2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
47 static struct extent_io_ops btree_extent_io_ops
;
48 static void end_workqueue_fn(struct btrfs_work
*work
);
49 static void free_fs_root(struct btrfs_root
*root
);
50 static void btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
52 static int btrfs_destroy_ordered_operations(struct btrfs_root
*root
);
53 static int btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
54 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
55 struct btrfs_root
*root
);
56 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
);
57 static int btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
58 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
59 struct extent_io_tree
*dirty_pages
,
61 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
62 struct extent_io_tree
*pinned_extents
);
63 static int btrfs_cleanup_transaction(struct btrfs_root
*root
);
66 * end_io_wq structs are used to do processing in task context when an IO is
67 * complete. This is used during reads to verify checksums, and it is used
68 * by writes to insert metadata for new file extents after IO is complete.
74 struct btrfs_fs_info
*info
;
77 struct list_head list
;
78 struct btrfs_work work
;
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
86 struct async_submit_bio
{
89 struct list_head list
;
90 extent_submit_bio_hook_t
*submit_bio_start
;
91 extent_submit_bio_hook_t
*submit_bio_done
;
94 unsigned long bio_flags
;
96 * bio_offset is optional, can be used if the pages in the bio
97 * can't tell us where in the file the bio should go
100 struct btrfs_work work
;
103 /* These are used to set the lockdep class on the extent buffer locks.
104 * The class is set by the readpage_end_io_hook after the buffer has
105 * passed csum validation but before the pages are unlocked.
107 * The lockdep class is also set by btrfs_init_new_buffer on freshly
110 * The class is based on the level in the tree block, which allows lockdep
111 * to know that lower nodes nest inside the locks of higher nodes.
113 * We also add a check to make sure the highest level of the tree is
114 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
115 * code needs update as well.
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 # if BTRFS_MAX_LEVEL != 8
121 static struct lock_class_key btrfs_eb_class
[BTRFS_MAX_LEVEL
+ 1];
122 static const char *btrfs_eb_name
[BTRFS_MAX_LEVEL
+ 1] = {
132 /* highest possible level */
138 * extents on the btree inode are pretty simple, there's one extent
139 * that covers the entire device
141 static struct extent_map
*btree_get_extent(struct inode
*inode
,
142 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
145 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
146 struct extent_map
*em
;
149 read_lock(&em_tree
->lock
);
150 em
= lookup_extent_mapping(em_tree
, start
, len
);
153 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
154 read_unlock(&em_tree
->lock
);
157 read_unlock(&em_tree
->lock
);
159 em
= alloc_extent_map();
161 em
= ERR_PTR(-ENOMEM
);
166 em
->block_len
= (u64
)-1;
168 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
170 write_lock(&em_tree
->lock
);
171 ret
= add_extent_mapping(em_tree
, em
);
172 if (ret
== -EEXIST
) {
173 u64 failed_start
= em
->start
;
174 u64 failed_len
= em
->len
;
177 em
= lookup_extent_mapping(em_tree
, start
, len
);
181 em
= lookup_extent_mapping(em_tree
, failed_start
,
189 write_unlock(&em_tree
->lock
);
197 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
199 return crc32c(seed
, data
, len
);
202 void btrfs_csum_final(u32 crc
, char *result
)
204 put_unaligned_le32(~crc
, result
);
208 * compute the csum for a btree block, and either verify it or write it
209 * into the csum field of the block.
211 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
215 btrfs_super_csum_size(&root
->fs_info
->super_copy
);
218 unsigned long cur_len
;
219 unsigned long offset
= BTRFS_CSUM_SIZE
;
220 char *map_token
= NULL
;
222 unsigned long map_start
;
223 unsigned long map_len
;
226 unsigned long inline_result
;
228 len
= buf
->len
- offset
;
230 err
= map_private_extent_buffer(buf
, offset
, 32,
232 &map_start
, &map_len
, KM_USER0
);
235 cur_len
= min(len
, map_len
- (offset
- map_start
));
236 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
240 unmap_extent_buffer(buf
, map_token
, KM_USER0
);
242 if (csum_size
> sizeof(inline_result
)) {
243 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
247 result
= (char *)&inline_result
;
250 btrfs_csum_final(crc
, result
);
253 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
256 memcpy(&found
, result
, csum_size
);
258 read_extent_buffer(buf
, &val
, 0, csum_size
);
259 printk_ratelimited(KERN_INFO
"btrfs: %s checksum verify "
260 "failed on %llu wanted %X found %X "
262 root
->fs_info
->sb
->s_id
,
263 (unsigned long long)buf
->start
, val
, found
,
264 btrfs_header_level(buf
));
265 if (result
!= (char *)&inline_result
)
270 write_extent_buffer(buf
, result
, 0, csum_size
);
272 if (result
!= (char *)&inline_result
)
278 * we can't consider a given block up to date unless the transid of the
279 * block matches the transid in the parent node's pointer. This is how we
280 * detect blocks that either didn't get written at all or got written
281 * in the wrong place.
283 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
284 struct extent_buffer
*eb
, u64 parent_transid
)
286 struct extent_state
*cached_state
= NULL
;
289 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
292 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
293 0, &cached_state
, GFP_NOFS
);
294 if (extent_buffer_uptodate(io_tree
, eb
, cached_state
) &&
295 btrfs_header_generation(eb
) == parent_transid
) {
299 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
301 (unsigned long long)eb
->start
,
302 (unsigned long long)parent_transid
,
303 (unsigned long long)btrfs_header_generation(eb
));
305 clear_extent_buffer_uptodate(io_tree
, eb
, &cached_state
);
307 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
308 &cached_state
, GFP_NOFS
);
313 * helper to read a given tree block, doing retries as required when
314 * the checksums don't match and we have alternate mirrors to try.
316 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
317 struct extent_buffer
*eb
,
318 u64 start
, u64 parent_transid
)
320 struct extent_io_tree
*io_tree
;
325 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
326 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
328 ret
= read_extent_buffer_pages(io_tree
, eb
, start
, 1,
329 btree_get_extent
, mirror_num
);
331 !verify_parent_transid(io_tree
, eb
, parent_transid
))
335 * This buffer's crc is fine, but its contents are corrupted, so
336 * there is no reason to read the other copies, they won't be
339 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
))
342 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
348 if (mirror_num
> num_copies
)
355 * checksum a dirty tree block before IO. This has extra checks to make sure
356 * we only fill in the checksum field in the first page of a multi-page block
359 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
361 struct extent_io_tree
*tree
;
362 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
365 struct extent_buffer
*eb
;
368 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
370 if (page
->private == EXTENT_PAGE_PRIVATE
) {
374 if (!page
->private) {
378 len
= page
->private >> 2;
381 eb
= alloc_extent_buffer(tree
, start
, len
, page
);
386 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
387 btrfs_header_generation(eb
));
389 WARN_ON(!btrfs_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
));
391 found_start
= btrfs_header_bytenr(eb
);
392 if (found_start
!= start
) {
396 if (eb
->first_page
!= page
) {
400 if (!PageUptodate(page
)) {
404 csum_tree_block(root
, eb
, 0);
406 free_extent_buffer(eb
);
411 static int check_tree_block_fsid(struct btrfs_root
*root
,
412 struct extent_buffer
*eb
)
414 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
415 u8 fsid
[BTRFS_UUID_SIZE
];
418 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
421 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
425 fs_devices
= fs_devices
->seed
;
430 #define CORRUPT(reason, eb, root, slot) \
431 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
432 "root=%llu, slot=%d\n", reason, \
433 (unsigned long long)btrfs_header_bytenr(eb), \
434 (unsigned long long)root->objectid, slot)
436 static noinline
int check_leaf(struct btrfs_root
*root
,
437 struct extent_buffer
*leaf
)
439 struct btrfs_key key
;
440 struct btrfs_key leaf_key
;
441 u32 nritems
= btrfs_header_nritems(leaf
);
447 /* Check the 0 item */
448 if (btrfs_item_offset_nr(leaf
, 0) + btrfs_item_size_nr(leaf
, 0) !=
449 BTRFS_LEAF_DATA_SIZE(root
)) {
450 CORRUPT("invalid item offset size pair", leaf
, root
, 0);
455 * Check to make sure each items keys are in the correct order and their
456 * offsets make sense. We only have to loop through nritems-1 because
457 * we check the current slot against the next slot, which verifies the
458 * next slot's offset+size makes sense and that the current's slot
461 for (slot
= 0; slot
< nritems
- 1; slot
++) {
462 btrfs_item_key_to_cpu(leaf
, &leaf_key
, slot
);
463 btrfs_item_key_to_cpu(leaf
, &key
, slot
+ 1);
465 /* Make sure the keys are in the right order */
466 if (btrfs_comp_cpu_keys(&leaf_key
, &key
) >= 0) {
467 CORRUPT("bad key order", leaf
, root
, slot
);
472 * Make sure the offset and ends are right, remember that the
473 * item data starts at the end of the leaf and grows towards the
476 if (btrfs_item_offset_nr(leaf
, slot
) !=
477 btrfs_item_end_nr(leaf
, slot
+ 1)) {
478 CORRUPT("slot offset bad", leaf
, root
, slot
);
483 * Check to make sure that we don't point outside of the leaf,
484 * just incase all the items are consistent to eachother, but
485 * all point outside of the leaf.
487 if (btrfs_item_end_nr(leaf
, slot
) >
488 BTRFS_LEAF_DATA_SIZE(root
)) {
489 CORRUPT("slot end outside of leaf", leaf
, root
, slot
);
497 #ifdef CONFIG_DEBUG_LOCK_ALLOC
498 void btrfs_set_buffer_lockdep_class(struct extent_buffer
*eb
, int level
)
500 lockdep_set_class_and_name(&eb
->lock
,
501 &btrfs_eb_class
[level
],
502 btrfs_eb_name
[level
]);
506 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
507 struct extent_state
*state
)
509 struct extent_io_tree
*tree
;
513 struct extent_buffer
*eb
;
514 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
517 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
518 if (page
->private == EXTENT_PAGE_PRIVATE
)
523 len
= page
->private >> 2;
526 eb
= alloc_extent_buffer(tree
, start
, len
, page
);
532 found_start
= btrfs_header_bytenr(eb
);
533 if (found_start
!= start
) {
534 printk_ratelimited(KERN_INFO
"btrfs bad tree block start "
536 (unsigned long long)found_start
,
537 (unsigned long long)eb
->start
);
541 if (eb
->first_page
!= page
) {
542 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
543 eb
->first_page
->index
, page
->index
);
548 if (check_tree_block_fsid(root
, eb
)) {
549 printk_ratelimited(KERN_INFO
"btrfs bad fsid on block %llu\n",
550 (unsigned long long)eb
->start
);
554 found_level
= btrfs_header_level(eb
);
556 btrfs_set_buffer_lockdep_class(eb
, found_level
);
558 ret
= csum_tree_block(root
, eb
, 1);
565 * If this is a leaf block and it is corrupt, set the corrupt bit so
566 * that we don't try and read the other copies of this block, just
569 if (found_level
== 0 && check_leaf(root
, eb
)) {
570 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
574 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
575 end
= eb
->start
+ end
- 1;
577 free_extent_buffer(eb
);
582 static void end_workqueue_bio(struct bio
*bio
, int err
)
584 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
585 struct btrfs_fs_info
*fs_info
;
587 fs_info
= end_io_wq
->info
;
588 end_io_wq
->error
= err
;
589 end_io_wq
->work
.func
= end_workqueue_fn
;
590 end_io_wq
->work
.flags
= 0;
592 if (bio
->bi_rw
& REQ_WRITE
) {
593 if (end_io_wq
->metadata
== 1)
594 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
596 else if (end_io_wq
->metadata
== 2)
597 btrfs_queue_worker(&fs_info
->endio_freespace_worker
,
600 btrfs_queue_worker(&fs_info
->endio_write_workers
,
603 if (end_io_wq
->metadata
)
604 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
607 btrfs_queue_worker(&fs_info
->endio_workers
,
613 * For the metadata arg you want
616 * 1 - if normal metadta
617 * 2 - if writing to the free space cache area
619 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
622 struct end_io_wq
*end_io_wq
;
623 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
627 end_io_wq
->private = bio
->bi_private
;
628 end_io_wq
->end_io
= bio
->bi_end_io
;
629 end_io_wq
->info
= info
;
630 end_io_wq
->error
= 0;
631 end_io_wq
->bio
= bio
;
632 end_io_wq
->metadata
= metadata
;
634 bio
->bi_private
= end_io_wq
;
635 bio
->bi_end_io
= end_workqueue_bio
;
639 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
641 unsigned long limit
= min_t(unsigned long,
642 info
->workers
.max_workers
,
643 info
->fs_devices
->open_devices
);
647 static void run_one_async_start(struct btrfs_work
*work
)
649 struct async_submit_bio
*async
;
651 async
= container_of(work
, struct async_submit_bio
, work
);
652 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
653 async
->mirror_num
, async
->bio_flags
,
657 static void run_one_async_done(struct btrfs_work
*work
)
659 struct btrfs_fs_info
*fs_info
;
660 struct async_submit_bio
*async
;
663 async
= container_of(work
, struct async_submit_bio
, work
);
664 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
666 limit
= btrfs_async_submit_limit(fs_info
);
667 limit
= limit
* 2 / 3;
669 atomic_dec(&fs_info
->nr_async_submits
);
671 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
672 waitqueue_active(&fs_info
->async_submit_wait
))
673 wake_up(&fs_info
->async_submit_wait
);
675 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
676 async
->mirror_num
, async
->bio_flags
,
680 static void run_one_async_free(struct btrfs_work
*work
)
682 struct async_submit_bio
*async
;
684 async
= container_of(work
, struct async_submit_bio
, work
);
688 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
689 int rw
, struct bio
*bio
, int mirror_num
,
690 unsigned long bio_flags
,
692 extent_submit_bio_hook_t
*submit_bio_start
,
693 extent_submit_bio_hook_t
*submit_bio_done
)
695 struct async_submit_bio
*async
;
697 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
701 async
->inode
= inode
;
704 async
->mirror_num
= mirror_num
;
705 async
->submit_bio_start
= submit_bio_start
;
706 async
->submit_bio_done
= submit_bio_done
;
708 async
->work
.func
= run_one_async_start
;
709 async
->work
.ordered_func
= run_one_async_done
;
710 async
->work
.ordered_free
= run_one_async_free
;
712 async
->work
.flags
= 0;
713 async
->bio_flags
= bio_flags
;
714 async
->bio_offset
= bio_offset
;
716 atomic_inc(&fs_info
->nr_async_submits
);
719 btrfs_set_work_high_prio(&async
->work
);
721 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
723 while (atomic_read(&fs_info
->async_submit_draining
) &&
724 atomic_read(&fs_info
->nr_async_submits
)) {
725 wait_event(fs_info
->async_submit_wait
,
726 (atomic_read(&fs_info
->nr_async_submits
) == 0));
732 static int btree_csum_one_bio(struct bio
*bio
)
734 struct bio_vec
*bvec
= bio
->bi_io_vec
;
736 struct btrfs_root
*root
;
738 WARN_ON(bio
->bi_vcnt
<= 0);
739 while (bio_index
< bio
->bi_vcnt
) {
740 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
741 csum_dirty_buffer(root
, bvec
->bv_page
);
748 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
749 struct bio
*bio
, int mirror_num
,
750 unsigned long bio_flags
,
754 * when we're called for a write, we're already in the async
755 * submission context. Just jump into btrfs_map_bio
757 btree_csum_one_bio(bio
);
761 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
762 int mirror_num
, unsigned long bio_flags
,
766 * when we're called for a write, we're already in the async
767 * submission context. Just jump into btrfs_map_bio
769 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
772 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
773 int mirror_num
, unsigned long bio_flags
,
778 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
782 if (!(rw
& REQ_WRITE
)) {
784 * called for a read, do the setup so that checksum validation
785 * can happen in the async kernel threads
787 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
792 * kthread helpers are used to submit writes so that checksumming
793 * can happen in parallel across all CPUs
795 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
796 inode
, rw
, bio
, mirror_num
, 0,
798 __btree_submit_bio_start
,
799 __btree_submit_bio_done
);
802 #ifdef CONFIG_MIGRATION
803 static int btree_migratepage(struct address_space
*mapping
,
804 struct page
*newpage
, struct page
*page
)
807 * we can't safely write a btree page from here,
808 * we haven't done the locking hook
813 * Buffers may be managed in a filesystem specific way.
814 * We must have no buffers or drop them.
816 if (page_has_private(page
) &&
817 !try_to_release_page(page
, GFP_KERNEL
))
819 return migrate_page(mapping
, newpage
, page
);
823 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
825 struct extent_io_tree
*tree
;
826 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
827 struct extent_buffer
*eb
;
830 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
831 if (!(current
->flags
& PF_MEMALLOC
)) {
832 return extent_write_full_page(tree
, page
,
833 btree_get_extent
, wbc
);
836 redirty_page_for_writepage(wbc
, page
);
837 eb
= btrfs_find_tree_block(root
, page_offset(page
), PAGE_CACHE_SIZE
);
840 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
842 spin_lock(&root
->fs_info
->delalloc_lock
);
843 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
844 spin_unlock(&root
->fs_info
->delalloc_lock
);
846 free_extent_buffer(eb
);
852 static int btree_writepages(struct address_space
*mapping
,
853 struct writeback_control
*wbc
)
855 struct extent_io_tree
*tree
;
856 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
857 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
858 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
860 unsigned long thresh
= 32 * 1024 * 1024;
862 if (wbc
->for_kupdate
)
865 /* this is a bit racy, but that's ok */
866 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
867 if (num_dirty
< thresh
)
870 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
873 static int btree_readpage(struct file
*file
, struct page
*page
)
875 struct extent_io_tree
*tree
;
876 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
877 return extent_read_full_page(tree
, page
, btree_get_extent
);
880 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
882 struct extent_io_tree
*tree
;
883 struct extent_map_tree
*map
;
886 if (PageWriteback(page
) || PageDirty(page
))
889 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
890 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
892 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
896 ret
= try_release_extent_buffer(tree
, page
);
898 ClearPagePrivate(page
);
899 set_page_private(page
, 0);
900 page_cache_release(page
);
906 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
908 struct extent_io_tree
*tree
;
909 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
910 extent_invalidatepage(tree
, page
, offset
);
911 btree_releasepage(page
, GFP_NOFS
);
912 if (PagePrivate(page
)) {
913 printk(KERN_WARNING
"btrfs warning page private not zero "
914 "on page %llu\n", (unsigned long long)page_offset(page
));
915 ClearPagePrivate(page
);
916 set_page_private(page
, 0);
917 page_cache_release(page
);
921 static const struct address_space_operations btree_aops
= {
922 .readpage
= btree_readpage
,
923 .writepage
= btree_writepage
,
924 .writepages
= btree_writepages
,
925 .releasepage
= btree_releasepage
,
926 .invalidatepage
= btree_invalidatepage
,
927 #ifdef CONFIG_MIGRATION
928 .migratepage
= btree_migratepage
,
932 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
935 struct extent_buffer
*buf
= NULL
;
936 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
939 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
942 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
943 buf
, 0, 0, btree_get_extent
, 0);
944 free_extent_buffer(buf
);
948 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
949 u64 bytenr
, u32 blocksize
)
951 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
952 struct extent_buffer
*eb
;
953 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
958 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
959 u64 bytenr
, u32 blocksize
)
961 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
962 struct extent_buffer
*eb
;
964 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
965 bytenr
, blocksize
, NULL
);
970 int btrfs_write_tree_block(struct extent_buffer
*buf
)
972 return filemap_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
973 buf
->start
+ buf
->len
- 1);
976 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
978 return filemap_fdatawait_range(buf
->first_page
->mapping
,
979 buf
->start
, buf
->start
+ buf
->len
- 1);
982 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
983 u32 blocksize
, u64 parent_transid
)
985 struct extent_buffer
*buf
= NULL
;
988 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
992 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
995 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
1000 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
1001 struct extent_buffer
*buf
)
1003 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1004 if (btrfs_header_generation(buf
) ==
1005 root
->fs_info
->running_transaction
->transid
) {
1006 btrfs_assert_tree_locked(buf
);
1008 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1009 spin_lock(&root
->fs_info
->delalloc_lock
);
1010 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
1011 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
1014 spin_unlock(&root
->fs_info
->delalloc_lock
);
1017 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1018 btrfs_set_lock_blocking(buf
);
1019 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
1025 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
1026 u32 stripesize
, struct btrfs_root
*root
,
1027 struct btrfs_fs_info
*fs_info
,
1031 root
->commit_root
= NULL
;
1032 root
->sectorsize
= sectorsize
;
1033 root
->nodesize
= nodesize
;
1034 root
->leafsize
= leafsize
;
1035 root
->stripesize
= stripesize
;
1037 root
->track_dirty
= 0;
1039 root
->orphan_item_inserted
= 0;
1040 root
->orphan_cleanup_state
= 0;
1042 root
->fs_info
= fs_info
;
1043 root
->objectid
= objectid
;
1044 root
->last_trans
= 0;
1045 root
->highest_objectid
= 0;
1048 root
->inode_tree
= RB_ROOT
;
1049 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1050 root
->block_rsv
= NULL
;
1051 root
->orphan_block_rsv
= NULL
;
1053 INIT_LIST_HEAD(&root
->dirty_list
);
1054 INIT_LIST_HEAD(&root
->orphan_list
);
1055 INIT_LIST_HEAD(&root
->root_list
);
1056 spin_lock_init(&root
->orphan_lock
);
1057 spin_lock_init(&root
->inode_lock
);
1058 spin_lock_init(&root
->accounting_lock
);
1059 mutex_init(&root
->objectid_mutex
);
1060 mutex_init(&root
->log_mutex
);
1061 init_waitqueue_head(&root
->log_writer_wait
);
1062 init_waitqueue_head(&root
->log_commit_wait
[0]);
1063 init_waitqueue_head(&root
->log_commit_wait
[1]);
1064 atomic_set(&root
->log_commit
[0], 0);
1065 atomic_set(&root
->log_commit
[1], 0);
1066 atomic_set(&root
->log_writers
, 0);
1067 root
->log_batch
= 0;
1068 root
->log_transid
= 0;
1069 root
->last_log_commit
= 0;
1070 extent_io_tree_init(&root
->dirty_log_pages
,
1071 fs_info
->btree_inode
->i_mapping
);
1073 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1074 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1075 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1076 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
1077 root
->defrag_trans_start
= fs_info
->generation
;
1078 init_completion(&root
->kobj_unregister
);
1079 root
->defrag_running
= 0;
1080 root
->root_key
.objectid
= objectid
;
1081 root
->anon_super
.s_root
= NULL
;
1082 root
->anon_super
.s_dev
= 0;
1083 INIT_LIST_HEAD(&root
->anon_super
.s_list
);
1084 INIT_LIST_HEAD(&root
->anon_super
.s_instances
);
1085 init_rwsem(&root
->anon_super
.s_umount
);
1090 static int find_and_setup_root(struct btrfs_root
*tree_root
,
1091 struct btrfs_fs_info
*fs_info
,
1093 struct btrfs_root
*root
)
1099 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1100 tree_root
->sectorsize
, tree_root
->stripesize
,
1101 root
, fs_info
, objectid
);
1102 ret
= btrfs_find_last_root(tree_root
, objectid
,
1103 &root
->root_item
, &root
->root_key
);
1108 generation
= btrfs_root_generation(&root
->root_item
);
1109 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1110 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1111 blocksize
, generation
);
1112 if (!root
->node
|| !btrfs_buffer_uptodate(root
->node
, generation
)) {
1113 free_extent_buffer(root
->node
);
1116 root
->commit_root
= btrfs_root_node(root
);
1120 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1121 struct btrfs_fs_info
*fs_info
)
1123 struct btrfs_root
*root
;
1124 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1125 struct extent_buffer
*leaf
;
1127 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1129 return ERR_PTR(-ENOMEM
);
1131 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1132 tree_root
->sectorsize
, tree_root
->stripesize
,
1133 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1135 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1136 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1137 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1139 * log trees do not get reference counted because they go away
1140 * before a real commit is actually done. They do store pointers
1141 * to file data extents, and those reference counts still get
1142 * updated (along with back refs to the log tree).
1146 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1147 BTRFS_TREE_LOG_OBJECTID
, NULL
, 0, 0, 0);
1150 return ERR_CAST(leaf
);
1153 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1154 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1155 btrfs_set_header_generation(leaf
, trans
->transid
);
1156 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1157 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1160 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1161 (unsigned long)btrfs_header_fsid(root
->node
),
1163 btrfs_mark_buffer_dirty(root
->node
);
1164 btrfs_tree_unlock(root
->node
);
1168 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1169 struct btrfs_fs_info
*fs_info
)
1171 struct btrfs_root
*log_root
;
1173 log_root
= alloc_log_tree(trans
, fs_info
);
1174 if (IS_ERR(log_root
))
1175 return PTR_ERR(log_root
);
1176 WARN_ON(fs_info
->log_root_tree
);
1177 fs_info
->log_root_tree
= log_root
;
1181 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1182 struct btrfs_root
*root
)
1184 struct btrfs_root
*log_root
;
1185 struct btrfs_inode_item
*inode_item
;
1187 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1188 if (IS_ERR(log_root
))
1189 return PTR_ERR(log_root
);
1191 log_root
->last_trans
= trans
->transid
;
1192 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1194 inode_item
= &log_root
->root_item
.inode
;
1195 inode_item
->generation
= cpu_to_le64(1);
1196 inode_item
->size
= cpu_to_le64(3);
1197 inode_item
->nlink
= cpu_to_le32(1);
1198 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1199 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1201 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1203 WARN_ON(root
->log_root
);
1204 root
->log_root
= log_root
;
1205 root
->log_transid
= 0;
1206 root
->last_log_commit
= 0;
1210 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1211 struct btrfs_key
*location
)
1213 struct btrfs_root
*root
;
1214 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1215 struct btrfs_path
*path
;
1216 struct extent_buffer
*l
;
1221 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1223 return ERR_PTR(-ENOMEM
);
1224 if (location
->offset
== (u64
)-1) {
1225 ret
= find_and_setup_root(tree_root
, fs_info
,
1226 location
->objectid
, root
);
1229 return ERR_PTR(ret
);
1234 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1235 tree_root
->sectorsize
, tree_root
->stripesize
,
1236 root
, fs_info
, location
->objectid
);
1238 path
= btrfs_alloc_path();
1241 return ERR_PTR(-ENOMEM
);
1243 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1246 read_extent_buffer(l
, &root
->root_item
,
1247 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1248 sizeof(root
->root_item
));
1249 memcpy(&root
->root_key
, location
, sizeof(*location
));
1251 btrfs_free_path(path
);
1256 return ERR_PTR(ret
);
1259 generation
= btrfs_root_generation(&root
->root_item
);
1260 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1261 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1262 blocksize
, generation
);
1263 root
->commit_root
= btrfs_root_node(root
);
1264 BUG_ON(!root
->node
);
1266 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1268 btrfs_check_and_init_root_item(&root
->root_item
);
1274 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1275 struct btrfs_key
*location
)
1277 struct btrfs_root
*root
;
1280 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1281 return fs_info
->tree_root
;
1282 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1283 return fs_info
->extent_root
;
1284 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1285 return fs_info
->chunk_root
;
1286 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1287 return fs_info
->dev_root
;
1288 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1289 return fs_info
->csum_root
;
1291 spin_lock(&fs_info
->fs_roots_radix_lock
);
1292 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1293 (unsigned long)location
->objectid
);
1294 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1298 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1302 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1303 if (!root
->free_ino_ctl
)
1305 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1307 if (!root
->free_ino_pinned
)
1310 btrfs_init_free_ino_ctl(root
);
1311 mutex_init(&root
->fs_commit_mutex
);
1312 spin_lock_init(&root
->cache_lock
);
1313 init_waitqueue_head(&root
->cache_wait
);
1315 set_anon_super(&root
->anon_super
, NULL
);
1317 if (btrfs_root_refs(&root
->root_item
) == 0) {
1322 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1326 root
->orphan_item_inserted
= 1;
1328 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1332 spin_lock(&fs_info
->fs_roots_radix_lock
);
1333 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1334 (unsigned long)root
->root_key
.objectid
,
1339 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1340 radix_tree_preload_end();
1342 if (ret
== -EEXIST
) {
1349 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1350 root
->root_key
.objectid
);
1355 return ERR_PTR(ret
);
1358 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1360 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1362 struct btrfs_device
*device
;
1363 struct backing_dev_info
*bdi
;
1366 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1369 bdi
= blk_get_backing_dev_info(device
->bdev
);
1370 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1380 * If this fails, caller must call bdi_destroy() to get rid of the
1383 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1387 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1388 err
= bdi_setup_and_register(bdi
, "btrfs", BDI_CAP_MAP_COPY
);
1392 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1393 bdi
->congested_fn
= btrfs_congested_fn
;
1394 bdi
->congested_data
= info
;
1398 static int bio_ready_for_csum(struct bio
*bio
)
1404 struct extent_io_tree
*io_tree
= NULL
;
1405 struct bio_vec
*bvec
;
1409 bio_for_each_segment(bvec
, bio
, i
) {
1410 page
= bvec
->bv_page
;
1411 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1412 length
+= bvec
->bv_len
;
1415 if (!page
->private) {
1416 length
+= bvec
->bv_len
;
1419 length
= bvec
->bv_len
;
1420 buf_len
= page
->private >> 2;
1421 start
= page_offset(page
) + bvec
->bv_offset
;
1422 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1424 /* are we fully contained in this bio? */
1425 if (buf_len
<= length
)
1428 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1429 start
+ buf_len
- 1);
1434 * called by the kthread helper functions to finally call the bio end_io
1435 * functions. This is where read checksum verification actually happens
1437 static void end_workqueue_fn(struct btrfs_work
*work
)
1440 struct end_io_wq
*end_io_wq
;
1441 struct btrfs_fs_info
*fs_info
;
1444 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1445 bio
= end_io_wq
->bio
;
1446 fs_info
= end_io_wq
->info
;
1448 /* metadata bio reads are special because the whole tree block must
1449 * be checksummed at once. This makes sure the entire block is in
1450 * ram and up to date before trying to verify things. For
1451 * blocksize <= pagesize, it is basically a noop
1453 if (!(bio
->bi_rw
& REQ_WRITE
) && end_io_wq
->metadata
&&
1454 !bio_ready_for_csum(bio
)) {
1455 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1459 error
= end_io_wq
->error
;
1460 bio
->bi_private
= end_io_wq
->private;
1461 bio
->bi_end_io
= end_io_wq
->end_io
;
1463 bio_endio(bio
, error
);
1466 static int cleaner_kthread(void *arg
)
1468 struct btrfs_root
*root
= arg
;
1471 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1473 if (!(root
->fs_info
->sb
->s_flags
& MS_RDONLY
) &&
1474 mutex_trylock(&root
->fs_info
->cleaner_mutex
)) {
1475 btrfs_run_delayed_iputs(root
);
1476 btrfs_clean_old_snapshots(root
);
1477 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1478 btrfs_run_defrag_inodes(root
->fs_info
);
1481 if (freezing(current
)) {
1484 set_current_state(TASK_INTERRUPTIBLE
);
1485 if (!kthread_should_stop())
1487 __set_current_state(TASK_RUNNING
);
1489 } while (!kthread_should_stop());
1493 static int transaction_kthread(void *arg
)
1495 struct btrfs_root
*root
= arg
;
1496 struct btrfs_trans_handle
*trans
;
1497 struct btrfs_transaction
*cur
;
1500 unsigned long delay
;
1505 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1506 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1508 spin_lock(&root
->fs_info
->new_trans_lock
);
1509 cur
= root
->fs_info
->running_transaction
;
1511 spin_unlock(&root
->fs_info
->new_trans_lock
);
1515 now
= get_seconds();
1516 if (!cur
->blocked
&&
1517 (now
< cur
->start_time
|| now
- cur
->start_time
< 30)) {
1518 spin_unlock(&root
->fs_info
->new_trans_lock
);
1522 transid
= cur
->transid
;
1523 spin_unlock(&root
->fs_info
->new_trans_lock
);
1525 trans
= btrfs_join_transaction(root
, 1);
1526 BUG_ON(IS_ERR(trans
));
1527 if (transid
== trans
->transid
) {
1528 ret
= btrfs_commit_transaction(trans
, root
);
1531 btrfs_end_transaction(trans
, root
);
1534 wake_up_process(root
->fs_info
->cleaner_kthread
);
1535 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1537 if (freezing(current
)) {
1540 set_current_state(TASK_INTERRUPTIBLE
);
1541 if (!kthread_should_stop() &&
1542 !btrfs_transaction_blocked(root
->fs_info
))
1543 schedule_timeout(delay
);
1544 __set_current_state(TASK_RUNNING
);
1546 } while (!kthread_should_stop());
1550 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1551 struct btrfs_fs_devices
*fs_devices
,
1561 struct btrfs_key location
;
1562 struct buffer_head
*bh
;
1563 struct btrfs_root
*extent_root
= kzalloc(sizeof(struct btrfs_root
),
1565 struct btrfs_root
*csum_root
= kzalloc(sizeof(struct btrfs_root
),
1567 struct btrfs_root
*tree_root
= btrfs_sb(sb
);
1568 struct btrfs_fs_info
*fs_info
= NULL
;
1569 struct btrfs_root
*chunk_root
= kzalloc(sizeof(struct btrfs_root
),
1571 struct btrfs_root
*dev_root
= kzalloc(sizeof(struct btrfs_root
),
1573 struct btrfs_root
*log_tree_root
;
1578 struct btrfs_super_block
*disk_super
;
1580 if (!extent_root
|| !tree_root
|| !tree_root
->fs_info
||
1581 !chunk_root
|| !dev_root
|| !csum_root
) {
1585 fs_info
= tree_root
->fs_info
;
1587 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
1593 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
1599 fs_info
->btree_inode
= new_inode(sb
);
1600 if (!fs_info
->btree_inode
) {
1605 fs_info
->btree_inode
->i_mapping
->flags
&= ~__GFP_FS
;
1607 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
1608 INIT_LIST_HEAD(&fs_info
->trans_list
);
1609 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1610 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
1611 INIT_LIST_HEAD(&fs_info
->hashers
);
1612 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1613 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1614 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
1615 spin_lock_init(&fs_info
->delalloc_lock
);
1616 spin_lock_init(&fs_info
->new_trans_lock
);
1617 spin_lock_init(&fs_info
->ref_cache_lock
);
1618 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
1619 spin_lock_init(&fs_info
->delayed_iput_lock
);
1620 spin_lock_init(&fs_info
->defrag_inodes_lock
);
1622 init_completion(&fs_info
->kobj_unregister
);
1623 fs_info
->tree_root
= tree_root
;
1624 fs_info
->extent_root
= extent_root
;
1625 fs_info
->csum_root
= csum_root
;
1626 fs_info
->chunk_root
= chunk_root
;
1627 fs_info
->dev_root
= dev_root
;
1628 fs_info
->fs_devices
= fs_devices
;
1629 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1630 INIT_LIST_HEAD(&fs_info
->space_info
);
1631 btrfs_mapping_init(&fs_info
->mapping_tree
);
1632 btrfs_init_block_rsv(&fs_info
->global_block_rsv
);
1633 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
);
1634 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
);
1635 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
);
1636 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
);
1637 INIT_LIST_HEAD(&fs_info
->durable_block_rsv_list
);
1638 mutex_init(&fs_info
->durable_block_rsv_mutex
);
1639 atomic_set(&fs_info
->nr_async_submits
, 0);
1640 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1641 atomic_set(&fs_info
->async_submit_draining
, 0);
1642 atomic_set(&fs_info
->nr_async_bios
, 0);
1643 atomic_set(&fs_info
->defrag_running
, 0);
1645 fs_info
->max_inline
= 8192 * 1024;
1646 fs_info
->metadata_ratio
= 0;
1647 fs_info
->defrag_inodes
= RB_ROOT
;
1649 fs_info
->thread_pool_size
= min_t(unsigned long,
1650 num_online_cpus() + 2, 8);
1652 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1653 spin_lock_init(&fs_info
->ordered_extent_lock
);
1654 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
1656 if (!fs_info
->delayed_root
) {
1660 btrfs_init_delayed_root(fs_info
->delayed_root
);
1662 mutex_init(&fs_info
->scrub_lock
);
1663 atomic_set(&fs_info
->scrubs_running
, 0);
1664 atomic_set(&fs_info
->scrub_pause_req
, 0);
1665 atomic_set(&fs_info
->scrubs_paused
, 0);
1666 atomic_set(&fs_info
->scrub_cancel_req
, 0);
1667 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
1668 init_rwsem(&fs_info
->scrub_super_lock
);
1669 fs_info
->scrub_workers_refcnt
= 0;
1670 btrfs_init_workers(&fs_info
->scrub_workers
, "scrub",
1671 fs_info
->thread_pool_size
, &fs_info
->generic_worker
);
1673 sb
->s_blocksize
= 4096;
1674 sb
->s_blocksize_bits
= blksize_bits(4096);
1675 sb
->s_bdi
= &fs_info
->bdi
;
1677 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
1678 fs_info
->btree_inode
->i_nlink
= 1;
1680 * we set the i_size on the btree inode to the max possible int.
1681 * the real end of the address space is determined by all of
1682 * the devices in the system
1684 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
1685 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
1686 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
1688 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
1689 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
1690 fs_info
->btree_inode
->i_mapping
);
1691 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
);
1693 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
1695 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
1696 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
1697 sizeof(struct btrfs_key
));
1698 BTRFS_I(fs_info
->btree_inode
)->dummy_inode
= 1;
1699 insert_inode_hash(fs_info
->btree_inode
);
1701 spin_lock_init(&fs_info
->block_group_cache_lock
);
1702 fs_info
->block_group_cache_tree
= RB_ROOT
;
1704 extent_io_tree_init(&fs_info
->freed_extents
[0],
1705 fs_info
->btree_inode
->i_mapping
);
1706 extent_io_tree_init(&fs_info
->freed_extents
[1],
1707 fs_info
->btree_inode
->i_mapping
);
1708 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
1709 fs_info
->do_barriers
= 1;
1712 mutex_init(&fs_info
->trans_mutex
);
1713 mutex_init(&fs_info
->ordered_operations_mutex
);
1714 mutex_init(&fs_info
->tree_log_mutex
);
1715 mutex_init(&fs_info
->chunk_mutex
);
1716 mutex_init(&fs_info
->transaction_kthread_mutex
);
1717 mutex_init(&fs_info
->cleaner_mutex
);
1718 mutex_init(&fs_info
->volume_mutex
);
1719 init_rwsem(&fs_info
->extent_commit_sem
);
1720 init_rwsem(&fs_info
->cleanup_work_sem
);
1721 init_rwsem(&fs_info
->subvol_sem
);
1723 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
1724 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
1726 init_waitqueue_head(&fs_info
->transaction_throttle
);
1727 init_waitqueue_head(&fs_info
->transaction_wait
);
1728 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
1729 init_waitqueue_head(&fs_info
->async_submit_wait
);
1731 __setup_root(4096, 4096, 4096, 4096, tree_root
,
1732 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1734 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
1740 memcpy(&fs_info
->super_copy
, bh
->b_data
, sizeof(fs_info
->super_copy
));
1741 memcpy(&fs_info
->super_for_commit
, &fs_info
->super_copy
,
1742 sizeof(fs_info
->super_for_commit
));
1745 memcpy(fs_info
->fsid
, fs_info
->super_copy
.fsid
, BTRFS_FSID_SIZE
);
1747 disk_super
= &fs_info
->super_copy
;
1748 if (!btrfs_super_root(disk_super
))
1751 /* check FS state, whether FS is broken. */
1752 fs_info
->fs_state
|= btrfs_super_flags(disk_super
);
1754 btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
1757 * In the long term, we'll store the compression type in the super
1758 * block, and it'll be used for per file compression control.
1760 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
1762 ret
= btrfs_parse_options(tree_root
, options
);
1768 features
= btrfs_super_incompat_flags(disk_super
) &
1769 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
1771 printk(KERN_ERR
"BTRFS: couldn't mount because of "
1772 "unsupported optional features (%Lx).\n",
1773 (unsigned long long)features
);
1778 features
= btrfs_super_incompat_flags(disk_super
);
1779 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
1780 if (tree_root
->fs_info
->compress_type
& BTRFS_COMPRESS_LZO
)
1781 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
1782 btrfs_set_super_incompat_flags(disk_super
, features
);
1784 features
= btrfs_super_compat_ro_flags(disk_super
) &
1785 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
1786 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
1787 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
1788 "unsupported option features (%Lx).\n",
1789 (unsigned long long)features
);
1794 btrfs_init_workers(&fs_info
->generic_worker
,
1795 "genwork", 1, NULL
);
1797 btrfs_init_workers(&fs_info
->workers
, "worker",
1798 fs_info
->thread_pool_size
,
1799 &fs_info
->generic_worker
);
1801 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
1802 fs_info
->thread_pool_size
,
1803 &fs_info
->generic_worker
);
1805 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
1806 min_t(u64
, fs_devices
->num_devices
,
1807 fs_info
->thread_pool_size
),
1808 &fs_info
->generic_worker
);
1810 /* a higher idle thresh on the submit workers makes it much more
1811 * likely that bios will be send down in a sane order to the
1814 fs_info
->submit_workers
.idle_thresh
= 64;
1816 fs_info
->workers
.idle_thresh
= 16;
1817 fs_info
->workers
.ordered
= 1;
1819 fs_info
->delalloc_workers
.idle_thresh
= 2;
1820 fs_info
->delalloc_workers
.ordered
= 1;
1822 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
1823 &fs_info
->generic_worker
);
1824 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
1825 fs_info
->thread_pool_size
,
1826 &fs_info
->generic_worker
);
1827 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
1828 fs_info
->thread_pool_size
,
1829 &fs_info
->generic_worker
);
1830 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
1831 "endio-meta-write", fs_info
->thread_pool_size
,
1832 &fs_info
->generic_worker
);
1833 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
1834 fs_info
->thread_pool_size
,
1835 &fs_info
->generic_worker
);
1836 btrfs_init_workers(&fs_info
->endio_freespace_worker
, "freespace-write",
1837 1, &fs_info
->generic_worker
);
1838 btrfs_init_workers(&fs_info
->delayed_workers
, "delayed-meta",
1839 fs_info
->thread_pool_size
,
1840 &fs_info
->generic_worker
);
1843 * endios are largely parallel and should have a very
1846 fs_info
->endio_workers
.idle_thresh
= 4;
1847 fs_info
->endio_meta_workers
.idle_thresh
= 4;
1849 fs_info
->endio_write_workers
.idle_thresh
= 2;
1850 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
1852 btrfs_start_workers(&fs_info
->workers
, 1);
1853 btrfs_start_workers(&fs_info
->generic_worker
, 1);
1854 btrfs_start_workers(&fs_info
->submit_workers
, 1);
1855 btrfs_start_workers(&fs_info
->delalloc_workers
, 1);
1856 btrfs_start_workers(&fs_info
->fixup_workers
, 1);
1857 btrfs_start_workers(&fs_info
->endio_workers
, 1);
1858 btrfs_start_workers(&fs_info
->endio_meta_workers
, 1);
1859 btrfs_start_workers(&fs_info
->endio_meta_write_workers
, 1);
1860 btrfs_start_workers(&fs_info
->endio_write_workers
, 1);
1861 btrfs_start_workers(&fs_info
->endio_freespace_worker
, 1);
1862 btrfs_start_workers(&fs_info
->delayed_workers
, 1);
1864 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
1865 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
1866 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
1868 nodesize
= btrfs_super_nodesize(disk_super
);
1869 leafsize
= btrfs_super_leafsize(disk_super
);
1870 sectorsize
= btrfs_super_sectorsize(disk_super
);
1871 stripesize
= btrfs_super_stripesize(disk_super
);
1872 tree_root
->nodesize
= nodesize
;
1873 tree_root
->leafsize
= leafsize
;
1874 tree_root
->sectorsize
= sectorsize
;
1875 tree_root
->stripesize
= stripesize
;
1877 sb
->s_blocksize
= sectorsize
;
1878 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
1880 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
1881 sizeof(disk_super
->magic
))) {
1882 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
1883 goto fail_sb_buffer
;
1886 mutex_lock(&fs_info
->chunk_mutex
);
1887 ret
= btrfs_read_sys_array(tree_root
);
1888 mutex_unlock(&fs_info
->chunk_mutex
);
1890 printk(KERN_WARNING
"btrfs: failed to read the system "
1891 "array on %s\n", sb
->s_id
);
1892 goto fail_sb_buffer
;
1895 blocksize
= btrfs_level_size(tree_root
,
1896 btrfs_super_chunk_root_level(disk_super
));
1897 generation
= btrfs_super_chunk_root_generation(disk_super
);
1899 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1900 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
1902 chunk_root
->node
= read_tree_block(chunk_root
,
1903 btrfs_super_chunk_root(disk_super
),
1904 blocksize
, generation
);
1905 BUG_ON(!chunk_root
->node
);
1906 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
1907 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
1909 goto fail_chunk_root
;
1911 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
1912 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
1914 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
1915 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
1918 mutex_lock(&fs_info
->chunk_mutex
);
1919 ret
= btrfs_read_chunk_tree(chunk_root
);
1920 mutex_unlock(&fs_info
->chunk_mutex
);
1922 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
1924 goto fail_chunk_root
;
1927 btrfs_close_extra_devices(fs_devices
);
1929 blocksize
= btrfs_level_size(tree_root
,
1930 btrfs_super_root_level(disk_super
));
1931 generation
= btrfs_super_generation(disk_super
);
1933 tree_root
->node
= read_tree_block(tree_root
,
1934 btrfs_super_root(disk_super
),
1935 blocksize
, generation
);
1936 if (!tree_root
->node
)
1937 goto fail_chunk_root
;
1938 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
1939 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
1941 goto fail_tree_root
;
1943 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
1944 tree_root
->commit_root
= btrfs_root_node(tree_root
);
1946 ret
= find_and_setup_root(tree_root
, fs_info
,
1947 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
1949 goto fail_tree_root
;
1950 extent_root
->track_dirty
= 1;
1952 ret
= find_and_setup_root(tree_root
, fs_info
,
1953 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
1955 goto fail_extent_root
;
1956 dev_root
->track_dirty
= 1;
1958 ret
= find_and_setup_root(tree_root
, fs_info
,
1959 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
1963 csum_root
->track_dirty
= 1;
1965 fs_info
->generation
= generation
;
1966 fs_info
->last_trans_committed
= generation
;
1967 fs_info
->data_alloc_profile
= (u64
)-1;
1968 fs_info
->metadata_alloc_profile
= (u64
)-1;
1969 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
1971 ret
= btrfs_init_space_info(fs_info
);
1973 printk(KERN_ERR
"Failed to initial space info: %d\n", ret
);
1974 goto fail_block_groups
;
1977 ret
= btrfs_read_block_groups(extent_root
);
1979 printk(KERN_ERR
"Failed to read block groups: %d\n", ret
);
1980 goto fail_block_groups
;
1983 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
1985 if (IS_ERR(fs_info
->cleaner_kthread
))
1986 goto fail_block_groups
;
1988 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
1990 "btrfs-transaction");
1991 if (IS_ERR(fs_info
->transaction_kthread
))
1994 if (!btrfs_test_opt(tree_root
, SSD
) &&
1995 !btrfs_test_opt(tree_root
, NOSSD
) &&
1996 !fs_info
->fs_devices
->rotating
) {
1997 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
1999 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
2002 /* do not make disk changes in broken FS */
2003 if (btrfs_super_log_root(disk_super
) != 0 &&
2004 !(fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)) {
2005 u64 bytenr
= btrfs_super_log_root(disk_super
);
2007 if (fs_devices
->rw_devices
== 0) {
2008 printk(KERN_WARNING
"Btrfs log replay required "
2011 goto fail_trans_kthread
;
2014 btrfs_level_size(tree_root
,
2015 btrfs_super_log_root_level(disk_super
));
2017 log_tree_root
= kzalloc(sizeof(struct btrfs_root
), GFP_NOFS
);
2018 if (!log_tree_root
) {
2020 goto fail_trans_kthread
;
2023 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2024 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2026 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
2029 ret
= btrfs_recover_log_trees(log_tree_root
);
2032 if (sb
->s_flags
& MS_RDONLY
) {
2033 ret
= btrfs_commit_super(tree_root
);
2038 ret
= btrfs_find_orphan_roots(tree_root
);
2041 if (!(sb
->s_flags
& MS_RDONLY
)) {
2042 ret
= btrfs_cleanup_fs_roots(fs_info
);
2045 ret
= btrfs_recover_relocation(tree_root
);
2048 "btrfs: failed to recover relocation\n");
2050 goto fail_trans_kthread
;
2054 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
2055 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2056 location
.offset
= (u64
)-1;
2058 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
2059 if (!fs_info
->fs_root
)
2060 goto fail_trans_kthread
;
2061 if (IS_ERR(fs_info
->fs_root
)) {
2062 err
= PTR_ERR(fs_info
->fs_root
);
2063 goto fail_trans_kthread
;
2066 if (!(sb
->s_flags
& MS_RDONLY
)) {
2067 down_read(&fs_info
->cleanup_work_sem
);
2068 err
= btrfs_orphan_cleanup(fs_info
->fs_root
);
2070 err
= btrfs_orphan_cleanup(fs_info
->tree_root
);
2071 up_read(&fs_info
->cleanup_work_sem
);
2073 close_ctree(tree_root
);
2074 return ERR_PTR(err
);
2081 kthread_stop(fs_info
->transaction_kthread
);
2083 kthread_stop(fs_info
->cleaner_kthread
);
2086 * make sure we're done with the btree inode before we stop our
2089 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2090 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2093 btrfs_free_block_groups(fs_info
);
2094 free_extent_buffer(csum_root
->node
);
2095 free_extent_buffer(csum_root
->commit_root
);
2097 free_extent_buffer(dev_root
->node
);
2098 free_extent_buffer(dev_root
->commit_root
);
2100 free_extent_buffer(extent_root
->node
);
2101 free_extent_buffer(extent_root
->commit_root
);
2103 free_extent_buffer(tree_root
->node
);
2104 free_extent_buffer(tree_root
->commit_root
);
2106 free_extent_buffer(chunk_root
->node
);
2107 free_extent_buffer(chunk_root
->commit_root
);
2109 btrfs_stop_workers(&fs_info
->generic_worker
);
2110 btrfs_stop_workers(&fs_info
->fixup_workers
);
2111 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2112 btrfs_stop_workers(&fs_info
->workers
);
2113 btrfs_stop_workers(&fs_info
->endio_workers
);
2114 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2115 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2116 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2117 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2118 btrfs_stop_workers(&fs_info
->submit_workers
);
2119 btrfs_stop_workers(&fs_info
->delayed_workers
);
2121 kfree(fs_info
->delayed_root
);
2123 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2124 iput(fs_info
->btree_inode
);
2126 btrfs_close_devices(fs_info
->fs_devices
);
2127 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2129 bdi_destroy(&fs_info
->bdi
);
2131 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2139 return ERR_PTR(err
);
2142 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
2144 char b
[BDEVNAME_SIZE
];
2147 set_buffer_uptodate(bh
);
2149 printk_ratelimited(KERN_WARNING
"lost page write due to "
2150 "I/O error on %s\n",
2151 bdevname(bh
->b_bdev
, b
));
2152 /* note, we dont' set_buffer_write_io_error because we have
2153 * our own ways of dealing with the IO errors
2155 clear_buffer_uptodate(bh
);
2161 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
2163 struct buffer_head
*bh
;
2164 struct buffer_head
*latest
= NULL
;
2165 struct btrfs_super_block
*super
;
2170 /* we would like to check all the supers, but that would make
2171 * a btrfs mount succeed after a mkfs from a different FS.
2172 * So, we need to add a special mount option to scan for
2173 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2175 for (i
= 0; i
< 1; i
++) {
2176 bytenr
= btrfs_sb_offset(i
);
2177 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2179 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2183 super
= (struct btrfs_super_block
*)bh
->b_data
;
2184 if (btrfs_super_bytenr(super
) != bytenr
||
2185 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2186 sizeof(super
->magic
))) {
2191 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2194 transid
= btrfs_super_generation(super
);
2203 * this should be called twice, once with wait == 0 and
2204 * once with wait == 1. When wait == 0 is done, all the buffer heads
2205 * we write are pinned.
2207 * They are released when wait == 1 is done.
2208 * max_mirrors must be the same for both runs, and it indicates how
2209 * many supers on this one device should be written.
2211 * max_mirrors == 0 means to write them all.
2213 static int write_dev_supers(struct btrfs_device
*device
,
2214 struct btrfs_super_block
*sb
,
2215 int do_barriers
, int wait
, int max_mirrors
)
2217 struct buffer_head
*bh
;
2223 int last_barrier
= 0;
2225 if (max_mirrors
== 0)
2226 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2228 /* make sure only the last submit_bh does a barrier */
2230 for (i
= 0; i
< max_mirrors
; i
++) {
2231 bytenr
= btrfs_sb_offset(i
);
2232 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
2233 device
->total_bytes
)
2239 for (i
= 0; i
< max_mirrors
; i
++) {
2240 bytenr
= btrfs_sb_offset(i
);
2241 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2245 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2246 BTRFS_SUPER_INFO_SIZE
);
2249 if (!buffer_uptodate(bh
))
2252 /* drop our reference */
2255 /* drop the reference from the wait == 0 run */
2259 btrfs_set_super_bytenr(sb
, bytenr
);
2262 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2263 BTRFS_CSUM_SIZE
, crc
,
2264 BTRFS_SUPER_INFO_SIZE
-
2266 btrfs_csum_final(crc
, sb
->csum
);
2269 * one reference for us, and we leave it for the
2272 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2273 BTRFS_SUPER_INFO_SIZE
);
2274 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2276 /* one reference for submit_bh */
2279 set_buffer_uptodate(bh
);
2281 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2284 if (i
== last_barrier
&& do_barriers
)
2285 ret
= submit_bh(WRITE_FLUSH_FUA
, bh
);
2287 ret
= submit_bh(WRITE_SYNC
, bh
);
2292 return errors
< i
? 0 : -1;
2295 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2297 struct list_head
*head
;
2298 struct btrfs_device
*dev
;
2299 struct btrfs_super_block
*sb
;
2300 struct btrfs_dev_item
*dev_item
;
2304 int total_errors
= 0;
2307 max_errors
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
2308 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2310 sb
= &root
->fs_info
->super_for_commit
;
2311 dev_item
= &sb
->dev_item
;
2313 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2314 head
= &root
->fs_info
->fs_devices
->devices
;
2315 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2320 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2323 btrfs_set_stack_device_generation(dev_item
, 0);
2324 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2325 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2326 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2327 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2328 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2329 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2330 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2331 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2332 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2334 flags
= btrfs_super_flags(sb
);
2335 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2337 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2341 if (total_errors
> max_errors
) {
2342 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2348 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2351 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2354 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2358 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2359 if (total_errors
> max_errors
) {
2360 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2367 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2368 struct btrfs_root
*root
, int max_mirrors
)
2372 ret
= write_all_supers(root
, max_mirrors
);
2376 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2378 spin_lock(&fs_info
->fs_roots_radix_lock
);
2379 radix_tree_delete(&fs_info
->fs_roots_radix
,
2380 (unsigned long)root
->root_key
.objectid
);
2381 spin_unlock(&fs_info
->fs_roots_radix_lock
);
2383 if (btrfs_root_refs(&root
->root_item
) == 0)
2384 synchronize_srcu(&fs_info
->subvol_srcu
);
2386 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
2387 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
2392 static void free_fs_root(struct btrfs_root
*root
)
2394 iput(root
->cache_inode
);
2395 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
2396 if (root
->anon_super
.s_dev
) {
2397 down_write(&root
->anon_super
.s_umount
);
2398 kill_anon_super(&root
->anon_super
);
2400 free_extent_buffer(root
->node
);
2401 free_extent_buffer(root
->commit_root
);
2402 kfree(root
->free_ino_ctl
);
2403 kfree(root
->free_ino_pinned
);
2408 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2411 struct btrfs_root
*gang
[8];
2414 while (!list_empty(&fs_info
->dead_roots
)) {
2415 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2416 struct btrfs_root
, root_list
);
2417 list_del(&gang
[0]->root_list
);
2419 if (gang
[0]->in_radix
) {
2420 btrfs_free_fs_root(fs_info
, gang
[0]);
2422 free_extent_buffer(gang
[0]->node
);
2423 free_extent_buffer(gang
[0]->commit_root
);
2429 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2434 for (i
= 0; i
< ret
; i
++)
2435 btrfs_free_fs_root(fs_info
, gang
[i
]);
2440 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2442 u64 root_objectid
= 0;
2443 struct btrfs_root
*gang
[8];
2448 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2449 (void **)gang
, root_objectid
,
2454 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
2455 for (i
= 0; i
< ret
; i
++) {
2458 root_objectid
= gang
[i
]->root_key
.objectid
;
2459 err
= btrfs_orphan_cleanup(gang
[i
]);
2468 int btrfs_commit_super(struct btrfs_root
*root
)
2470 struct btrfs_trans_handle
*trans
;
2473 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2474 btrfs_run_delayed_iputs(root
);
2475 btrfs_clean_old_snapshots(root
);
2476 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2478 /* wait until ongoing cleanup work done */
2479 down_write(&root
->fs_info
->cleanup_work_sem
);
2480 up_write(&root
->fs_info
->cleanup_work_sem
);
2482 trans
= btrfs_join_transaction(root
, 1);
2484 return PTR_ERR(trans
);
2485 ret
= btrfs_commit_transaction(trans
, root
);
2487 /* run commit again to drop the original snapshot */
2488 trans
= btrfs_join_transaction(root
, 1);
2490 return PTR_ERR(trans
);
2491 btrfs_commit_transaction(trans
, root
);
2492 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2495 ret
= write_ctree_super(NULL
, root
, 0);
2499 int close_ctree(struct btrfs_root
*root
)
2501 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2504 fs_info
->closing
= 1;
2507 btrfs_scrub_cancel(root
);
2509 /* wait for any defraggers to finish */
2510 wait_event(fs_info
->transaction_wait
,
2511 (atomic_read(&fs_info
->defrag_running
) == 0));
2513 /* clear out the rbtree of defraggable inodes */
2514 btrfs_run_defrag_inodes(root
->fs_info
);
2516 btrfs_put_block_group_cache(fs_info
);
2519 * Here come 2 situations when btrfs is broken to flip readonly:
2521 * 1. when btrfs flips readonly somewhere else before
2522 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2523 * and btrfs will skip to write sb directly to keep
2524 * ERROR state on disk.
2526 * 2. when btrfs flips readonly just in btrfs_commit_super,
2527 * and in such case, btrfs cannot write sb via btrfs_commit_super,
2528 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2529 * btrfs will cleanup all FS resources first and write sb then.
2531 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2532 ret
= btrfs_commit_super(root
);
2534 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2537 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
) {
2538 ret
= btrfs_error_commit_super(root
);
2540 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2543 kthread_stop(root
->fs_info
->transaction_kthread
);
2544 kthread_stop(root
->fs_info
->cleaner_kthread
);
2546 fs_info
->closing
= 2;
2549 if (fs_info
->delalloc_bytes
) {
2550 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
2551 (unsigned long long)fs_info
->delalloc_bytes
);
2553 if (fs_info
->total_ref_cache_size
) {
2554 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
2555 (unsigned long long)fs_info
->total_ref_cache_size
);
2558 free_extent_buffer(fs_info
->extent_root
->node
);
2559 free_extent_buffer(fs_info
->extent_root
->commit_root
);
2560 free_extent_buffer(fs_info
->tree_root
->node
);
2561 free_extent_buffer(fs_info
->tree_root
->commit_root
);
2562 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
2563 free_extent_buffer(root
->fs_info
->chunk_root
->commit_root
);
2564 free_extent_buffer(root
->fs_info
->dev_root
->node
);
2565 free_extent_buffer(root
->fs_info
->dev_root
->commit_root
);
2566 free_extent_buffer(root
->fs_info
->csum_root
->node
);
2567 free_extent_buffer(root
->fs_info
->csum_root
->commit_root
);
2569 btrfs_free_block_groups(root
->fs_info
);
2571 del_fs_roots(fs_info
);
2573 iput(fs_info
->btree_inode
);
2574 kfree(fs_info
->delayed_root
);
2576 btrfs_stop_workers(&fs_info
->generic_worker
);
2577 btrfs_stop_workers(&fs_info
->fixup_workers
);
2578 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2579 btrfs_stop_workers(&fs_info
->workers
);
2580 btrfs_stop_workers(&fs_info
->endio_workers
);
2581 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2582 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2583 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2584 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2585 btrfs_stop_workers(&fs_info
->submit_workers
);
2586 btrfs_stop_workers(&fs_info
->delayed_workers
);
2588 btrfs_close_devices(fs_info
->fs_devices
);
2589 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2591 bdi_destroy(&fs_info
->bdi
);
2592 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2594 kfree(fs_info
->extent_root
);
2595 kfree(fs_info
->tree_root
);
2596 kfree(fs_info
->chunk_root
);
2597 kfree(fs_info
->dev_root
);
2598 kfree(fs_info
->csum_root
);
2604 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
2607 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2609 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2614 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2619 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
2621 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2622 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
2626 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
2628 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2629 u64 transid
= btrfs_header_generation(buf
);
2630 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2633 btrfs_assert_tree_locked(buf
);
2634 if (transid
!= root
->fs_info
->generation
) {
2635 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
2636 "found %llu running %llu\n",
2637 (unsigned long long)buf
->start
,
2638 (unsigned long long)transid
,
2639 (unsigned long long)root
->fs_info
->generation
);
2642 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
2645 spin_lock(&root
->fs_info
->delalloc_lock
);
2646 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
2647 spin_unlock(&root
->fs_info
->delalloc_lock
);
2651 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2654 * looks as though older kernels can get into trouble with
2655 * this code, they end up stuck in balance_dirty_pages forever
2658 unsigned long thresh
= 32 * 1024 * 1024;
2660 if (current
->flags
& PF_MEMALLOC
)
2663 btrfs_balance_delayed_items(root
);
2665 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
2667 if (num_dirty
> thresh
) {
2668 balance_dirty_pages_ratelimited_nr(
2669 root
->fs_info
->btree_inode
->i_mapping
, 1);
2674 void __btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2677 * looks as though older kernels can get into trouble with
2678 * this code, they end up stuck in balance_dirty_pages forever
2681 unsigned long thresh
= 32 * 1024 * 1024;
2683 if (current
->flags
& PF_MEMALLOC
)
2686 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
2688 if (num_dirty
> thresh
) {
2689 balance_dirty_pages_ratelimited_nr(
2690 root
->fs_info
->btree_inode
->i_mapping
, 1);
2695 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
2697 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2699 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
2701 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
2705 int btree_lock_page_hook(struct page
*page
)
2707 struct inode
*inode
= page
->mapping
->host
;
2708 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2709 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2710 struct extent_buffer
*eb
;
2712 u64 bytenr
= page_offset(page
);
2714 if (page
->private == EXTENT_PAGE_PRIVATE
)
2717 len
= page
->private >> 2;
2718 eb
= find_extent_buffer(io_tree
, bytenr
, len
);
2722 btrfs_tree_lock(eb
);
2723 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
2725 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
2726 spin_lock(&root
->fs_info
->delalloc_lock
);
2727 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
2728 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
2731 spin_unlock(&root
->fs_info
->delalloc_lock
);
2734 btrfs_tree_unlock(eb
);
2735 free_extent_buffer(eb
);
2741 static void btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
2747 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)
2748 printk(KERN_WARNING
"warning: mount fs with errors, "
2749 "running btrfsck is recommended\n");
2752 int btrfs_error_commit_super(struct btrfs_root
*root
)
2756 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2757 btrfs_run_delayed_iputs(root
);
2758 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2760 down_write(&root
->fs_info
->cleanup_work_sem
);
2761 up_write(&root
->fs_info
->cleanup_work_sem
);
2763 /* cleanup FS via transaction */
2764 btrfs_cleanup_transaction(root
);
2766 ret
= write_ctree_super(NULL
, root
, 0);
2771 static int btrfs_destroy_ordered_operations(struct btrfs_root
*root
)
2773 struct btrfs_inode
*btrfs_inode
;
2774 struct list_head splice
;
2776 INIT_LIST_HEAD(&splice
);
2778 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
2779 spin_lock(&root
->fs_info
->ordered_extent_lock
);
2781 list_splice_init(&root
->fs_info
->ordered_operations
, &splice
);
2782 while (!list_empty(&splice
)) {
2783 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
2784 ordered_operations
);
2786 list_del_init(&btrfs_inode
->ordered_operations
);
2788 btrfs_invalidate_inodes(btrfs_inode
->root
);
2791 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
2792 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
2797 static int btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
2799 struct list_head splice
;
2800 struct btrfs_ordered_extent
*ordered
;
2801 struct inode
*inode
;
2803 INIT_LIST_HEAD(&splice
);
2805 spin_lock(&root
->fs_info
->ordered_extent_lock
);
2807 list_splice_init(&root
->fs_info
->ordered_extents
, &splice
);
2808 while (!list_empty(&splice
)) {
2809 ordered
= list_entry(splice
.next
, struct btrfs_ordered_extent
,
2812 list_del_init(&ordered
->root_extent_list
);
2813 atomic_inc(&ordered
->refs
);
2815 /* the inode may be getting freed (in sys_unlink path). */
2816 inode
= igrab(ordered
->inode
);
2818 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
2822 atomic_set(&ordered
->refs
, 1);
2823 btrfs_put_ordered_extent(ordered
);
2825 spin_lock(&root
->fs_info
->ordered_extent_lock
);
2828 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
2833 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
2834 struct btrfs_root
*root
)
2836 struct rb_node
*node
;
2837 struct btrfs_delayed_ref_root
*delayed_refs
;
2838 struct btrfs_delayed_ref_node
*ref
;
2841 delayed_refs
= &trans
->delayed_refs
;
2843 spin_lock(&delayed_refs
->lock
);
2844 if (delayed_refs
->num_entries
== 0) {
2845 spin_unlock(&delayed_refs
->lock
);
2846 printk(KERN_INFO
"delayed_refs has NO entry\n");
2850 node
= rb_first(&delayed_refs
->root
);
2852 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2853 node
= rb_next(node
);
2856 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2857 delayed_refs
->num_entries
--;
2859 atomic_set(&ref
->refs
, 1);
2860 if (btrfs_delayed_ref_is_head(ref
)) {
2861 struct btrfs_delayed_ref_head
*head
;
2863 head
= btrfs_delayed_node_to_head(ref
);
2864 mutex_lock(&head
->mutex
);
2865 kfree(head
->extent_op
);
2866 delayed_refs
->num_heads
--;
2867 if (list_empty(&head
->cluster
))
2868 delayed_refs
->num_heads_ready
--;
2869 list_del_init(&head
->cluster
);
2870 mutex_unlock(&head
->mutex
);
2873 spin_unlock(&delayed_refs
->lock
);
2874 btrfs_put_delayed_ref(ref
);
2877 spin_lock(&delayed_refs
->lock
);
2880 spin_unlock(&delayed_refs
->lock
);
2885 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
)
2887 struct btrfs_pending_snapshot
*snapshot
;
2888 struct list_head splice
;
2890 INIT_LIST_HEAD(&splice
);
2892 list_splice_init(&t
->pending_snapshots
, &splice
);
2894 while (!list_empty(&splice
)) {
2895 snapshot
= list_entry(splice
.next
,
2896 struct btrfs_pending_snapshot
,
2899 list_del_init(&snapshot
->list
);
2907 static int btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
2909 struct btrfs_inode
*btrfs_inode
;
2910 struct list_head splice
;
2912 INIT_LIST_HEAD(&splice
);
2914 list_splice_init(&root
->fs_info
->delalloc_inodes
, &splice
);
2916 spin_lock(&root
->fs_info
->delalloc_lock
);
2918 while (!list_empty(&splice
)) {
2919 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
2922 list_del_init(&btrfs_inode
->delalloc_inodes
);
2924 btrfs_invalidate_inodes(btrfs_inode
->root
);
2927 spin_unlock(&root
->fs_info
->delalloc_lock
);
2932 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
2933 struct extent_io_tree
*dirty_pages
,
2938 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2939 struct extent_buffer
*eb
;
2943 unsigned long index
;
2946 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
2951 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
2952 while (start
<= end
) {
2953 index
= start
>> PAGE_CACHE_SHIFT
;
2954 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
2955 page
= find_get_page(btree_inode
->i_mapping
, index
);
2958 offset
= page_offset(page
);
2960 spin_lock(&dirty_pages
->buffer_lock
);
2961 eb
= radix_tree_lookup(
2962 &(&BTRFS_I(page
->mapping
->host
)->io_tree
)->buffer
,
2963 offset
>> PAGE_CACHE_SHIFT
);
2964 spin_unlock(&dirty_pages
->buffer_lock
);
2966 ret
= test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
2968 atomic_set(&eb
->refs
, 1);
2970 if (PageWriteback(page
))
2971 end_page_writeback(page
);
2974 if (PageDirty(page
)) {
2975 clear_page_dirty_for_io(page
);
2976 spin_lock_irq(&page
->mapping
->tree_lock
);
2977 radix_tree_tag_clear(&page
->mapping
->page_tree
,
2979 PAGECACHE_TAG_DIRTY
);
2980 spin_unlock_irq(&page
->mapping
->tree_lock
);
2983 page
->mapping
->a_ops
->invalidatepage(page
, 0);
2991 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
2992 struct extent_io_tree
*pinned_extents
)
2994 struct extent_io_tree
*unpin
;
2999 unpin
= pinned_extents
;
3001 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
3007 if (btrfs_test_opt(root
, DISCARD
))
3008 ret
= btrfs_error_discard_extent(root
, start
,
3012 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
3013 btrfs_error_unpin_extent_range(root
, start
, end
);
3020 static int btrfs_cleanup_transaction(struct btrfs_root
*root
)
3022 struct btrfs_transaction
*t
;
3027 mutex_lock(&root
->fs_info
->trans_mutex
);
3028 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
3030 list_splice_init(&root
->fs_info
->trans_list
, &list
);
3031 while (!list_empty(&list
)) {
3032 t
= list_entry(list
.next
, struct btrfs_transaction
, list
);
3036 btrfs_destroy_ordered_operations(root
);
3038 btrfs_destroy_ordered_extents(root
);
3040 btrfs_destroy_delayed_refs(t
, root
);
3042 btrfs_block_rsv_release(root
,
3043 &root
->fs_info
->trans_block_rsv
,
3044 t
->dirty_pages
.dirty_bytes
);
3046 /* FIXME: cleanup wait for commit */
3049 if (waitqueue_active(&root
->fs_info
->transaction_blocked_wait
))
3050 wake_up(&root
->fs_info
->transaction_blocked_wait
);
3053 if (waitqueue_active(&root
->fs_info
->transaction_wait
))
3054 wake_up(&root
->fs_info
->transaction_wait
);
3055 mutex_unlock(&root
->fs_info
->trans_mutex
);
3057 mutex_lock(&root
->fs_info
->trans_mutex
);
3059 if (waitqueue_active(&t
->commit_wait
))
3060 wake_up(&t
->commit_wait
);
3061 mutex_unlock(&root
->fs_info
->trans_mutex
);
3063 mutex_lock(&root
->fs_info
->trans_mutex
);
3065 btrfs_destroy_pending_snapshots(t
);
3067 btrfs_destroy_delalloc_inodes(root
);
3069 spin_lock(&root
->fs_info
->new_trans_lock
);
3070 root
->fs_info
->running_transaction
= NULL
;
3071 spin_unlock(&root
->fs_info
->new_trans_lock
);
3073 btrfs_destroy_marked_extents(root
, &t
->dirty_pages
,
3076 btrfs_destroy_pinned_extent(root
,
3077 root
->fs_info
->pinned_extents
);
3079 atomic_set(&t
->use_count
, 0);
3080 list_del_init(&t
->list
);
3081 memset(t
, 0, sizeof(*t
));
3082 kmem_cache_free(btrfs_transaction_cachep
, t
);
3085 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
3086 mutex_unlock(&root
->fs_info
->trans_mutex
);
3091 static struct extent_io_ops btree_extent_io_ops
= {
3092 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
3093 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
3094 .submit_bio_hook
= btree_submit_bio_hook
,
3095 /* note we're sharing with inode.c for the merge bio hook */
3096 .merge_bio_hook
= btrfs_merge_bio_hook
,