[POWERPC] EEH: Tolerate high mmio
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / platforms / pseries / eeh.c
blob2d0a43f1efb4ca34b4ad9b45b7003be8dbbf5d8f
1 /*
2 * eeh.c
3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/seq_file.h>
27 #include <linux/spinlock.h>
28 #include <asm/atomic.h>
29 #include <asm/eeh.h>
30 #include <asm/eeh_event.h>
31 #include <asm/io.h>
32 #include <asm/machdep.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/rtas.h>
36 #undef DEBUG
38 /** Overview:
39 * EEH, or "Extended Error Handling" is a PCI bridge technology for
40 * dealing with PCI bus errors that can't be dealt with within the
41 * usual PCI framework, except by check-stopping the CPU. Systems
42 * that are designed for high-availability/reliability cannot afford
43 * to crash due to a "mere" PCI error, thus the need for EEH.
44 * An EEH-capable bridge operates by converting a detected error
45 * into a "slot freeze", taking the PCI adapter off-line, making
46 * the slot behave, from the OS'es point of view, as if the slot
47 * were "empty": all reads return 0xff's and all writes are silently
48 * ignored. EEH slot isolation events can be triggered by parity
49 * errors on the address or data busses (e.g. during posted writes),
50 * which in turn might be caused by low voltage on the bus, dust,
51 * vibration, humidity, radioactivity or plain-old failed hardware.
53 * Note, however, that one of the leading causes of EEH slot
54 * freeze events are buggy device drivers, buggy device microcode,
55 * or buggy device hardware. This is because any attempt by the
56 * device to bus-master data to a memory address that is not
57 * assigned to the device will trigger a slot freeze. (The idea
58 * is to prevent devices-gone-wild from corrupting system memory).
59 * Buggy hardware/drivers will have a miserable time co-existing
60 * with EEH.
62 * Ideally, a PCI device driver, when suspecting that an isolation
63 * event has occured (e.g. by reading 0xff's), will then ask EEH
64 * whether this is the case, and then take appropriate steps to
65 * reset the PCI slot, the PCI device, and then resume operations.
66 * However, until that day, the checking is done here, with the
67 * eeh_check_failure() routine embedded in the MMIO macros. If
68 * the slot is found to be isolated, an "EEH Event" is synthesized
69 * and sent out for processing.
72 /* If a device driver keeps reading an MMIO register in an interrupt
73 * handler after a slot isolation event has occurred, we assume it
74 * is broken and panic. This sets the threshold for how many read
75 * attempts we allow before panicking.
77 #define EEH_MAX_FAILS 2100000
79 /* RTAS tokens */
80 static int ibm_set_eeh_option;
81 static int ibm_set_slot_reset;
82 static int ibm_read_slot_reset_state;
83 static int ibm_read_slot_reset_state2;
84 static int ibm_slot_error_detail;
85 static int ibm_get_config_addr_info;
86 static int ibm_configure_bridge;
88 int eeh_subsystem_enabled;
89 EXPORT_SYMBOL(eeh_subsystem_enabled);
91 /* Lock to avoid races due to multiple reports of an error */
92 static DEFINE_SPINLOCK(confirm_error_lock);
94 /* Buffer for reporting slot-error-detail rtas calls */
95 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
96 static DEFINE_SPINLOCK(slot_errbuf_lock);
97 static int eeh_error_buf_size;
99 /* System monitoring statistics */
100 static unsigned long no_device;
101 static unsigned long no_dn;
102 static unsigned long no_cfg_addr;
103 static unsigned long ignored_check;
104 static unsigned long total_mmio_ffs;
105 static unsigned long false_positives;
106 static unsigned long ignored_failures;
107 static unsigned long slot_resets;
109 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
111 /* --------------------------------------------------------------- */
112 /* Below lies the EEH event infrastructure */
114 void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
116 int config_addr;
117 unsigned long flags;
118 int rc;
120 /* Log the error with the rtas logger */
121 spin_lock_irqsave(&slot_errbuf_lock, flags);
122 memset(slot_errbuf, 0, eeh_error_buf_size);
124 /* Use PE configuration address, if present */
125 config_addr = pdn->eeh_config_addr;
126 if (pdn->eeh_pe_config_addr)
127 config_addr = pdn->eeh_pe_config_addr;
129 rc = rtas_call(ibm_slot_error_detail,
130 8, 1, NULL, config_addr,
131 BUID_HI(pdn->phb->buid),
132 BUID_LO(pdn->phb->buid), NULL, 0,
133 virt_to_phys(slot_errbuf),
134 eeh_error_buf_size,
135 severity);
137 if (rc == 0)
138 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
139 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
143 * read_slot_reset_state - Read the reset state of a device node's slot
144 * @dn: device node to read
145 * @rets: array to return results in
147 static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
149 int token, outputs;
150 int config_addr;
152 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
153 token = ibm_read_slot_reset_state2;
154 outputs = 4;
155 } else {
156 token = ibm_read_slot_reset_state;
157 rets[2] = 0; /* fake PE Unavailable info */
158 outputs = 3;
161 /* Use PE configuration address, if present */
162 config_addr = pdn->eeh_config_addr;
163 if (pdn->eeh_pe_config_addr)
164 config_addr = pdn->eeh_pe_config_addr;
166 return rtas_call(token, 3, outputs, rets, config_addr,
167 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
171 * eeh_token_to_phys - convert EEH address token to phys address
172 * @token i/o token, should be address in the form 0xA....
174 static inline unsigned long eeh_token_to_phys(unsigned long token)
176 pte_t *ptep;
177 unsigned long pa;
179 ptep = find_linux_pte(init_mm.pgd, token);
180 if (!ptep)
181 return token;
182 pa = pte_pfn(*ptep) << PAGE_SHIFT;
184 return pa | (token & (PAGE_SIZE-1));
187 /**
188 * Return the "partitionable endpoint" (pe) under which this device lies
190 struct device_node * find_device_pe(struct device_node *dn)
192 while ((dn->parent) && PCI_DN(dn->parent) &&
193 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
194 dn = dn->parent;
196 return dn;
199 /** Mark all devices that are peers of this device as failed.
200 * Mark the device driver too, so that it can see the failure
201 * immediately; this is critical, since some drivers poll
202 * status registers in interrupts ... If a driver is polling,
203 * and the slot is frozen, then the driver can deadlock in
204 * an interrupt context, which is bad.
207 static void __eeh_mark_slot (struct device_node *dn, int mode_flag)
209 while (dn) {
210 if (PCI_DN(dn)) {
211 /* Mark the pci device driver too */
212 struct pci_dev *dev = PCI_DN(dn)->pcidev;
214 PCI_DN(dn)->eeh_mode |= mode_flag;
216 if (dev && dev->driver)
217 dev->error_state = pci_channel_io_frozen;
219 if (dn->child)
220 __eeh_mark_slot (dn->child, mode_flag);
222 dn = dn->sibling;
226 void eeh_mark_slot (struct device_node *dn, int mode_flag)
228 struct pci_dev *dev;
229 dn = find_device_pe (dn);
231 /* Back up one, since config addrs might be shared */
232 if (PCI_DN(dn) && PCI_DN(dn)->eeh_pe_config_addr)
233 dn = dn->parent;
235 PCI_DN(dn)->eeh_mode |= mode_flag;
237 /* Mark the pci device too */
238 dev = PCI_DN(dn)->pcidev;
239 if (dev)
240 dev->error_state = pci_channel_io_frozen;
242 __eeh_mark_slot (dn->child, mode_flag);
245 static void __eeh_clear_slot (struct device_node *dn, int mode_flag)
247 while (dn) {
248 if (PCI_DN(dn)) {
249 PCI_DN(dn)->eeh_mode &= ~mode_flag;
250 PCI_DN(dn)->eeh_check_count = 0;
251 if (dn->child)
252 __eeh_clear_slot (dn->child, mode_flag);
254 dn = dn->sibling;
258 void eeh_clear_slot (struct device_node *dn, int mode_flag)
260 unsigned long flags;
261 spin_lock_irqsave(&confirm_error_lock, flags);
263 dn = find_device_pe (dn);
265 /* Back up one, since config addrs might be shared */
266 if (PCI_DN(dn) && PCI_DN(dn)->eeh_pe_config_addr)
267 dn = dn->parent;
269 PCI_DN(dn)->eeh_mode &= ~mode_flag;
270 PCI_DN(dn)->eeh_check_count = 0;
271 __eeh_clear_slot (dn->child, mode_flag);
272 spin_unlock_irqrestore(&confirm_error_lock, flags);
276 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
277 * @dn device node
278 * @dev pci device, if known
280 * Check for an EEH failure for the given device node. Call this
281 * routine if the result of a read was all 0xff's and you want to
282 * find out if this is due to an EEH slot freeze. This routine
283 * will query firmware for the EEH status.
285 * Returns 0 if there has not been an EEH error; otherwise returns
286 * a non-zero value and queues up a slot isolation event notification.
288 * It is safe to call this routine in an interrupt context.
290 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
292 int ret;
293 int rets[3];
294 unsigned long flags;
295 struct pci_dn *pdn;
296 enum pci_channel_state state;
297 int rc = 0;
299 total_mmio_ffs++;
301 if (!eeh_subsystem_enabled)
302 return 0;
304 if (!dn) {
305 no_dn++;
306 return 0;
308 pdn = PCI_DN(dn);
310 /* Access to IO BARs might get this far and still not want checking. */
311 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
312 pdn->eeh_mode & EEH_MODE_NOCHECK) {
313 ignored_check++;
314 #ifdef DEBUG
315 printk ("EEH:ignored check (%x) for %s %s\n",
316 pdn->eeh_mode, pci_name (dev), dn->full_name);
317 #endif
318 return 0;
321 if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) {
322 no_cfg_addr++;
323 return 0;
326 /* If we already have a pending isolation event for this
327 * slot, we know it's bad already, we don't need to check.
328 * Do this checking under a lock; as multiple PCI devices
329 * in one slot might report errors simultaneously, and we
330 * only want one error recovery routine running.
332 spin_lock_irqsave(&confirm_error_lock, flags);
333 rc = 1;
334 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
335 pdn->eeh_check_count ++;
336 if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
337 printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
338 pdn->eeh_check_count);
339 dump_stack();
340 msleep(5000);
342 /* re-read the slot reset state */
343 if (read_slot_reset_state(pdn, rets) != 0)
344 rets[0] = -1; /* reset state unknown */
346 /* If we are here, then we hit an infinite loop. Stop. */
347 panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
349 goto dn_unlock;
353 * Now test for an EEH failure. This is VERY expensive.
354 * Note that the eeh_config_addr may be a parent device
355 * in the case of a device behind a bridge, or it may be
356 * function zero of a multi-function device.
357 * In any case they must share a common PHB.
359 ret = read_slot_reset_state(pdn, rets);
361 /* If the call to firmware failed, punt */
362 if (ret != 0) {
363 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
364 ret, dn->full_name);
365 false_positives++;
366 rc = 0;
367 goto dn_unlock;
370 /* Note that config-io to empty slots may fail;
371 * they are empty when they don't have children. */
372 if ((rets[0] == 5) && (dn->child == NULL)) {
373 false_positives++;
374 rc = 0;
375 goto dn_unlock;
378 /* If EEH is not supported on this device, punt. */
379 if (rets[1] != 1) {
380 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
381 ret, dn->full_name);
382 false_positives++;
383 rc = 0;
384 goto dn_unlock;
387 /* If not the kind of error we know about, punt. */
388 if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
389 false_positives++;
390 rc = 0;
391 goto dn_unlock;
394 slot_resets++;
396 /* Avoid repeated reports of this failure, including problems
397 * with other functions on this device, and functions under
398 * bridges. */
399 eeh_mark_slot (dn, EEH_MODE_ISOLATED);
400 spin_unlock_irqrestore(&confirm_error_lock, flags);
402 state = pci_channel_io_normal;
403 if ((rets[0] == 2) || (rets[0] == 4))
404 state = pci_channel_io_frozen;
405 if (rets[0] == 5)
406 state = pci_channel_io_perm_failure;
407 eeh_send_failure_event (dn, dev, state, rets[2]);
409 /* Most EEH events are due to device driver bugs. Having
410 * a stack trace will help the device-driver authors figure
411 * out what happened. So print that out. */
412 if (rets[0] != 5) dump_stack();
413 return 1;
415 dn_unlock:
416 spin_unlock_irqrestore(&confirm_error_lock, flags);
417 return rc;
420 EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
423 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
424 * @token i/o token, should be address in the form 0xA....
425 * @val value, should be all 1's (XXX why do we need this arg??)
427 * Check for an EEH failure at the given token address. Call this
428 * routine if the result of a read was all 0xff's and you want to
429 * find out if this is due to an EEH slot freeze event. This routine
430 * will query firmware for the EEH status.
432 * Note this routine is safe to call in an interrupt context.
434 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
436 unsigned long addr;
437 struct pci_dev *dev;
438 struct device_node *dn;
440 /* Finding the phys addr + pci device; this is pretty quick. */
441 addr = eeh_token_to_phys((unsigned long __force) token);
442 dev = pci_get_device_by_addr(addr);
443 if (!dev) {
444 no_device++;
445 return val;
448 dn = pci_device_to_OF_node(dev);
449 eeh_dn_check_failure (dn, dev);
451 pci_dev_put(dev);
452 return val;
455 EXPORT_SYMBOL(eeh_check_failure);
457 /* ------------------------------------------------------------- */
458 /* The code below deals with error recovery */
461 * eeh_slot_availability - returns error status of slot
462 * @pdn pci device node
464 * Return negative value if a permanent error, else return
465 * a number of milliseconds to wait until the PCI slot is
466 * ready to be used.
468 static int
469 eeh_slot_availability(struct pci_dn *pdn)
471 int rc;
472 int rets[3];
474 rc = read_slot_reset_state(pdn, rets);
476 if (rc) return rc;
478 if (rets[1] == 0) return -1; /* EEH is not supported */
479 if (rets[0] == 0) return 0; /* Oll Korrect */
480 if (rets[0] == 5) {
481 if (rets[2] == 0) return -1; /* permanently unavailable */
482 return rets[2]; /* number of millisecs to wait */
484 if (rets[0] == 1)
485 return 250;
487 printk (KERN_ERR "EEH: Slot unavailable: rc=%d, rets=%d %d %d\n",
488 rc, rets[0], rets[1], rets[2]);
489 return -2;
493 * rtas_pci_enable - enable MMIO or DMA transfers for this slot
494 * @pdn pci device node
498 rtas_pci_enable(struct pci_dn *pdn, int function)
500 int config_addr;
501 int rc;
503 /* Use PE configuration address, if present */
504 config_addr = pdn->eeh_config_addr;
505 if (pdn->eeh_pe_config_addr)
506 config_addr = pdn->eeh_pe_config_addr;
508 rc = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
509 config_addr,
510 BUID_HI(pdn->phb->buid),
511 BUID_LO(pdn->phb->buid),
512 function);
514 if (rc)
515 printk(KERN_WARNING "EEH: Cannot enable function %d, err=%d dn=%s\n",
516 function, rc, pdn->node->full_name);
518 return rc;
522 * rtas_pci_slot_reset - raises/lowers the pci #RST line
523 * @pdn pci device node
524 * @state: 1/0 to raise/lower the #RST
526 * Clear the EEH-frozen condition on a slot. This routine
527 * asserts the PCI #RST line if the 'state' argument is '1',
528 * and drops the #RST line if 'state is '0'. This routine is
529 * safe to call in an interrupt context.
533 static void
534 rtas_pci_slot_reset(struct pci_dn *pdn, int state)
536 int config_addr;
537 int rc;
539 BUG_ON (pdn==NULL);
541 if (!pdn->phb) {
542 printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
543 pdn->node->full_name);
544 return;
547 /* Use PE configuration address, if present */
548 config_addr = pdn->eeh_config_addr;
549 if (pdn->eeh_pe_config_addr)
550 config_addr = pdn->eeh_pe_config_addr;
552 rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
553 config_addr,
554 BUID_HI(pdn->phb->buid),
555 BUID_LO(pdn->phb->buid),
556 state);
557 if (rc)
558 printk (KERN_WARNING "EEH: Unable to reset the failed slot,"
559 " (%d) #RST=%d dn=%s\n",
560 rc, state, pdn->node->full_name);
564 * rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
565 * @pdn: pci device node to be reset.
567 * Return 0 if success, else a non-zero value.
570 static void __rtas_set_slot_reset(struct pci_dn *pdn)
572 rtas_pci_slot_reset (pdn, 1);
574 /* The PCI bus requires that the reset be held high for at least
575 * a 100 milliseconds. We wait a bit longer 'just in case'. */
577 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
578 msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
580 /* We might get hit with another EEH freeze as soon as the
581 * pci slot reset line is dropped. Make sure we don't miss
582 * these, and clear the flag now. */
583 eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
585 rtas_pci_slot_reset (pdn, 0);
587 /* After a PCI slot has been reset, the PCI Express spec requires
588 * a 1.5 second idle time for the bus to stabilize, before starting
589 * up traffic. */
590 #define PCI_BUS_SETTLE_TIME_MSEC 1800
591 msleep (PCI_BUS_SETTLE_TIME_MSEC);
594 int rtas_set_slot_reset(struct pci_dn *pdn)
596 int i, rc;
598 __rtas_set_slot_reset(pdn);
600 /* Now double check with the firmware to make sure the device is
601 * ready to be used; if not, wait for recovery. */
602 for (i=0; i<10; i++) {
603 rc = eeh_slot_availability (pdn);
604 if (rc == 0)
605 return 0;
607 if (rc == -2) {
608 printk (KERN_ERR "EEH: failed (%d) to reset slot %s\n",
609 i, pdn->node->full_name);
610 __rtas_set_slot_reset(pdn);
611 continue;
614 if (rc < 0) {
615 printk (KERN_ERR "EEH: unrecoverable slot failure %s\n",
616 pdn->node->full_name);
617 return -1;
620 msleep (rc+100);
623 rc = eeh_slot_availability (pdn);
624 if (rc)
625 printk (KERN_ERR "EEH: timeout resetting slot %s\n", pdn->node->full_name);
627 return rc;
630 /* ------------------------------------------------------- */
631 /** Save and restore of PCI BARs
633 * Although firmware will set up BARs during boot, it doesn't
634 * set up device BAR's after a device reset, although it will,
635 * if requested, set up bridge configuration. Thus, we need to
636 * configure the PCI devices ourselves.
640 * __restore_bars - Restore the Base Address Registers
641 * @pdn: pci device node
643 * Loads the PCI configuration space base address registers,
644 * the expansion ROM base address, the latency timer, and etc.
645 * from the saved values in the device node.
647 static inline void __restore_bars (struct pci_dn *pdn)
649 int i;
651 if (NULL==pdn->phb) return;
652 for (i=4; i<10; i++) {
653 rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
656 /* 12 == Expansion ROM Address */
657 rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
659 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
660 #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
662 rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
663 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
665 rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
666 SAVED_BYTE(PCI_LATENCY_TIMER));
668 /* max latency, min grant, interrupt pin and line */
669 rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
673 * eeh_restore_bars - restore the PCI config space info
675 * This routine performs a recursive walk to the children
676 * of this device as well.
678 void eeh_restore_bars(struct pci_dn *pdn)
680 struct device_node *dn;
681 if (!pdn)
682 return;
684 if ((pdn->eeh_mode & EEH_MODE_SUPPORTED) && !IS_BRIDGE(pdn->class_code))
685 __restore_bars (pdn);
687 dn = pdn->node->child;
688 while (dn) {
689 eeh_restore_bars (PCI_DN(dn));
690 dn = dn->sibling;
695 * eeh_save_bars - save device bars
697 * Save the values of the device bars. Unlike the restore
698 * routine, this routine is *not* recursive. This is because
699 * PCI devices are added individuallly; but, for the restore,
700 * an entire slot is reset at a time.
702 static void eeh_save_bars(struct pci_dn *pdn)
704 int i;
706 if (!pdn )
707 return;
709 for (i = 0; i < 16; i++)
710 rtas_read_config(pdn, i * 4, 4, &pdn->config_space[i]);
713 void
714 rtas_configure_bridge(struct pci_dn *pdn)
716 int config_addr;
717 int rc;
719 /* Use PE configuration address, if present */
720 config_addr = pdn->eeh_config_addr;
721 if (pdn->eeh_pe_config_addr)
722 config_addr = pdn->eeh_pe_config_addr;
724 rc = rtas_call(ibm_configure_bridge,3,1, NULL,
725 config_addr,
726 BUID_HI(pdn->phb->buid),
727 BUID_LO(pdn->phb->buid));
728 if (rc) {
729 printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
730 rc, pdn->node->full_name);
734 /* ------------------------------------------------------------- */
735 /* The code below deals with enabling EEH for devices during the
736 * early boot sequence. EEH must be enabled before any PCI probing
737 * can be done.
740 #define EEH_ENABLE 1
742 struct eeh_early_enable_info {
743 unsigned int buid_hi;
744 unsigned int buid_lo;
747 /* Enable eeh for the given device node. */
748 static void *early_enable_eeh(struct device_node *dn, void *data)
750 unsigned int rets[3];
751 struct eeh_early_enable_info *info = data;
752 int ret;
753 const char *status = get_property(dn, "status", NULL);
754 const u32 *class_code = get_property(dn, "class-code", NULL);
755 const u32 *vendor_id = get_property(dn, "vendor-id", NULL);
756 const u32 *device_id = get_property(dn, "device-id", NULL);
757 const u32 *regs;
758 int enable;
759 struct pci_dn *pdn = PCI_DN(dn);
761 pdn->class_code = 0;
762 pdn->eeh_mode = 0;
763 pdn->eeh_check_count = 0;
764 pdn->eeh_freeze_count = 0;
766 if (status && strcmp(status, "ok") != 0)
767 return NULL; /* ignore devices with bad status */
769 /* Ignore bad nodes. */
770 if (!class_code || !vendor_id || !device_id)
771 return NULL;
773 /* There is nothing to check on PCI to ISA bridges */
774 if (dn->type && !strcmp(dn->type, "isa")) {
775 pdn->eeh_mode |= EEH_MODE_NOCHECK;
776 return NULL;
778 pdn->class_code = *class_code;
781 * Now decide if we are going to "Disable" EEH checking
782 * for this device. We still run with the EEH hardware active,
783 * but we won't be checking for ff's. This means a driver
784 * could return bad data (very bad!), an interrupt handler could
785 * hang waiting on status bits that won't change, etc.
786 * But there are a few cases like display devices that make sense.
788 enable = 1; /* i.e. we will do checking */
789 #if 0
790 if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
791 enable = 0;
792 #endif
794 if (!enable)
795 pdn->eeh_mode |= EEH_MODE_NOCHECK;
797 /* Ok... see if this device supports EEH. Some do, some don't,
798 * and the only way to find out is to check each and every one. */
799 regs = get_property(dn, "reg", NULL);
800 if (regs) {
801 /* First register entry is addr (00BBSS00) */
802 /* Try to enable eeh */
803 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
804 regs[0], info->buid_hi, info->buid_lo,
805 EEH_ENABLE);
807 enable = 0;
808 if (ret == 0) {
809 pdn->eeh_config_addr = regs[0];
811 /* If the newer, better, ibm,get-config-addr-info is supported,
812 * then use that instead. */
813 pdn->eeh_pe_config_addr = 0;
814 if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
815 ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
816 pdn->eeh_config_addr,
817 info->buid_hi, info->buid_lo,
819 if (ret == 0)
820 pdn->eeh_pe_config_addr = rets[0];
823 /* Some older systems (Power4) allow the
824 * ibm,set-eeh-option call to succeed even on nodes
825 * where EEH is not supported. Verify support
826 * explicitly. */
827 ret = read_slot_reset_state(pdn, rets);
828 if ((ret == 0) && (rets[1] == 1))
829 enable = 1;
832 if (enable) {
833 eeh_subsystem_enabled = 1;
834 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
836 #ifdef DEBUG
837 printk(KERN_DEBUG "EEH: %s: eeh enabled, config=%x pe_config=%x\n",
838 dn->full_name, pdn->eeh_config_addr, pdn->eeh_pe_config_addr);
839 #endif
840 } else {
842 /* This device doesn't support EEH, but it may have an
843 * EEH parent, in which case we mark it as supported. */
844 if (dn->parent && PCI_DN(dn->parent)
845 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
846 /* Parent supports EEH. */
847 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
848 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
849 return NULL;
852 } else {
853 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
854 dn->full_name);
857 eeh_save_bars(pdn);
858 return NULL;
862 * Initialize EEH by trying to enable it for all of the adapters in the system.
863 * As a side effect we can determine here if eeh is supported at all.
864 * Note that we leave EEH on so failed config cycles won't cause a machine
865 * check. If a user turns off EEH for a particular adapter they are really
866 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
867 * grant access to a slot if EEH isn't enabled, and so we always enable
868 * EEH for all slots/all devices.
870 * The eeh-force-off option disables EEH checking globally, for all slots.
871 * Even if force-off is set, the EEH hardware is still enabled, so that
872 * newer systems can boot.
874 void __init eeh_init(void)
876 struct device_node *phb, *np;
877 struct eeh_early_enable_info info;
879 spin_lock_init(&confirm_error_lock);
880 spin_lock_init(&slot_errbuf_lock);
882 np = of_find_node_by_path("/rtas");
883 if (np == NULL)
884 return;
886 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
887 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
888 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
889 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
890 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
891 ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
892 ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
894 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
895 return;
897 eeh_error_buf_size = rtas_token("rtas-error-log-max");
898 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
899 eeh_error_buf_size = 1024;
901 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
902 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
903 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
904 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
907 /* Enable EEH for all adapters. Note that eeh requires buid's */
908 for (phb = of_find_node_by_name(NULL, "pci"); phb;
909 phb = of_find_node_by_name(phb, "pci")) {
910 unsigned long buid;
912 buid = get_phb_buid(phb);
913 if (buid == 0 || PCI_DN(phb) == NULL)
914 continue;
916 info.buid_lo = BUID_LO(buid);
917 info.buid_hi = BUID_HI(buid);
918 traverse_pci_devices(phb, early_enable_eeh, &info);
921 if (eeh_subsystem_enabled)
922 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
923 else
924 printk(KERN_WARNING "EEH: No capable adapters found\n");
928 * eeh_add_device_early - enable EEH for the indicated device_node
929 * @dn: device node for which to set up EEH
931 * This routine must be used to perform EEH initialization for PCI
932 * devices that were added after system boot (e.g. hotplug, dlpar).
933 * This routine must be called before any i/o is performed to the
934 * adapter (inluding any config-space i/o).
935 * Whether this actually enables EEH or not for this device depends
936 * on the CEC architecture, type of the device, on earlier boot
937 * command-line arguments & etc.
939 static void eeh_add_device_early(struct device_node *dn)
941 struct pci_controller *phb;
942 struct eeh_early_enable_info info;
944 if (!dn || !PCI_DN(dn))
945 return;
946 phb = PCI_DN(dn)->phb;
948 /* USB Bus children of PCI devices will not have BUID's */
949 if (NULL == phb || 0 == phb->buid)
950 return;
952 info.buid_hi = BUID_HI(phb->buid);
953 info.buid_lo = BUID_LO(phb->buid);
954 early_enable_eeh(dn, &info);
957 void eeh_add_device_tree_early(struct device_node *dn)
959 struct device_node *sib;
960 for (sib = dn->child; sib; sib = sib->sibling)
961 eeh_add_device_tree_early(sib);
962 eeh_add_device_early(dn);
964 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
967 * eeh_add_device_late - perform EEH initialization for the indicated pci device
968 * @dev: pci device for which to set up EEH
970 * This routine must be used to complete EEH initialization for PCI
971 * devices that were added after system boot (e.g. hotplug, dlpar).
973 static void eeh_add_device_late(struct pci_dev *dev)
975 struct device_node *dn;
976 struct pci_dn *pdn;
978 if (!dev || !eeh_subsystem_enabled)
979 return;
981 #ifdef DEBUG
982 printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
983 #endif
985 pci_dev_get (dev);
986 dn = pci_device_to_OF_node(dev);
987 pdn = PCI_DN(dn);
988 pdn->pcidev = dev;
990 pci_addr_cache_insert_device (dev);
993 void eeh_add_device_tree_late(struct pci_bus *bus)
995 struct pci_dev *dev;
997 list_for_each_entry(dev, &bus->devices, bus_list) {
998 eeh_add_device_late(dev);
999 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1000 struct pci_bus *subbus = dev->subordinate;
1001 if (subbus)
1002 eeh_add_device_tree_late(subbus);
1006 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1009 * eeh_remove_device - undo EEH setup for the indicated pci device
1010 * @dev: pci device to be removed
1012 * This routine should be called when a device is removed from
1013 * a running system (e.g. by hotplug or dlpar). It unregisters
1014 * the PCI device from the EEH subsystem. I/O errors affecting
1015 * this device will no longer be detected after this call; thus,
1016 * i/o errors affecting this slot may leave this device unusable.
1018 static void eeh_remove_device(struct pci_dev *dev)
1020 struct device_node *dn;
1021 if (!dev || !eeh_subsystem_enabled)
1022 return;
1024 /* Unregister the device with the EEH/PCI address search system */
1025 #ifdef DEBUG
1026 printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
1027 #endif
1028 pci_addr_cache_remove_device(dev);
1030 dn = pci_device_to_OF_node(dev);
1031 if (PCI_DN(dn)->pcidev) {
1032 PCI_DN(dn)->pcidev = NULL;
1033 pci_dev_put (dev);
1037 void eeh_remove_bus_device(struct pci_dev *dev)
1039 struct pci_bus *bus = dev->subordinate;
1040 struct pci_dev *child, *tmp;
1042 eeh_remove_device(dev);
1044 if (bus && dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1045 list_for_each_entry_safe(child, tmp, &bus->devices, bus_list)
1046 eeh_remove_bus_device(child);
1049 EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
1051 static int proc_eeh_show(struct seq_file *m, void *v)
1053 if (0 == eeh_subsystem_enabled) {
1054 seq_printf(m, "EEH Subsystem is globally disabled\n");
1055 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", total_mmio_ffs);
1056 } else {
1057 seq_printf(m, "EEH Subsystem is enabled\n");
1058 seq_printf(m,
1059 "no device=%ld\n"
1060 "no device node=%ld\n"
1061 "no config address=%ld\n"
1062 "check not wanted=%ld\n"
1063 "eeh_total_mmio_ffs=%ld\n"
1064 "eeh_false_positives=%ld\n"
1065 "eeh_ignored_failures=%ld\n"
1066 "eeh_slot_resets=%ld\n",
1067 no_device, no_dn, no_cfg_addr,
1068 ignored_check, total_mmio_ffs,
1069 false_positives, ignored_failures,
1070 slot_resets);
1073 return 0;
1076 static int proc_eeh_open(struct inode *inode, struct file *file)
1078 return single_open(file, proc_eeh_show, NULL);
1081 static const struct file_operations proc_eeh_operations = {
1082 .open = proc_eeh_open,
1083 .read = seq_read,
1084 .llseek = seq_lseek,
1085 .release = single_release,
1088 static int __init eeh_init_proc(void)
1090 struct proc_dir_entry *e;
1092 if (machine_is(pseries)) {
1093 e = create_proc_entry("ppc64/eeh", 0, NULL);
1094 if (e)
1095 e->proc_fops = &proc_eeh_operations;
1098 return 0;
1100 __initcall(eeh_init_proc);