I915_READ(pipeconf_reg);
4149 intel_wait_for_vblank(dev, pipe);
4151 if (IS_IRONLAKE(dev)) {
4152 /* enable address swizzle for tiling buffer */
4153 temp = I915_READ(DISP_ARB_CTL);
4154 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4157 I915_WRITE(dspcntr_reg, dspcntr);
4159 /* Flush the plane changes */
4160 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4162 intel_update_watermarks(dev);
4164 drm_vblank_post_modeset(dev, pipe);
4166 return ret;
4169 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4170 void intel_crtc_load_lut(struct drm_crtc *crtc)
4172 struct drm_device *dev = crtc->dev;
4173 struct drm_i915_private *dev_priv = dev->dev_private;
4174 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4175 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4176 int i;
4178 /* The clocks have to be on to load the palette. */
4179 if (!crtc->enabled)
4180 return;
4182 /* use legacy palette for Ironlake */
4183 if (HAS_PCH_SPLIT(dev))
4184 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4185 LGC_PALETTE_B;
4187 for (i = 0; i < 256; i++) {
4188 I915_WRITE(palreg + 4 * i,
4189 (intel_crtc->lut_r[i] << 16) |
4190 (intel_crtc->lut_g[i] << 8) |
4191 intel_crtc->lut_b[i]);
4195 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4197 struct drm_device *dev = crtc->dev;
4198 struct drm_i915_private *dev_priv = dev->dev_private;
4199 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4200 bool visible = base != 0;
4201 u32 cntl;
4203 if (intel_crtc->cursor_visible == visible)
4204 return;
4206 cntl = I915_READ(CURACNTR);
4207 if (visible) {
4208 /* On these chipsets we can only modify the base whilst
4209 * the cursor is disabled.
4211 I915_WRITE(CURABASE, base);
4213 cntl &= ~(CURSOR_FORMAT_MASK);
4214 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4215 cntl |= CURSOR_ENABLE |
4216 CURSOR_GAMMA_ENABLE |
4217 CURSOR_FORMAT_ARGB;
4218 } else
4219 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4220 I915_WRITE(CURACNTR, cntl);
4222 intel_crtc->cursor_visible = visible;
4225 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4227 struct drm_device *dev = crtc->dev;
4228 struct drm_i915_private *dev_priv = dev->dev_private;
4229 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4230 int pipe = intel_crtc->pipe;
4231 bool visible = base != 0;
4233 if (intel_crtc->cursor_visible != visible) {
4234 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4235 if (base) {
4236 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4237 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4238 cntl |= pipe << 28; /* Connect to correct pipe */
4239 } else {
4240 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4241 cntl |= CURSOR_MODE_DISABLE;
4243 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4245 intel_crtc->cursor_visible = visible;
4247 /* and commit changes on next vblank */
4248 I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4251 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4252 static void intel_crtc_update_cursor(struct drm_crtc *crtc)
4254 struct drm_device *dev = crtc->dev;
4255 struct drm_i915_private *dev_priv = dev->dev_private;
4256 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4257 int pipe = intel_crtc->pipe;
4258 int x = intel_crtc->cursor_x;
4259 int y = intel_crtc->cursor_y;
4260 u32 base, pos;
4261 bool visible;
4263 pos = 0;
4265 if (intel_crtc->cursor_on && crtc->fb) {
4266 base = intel_crtc->cursor_addr;
4267 if (x > (int) crtc->fb->width)
4268 base = 0;
4270 if (y > (int) crtc->fb->height)
4271 base = 0;
4272 } else
4273 base = 0;
4275 if (x < 0) {
4276 if (x + intel_crtc->cursor_width < 0)
4277 base = 0;
4279 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4280 x = -x;
4282 pos |= x << CURSOR_X_SHIFT;
4284 if (y < 0) {
4285 if (y + intel_crtc->cursor_height < 0)
4286 base = 0;
4288 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4289 y = -y;
4291 pos |= y << CURSOR_Y_SHIFT;
4293 visible = base != 0;
4294 if (!visible && !intel_crtc->cursor_visible)
4295 return;
4297 I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4298 if (IS_845G(dev) || IS_I865G(dev))
4299 i845_update_cursor(crtc, base);
4300 else
4301 i9xx_update_cursor(crtc, base);
4303 if (visible)
4304 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4307 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4308 struct drm_file *file_priv,
4309 uint32_t handle,
4310 uint32_t width, uint32_t height)
4312 struct drm_device *dev = crtc->dev;
4313 struct drm_i915_private *dev_priv = dev->dev_private;
4314 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4315 struct drm_gem_object *bo;
4316 struct drm_i915_gem_object *obj_priv;
4317 uint32_t addr;
4318 int ret;
4320 DRM_DEBUG_KMS("\n");
4322 /* if we want to turn off the cursor ignore width and height */
4323 if (!handle) {
4324 DRM_DEBUG_KMS("cursor off\n");
4325 addr = 0;
4326 bo = NULL;
4327 mutex_lock(&dev->struct_mutex);
4328 goto finish;
4331 /* Currently we only support 64x64 cursors */
4332 if (width != 64 || height != 64) {
4333 DRM_ERROR("we currently only support 64x64 cursors\n");
4334 return -EINVAL;
4337 bo = drm_gem_object_lookup(dev, file_priv, handle);
4338 if (!bo)
4339 return -ENOENT;
4341 obj_priv = to_intel_bo(bo);
4343 if (bo->size < width * height * 4) {
4344 DRM_ERROR("buffer is to small\n");
4345 ret = -ENOMEM;
4346 goto fail;
4349 /* we only need to pin inside GTT if cursor is non-phy */
4350 mutex_lock(&dev->struct_mutex);
4351 if (!dev_priv->info->cursor_needs_physical) {
4352 ret = i915_gem_object_pin(bo, PAGE_SIZE);
4353 if (ret) {
4354 DRM_ERROR("failed to pin cursor bo\n");
4355 goto fail_locked;
4358 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4359 if (ret) {
4360 DRM_ERROR("failed to move cursor bo into the GTT\n");
4361 goto fail_unpin;
4364 addr = obj_priv->gtt_offset;
4365 } else {
4366 int align = IS_I830(dev) ? 16 * 1024 : 256;
4367 ret = i915_gem_attach_phys_object(dev, bo,
4368 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4369 align);
4370 if (ret) {
4371 DRM_ERROR("failed to attach phys object\n");
4372 goto fail_locked;
4374 addr = obj_priv->phys_obj->handle->busaddr;
4377 if (!IS_I9XX(dev))
4378 I915_WRITE(CURSIZE, (height << 12) | width);
4380 finish:
4381 if (intel_crtc->cursor_bo) {
4382 if (dev_priv->info->cursor_needs_physical) {
4383 if (intel_crtc->cursor_bo != bo)
4384 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4385 } else
4386 i915_gem_object_unpin(intel_crtc->cursor_bo);
4387 drm_gem_object_unreference(intel_crtc->cursor_bo);
4390 mutex_unlock(&dev->struct_mutex);
4392 intel_crtc->cursor_addr = addr;
4393 intel_crtc->cursor_bo = bo;
4394 intel_crtc->cursor_width = width;
4395 intel_crtc->cursor_height = height;
4397 intel_crtc_update_cursor(crtc);
4399 return 0;
4400 fail_unpin:
4401 i915_gem_object_unpin(bo);
4402 fail_locked:
4403 mutex_unlock(&dev->struct_mutex);
4404 fail:
4405 drm_gem_object_unreference_unlocked(bo);
4406 return ret;
4409 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4411 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4413 intel_crtc->cursor_x = x;
4414 intel_crtc->cursor_y = y;
4416 intel_crtc_update_cursor(crtc);
4418 return 0;
4421 /** Sets the color ramps on behalf of RandR */
4422 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4423 u16 blue, int regno)
4425 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4427 intel_crtc->lut_r[regno] = red >> 8;
4428 intel_crtc->lut_g[regno] = green >> 8;
4429 intel_crtc->lut_b[regno] = blue >> 8;
4432 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4433 u16 *blue, int regno)
4435 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4437 *red = intel_crtc->lut_r[regno] << 8;
4438 *green = intel_crtc->lut_g[regno] << 8;
4439 *blue = intel_crtc->lut_b[regno] << 8;
4442 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4443 u16 *blue, uint32_t start, uint32_t size)
4445 int end = (start + size > 256) ? 256 : start + size, i;
4446 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4448 for (i = start; i < end; i++) {
4449 intel_crtc->lut_r[i] = red[i] >> 8;
4450 intel_crtc->lut_g[i] = green[i] >> 8;
4451 intel_crtc->lut_b[i] = blue[i] >> 8;
4454 intel_crtc_load_lut(crtc);
4458 * Get a pipe with a simple mode set on it for doing load-based monitor
4459 * detection.
4461 * It will be up to the load-detect code to adjust the pipe as appropriate for
4462 * its requirements. The pipe will be connected to no other encoders.
4464 * Currently this code will only succeed if there is a pipe with no encoders
4465 * configured for it. In the future, it could choose to temporarily disable
4466 * some outputs to free up a pipe for its use.
4468 * \return crtc, or NULL if no pipes are available.
4471 /* VESA 640x480x72Hz mode to set on the pipe */
4472 static struct drm_display_mode load_detect_mode = {
4473 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4474 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4477 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4478 struct drm_connector *connector,
4479 struct drm_display_mode *mode,
4480 int *dpms_mode)
4482 struct intel_crtc *intel_crtc;
4483 struct drm_crtc *possible_crtc;
4484 struct drm_crtc *supported_crtc =NULL;
4485 struct drm_encoder *encoder = &intel_encoder->enc;
4486 struct drm_crtc *crtc = NULL;
4487 struct drm_device *dev = encoder->dev;
4488 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4489 struct drm_crtc_helper_funcs *crtc_funcs;
4490 int i = -1;
4493 * Algorithm gets a little messy:
4494 * - if the connector already has an assigned crtc, use it (but make
4495 * sure it's on first)
4496 * - try to find the first unused crtc that can drive this connector,
4497 * and use that if we find one
4498 * - if there are no unused crtcs available, try to use the first
4499 * one we found that supports the connector
4502 /* See if we already have a CRTC for this connector */
4503 if (encoder->crtc) {
4504 crtc = encoder->crtc;
4505 /* Make sure the crtc and connector are running */
4506 intel_crtc = to_intel_crtc(crtc);
4507 *dpms_mode = intel_crtc->dpms_mode;
4508 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4509 crtc_funcs = crtc->helper_private;
4510 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4511 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4513 return crtc;
4516 /* Find an unused one (if possible) */
4517 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4518 i++;
4519 if (!(encoder->possible_crtcs & (1 << i)))
4520 continue;
4521 if (!possible_crtc->enabled) {
4522 crtc = possible_crtc;
4523 break;
4525 if (!supported_crtc)
4526 supported_crtc = possible_crtc;
4530 * If we didn't find an unused CRTC, don't use any.
4532 if (!crtc) {
4533 return NULL;
4536 encoder->crtc = crtc;
4537 connector->encoder = encoder;
4538 intel_encoder->load_detect_temp = true;
4540 intel_crtc = to_intel_crtc(crtc);
4541 *dpms_mode = intel_crtc->dpms_mode;
4543 if (!crtc->enabled) {
4544 if (!mode)
4545 mode = &load_detect_mode;
4546 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4547 } else {
4548 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4549 crtc_funcs = crtc->helper_private;
4550 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4553 /* Add this connector to the crtc */
4554 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4555 encoder_funcs->commit(encoder);
4557 /* let the connector get through one full cycle before testing */
4558 intel_wait_for_vblank(dev, intel_crtc->pipe);
4560 return crtc;
4563 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4564 struct drm_connector *connector, int dpms_mode)
4566 struct drm_encoder *encoder = &intel_encoder->enc;
4567 struct drm_device *dev = encoder->dev;
4568 struct drm_crtc *crtc = encoder->crtc;
4569 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4570 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4572 if (intel_encoder->load_detect_temp) {
4573 encoder->crtc = NULL;
4574 connector->encoder = NULL;
4575 intel_encoder->load_detect_temp = false;
4576 crtc->enabled = drm_helper_crtc_in_use(crtc);
4577 drm_helper_disable_unused_functions(dev);
4580 /* Switch crtc and encoder back off if necessary */
4581 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4582 if (encoder->crtc == crtc)
4583 encoder_funcs->dpms(encoder, dpms_mode);
4584 crtc_funcs->dpms(crtc, dpms_mode);
4588 /* Returns the clock of the currently programmed mode of the given pipe. */
4589 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4591 struct drm_i915_private *dev_priv = dev->dev_private;
4592 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4593 int pipe = intel_crtc->pipe;
4594 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4595 u32 fp;
4596 intel_clock_t clock;
4598 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4599 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4600 else
4601 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4603 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4604 if (IS_PINEVIEW(dev)) {
4605 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4606 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4607 } else {
4608 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4609 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4612 if (IS_I9XX(dev)) {
4613 if (IS_PINEVIEW(dev))
4614 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4615 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4616 else
4617 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4618 DPLL_FPA01_P1_POST_DIV_SHIFT);
4620 switch (dpll & DPLL_MODE_MASK) {
4621 case DPLLB_MODE_DAC_SERIAL:
4622 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4623 5 : 10;
4624 break;
4625 case DPLLB_MODE_LVDS:
4626 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4627 7 : 14;
4628 break;
4629 default:
4630 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4631 "mode\n", (int)(dpll & DPLL_MODE_MASK));
4632 return 0;
4635 /* XXX: Handle the 100Mhz refclk */
4636 intel_clock(dev, 96000, &clock);
4637 } else {
4638 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4640 if (is_lvds) {
4641 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4642 DPLL_FPA01_P1_POST_DIV_SHIFT);
4643 clock.p2 = 14;
4645 if ((dpll & PLL_REF_INPUT_MASK) ==
4646 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4647 /* XXX: might not be 66MHz */
4648 intel_clock(dev, 66000, &clock);
4649 } else
4650 intel_clock(dev, 48000, &clock);
4651 } else {
4652 if (dpll & PLL_P1_DIVIDE_BY_TWO)
4653 clock.p1 = 2;
4654 else {
4655 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4656 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4658 if (dpll & PLL_P2_DIVIDE_BY_4)
4659 clock.p2 = 4;
4660 else
4661 clock.p2 = 2;
4663 intel_clock(dev, 48000, &clock);
4667 /* XXX: It would be nice to validate the clocks, but we can't reuse
4668 * i830PllIsValid() because it relies on the xf86_config connector
4669 * configuration being accurate, which it isn't necessarily.
4672 return clock.dot;
4675 /** Returns the currently programmed mode of the given pipe. */
4676 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4677 struct drm_crtc *crtc)
4679 struct drm_i915_private *dev_priv = dev->dev_private;
4680 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4681 int pipe = intel_crtc->pipe;
4682 struct drm_display_mode *mode;
4683 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4684 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4685 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4686 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4688 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4689 if (!mode)
4690 return NULL;
4692 mode->clock = intel_crtc_clock_get(dev, crtc);
4693 mode->hdisplay = (htot & 0xffff) + 1;
4694 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4695 mode->hsync_start = (hsync & 0xffff) + 1;
4696 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4697 mode->vdisplay = (vtot & 0xffff) + 1;
4698 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4699 mode->vsync_start = (vsync & 0xffff) + 1;
4700 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4702 drm_mode_set_name(mode);
4703 drm_mode_set_crtcinfo(mode, 0);
4705 return mode;
4708 #define GPU_IDLE_TIMEOUT 500 /* ms */
4710 /* When this timer fires, we've been idle for awhile */
4711 static void intel_gpu_idle_timer(unsigned long arg)
4713 struct drm_device *dev = (struct drm_device *)arg;
4714 drm_i915_private_t *dev_priv = dev->dev_private;
4716 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4718 dev_priv->busy = false;
4720 queue_work(dev_priv->wq, &dev_priv->idle_work);
4723 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4725 static void intel_crtc_idle_timer(unsigned long arg)
4727 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4728 struct drm_crtc *crtc = &intel_crtc->base;
4729 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4731 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4733 intel_crtc->busy = false;
4735 queue_work(dev_priv->wq, &dev_priv->idle_work);
4738 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
4740 struct drm_device *dev = crtc->dev;
4741 drm_i915_private_t *dev_priv = dev->dev_private;
4742 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4743 int pipe = intel_crtc->pipe;
4744 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4745 int dpll = I915_READ(dpll_reg);
4747 if (HAS_PCH_SPLIT(dev))
4748 return;
4750 if (!dev_priv->lvds_downclock_avail)
4751 return;
4753 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4754 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4756 /* Unlock panel regs */
4757 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4758 PANEL_UNLOCK_REGS);
4760 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4761 I915_WRITE(dpll_reg, dpll);
4762 dpll = I915_READ(dpll_reg);
4763 intel_wait_for_vblank(dev, pipe);
4764 dpll = I915_READ(dpll_reg);
4765 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4766 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4768 /* ...and lock them again */
4769 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4772 /* Schedule downclock */
4773 if (schedule)
4774 mod_timer(&intel_crtc->idle_timer, jiffies +
4775 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4778 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4780 struct drm_device *dev = crtc->dev;
4781 drm_i915_private_t *dev_priv = dev->dev_private;
4782 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4783 int pipe = intel_crtc->pipe;
4784 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4785 int dpll = I915_READ(dpll_reg);
4787 if (HAS_PCH_SPLIT(dev))
4788 return;
4790 if (!dev_priv->lvds_downclock_avail)
4791 return;
4794 * Since this is called by a timer, we should never get here in
4795 * the manual case.
4797 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4798 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4800 /* Unlock panel regs */
4801 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4802 PANEL_UNLOCK_REGS);
4804 dpll |= DISPLAY_RATE_SELECT_FPA1;
4805 I915_WRITE(dpll_reg, dpll);
4806 dpll = I915_READ(dpll_reg);
4807 intel_wait_for_vblank(dev, pipe);
4808 dpll = I915_READ(dpll_reg);
4809 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4810 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4812 /* ...and lock them again */
4813 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4819 * intel_idle_update - adjust clocks for idleness
4820 * @work: work struct
4822 * Either the GPU or display (or both) went idle. Check the busy status
4823 * here and adjust the CRTC and GPU clocks as necessary.
4825 static void intel_idle_update(struct work_struct *work)
4827 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4828 idle_work);
4829 struct drm_device *dev = dev_priv->dev;
4830 struct drm_crtc *crtc;
4831 struct intel_crtc *intel_crtc;
4832 int enabled = 0;
4834 if (!i915_powersave)
4835 return;
4837 mutex_lock(&dev->struct_mutex);
4839 i915_update_gfx_val(dev_priv);
4841 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4842 /* Skip inactive CRTCs */
4843 if (!crtc->fb)
4844 continue;
4846 enabled++;
4847 intel_crtc = to_intel_crtc(crtc);
4848 if (!intel_crtc->busy)
4849 intel_decrease_pllclock(crtc);
4852 if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4853 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4854 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4857 mutex_unlock(&dev->struct_mutex);
4861 * intel_mark_busy - mark the GPU and possibly the display busy
4862 * @dev: drm device
4863 * @obj: object we're operating on
4865 * Callers can use this function to indicate that the GPU is busy processing
4866 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
4867 * buffer), we'll also mark the display as busy, so we know to increase its
4868 * clock frequency.
4870 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4872 drm_i915_private_t *dev_priv = dev->dev_private;
4873 struct drm_crtc *crtc = NULL;
4874 struct intel_framebuffer *intel_fb;
4875 struct intel_crtc *intel_crtc;
4877 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4878 return;
4880 if (!dev_priv->busy) {
4881 if (IS_I945G(dev) || IS_I945GM(dev)) {
4882 u32 fw_blc_self;
4884 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4885 fw_blc_self = I915_READ(FW_BLC_SELF);
4886 fw_blc_self &= ~FW_BLC_SELF_EN;
4887 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4889 dev_priv->busy = true;
4890 } else
4891 mod_timer(&dev_priv->idle_timer, jiffies +
4892 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4894 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4895 if (!crtc->fb)
4896 continue;
4898 intel_crtc = to_intel_crtc(crtc);
4899 intel_fb = to_intel_framebuffer(crtc->fb);
4900 if (intel_fb->obj == obj) {
4901 if (!intel_crtc->busy) {
4902 if (IS_I945G(dev) || IS_I945GM(dev)) {
4903 u32 fw_blc_self;
4905 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4906 fw_blc_self = I915_READ(FW_BLC_SELF);
4907 fw_blc_self &= ~FW_BLC_SELF_EN;
4908 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4910 /* Non-busy -> busy, upclock */
4911 intel_increase_pllclock(crtc, true);
4912 intel_crtc->busy = true;
4913 } else {
4914 /* Busy -> busy, put off timer */
4915 mod_timer(&intel_crtc->idle_timer, jiffies +
4916 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4922 static void intel_crtc_destroy(struct drm_crtc *crtc)
4924 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4926 drm_crtc_cleanup(crtc);
4927 kfree(intel_crtc);
4930 struct intel_unpin_work {
4931 struct work_struct work;
4932 struct drm_device *dev;
4933 struct drm_gem_object *old_fb_obj;
4934 struct drm_gem_object *pending_flip_obj;
4935 struct drm_pending_vblank_event *event;
4936 int pending;
4939 static void intel_unpin_work_fn(struct work_struct *__work)
4941 struct intel_unpin_work *work =
4942 container_of(__work, struct intel_unpin_work, work);
4944 mutex_lock(&work->dev->struct_mutex);
4945 i915_gem_object_unpin(work->old_fb_obj);
4946 drm_gem_object_unreference(work->pending_flip_obj);
4947 drm_gem_object_unreference(work->old_fb_obj);
4948 mutex_unlock(&work->dev->struct_mutex);
4949 kfree(work);
4952 static void do_intel_finish_page_flip(struct drm_device *dev,
4953 struct drm_crtc *crtc)
4955 drm_i915_private_t *dev_priv = dev->dev_private;
4956 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4957 struct intel_unpin_work *work;
4958 struct drm_i915_gem_object *obj_priv;
4959 struct drm_pending_vblank_event *e;
4960 struct timeval now;
4961 unsigned long flags;
4963 /* Ignore early vblank irqs */
4964 if (intel_crtc == NULL)
4965 return;
4967 spin_lock_irqsave(&dev->event_lock, flags);
4968 work = intel_crtc->unpin_work;
4969 if (work == NULL || !work->pending) {
4970 spin_unlock_irqrestore(&dev->event_lock, flags);
4971 return;
4974 intel_crtc->unpin_work = NULL;
4975 drm_vblank_put(dev, intel_crtc->pipe);
4977 if (work->event) {
4978 e = work->event;
4979 do_gettimeofday(&now);
4980 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4981 e->event.tv_sec = now.tv_sec;
4982 e->event.tv_usec = now.tv_usec;
4983 list_add_tail(&e->base.link,
4984 &e->base.file_priv->event_list);
4985 wake_up_interruptible(&e->base.file_priv->event_wait);
4988 spin_unlock_irqrestore(&dev->event_lock, flags);
4990 obj_priv = to_intel_bo(work->pending_flip_obj);
4992 /* Initial scanout buffer will have a 0 pending flip count */
4993 if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4994 atomic_dec_and_test(&obj_priv->pending_flip))
4995 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4996 schedule_work(&work->work);
4998 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5001 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5003 drm_i915_private_t *dev_priv = dev->dev_private;
5004 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5006 do_intel_finish_page_flip(dev, crtc);
5009 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5011 drm_i915_private_t *dev_priv = dev->dev_private;
5012 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5014 do_intel_finish_page_flip(dev, crtc);
5017 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5019 drm_i915_private_t *dev_priv = dev->dev_private;
5020 struct intel_crtc *intel_crtc =
5021 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5022 unsigned long flags;
5024 spin_lock_irqsave(&dev->event_lock, flags);
5025 if (intel_crtc->unpin_work) {
5026 intel_crtc->unpin_work->pending = 1;
5027 } else {
5028 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5030 spin_unlock_irqrestore(&dev->event_lock, flags);
5033 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5034 struct drm_framebuffer *fb,
5035 struct drm_pending_vblank_event *event)
5037 struct drm_device *dev = crtc->dev;
5038 struct drm_i915_private *dev_priv = dev->dev_private;
5039 struct intel_framebuffer *intel_fb;
5040 struct drm_i915_gem_object *obj_priv;
5041 struct drm_gem_object *obj;
5042 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5043 struct intel_unpin_work *work;
5044 unsigned long flags, offset;
5045 int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
5046 int ret, pipesrc;
5047 u32 flip_mask;
5049 work = kzalloc(sizeof *work, GFP_KERNEL);
5050 if (work == NULL)
5051 return -ENOMEM;
5053 work->event = event;
5054 work->dev = crtc->dev;
5055 intel_fb = to_intel_framebuffer(crtc->fb);
5056 work->old_fb_obj = intel_fb->obj;
5057 INIT_WORK(&work->work, intel_unpin_work_fn);
5059 /* We borrow the event spin lock for protecting unpin_work */
5060 spin_lock_irqsave(&dev->event_lock, flags);
5061 if (intel_crtc->unpin_work) {
5062 spin_unlock_irqrestore(&dev->event_lock, flags);
5063 kfree(work);
5065 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5066 return -EBUSY;
5068 intel_crtc->unpin_work = work;
5069 spin_unlock_irqrestore(&dev->event_lock, flags);
5071 intel_fb = to_intel_framebuffer(fb);
5072 obj = intel_fb->obj;
5074 mutex_lock(&dev->struct_mutex);
5075 ret = intel_pin_and_fence_fb_obj(dev, obj);
5076 if (ret)
5077 goto cleanup_work;
5079 /* Reference the objects for the scheduled work. */
5080 drm_gem_object_reference(work->old_fb_obj);
5081 drm_gem_object_reference(obj);
5083 crtc->fb = fb;
5084 ret = i915_gem_object_flush_write_domain(obj);
5085 if (ret)
5086 goto cleanup_objs;
5088 ret = drm_vblank_get(dev, intel_crtc->pipe);
5089 if (ret)
5090 goto cleanup_objs;
5092 obj_priv = to_intel_bo(obj);
5093 atomic_inc(&obj_priv->pending_flip);
5094 work->pending_flip_obj = obj;
5096 if (intel_crtc->plane)
5097 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5098 else
5099 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5101 if (IS_GEN3(dev) || IS_GEN2(dev)) {
5102 BEGIN_LP_RING(2);
5103 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5104 OUT_RING(0);
5105 ADVANCE_LP_RING();
5108 /* Offset into the new buffer for cases of shared fbs between CRTCs */
5109 offset = obj_priv->gtt_offset;
5110 offset += (crtc->y * fb->pitch) + (crtc->x * (fb->bits_per_pixel) / 8);
5112 BEGIN_LP_RING(4);
5113 if (IS_I965G(dev)) {
5114 OUT_RING(MI_DISPLAY_FLIP |
5115 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5116 OUT_RING(fb->pitch);
5117 OUT_RING(offset | obj_priv->tiling_mode);
5118 pipesrc = I915_READ(pipesrc_reg);
5119 OUT_RING(pipesrc & 0x0fff0fff);
5120 } else if (IS_GEN3(dev)) {
5121 OUT_RING(MI_DISPLAY_FLIP_I915 |
5122 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5123 OUT_RING(fb->pitch);
5124 OUT_RING(offset);
5125 OUT_RING(MI_NOOP);
5126 } else {
5127 OUT_RING(MI_DISPLAY_FLIP |
5128 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5129 OUT_RING(fb->pitch);
5130 OUT_RING(offset);
5131 OUT_RING(MI_NOOP);
5133 ADVANCE_LP_RING();
5135 mutex_unlock(&dev->struct_mutex);
5137 trace_i915_flip_request(intel_crtc->plane, obj);
5139 return 0;
5141 cleanup_objs:
5142 drm_gem_object_unreference(work->old_fb_obj);
5143 drm_gem_object_unreference(obj);
5144 cleanup_work:
5145 mutex_unlock(&dev->struct_mutex);
5147 spin_lock_irqsave(&dev->event_lock, flags);
5148 intel_crtc->unpin_work = NULL;
5149 spin_unlock_irqrestore(&dev->event_lock, flags);
5151 kfree(work);
5153 return ret;
5156 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
5157 .dpms = intel_crtc_dpms,
5158 .mode_fixup = intel_crtc_mode_fixup,
5159 .mode_set = intel_crtc_mode_set,
5160 .mode_set_base = intel_pipe_set_base,
5161 .mode_set_base_atomic = intel_pipe_set_base_atomic,
5162 .prepare = intel_crtc_prepare,
5163 .commit = intel_crtc_commit,
5164 .load_lut = intel_crtc_load_lut,
5167 static const struct drm_crtc_funcs intel_crtc_funcs = {
5168 .cursor_set = intel_crtc_cursor_set,
5169 .cursor_move = intel_crtc_cursor_move,
5170 .gamma_set = intel_crtc_gamma_set,
5171 .set_config = drm_crtc_helper_set_config,
5172 .destroy = intel_crtc_destroy,
5173 .page_flip = intel_crtc_page_flip,
5177 static void intel_crtc_init(struct drm_device *dev, int pipe)
5179 drm_i915_private_t *dev_priv = dev->dev_private;
5180 struct intel_crtc *intel_crtc;
5181 int i;
5183 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5184 if (intel_crtc == NULL)
5185 return;
5187 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5189 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5190 intel_crtc->pipe = pipe;
5191 intel_crtc->plane = pipe;
5192 for (i = 0; i < 256; i++) {
5193 intel_crtc->lut_r[i] = i;
5194 intel_crtc->lut_g[i] = i;
5195 intel_crtc->lut_b[i] = i;
5198 /* Swap pipes & planes for FBC on pre-965 */
5199 intel_crtc->pipe = pipe;
5200 intel_crtc->plane = pipe;
5201 if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
5202 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5203 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
5206 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5207 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5208 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5209 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5211 intel_crtc->cursor_addr = 0;
5212 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
5213 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5215 intel_crtc->busy = false;
5217 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5218 (unsigned long)intel_crtc);
5221 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5222 struct drm_file *file_priv)
5224 drm_i915_private_t *dev_priv = dev->dev_private;
5225 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5226 struct drm_mode_object *drmmode_obj;
5227 struct intel_crtc *crtc;
5229 if (!dev_priv) {
5230 DRM_ERROR("called with no initialization\n");
5231 return -EINVAL;
5234 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5235 DRM_MODE_OBJECT_CRTC);
5237 if (!drmmode_obj) {
5238 DRM_ERROR("no such CRTC id\n");
5239 return -EINVAL;
5242 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5243 pipe_from_crtc_id->pipe = crtc->pipe;
5245 return 0;
5248 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
5250 struct drm_crtc *crtc = NULL;
5252 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5253 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5254 if (intel_crtc->pipe == pipe)
5255 break;
5257 return crtc;
5260 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5262 int index_mask = 0;
5263 struct drm_encoder *encoder;
5264 int entry = 0;
5266 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5267 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
5268 if (type_mask & intel_encoder->clone_mask)
5269 index_mask |= (1 << entry);
5270 entry++;
5272 return index_mask;
5276 static void intel_setup_outputs(struct drm_device *dev)
5278 struct drm_i915_private *dev_priv = dev->dev_private;
5279 struct drm_encoder *encoder;
5280 bool dpd_is_edp = false;
5282 if (IS_MOBILE(dev) && !IS_I830(dev))
5283 intel_lvds_init(dev);
5285 if (HAS_PCH_SPLIT(dev)) {
5286 dpd_is_edp = intel_dpd_is_edp(dev);
5288 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5289 intel_dp_init(dev, DP_A);
5291 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5292 intel_dp_init(dev, PCH_DP_D);
5295 intel_crt_init(dev);
5297 if (HAS_PCH_SPLIT(dev)) {
5298 int found;
5300 if (I915_READ(HDMIB) & PORT_DETECTED) {
5301 /* PCH SDVOB multiplex with HDMIB */
5302 found = intel_sdvo_init(dev, PCH_SDVOB);
5303 if (!found)
5304 intel_hdmi_init(dev, HDMIB);
5305 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5306 intel_dp_init(dev, PCH_DP_B);
5309 if (I915_READ(HDMIC) & PORT_DETECTED)
5310 intel_hdmi_init(dev, HDMIC);
5312 if (I915_READ(HDMID) & PORT_DETECTED)
5313 intel_hdmi_init(dev, HDMID);
5315 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5316 intel_dp_init(dev, PCH_DP_C);
5318 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5319 intel_dp_init(dev, PCH_DP_D);
5321 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5322 bool found = false;
5324 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5325 DRM_DEBUG_KMS("probing SDVOB\n");
5326 found = intel_sdvo_init(dev, SDVOB);
5327 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5328 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5329 intel_hdmi_init(dev, SDVOB);
5332 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5333 DRM_DEBUG_KMS("probing DP_B\n");
5334 intel_dp_init(dev, DP_B);
5338 /* Before G4X SDVOC doesn't have its own detect register */
5340 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5341 DRM_DEBUG_KMS("probing SDVOC\n");
5342 found = intel_sdvo_init(dev, SDVOC);
5345 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5347 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5348 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5349 intel_hdmi_init(dev, SDVOC);
5351 if (SUPPORTS_INTEGRATED_DP(dev)) {
5352 DRM_DEBUG_KMS("probing DP_C\n");
5353 intel_dp_init(dev, DP_C);
5357 if (SUPPORTS_INTEGRATED_DP(dev) &&
5358 (I915_READ(DP_D) & DP_DETECTED)) {
5359 DRM_DEBUG_KMS("probing DP_D\n");
5360 intel_dp_init(dev, DP_D);
5362 } else if (IS_GEN2(dev))
5363 intel_dvo_init(dev);
5365 if (SUPPORTS_TV(dev))
5366 intel_tv_init(dev);
5368 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5369 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
5371 encoder->possible_crtcs = intel_encoder->crtc_mask;
5372 encoder->possible_clones = intel_encoder_clones(dev,
5373 intel_encoder->clone_mask);
5377 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5379 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5381 drm_framebuffer_cleanup(fb);
5382 drm_gem_object_unreference_unlocked(intel_fb->obj);
5384 kfree(intel_fb);
5387 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5388 struct drm_file *file_priv,
5389 unsigned int *handle)
5391 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5392 struct drm_gem_object *object = intel_fb->obj;
5394 return drm_gem_handle_create(file_priv, object, handle);
5397 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5398 .destroy = intel_user_framebuffer_destroy,
5399 .create_handle = intel_user_framebuffer_create_handle,
5402 int intel_framebuffer_init(struct drm_device *dev,
5403 struct intel_framebuffer *intel_fb,
5404 struct drm_mode_fb_cmd *mode_cmd,
5405 struct drm_gem_object *obj)
5407 int ret;
5409 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5410 if (ret) {
5411 DRM_ERROR("framebuffer init failed %d\n", ret);
5412 return ret;
5415 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5416 intel_fb->obj = obj;
5417 return 0;
5420 static struct drm_framebuffer *
5421 intel_user_framebuffer_create(struct drm_device *dev,
5422 struct drm_file *filp,
5423 struct drm_mode_fb_cmd *mode_cmd)
5425 struct drm_gem_object *obj;
5426 struct intel_framebuffer *intel_fb;
5427 int ret;
5429 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5430 if (!obj)
5431 return ERR_PTR(-ENOENT);
5433 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5434 if (!intel_fb)
5435 return ERR_PTR(-ENOMEM);
5437 ret = intel_framebuffer_init(dev, intel_fb,
5438 mode_cmd, obj);
5439 if (ret) {
5440 drm_gem_object_unreference_unlocked(obj);
5441 kfree(intel_fb);
5442 return ERR_PTR(ret);
5445 return &intel_fb->base;
5448 static const struct drm_mode_config_funcs intel_mode_funcs = {
5449 .fb_create = intel_user_framebuffer_create,
5450 .output_poll_changed = intel_fb_output_poll_changed,
5453 static struct drm_gem_object *
5454 intel_alloc_context_page(struct drm_device *dev)
5456 struct drm_gem_object *ctx;
5457 int ret;
5459 ctx = i915_gem_alloc_object(dev, 4096);
5460 if (!ctx) {
5461 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5462 return NULL;
5465 mutex_lock(&dev->struct_mutex);
5466 ret = i915_gem_object_pin(ctx, 4096);
5467 if (ret) {
5468 DRM_ERROR("failed to pin power context: %d\n", ret);
5469 goto err_unref;
5472 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5473 if (ret) {
5474 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5475 goto err_unpin;
5477 mutex_unlock(&dev->struct_mutex);
5479 return ctx;
5481 err_unpin:
5482 i915_gem_object_unpin(ctx);
5483 err_unref:
5484 drm_gem_object_unreference(ctx);
5485 mutex_unlock(&dev->struct_mutex);
5486 return NULL;
5489 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5491 struct drm_i915_private *dev_priv = dev->dev_private;
5492 u16 rgvswctl;
5494 rgvswctl = I915_READ16(MEMSWCTL);
5495 if (rgvswctl & MEMCTL_CMD_STS) {
5496 DRM_DEBUG("gpu busy, RCS change rejected\n");
5497 return false; /* still busy with another command */
5500 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5501 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5502 I915_WRITE16(MEMSWCTL, rgvswctl);
5503 POSTING_READ16(MEMSWCTL);
5505 rgvswctl |= MEMCTL_CMD_STS;
5506 I915_WRITE16(MEMSWCTL, rgvswctl);
5508 return true;
5511 void ironlake_enable_drps(struct drm_device *dev)
5513 struct drm_i915_private *dev_priv = dev->dev_private;
5514 u32 rgvmodectl = I915_READ(MEMMODECTL);
5515 u8 fmax, fmin, fstart, vstart;
5517 /* 100ms RC evaluation intervals */
5518 I915_WRITE(RCUPEI, 100000);
5519 I915_WRITE(RCDNEI, 100000);
5521 /* Set max/min thresholds to 90ms and 80ms respectively */
5522 I915_WRITE(RCBMAXAVG, 90000);
5523 I915_WRITE(RCBMINAVG, 80000);
5525 I915_WRITE(MEMIHYST, 1);
5527 /* Set up min, max, and cur for interrupt handling */
5528 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5529 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5530 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5531 MEMMODE_FSTART_SHIFT;
5532 fstart = fmax;
5534 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5535 PXVFREQ_PX_SHIFT;
5537 dev_priv->fmax = fstart; /* IPS callback will increase this */
5538 dev_priv->fstart = fstart;
5540 dev_priv->max_delay = fmax;
5541 dev_priv->min_delay = fmin;
5542 dev_priv->cur_delay = fstart;
5544 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5545 fstart);
5547 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5550 * Interrupts will be enabled in ironlake_irq_postinstall
5553 I915_WRITE(VIDSTART, vstart);
5554 POSTING_READ(VIDSTART);
5556 rgvmodectl |= MEMMODE_SWMODE_EN;
5557 I915_WRITE(MEMMODECTL, rgvmodectl);
5559 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 1, 0))
5560 DRM_ERROR("stuck trying to change perf mode\n");
5561 msleep(1);
5563 ironlake_set_drps(dev, fstart);
5565 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5566 I915_READ(0x112e0);
5567 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5568 dev_priv->last_count2 = I915_READ(0x112f4);
5569 getrawmonotonic(&dev_priv->last_time2);
5572 void ironlake_disable_drps(struct drm_device *dev)
5574 struct drm_i915_private *dev_priv = dev->dev_private;
5575 u16 rgvswctl = I915_READ16(MEMSWCTL);
5577 /* Ack interrupts, disable EFC interrupt */
5578 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5579 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5580 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5581 I915_WRITE(DEIIR, DE_PCU_EVENT);
5582 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5584 /* Go back to the starting frequency */
5585 ironlake_set_drps(dev, dev_priv->fstart);
5586 msleep(1);
5587 rgvswctl |= MEMCTL_CMD_STS;
5588 I915_WRITE(MEMSWCTL, rgvswctl);
5589 msleep(1);
5593 static unsigned long intel_pxfreq(u32 vidfreq)
5595 unsigned long freq;
5596 int div = (vidfreq & 0x3f0000) >> 16;
5597 int post = (vidfreq & 0x3000) >> 12;
5598 int pre = (vidfreq & 0x7);
5600 if (!pre)
5601 return 0;
5603 freq = ((div * 133333) / ((1<<post) * pre));
5605 return freq;
5608 void intel_init_emon(struct drm_device *dev)
5610 struct drm_i915_private *dev_priv = dev->dev_private;
5611 u32 lcfuse;
5612 u8 pxw[16];
5613 int i;
5615 /* Disable to program */
5616 I915_WRITE(ECR, 0);
5617 POSTING_READ(ECR);
5619 /* Program energy weights for various events */
5620 I915_WRITE(SDEW, 0x15040d00);
5621 I915_WRITE(CSIEW0, 0x007f0000);
5622 I915_WRITE(CSIEW1, 0x1e220004);
5623 I915_WRITE(CSIEW2, 0x04000004);
5625 for (i = 0; i < 5; i++)
5626 I915_WRITE(PEW + (i * 4), 0);
5627 for (i = 0; i < 3; i++)
5628 I915_WRITE(DEW + (i * 4), 0);
5630 /* Program P-state weights to account for frequency power adjustment */
5631 for (i = 0; i < 16; i++) {
5632 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5633 unsigned long freq = intel_pxfreq(pxvidfreq);
5634 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5635 PXVFREQ_PX_SHIFT;
5636 unsigned long val;
5638 val = vid * vid;
5639 val *= (freq / 1000);
5640 val *= 255;
5641 val /= (127*127*900);
5642 if (val > 0xff)
5643 DRM_ERROR("bad pxval: %ld\n", val);
5644 pxw[i] = val;
5646 /* Render standby states get 0 weight */
5647 pxw[14] = 0;
5648 pxw[15] = 0;
5650 for (i = 0; i < 4; i++) {
5651 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5652 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5653 I915_WRITE(PXW + (i * 4), val);
5656 /* Adjust magic regs to magic values (more experimental results) */
5657 I915_WRITE(OGW0, 0);
5658 I915_WRITE(OGW1, 0);
5659 I915_WRITE(EG0, 0x00007f00);
5660 I915_WRITE(EG1, 0x0000000e);
5661 I915_WRITE(EG2, 0x000e0000);
5662 I915_WRITE(EG3, 0x68000300);
5663 I915_WRITE(EG4, 0x42000000);
5664 I915_WRITE(EG5, 0x00140031);
5665 I915_WRITE(EG6, 0);
5666 I915_WRITE(EG7, 0);
5668 for (i = 0; i < 8; i++)
5669 I915_WRITE(PXWL + (i * 4), 0);
5671 /* Enable PMON + select events */
5672 I915_WRITE(ECR, 0x80000019);
5674 lcfuse = I915_READ(LCFUSE02);
5676 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5679 void intel_init_clock_gating(struct drm_device *dev)
5681 struct drm_i915_private *dev_priv = dev->dev_private;
5684 * Disable clock gating reported to work incorrectly according to the
5685 * specs, but enable as much else as we can.
5687 if (HAS_PCH_SPLIT(dev)) {
5688 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5690 if (IS_IRONLAKE(dev)) {
5691 /* Required for FBC */
5692 dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5693 /* Required for CxSR */
5694 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5696 I915_WRITE(PCH_3DCGDIS0,
5697 MARIUNIT_CLOCK_GATE_DISABLE |
5698 SVSMUNIT_CLOCK_GATE_DISABLE);
5701 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5704 * According to the spec the following bits should be set in
5705 * order to enable memory self-refresh
5706 * The bit 22/21 of 0x42004
5707 * The bit 5 of 0x42020
5708 * The bit 15 of 0x45000
5710 if (IS_IRONLAKE(dev)) {
5711 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5712 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5713 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5714 I915_WRITE(ILK_DSPCLK_GATE,
5715 (I915_READ(ILK_DSPCLK_GATE) |
5716 ILK_DPARB_CLK_GATE));
5717 I915_WRITE(DISP_ARB_CTL,
5718 (I915_READ(DISP_ARB_CTL) |
5719 DISP_FBC_WM_DIS));
5722 * Based on the document from hardware guys the following bits
5723 * should be set unconditionally in order to enable FBC.
5724 * The bit 22 of 0x42000
5725 * The bit 22 of 0x42004
5726 * The bit 7,8,9 of 0x42020.
5728 if (IS_IRONLAKE_M(dev)) {
5729 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5730 I915_READ(ILK_DISPLAY_CHICKEN1) |
5731 ILK_FBCQ_DIS);
5732 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5733 I915_READ(ILK_DISPLAY_CHICKEN2) |
5734 ILK_DPARB_GATE);
5735 I915_WRITE(ILK_DSPCLK_GATE,
5736 I915_READ(ILK_DSPCLK_GATE) |
5737 ILK_DPFC_DIS1 |
5738 ILK_DPFC_DIS2 |
5739 ILK_CLK_FBC);
5741 if (IS_GEN6(dev))
5742 return;
5743 } else if (IS_G4X(dev)) {
5744 uint32_t dspclk_gate;
5745 I915_WRITE(RENCLK_GATE_D1, 0);
5746 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5747 GS_UNIT_CLOCK_GATE_DISABLE |
5748 CL_UNIT_CLOCK_GATE_DISABLE);
5749 I915_WRITE(RAMCLK_GATE_D, 0);
5750 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5751 OVRUNIT_CLOCK_GATE_DISABLE |
5752 OVCUNIT_CLOCK_GATE_DISABLE;
5753 if (IS_GM45(dev))
5754 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5755 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5756 } else if (IS_I965GM(dev)) {
5757 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5758 I915_WRITE(RENCLK_GATE_D2, 0);
5759 I915_WRITE(DSPCLK_GATE_D, 0);
5760 I915_WRITE(RAMCLK_GATE_D, 0);
5761 I915_WRITE16(DEUC, 0);
5762 } else if (IS_I965G(dev)) {
5763 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5764 I965_RCC_CLOCK_GATE_DISABLE |
5765 I965_RCPB_CLOCK_GATE_DISABLE |
5766 I965_ISC_CLOCK_GATE_DISABLE |
5767 I965_FBC_CLOCK_GATE_DISABLE);
5768 I915_WRITE(RENCLK_GATE_D2, 0);
5769 } else if (IS_I9XX(dev)) {
5770 u32 dstate = I915_READ(D_STATE);
5772 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5773 DSTATE_DOT_CLOCK_GATING;
5774 I915_WRITE(D_STATE, dstate);
5775 } else if (IS_I85X(dev) || IS_I865G(dev)) {
5776 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5777 } else if (IS_I830(dev)) {
5778 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5782 * GPU can automatically power down the render unit if given a page
5783 * to save state.
5785 if (IS_IRONLAKE_M(dev)) {
5786 if (dev_priv->renderctx == NULL)
5787 dev_priv->renderctx = intel_alloc_context_page(dev);
5788 if (dev_priv->renderctx) {
5789 struct drm_i915_gem_object *obj_priv;
5790 obj_priv = to_intel_bo(dev_priv->renderctx);
5791 if (obj_priv) {
5792 BEGIN_LP_RING(4);
5793 OUT_RING(MI_SET_CONTEXT);
5794 OUT_RING(obj_priv->gtt_offset |
5795 MI_MM_SPACE_GTT |
5796 MI_SAVE_EXT_STATE_EN |
5797 MI_RESTORE_EXT_STATE_EN |
5798 MI_RESTORE_INHIBIT);
5799 OUT_RING(MI_NOOP);
5800 OUT_RING(MI_FLUSH);
5801 ADVANCE_LP_RING();
5803 } else {
5804 DRM_DEBUG_KMS("Failed to allocate render context."
5805 "Disable RC6\n");
5806 return;
5810 if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5811 struct drm_i915_gem_object *obj_priv = NULL;
5813 if (dev_priv->pwrctx) {
5814 obj_priv = to_intel_bo(dev_priv->pwrctx);
5815 } else {
5816 struct drm_gem_object *pwrctx;
5818 pwrctx = intel_alloc_context_page(dev);
5819 if (pwrctx) {
5820 dev_priv->pwrctx = pwrctx;
5821 obj_priv = to_intel_bo(pwrctx);
5825 if (obj_priv) {
5826 I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5827 I915_WRITE(MCHBAR_RENDER_STANDBY,
5828 I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5833 /* Set up chip specific display functions */
5834 static void intel_init_display(struct drm_device *dev)
5836 struct drm_i915_private *dev_priv = dev->dev_private;
5838 /* We always want a DPMS function */
5839 if (HAS_PCH_SPLIT(dev))
5840 dev_priv->display.dpms = ironlake_crtc_dpms;
5841 else
5842 dev_priv->display.dpms = i9xx_crtc_dpms;
5844 if (I915_HAS_FBC(dev)) {
5845 if (IS_IRONLAKE_M(dev)) {
5846 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5847 dev_priv->display.enable_fbc = ironlake_enable_fbc;
5848 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5849 } else if (IS_GM45(dev)) {
5850 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5851 dev_priv->display.enable_fbc = g4x_enable_fbc;
5852 dev_priv->display.disable_fbc = g4x_disable_fbc;
5853 } else if (IS_I965GM(dev)) {
5854 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5855 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5856 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5858 /* 855GM needs testing */
5861 /* Returns the core display clock speed */
5862 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5863 dev_priv->display.get_display_clock_speed =
5864 i945_get_display_clock_speed;
5865 else if (IS_I915G(dev))
5866 dev_priv->display.get_display_clock_speed =
5867 i915_get_display_clock_speed;
5868 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5869 dev_priv->display.get_display_clock_speed =
5870 i9xx_misc_get_display_clock_speed;
5871 else if (IS_I915GM(dev))
5872 dev_priv->display.get_display_clock_speed =
5873 i915gm_get_display_clock_speed;
5874 else if (IS_I865G(dev))
5875 dev_priv->display.get_display_clock_speed =
5876 i865_get_display_clock_speed;
5877 else if (IS_I85X(dev))
5878 dev_priv->display.get_display_clock_speed =
5879 i855_get_display_clock_speed;
5880 else /* 852, 830 */
5881 dev_priv->display.get_display_clock_speed =
5882 i830_get_display_clock_speed;
5884 /* For FIFO watermark updates */
5885 if (HAS_PCH_SPLIT(dev)) {
5886 if (IS_IRONLAKE(dev)) {
5887 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5888 dev_priv->display.update_wm = ironlake_update_wm;
5889 else {
5890 DRM_DEBUG_KMS("Failed to get proper latency. "
5891 "Disable CxSR\n");
5892 dev_priv->display.update_wm = NULL;
5894 } else
5895 dev_priv->display.update_wm = NULL;
5896 } else if (IS_PINEVIEW(dev)) {
5897 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5898 dev_priv->is_ddr3,
5899 dev_priv->fsb_freq,
5900 dev_priv->mem_freq)) {
5901 DRM_INFO("failed to find known CxSR latency "
5902 "(found ddr%s fsb freq %d, mem freq %d), "
5903 "disabling CxSR\n",
5904 (dev_priv->is_ddr3 == 1) ? "3": "2",
5905 dev_priv->fsb_freq, dev_priv->mem_freq);
5906 /* Disable CxSR and never update its watermark again */
5907 pineview_disable_cxsr(dev);
5908 dev_priv->display.update_wm = NULL;
5909 } else
5910 dev_priv->display.update_wm = pineview_update_wm;
5911 } else if (IS_G4X(dev))
5912 dev_priv->display.update_wm = g4x_update_wm;
5913 else if (IS_I965G(dev))
5914 dev_priv->display.update_wm = i965_update_wm;
5915 else if (IS_I9XX(dev)) {
5916 dev_priv->display.update_wm = i9xx_update_wm;
5917 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5918 } else if (IS_I85X(dev)) {
5919 dev_priv->display.update_wm = i9xx_update_wm;
5920 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5921 } else {
5922 dev_priv->display.update_wm = i830_update_wm;
5923 if (IS_845G(dev))
5924 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5925 else
5926 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5931 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
5932 * resume, or other times. This quirk makes sure that's the case for
5933 * affected systems.
5935 static void quirk_pipea_force (struct drm_device *dev)
5937 struct drm_i915_private *dev_priv = dev->dev_private;
5939 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
5940 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
5943 struct intel_quirk {
5944 int device;
5945 int subsystem_vendor;
5946 int subsystem_device;
5947 void (*hook)(struct drm_device *dev);
5950 struct intel_quirk intel_quirks[] = {
5951 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
5952 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
5953 /* HP Mini needs pipe A force quirk (LP: #322104) */
5954 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
5956 /* Thinkpad R31 needs pipe A force quirk */
5957 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
5958 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
5959 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
5961 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
5962 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
5963 /* ThinkPad X40 needs pipe A force quirk */
5965 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
5966 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
5968 /* 855 & before need to leave pipe A & dpll A up */
5969 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5970 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5973 static void intel_init_quirks(struct drm_device *dev)
5975 struct pci_dev *d = dev->pdev;
5976 int i;
5978 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
5979 struct intel_quirk *q = &intel_quirks[i];
5981 if (d->device == q->device &&
5982 (d->subsystem_vendor == q->subsystem_vendor ||
5983 q->subsystem_vendor == PCI_ANY_ID) &&
5984 (d->subsystem_device == q->subsystem_device ||
5985 q->subsystem_device == PCI_ANY_ID))
5986 q->hook(dev);
5990 /* Disable the VGA plane that we never use */
5991 static void i915_disable_vga(struct drm_device *dev)
5993 struct drm_i915_private *dev_priv = dev->dev_private;
5994 u8 sr1;
5995 u32 vga_reg;
5997 if (HAS_PCH_SPLIT(dev))
5998 vga_reg = CPU_VGACNTRL;
5999 else
6000 vga_reg = VGACNTRL;
6002 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6003 outb(1, VGA_SR_INDEX);
6004 sr1 = inb(VGA_SR_DATA);
6005 outb(sr1 | 1<<5, VGA_SR_DATA);
6006 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6007 udelay(300);
6009 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6010 POSTING_READ(vga_reg);
6013 void intel_modeset_init(struct drm_device *dev)
6015 struct drm_i915_private *dev_priv = dev->dev_private;
6016 int i;
6018 drm_mode_config_init(dev);
6020 dev->mode_config.min_width = 0;
6021 dev->mode_config.min_height = 0;
6023 dev->mode_config.funcs = (void *)&intel_mode_funcs;
6025 intel_init_quirks(dev);
6027 intel_init_display(dev);
6029 if (IS_I965G(dev)) {
6030 dev->mode_config.max_width = 8192;
6031 dev->mode_config.max_height = 8192;
6032 } else if (IS_I9XX(dev)) {
6033 dev->mode_config.max_width = 4096;
6034 dev->mode_config.max_height = 4096;
6035 } else {
6036 dev->mode_config.max_width = 2048;
6037 dev->mode_config.max_height = 2048;
6040 /* set memory base */
6041 if (IS_I9XX(dev))
6042 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
6043 else
6044 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
6046 if (IS_MOBILE(dev) || IS_I9XX(dev))
6047 dev_priv->num_pipe = 2;
6048 else
6049 dev_priv->num_pipe = 1;
6050 DRM_DEBUG_KMS("%d display pipe%s available.\n",
6051 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6053 for (i = 0; i < dev_priv->num_pipe; i++) {
6054 intel_crtc_init(dev, i);
6057 intel_setup_outputs(dev);
6059 intel_init_clock_gating(dev);
6061 /* Just disable it once at startup */
6062 i915_disable_vga(dev);
6064 if (IS_IRONLAKE_M(dev)) {
6065 ironlake_enable_drps(dev);
6066 intel_init_emon(dev);
6069 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6070 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6071 (unsigned long)dev);
6073 intel_setup_overlay(dev);
6076 void intel_modeset_cleanup(struct drm_device *dev)
6078 struct drm_i915_private *dev_priv = dev->dev_private;
6079 struct drm_crtc *crtc;
6080 struct intel_crtc *intel_crtc;
6082 mutex_lock(&dev->struct_mutex);
6084 drm_kms_helper_poll_fini(dev);
6085 intel_fbdev_fini(dev);
6087 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6088 /* Skip inactive CRTCs */
6089 if (!crtc->fb)
6090 continue;
6092 intel_crtc = to_intel_crtc(crtc);
6093 intel_increase_pllclock(crtc, false);
6094 del_timer_sync(&intel_crtc->idle_timer);
6097 del_timer_sync(&dev_priv->idle_timer);
6099 if (dev_priv->display.disable_fbc)
6100 dev_priv->display.disable_fbc(dev);
6102 if (dev_priv->renderctx) {
6103 struct drm_i915_gem_object *obj_priv;
6105 obj_priv = to_intel_bo(dev_priv->renderctx);
6106 I915_WRITE(CCID, obj_priv->gtt_offset &~ CCID_EN);
6107 I915_READ(CCID);
6108 i915_gem_object_unpin(dev_priv->renderctx);
6109 drm_gem_object_unreference(dev_priv->renderctx);
6112 if (dev_priv->pwrctx) {
6113 struct drm_i915_gem_object *obj_priv;
6115 obj_priv = to_intel_bo(dev_priv->pwrctx);
6116 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
6117 I915_READ(PWRCTXA);
6118 i915_gem_object_unpin(dev_priv->pwrctx);
6119 drm_gem_object_unreference(dev_priv->pwrctx);
6122 if (IS_IRONLAKE_M(dev))
6123 ironlake_disable_drps(dev);
6125 mutex_unlock(&dev->struct_mutex);
6127 drm_mode_config_cleanup(dev);
6132 * Return which encoder is currently attached for connector.
6134 struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
6136 struct drm_mode_object *obj;
6137 struct drm_encoder *encoder;
6138 int i;
6140 for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
6141 if (connector->encoder_ids[i] == 0)
6142 break;
6144 obj = drm_mode_object_find(connector->dev,
6145 connector->encoder_ids[i],
6146 DRM_MODE_OBJECT_ENCODER);
6147 if (!obj)
6148 continue;
6150 encoder = obj_to_encoder(obj);
6151 return encoder;
6153 return NULL;
6157 * set vga decode state - true == enable VGA decode
6159 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6161 struct drm_i915_private *dev_priv = dev->dev_private;
6162 u16 gmch_ctrl;
6164 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6165 if (state)
6166 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6167 else
6168 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6169 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6170 return 0;