KVM: MMU: hypercall based pte updates and TLB flushes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kvm / x86.c
blob63afca1c295f7b7b2362e89259775918558daae4
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
8 * Authors:
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
18 #include "irq.h"
19 #include "mmu.h"
20 #include "i8254.h"
22 #include <linux/clocksource.h>
23 #include <linux/kvm.h>
24 #include <linux/fs.h>
25 #include <linux/vmalloc.h>
26 #include <linux/module.h>
27 #include <linux/mman.h>
28 #include <linux/highmem.h>
30 #include <asm/uaccess.h>
31 #include <asm/msr.h>
32 #include <asm/desc.h>
34 #define MAX_IO_MSRS 256
35 #define CR0_RESERVED_BITS \
36 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
37 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
38 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
39 #define CR4_RESERVED_BITS \
40 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
41 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
42 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
43 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
45 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
46 /* EFER defaults:
47 * - enable syscall per default because its emulated by KVM
48 * - enable LME and LMA per default on 64 bit KVM
50 #ifdef CONFIG_X86_64
51 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
52 #else
53 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
54 #endif
56 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
57 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
59 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
60 struct kvm_cpuid_entry2 __user *entries);
62 struct kvm_x86_ops *kvm_x86_ops;
64 struct kvm_stats_debugfs_item debugfs_entries[] = {
65 { "pf_fixed", VCPU_STAT(pf_fixed) },
66 { "pf_guest", VCPU_STAT(pf_guest) },
67 { "tlb_flush", VCPU_STAT(tlb_flush) },
68 { "invlpg", VCPU_STAT(invlpg) },
69 { "exits", VCPU_STAT(exits) },
70 { "io_exits", VCPU_STAT(io_exits) },
71 { "mmio_exits", VCPU_STAT(mmio_exits) },
72 { "signal_exits", VCPU_STAT(signal_exits) },
73 { "irq_window", VCPU_STAT(irq_window_exits) },
74 { "halt_exits", VCPU_STAT(halt_exits) },
75 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
76 { "hypercalls", VCPU_STAT(hypercalls) },
77 { "request_irq", VCPU_STAT(request_irq_exits) },
78 { "irq_exits", VCPU_STAT(irq_exits) },
79 { "host_state_reload", VCPU_STAT(host_state_reload) },
80 { "efer_reload", VCPU_STAT(efer_reload) },
81 { "fpu_reload", VCPU_STAT(fpu_reload) },
82 { "insn_emulation", VCPU_STAT(insn_emulation) },
83 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
84 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
85 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
86 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
87 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
88 { "mmu_flooded", VM_STAT(mmu_flooded) },
89 { "mmu_recycled", VM_STAT(mmu_recycled) },
90 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
91 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
92 { "largepages", VM_STAT(lpages) },
93 { NULL }
97 unsigned long segment_base(u16 selector)
99 struct descriptor_table gdt;
100 struct desc_struct *d;
101 unsigned long table_base;
102 unsigned long v;
104 if (selector == 0)
105 return 0;
107 asm("sgdt %0" : "=m"(gdt));
108 table_base = gdt.base;
110 if (selector & 4) { /* from ldt */
111 u16 ldt_selector;
113 asm("sldt %0" : "=g"(ldt_selector));
114 table_base = segment_base(ldt_selector);
116 d = (struct desc_struct *)(table_base + (selector & ~7));
117 v = d->base0 | ((unsigned long)d->base1 << 16) |
118 ((unsigned long)d->base2 << 24);
119 #ifdef CONFIG_X86_64
120 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
121 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
122 #endif
123 return v;
125 EXPORT_SYMBOL_GPL(segment_base);
127 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
129 if (irqchip_in_kernel(vcpu->kvm))
130 return vcpu->arch.apic_base;
131 else
132 return vcpu->arch.apic_base;
134 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
136 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
138 /* TODO: reserve bits check */
139 if (irqchip_in_kernel(vcpu->kvm))
140 kvm_lapic_set_base(vcpu, data);
141 else
142 vcpu->arch.apic_base = data;
144 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
146 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
148 WARN_ON(vcpu->arch.exception.pending);
149 vcpu->arch.exception.pending = true;
150 vcpu->arch.exception.has_error_code = false;
151 vcpu->arch.exception.nr = nr;
153 EXPORT_SYMBOL_GPL(kvm_queue_exception);
155 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
156 u32 error_code)
158 ++vcpu->stat.pf_guest;
159 if (vcpu->arch.exception.pending) {
160 if (vcpu->arch.exception.nr == PF_VECTOR) {
161 printk(KERN_DEBUG "kvm: inject_page_fault:"
162 " double fault 0x%lx\n", addr);
163 vcpu->arch.exception.nr = DF_VECTOR;
164 vcpu->arch.exception.error_code = 0;
165 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
166 /* triple fault -> shutdown */
167 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
169 return;
171 vcpu->arch.cr2 = addr;
172 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
175 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
177 WARN_ON(vcpu->arch.exception.pending);
178 vcpu->arch.exception.pending = true;
179 vcpu->arch.exception.has_error_code = true;
180 vcpu->arch.exception.nr = nr;
181 vcpu->arch.exception.error_code = error_code;
183 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
185 static void __queue_exception(struct kvm_vcpu *vcpu)
187 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
188 vcpu->arch.exception.has_error_code,
189 vcpu->arch.exception.error_code);
193 * Load the pae pdptrs. Return true is they are all valid.
195 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
197 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
198 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
199 int i;
200 int ret;
201 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
203 down_read(&vcpu->kvm->slots_lock);
204 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
205 offset * sizeof(u64), sizeof(pdpte));
206 if (ret < 0) {
207 ret = 0;
208 goto out;
210 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
211 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
212 ret = 0;
213 goto out;
216 ret = 1;
218 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
219 out:
220 up_read(&vcpu->kvm->slots_lock);
222 return ret;
224 EXPORT_SYMBOL_GPL(load_pdptrs);
226 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
228 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
229 bool changed = true;
230 int r;
232 if (is_long_mode(vcpu) || !is_pae(vcpu))
233 return false;
235 down_read(&vcpu->kvm->slots_lock);
236 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
237 if (r < 0)
238 goto out;
239 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
240 out:
241 up_read(&vcpu->kvm->slots_lock);
243 return changed;
246 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
248 if (cr0 & CR0_RESERVED_BITS) {
249 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
250 cr0, vcpu->arch.cr0);
251 kvm_inject_gp(vcpu, 0);
252 return;
255 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
256 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
257 kvm_inject_gp(vcpu, 0);
258 return;
261 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
262 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
263 "and a clear PE flag\n");
264 kvm_inject_gp(vcpu, 0);
265 return;
268 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
269 #ifdef CONFIG_X86_64
270 if ((vcpu->arch.shadow_efer & EFER_LME)) {
271 int cs_db, cs_l;
273 if (!is_pae(vcpu)) {
274 printk(KERN_DEBUG "set_cr0: #GP, start paging "
275 "in long mode while PAE is disabled\n");
276 kvm_inject_gp(vcpu, 0);
277 return;
279 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
280 if (cs_l) {
281 printk(KERN_DEBUG "set_cr0: #GP, start paging "
282 "in long mode while CS.L == 1\n");
283 kvm_inject_gp(vcpu, 0);
284 return;
287 } else
288 #endif
289 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
290 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
291 "reserved bits\n");
292 kvm_inject_gp(vcpu, 0);
293 return;
298 kvm_x86_ops->set_cr0(vcpu, cr0);
299 vcpu->arch.cr0 = cr0;
301 kvm_mmu_reset_context(vcpu);
302 return;
304 EXPORT_SYMBOL_GPL(kvm_set_cr0);
306 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
308 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
310 EXPORT_SYMBOL_GPL(kvm_lmsw);
312 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
314 if (cr4 & CR4_RESERVED_BITS) {
315 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
316 kvm_inject_gp(vcpu, 0);
317 return;
320 if (is_long_mode(vcpu)) {
321 if (!(cr4 & X86_CR4_PAE)) {
322 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
323 "in long mode\n");
324 kvm_inject_gp(vcpu, 0);
325 return;
327 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
328 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
329 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
330 kvm_inject_gp(vcpu, 0);
331 return;
334 if (cr4 & X86_CR4_VMXE) {
335 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
336 kvm_inject_gp(vcpu, 0);
337 return;
339 kvm_x86_ops->set_cr4(vcpu, cr4);
340 vcpu->arch.cr4 = cr4;
341 kvm_mmu_reset_context(vcpu);
343 EXPORT_SYMBOL_GPL(kvm_set_cr4);
345 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
347 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
348 kvm_mmu_flush_tlb(vcpu);
349 return;
352 if (is_long_mode(vcpu)) {
353 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
354 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
355 kvm_inject_gp(vcpu, 0);
356 return;
358 } else {
359 if (is_pae(vcpu)) {
360 if (cr3 & CR3_PAE_RESERVED_BITS) {
361 printk(KERN_DEBUG
362 "set_cr3: #GP, reserved bits\n");
363 kvm_inject_gp(vcpu, 0);
364 return;
366 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
367 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
368 "reserved bits\n");
369 kvm_inject_gp(vcpu, 0);
370 return;
374 * We don't check reserved bits in nonpae mode, because
375 * this isn't enforced, and VMware depends on this.
379 down_read(&vcpu->kvm->slots_lock);
381 * Does the new cr3 value map to physical memory? (Note, we
382 * catch an invalid cr3 even in real-mode, because it would
383 * cause trouble later on when we turn on paging anyway.)
385 * A real CPU would silently accept an invalid cr3 and would
386 * attempt to use it - with largely undefined (and often hard
387 * to debug) behavior on the guest side.
389 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
390 kvm_inject_gp(vcpu, 0);
391 else {
392 vcpu->arch.cr3 = cr3;
393 vcpu->arch.mmu.new_cr3(vcpu);
395 up_read(&vcpu->kvm->slots_lock);
397 EXPORT_SYMBOL_GPL(kvm_set_cr3);
399 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
401 if (cr8 & CR8_RESERVED_BITS) {
402 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
403 kvm_inject_gp(vcpu, 0);
404 return;
406 if (irqchip_in_kernel(vcpu->kvm))
407 kvm_lapic_set_tpr(vcpu, cr8);
408 else
409 vcpu->arch.cr8 = cr8;
411 EXPORT_SYMBOL_GPL(kvm_set_cr8);
413 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
415 if (irqchip_in_kernel(vcpu->kvm))
416 return kvm_lapic_get_cr8(vcpu);
417 else
418 return vcpu->arch.cr8;
420 EXPORT_SYMBOL_GPL(kvm_get_cr8);
423 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
424 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
426 * This list is modified at module load time to reflect the
427 * capabilities of the host cpu.
429 static u32 msrs_to_save[] = {
430 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
431 MSR_K6_STAR,
432 #ifdef CONFIG_X86_64
433 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
434 #endif
435 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
436 MSR_IA32_PERF_STATUS,
439 static unsigned num_msrs_to_save;
441 static u32 emulated_msrs[] = {
442 MSR_IA32_MISC_ENABLE,
445 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
447 if (efer & efer_reserved_bits) {
448 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
449 efer);
450 kvm_inject_gp(vcpu, 0);
451 return;
454 if (is_paging(vcpu)
455 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
456 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
457 kvm_inject_gp(vcpu, 0);
458 return;
461 kvm_x86_ops->set_efer(vcpu, efer);
463 efer &= ~EFER_LMA;
464 efer |= vcpu->arch.shadow_efer & EFER_LMA;
466 vcpu->arch.shadow_efer = efer;
469 void kvm_enable_efer_bits(u64 mask)
471 efer_reserved_bits &= ~mask;
473 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
477 * Writes msr value into into the appropriate "register".
478 * Returns 0 on success, non-0 otherwise.
479 * Assumes vcpu_load() was already called.
481 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
483 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
487 * Adapt set_msr() to msr_io()'s calling convention
489 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
491 return kvm_set_msr(vcpu, index, *data);
494 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
496 static int version;
497 struct kvm_wall_clock wc;
498 struct timespec wc_ts;
500 if (!wall_clock)
501 return;
503 version++;
505 down_read(&kvm->slots_lock);
506 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
508 wc_ts = current_kernel_time();
509 wc.wc_sec = wc_ts.tv_sec;
510 wc.wc_nsec = wc_ts.tv_nsec;
511 wc.wc_version = version;
513 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
515 version++;
516 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
517 up_read(&kvm->slots_lock);
520 static void kvm_write_guest_time(struct kvm_vcpu *v)
522 struct timespec ts;
523 unsigned long flags;
524 struct kvm_vcpu_arch *vcpu = &v->arch;
525 void *shared_kaddr;
527 if ((!vcpu->time_page))
528 return;
530 /* Keep irq disabled to prevent changes to the clock */
531 local_irq_save(flags);
532 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
533 &vcpu->hv_clock.tsc_timestamp);
534 ktime_get_ts(&ts);
535 local_irq_restore(flags);
537 /* With all the info we got, fill in the values */
539 vcpu->hv_clock.system_time = ts.tv_nsec +
540 (NSEC_PER_SEC * (u64)ts.tv_sec);
542 * The interface expects us to write an even number signaling that the
543 * update is finished. Since the guest won't see the intermediate
544 * state, we just write "2" at the end
546 vcpu->hv_clock.version = 2;
548 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
550 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
551 sizeof(vcpu->hv_clock));
553 kunmap_atomic(shared_kaddr, KM_USER0);
555 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
559 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
561 switch (msr) {
562 case MSR_EFER:
563 set_efer(vcpu, data);
564 break;
565 case MSR_IA32_MC0_STATUS:
566 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
567 __func__, data);
568 break;
569 case MSR_IA32_MCG_STATUS:
570 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
571 __func__, data);
572 break;
573 case MSR_IA32_MCG_CTL:
574 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
575 __func__, data);
576 break;
577 case MSR_IA32_UCODE_REV:
578 case MSR_IA32_UCODE_WRITE:
579 case 0x200 ... 0x2ff: /* MTRRs */
580 break;
581 case MSR_IA32_APICBASE:
582 kvm_set_apic_base(vcpu, data);
583 break;
584 case MSR_IA32_MISC_ENABLE:
585 vcpu->arch.ia32_misc_enable_msr = data;
586 break;
587 case MSR_KVM_WALL_CLOCK:
588 vcpu->kvm->arch.wall_clock = data;
589 kvm_write_wall_clock(vcpu->kvm, data);
590 break;
591 case MSR_KVM_SYSTEM_TIME: {
592 if (vcpu->arch.time_page) {
593 kvm_release_page_dirty(vcpu->arch.time_page);
594 vcpu->arch.time_page = NULL;
597 vcpu->arch.time = data;
599 /* we verify if the enable bit is set... */
600 if (!(data & 1))
601 break;
603 /* ...but clean it before doing the actual write */
604 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
606 vcpu->arch.hv_clock.tsc_to_system_mul =
607 clocksource_khz2mult(tsc_khz, 22);
608 vcpu->arch.hv_clock.tsc_shift = 22;
610 down_read(&current->mm->mmap_sem);
611 down_read(&vcpu->kvm->slots_lock);
612 vcpu->arch.time_page =
613 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
614 up_read(&vcpu->kvm->slots_lock);
615 up_read(&current->mm->mmap_sem);
617 if (is_error_page(vcpu->arch.time_page)) {
618 kvm_release_page_clean(vcpu->arch.time_page);
619 vcpu->arch.time_page = NULL;
622 kvm_write_guest_time(vcpu);
623 break;
625 default:
626 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
627 return 1;
629 return 0;
631 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
635 * Reads an msr value (of 'msr_index') into 'pdata'.
636 * Returns 0 on success, non-0 otherwise.
637 * Assumes vcpu_load() was already called.
639 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
641 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
644 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
646 u64 data;
648 switch (msr) {
649 case 0xc0010010: /* SYSCFG */
650 case 0xc0010015: /* HWCR */
651 case MSR_IA32_PLATFORM_ID:
652 case MSR_IA32_P5_MC_ADDR:
653 case MSR_IA32_P5_MC_TYPE:
654 case MSR_IA32_MC0_CTL:
655 case MSR_IA32_MCG_STATUS:
656 case MSR_IA32_MCG_CAP:
657 case MSR_IA32_MCG_CTL:
658 case MSR_IA32_MC0_MISC:
659 case MSR_IA32_MC0_MISC+4:
660 case MSR_IA32_MC0_MISC+8:
661 case MSR_IA32_MC0_MISC+12:
662 case MSR_IA32_MC0_MISC+16:
663 case MSR_IA32_UCODE_REV:
664 case MSR_IA32_EBL_CR_POWERON:
665 /* MTRR registers */
666 case 0xfe:
667 case 0x200 ... 0x2ff:
668 data = 0;
669 break;
670 case 0xcd: /* fsb frequency */
671 data = 3;
672 break;
673 case MSR_IA32_APICBASE:
674 data = kvm_get_apic_base(vcpu);
675 break;
676 case MSR_IA32_MISC_ENABLE:
677 data = vcpu->arch.ia32_misc_enable_msr;
678 break;
679 case MSR_IA32_PERF_STATUS:
680 /* TSC increment by tick */
681 data = 1000ULL;
682 /* CPU multiplier */
683 data |= (((uint64_t)4ULL) << 40);
684 break;
685 case MSR_EFER:
686 data = vcpu->arch.shadow_efer;
687 break;
688 case MSR_KVM_WALL_CLOCK:
689 data = vcpu->kvm->arch.wall_clock;
690 break;
691 case MSR_KVM_SYSTEM_TIME:
692 data = vcpu->arch.time;
693 break;
694 default:
695 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
696 return 1;
698 *pdata = data;
699 return 0;
701 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
704 * Read or write a bunch of msrs. All parameters are kernel addresses.
706 * @return number of msrs set successfully.
708 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
709 struct kvm_msr_entry *entries,
710 int (*do_msr)(struct kvm_vcpu *vcpu,
711 unsigned index, u64 *data))
713 int i;
715 vcpu_load(vcpu);
717 for (i = 0; i < msrs->nmsrs; ++i)
718 if (do_msr(vcpu, entries[i].index, &entries[i].data))
719 break;
721 vcpu_put(vcpu);
723 return i;
727 * Read or write a bunch of msrs. Parameters are user addresses.
729 * @return number of msrs set successfully.
731 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
732 int (*do_msr)(struct kvm_vcpu *vcpu,
733 unsigned index, u64 *data),
734 int writeback)
736 struct kvm_msrs msrs;
737 struct kvm_msr_entry *entries;
738 int r, n;
739 unsigned size;
741 r = -EFAULT;
742 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
743 goto out;
745 r = -E2BIG;
746 if (msrs.nmsrs >= MAX_IO_MSRS)
747 goto out;
749 r = -ENOMEM;
750 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
751 entries = vmalloc(size);
752 if (!entries)
753 goto out;
755 r = -EFAULT;
756 if (copy_from_user(entries, user_msrs->entries, size))
757 goto out_free;
759 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
760 if (r < 0)
761 goto out_free;
763 r = -EFAULT;
764 if (writeback && copy_to_user(user_msrs->entries, entries, size))
765 goto out_free;
767 r = n;
769 out_free:
770 vfree(entries);
771 out:
772 return r;
776 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
777 * cached on it.
779 void decache_vcpus_on_cpu(int cpu)
781 struct kvm *vm;
782 struct kvm_vcpu *vcpu;
783 int i;
785 spin_lock(&kvm_lock);
786 list_for_each_entry(vm, &vm_list, vm_list)
787 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
788 vcpu = vm->vcpus[i];
789 if (!vcpu)
790 continue;
792 * If the vcpu is locked, then it is running on some
793 * other cpu and therefore it is not cached on the
794 * cpu in question.
796 * If it's not locked, check the last cpu it executed
797 * on.
799 if (mutex_trylock(&vcpu->mutex)) {
800 if (vcpu->cpu == cpu) {
801 kvm_x86_ops->vcpu_decache(vcpu);
802 vcpu->cpu = -1;
804 mutex_unlock(&vcpu->mutex);
807 spin_unlock(&kvm_lock);
810 int kvm_dev_ioctl_check_extension(long ext)
812 int r;
814 switch (ext) {
815 case KVM_CAP_IRQCHIP:
816 case KVM_CAP_HLT:
817 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
818 case KVM_CAP_USER_MEMORY:
819 case KVM_CAP_SET_TSS_ADDR:
820 case KVM_CAP_EXT_CPUID:
821 case KVM_CAP_CLOCKSOURCE:
822 case KVM_CAP_PIT:
823 case KVM_CAP_NOP_IO_DELAY:
824 r = 1;
825 break;
826 case KVM_CAP_VAPIC:
827 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
828 break;
829 case KVM_CAP_NR_VCPUS:
830 r = KVM_MAX_VCPUS;
831 break;
832 case KVM_CAP_NR_MEMSLOTS:
833 r = KVM_MEMORY_SLOTS;
834 break;
835 case KVM_CAP_PV_MMU:
836 r = !tdp_enabled;
837 break;
838 default:
839 r = 0;
840 break;
842 return r;
846 long kvm_arch_dev_ioctl(struct file *filp,
847 unsigned int ioctl, unsigned long arg)
849 void __user *argp = (void __user *)arg;
850 long r;
852 switch (ioctl) {
853 case KVM_GET_MSR_INDEX_LIST: {
854 struct kvm_msr_list __user *user_msr_list = argp;
855 struct kvm_msr_list msr_list;
856 unsigned n;
858 r = -EFAULT;
859 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
860 goto out;
861 n = msr_list.nmsrs;
862 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
863 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
864 goto out;
865 r = -E2BIG;
866 if (n < num_msrs_to_save)
867 goto out;
868 r = -EFAULT;
869 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
870 num_msrs_to_save * sizeof(u32)))
871 goto out;
872 if (copy_to_user(user_msr_list->indices
873 + num_msrs_to_save * sizeof(u32),
874 &emulated_msrs,
875 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
876 goto out;
877 r = 0;
878 break;
880 case KVM_GET_SUPPORTED_CPUID: {
881 struct kvm_cpuid2 __user *cpuid_arg = argp;
882 struct kvm_cpuid2 cpuid;
884 r = -EFAULT;
885 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
886 goto out;
887 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
888 cpuid_arg->entries);
889 if (r)
890 goto out;
892 r = -EFAULT;
893 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
894 goto out;
895 r = 0;
896 break;
898 default:
899 r = -EINVAL;
901 out:
902 return r;
905 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
907 kvm_x86_ops->vcpu_load(vcpu, cpu);
908 kvm_write_guest_time(vcpu);
911 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
913 kvm_x86_ops->vcpu_put(vcpu);
914 kvm_put_guest_fpu(vcpu);
917 static int is_efer_nx(void)
919 u64 efer;
921 rdmsrl(MSR_EFER, efer);
922 return efer & EFER_NX;
925 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
927 int i;
928 struct kvm_cpuid_entry2 *e, *entry;
930 entry = NULL;
931 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
932 e = &vcpu->arch.cpuid_entries[i];
933 if (e->function == 0x80000001) {
934 entry = e;
935 break;
938 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
939 entry->edx &= ~(1 << 20);
940 printk(KERN_INFO "kvm: guest NX capability removed\n");
944 /* when an old userspace process fills a new kernel module */
945 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
946 struct kvm_cpuid *cpuid,
947 struct kvm_cpuid_entry __user *entries)
949 int r, i;
950 struct kvm_cpuid_entry *cpuid_entries;
952 r = -E2BIG;
953 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
954 goto out;
955 r = -ENOMEM;
956 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
957 if (!cpuid_entries)
958 goto out;
959 r = -EFAULT;
960 if (copy_from_user(cpuid_entries, entries,
961 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
962 goto out_free;
963 for (i = 0; i < cpuid->nent; i++) {
964 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
965 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
966 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
967 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
968 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
969 vcpu->arch.cpuid_entries[i].index = 0;
970 vcpu->arch.cpuid_entries[i].flags = 0;
971 vcpu->arch.cpuid_entries[i].padding[0] = 0;
972 vcpu->arch.cpuid_entries[i].padding[1] = 0;
973 vcpu->arch.cpuid_entries[i].padding[2] = 0;
975 vcpu->arch.cpuid_nent = cpuid->nent;
976 cpuid_fix_nx_cap(vcpu);
977 r = 0;
979 out_free:
980 vfree(cpuid_entries);
981 out:
982 return r;
985 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
986 struct kvm_cpuid2 *cpuid,
987 struct kvm_cpuid_entry2 __user *entries)
989 int r;
991 r = -E2BIG;
992 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
993 goto out;
994 r = -EFAULT;
995 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
996 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
997 goto out;
998 vcpu->arch.cpuid_nent = cpuid->nent;
999 return 0;
1001 out:
1002 return r;
1005 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1006 struct kvm_cpuid2 *cpuid,
1007 struct kvm_cpuid_entry2 __user *entries)
1009 int r;
1011 r = -E2BIG;
1012 if (cpuid->nent < vcpu->arch.cpuid_nent)
1013 goto out;
1014 r = -EFAULT;
1015 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1016 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1017 goto out;
1018 return 0;
1020 out:
1021 cpuid->nent = vcpu->arch.cpuid_nent;
1022 return r;
1025 static inline u32 bit(int bitno)
1027 return 1 << (bitno & 31);
1030 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1031 u32 index)
1033 entry->function = function;
1034 entry->index = index;
1035 cpuid_count(entry->function, entry->index,
1036 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1037 entry->flags = 0;
1040 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1041 u32 index, int *nent, int maxnent)
1043 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1044 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1045 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1046 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1047 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1048 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1049 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1050 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1051 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1052 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1053 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1054 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1055 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1056 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1057 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1058 bit(X86_FEATURE_PGE) |
1059 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1060 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1061 bit(X86_FEATURE_SYSCALL) |
1062 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1063 #ifdef CONFIG_X86_64
1064 bit(X86_FEATURE_LM) |
1065 #endif
1066 bit(X86_FEATURE_MMXEXT) |
1067 bit(X86_FEATURE_3DNOWEXT) |
1068 bit(X86_FEATURE_3DNOW);
1069 const u32 kvm_supported_word3_x86_features =
1070 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1071 const u32 kvm_supported_word6_x86_features =
1072 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1074 /* all func 2 cpuid_count() should be called on the same cpu */
1075 get_cpu();
1076 do_cpuid_1_ent(entry, function, index);
1077 ++*nent;
1079 switch (function) {
1080 case 0:
1081 entry->eax = min(entry->eax, (u32)0xb);
1082 break;
1083 case 1:
1084 entry->edx &= kvm_supported_word0_x86_features;
1085 entry->ecx &= kvm_supported_word3_x86_features;
1086 break;
1087 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1088 * may return different values. This forces us to get_cpu() before
1089 * issuing the first command, and also to emulate this annoying behavior
1090 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1091 case 2: {
1092 int t, times = entry->eax & 0xff;
1094 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1095 for (t = 1; t < times && *nent < maxnent; ++t) {
1096 do_cpuid_1_ent(&entry[t], function, 0);
1097 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1098 ++*nent;
1100 break;
1102 /* function 4 and 0xb have additional index. */
1103 case 4: {
1104 int i, cache_type;
1106 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1107 /* read more entries until cache_type is zero */
1108 for (i = 1; *nent < maxnent; ++i) {
1109 cache_type = entry[i - 1].eax & 0x1f;
1110 if (!cache_type)
1111 break;
1112 do_cpuid_1_ent(&entry[i], function, i);
1113 entry[i].flags |=
1114 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1115 ++*nent;
1117 break;
1119 case 0xb: {
1120 int i, level_type;
1122 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1123 /* read more entries until level_type is zero */
1124 for (i = 1; *nent < maxnent; ++i) {
1125 level_type = entry[i - 1].ecx & 0xff;
1126 if (!level_type)
1127 break;
1128 do_cpuid_1_ent(&entry[i], function, i);
1129 entry[i].flags |=
1130 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1131 ++*nent;
1133 break;
1135 case 0x80000000:
1136 entry->eax = min(entry->eax, 0x8000001a);
1137 break;
1138 case 0x80000001:
1139 entry->edx &= kvm_supported_word1_x86_features;
1140 entry->ecx &= kvm_supported_word6_x86_features;
1141 break;
1143 put_cpu();
1146 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1147 struct kvm_cpuid_entry2 __user *entries)
1149 struct kvm_cpuid_entry2 *cpuid_entries;
1150 int limit, nent = 0, r = -E2BIG;
1151 u32 func;
1153 if (cpuid->nent < 1)
1154 goto out;
1155 r = -ENOMEM;
1156 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1157 if (!cpuid_entries)
1158 goto out;
1160 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1161 limit = cpuid_entries[0].eax;
1162 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1163 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1164 &nent, cpuid->nent);
1165 r = -E2BIG;
1166 if (nent >= cpuid->nent)
1167 goto out_free;
1169 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1170 limit = cpuid_entries[nent - 1].eax;
1171 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1172 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1173 &nent, cpuid->nent);
1174 r = -EFAULT;
1175 if (copy_to_user(entries, cpuid_entries,
1176 nent * sizeof(struct kvm_cpuid_entry2)))
1177 goto out_free;
1178 cpuid->nent = nent;
1179 r = 0;
1181 out_free:
1182 vfree(cpuid_entries);
1183 out:
1184 return r;
1187 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1188 struct kvm_lapic_state *s)
1190 vcpu_load(vcpu);
1191 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1192 vcpu_put(vcpu);
1194 return 0;
1197 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1198 struct kvm_lapic_state *s)
1200 vcpu_load(vcpu);
1201 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1202 kvm_apic_post_state_restore(vcpu);
1203 vcpu_put(vcpu);
1205 return 0;
1208 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1209 struct kvm_interrupt *irq)
1211 if (irq->irq < 0 || irq->irq >= 256)
1212 return -EINVAL;
1213 if (irqchip_in_kernel(vcpu->kvm))
1214 return -ENXIO;
1215 vcpu_load(vcpu);
1217 set_bit(irq->irq, vcpu->arch.irq_pending);
1218 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1220 vcpu_put(vcpu);
1222 return 0;
1225 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1226 struct kvm_tpr_access_ctl *tac)
1228 if (tac->flags)
1229 return -EINVAL;
1230 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1231 return 0;
1234 long kvm_arch_vcpu_ioctl(struct file *filp,
1235 unsigned int ioctl, unsigned long arg)
1237 struct kvm_vcpu *vcpu = filp->private_data;
1238 void __user *argp = (void __user *)arg;
1239 int r;
1241 switch (ioctl) {
1242 case KVM_GET_LAPIC: {
1243 struct kvm_lapic_state lapic;
1245 memset(&lapic, 0, sizeof lapic);
1246 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
1247 if (r)
1248 goto out;
1249 r = -EFAULT;
1250 if (copy_to_user(argp, &lapic, sizeof lapic))
1251 goto out;
1252 r = 0;
1253 break;
1255 case KVM_SET_LAPIC: {
1256 struct kvm_lapic_state lapic;
1258 r = -EFAULT;
1259 if (copy_from_user(&lapic, argp, sizeof lapic))
1260 goto out;
1261 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
1262 if (r)
1263 goto out;
1264 r = 0;
1265 break;
1267 case KVM_INTERRUPT: {
1268 struct kvm_interrupt irq;
1270 r = -EFAULT;
1271 if (copy_from_user(&irq, argp, sizeof irq))
1272 goto out;
1273 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1274 if (r)
1275 goto out;
1276 r = 0;
1277 break;
1279 case KVM_SET_CPUID: {
1280 struct kvm_cpuid __user *cpuid_arg = argp;
1281 struct kvm_cpuid cpuid;
1283 r = -EFAULT;
1284 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1285 goto out;
1286 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1287 if (r)
1288 goto out;
1289 break;
1291 case KVM_SET_CPUID2: {
1292 struct kvm_cpuid2 __user *cpuid_arg = argp;
1293 struct kvm_cpuid2 cpuid;
1295 r = -EFAULT;
1296 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1297 goto out;
1298 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1299 cpuid_arg->entries);
1300 if (r)
1301 goto out;
1302 break;
1304 case KVM_GET_CPUID2: {
1305 struct kvm_cpuid2 __user *cpuid_arg = argp;
1306 struct kvm_cpuid2 cpuid;
1308 r = -EFAULT;
1309 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1310 goto out;
1311 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1312 cpuid_arg->entries);
1313 if (r)
1314 goto out;
1315 r = -EFAULT;
1316 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1317 goto out;
1318 r = 0;
1319 break;
1321 case KVM_GET_MSRS:
1322 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1323 break;
1324 case KVM_SET_MSRS:
1325 r = msr_io(vcpu, argp, do_set_msr, 0);
1326 break;
1327 case KVM_TPR_ACCESS_REPORTING: {
1328 struct kvm_tpr_access_ctl tac;
1330 r = -EFAULT;
1331 if (copy_from_user(&tac, argp, sizeof tac))
1332 goto out;
1333 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1334 if (r)
1335 goto out;
1336 r = -EFAULT;
1337 if (copy_to_user(argp, &tac, sizeof tac))
1338 goto out;
1339 r = 0;
1340 break;
1342 case KVM_SET_VAPIC_ADDR: {
1343 struct kvm_vapic_addr va;
1345 r = -EINVAL;
1346 if (!irqchip_in_kernel(vcpu->kvm))
1347 goto out;
1348 r = -EFAULT;
1349 if (copy_from_user(&va, argp, sizeof va))
1350 goto out;
1351 r = 0;
1352 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1353 break;
1355 default:
1356 r = -EINVAL;
1358 out:
1359 return r;
1362 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1364 int ret;
1366 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1367 return -1;
1368 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1369 return ret;
1372 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1373 u32 kvm_nr_mmu_pages)
1375 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1376 return -EINVAL;
1378 down_write(&kvm->slots_lock);
1380 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1381 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1383 up_write(&kvm->slots_lock);
1384 return 0;
1387 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1389 return kvm->arch.n_alloc_mmu_pages;
1392 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1394 int i;
1395 struct kvm_mem_alias *alias;
1397 for (i = 0; i < kvm->arch.naliases; ++i) {
1398 alias = &kvm->arch.aliases[i];
1399 if (gfn >= alias->base_gfn
1400 && gfn < alias->base_gfn + alias->npages)
1401 return alias->target_gfn + gfn - alias->base_gfn;
1403 return gfn;
1407 * Set a new alias region. Aliases map a portion of physical memory into
1408 * another portion. This is useful for memory windows, for example the PC
1409 * VGA region.
1411 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1412 struct kvm_memory_alias *alias)
1414 int r, n;
1415 struct kvm_mem_alias *p;
1417 r = -EINVAL;
1418 /* General sanity checks */
1419 if (alias->memory_size & (PAGE_SIZE - 1))
1420 goto out;
1421 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1422 goto out;
1423 if (alias->slot >= KVM_ALIAS_SLOTS)
1424 goto out;
1425 if (alias->guest_phys_addr + alias->memory_size
1426 < alias->guest_phys_addr)
1427 goto out;
1428 if (alias->target_phys_addr + alias->memory_size
1429 < alias->target_phys_addr)
1430 goto out;
1432 down_write(&kvm->slots_lock);
1434 p = &kvm->arch.aliases[alias->slot];
1435 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1436 p->npages = alias->memory_size >> PAGE_SHIFT;
1437 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1439 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1440 if (kvm->arch.aliases[n - 1].npages)
1441 break;
1442 kvm->arch.naliases = n;
1444 kvm_mmu_zap_all(kvm);
1446 up_write(&kvm->slots_lock);
1448 return 0;
1450 out:
1451 return r;
1454 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1456 int r;
1458 r = 0;
1459 switch (chip->chip_id) {
1460 case KVM_IRQCHIP_PIC_MASTER:
1461 memcpy(&chip->chip.pic,
1462 &pic_irqchip(kvm)->pics[0],
1463 sizeof(struct kvm_pic_state));
1464 break;
1465 case KVM_IRQCHIP_PIC_SLAVE:
1466 memcpy(&chip->chip.pic,
1467 &pic_irqchip(kvm)->pics[1],
1468 sizeof(struct kvm_pic_state));
1469 break;
1470 case KVM_IRQCHIP_IOAPIC:
1471 memcpy(&chip->chip.ioapic,
1472 ioapic_irqchip(kvm),
1473 sizeof(struct kvm_ioapic_state));
1474 break;
1475 default:
1476 r = -EINVAL;
1477 break;
1479 return r;
1482 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1484 int r;
1486 r = 0;
1487 switch (chip->chip_id) {
1488 case KVM_IRQCHIP_PIC_MASTER:
1489 memcpy(&pic_irqchip(kvm)->pics[0],
1490 &chip->chip.pic,
1491 sizeof(struct kvm_pic_state));
1492 break;
1493 case KVM_IRQCHIP_PIC_SLAVE:
1494 memcpy(&pic_irqchip(kvm)->pics[1],
1495 &chip->chip.pic,
1496 sizeof(struct kvm_pic_state));
1497 break;
1498 case KVM_IRQCHIP_IOAPIC:
1499 memcpy(ioapic_irqchip(kvm),
1500 &chip->chip.ioapic,
1501 sizeof(struct kvm_ioapic_state));
1502 break;
1503 default:
1504 r = -EINVAL;
1505 break;
1507 kvm_pic_update_irq(pic_irqchip(kvm));
1508 return r;
1511 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1513 int r = 0;
1515 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1516 return r;
1519 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1521 int r = 0;
1523 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1524 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1525 return r;
1529 * Get (and clear) the dirty memory log for a memory slot.
1531 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1532 struct kvm_dirty_log *log)
1534 int r;
1535 int n;
1536 struct kvm_memory_slot *memslot;
1537 int is_dirty = 0;
1539 down_write(&kvm->slots_lock);
1541 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1542 if (r)
1543 goto out;
1545 /* If nothing is dirty, don't bother messing with page tables. */
1546 if (is_dirty) {
1547 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1548 kvm_flush_remote_tlbs(kvm);
1549 memslot = &kvm->memslots[log->slot];
1550 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1551 memset(memslot->dirty_bitmap, 0, n);
1553 r = 0;
1554 out:
1555 up_write(&kvm->slots_lock);
1556 return r;
1559 long kvm_arch_vm_ioctl(struct file *filp,
1560 unsigned int ioctl, unsigned long arg)
1562 struct kvm *kvm = filp->private_data;
1563 void __user *argp = (void __user *)arg;
1564 int r = -EINVAL;
1566 switch (ioctl) {
1567 case KVM_SET_TSS_ADDR:
1568 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1569 if (r < 0)
1570 goto out;
1571 break;
1572 case KVM_SET_MEMORY_REGION: {
1573 struct kvm_memory_region kvm_mem;
1574 struct kvm_userspace_memory_region kvm_userspace_mem;
1576 r = -EFAULT;
1577 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1578 goto out;
1579 kvm_userspace_mem.slot = kvm_mem.slot;
1580 kvm_userspace_mem.flags = kvm_mem.flags;
1581 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1582 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1583 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1584 if (r)
1585 goto out;
1586 break;
1588 case KVM_SET_NR_MMU_PAGES:
1589 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1590 if (r)
1591 goto out;
1592 break;
1593 case KVM_GET_NR_MMU_PAGES:
1594 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1595 break;
1596 case KVM_SET_MEMORY_ALIAS: {
1597 struct kvm_memory_alias alias;
1599 r = -EFAULT;
1600 if (copy_from_user(&alias, argp, sizeof alias))
1601 goto out;
1602 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
1603 if (r)
1604 goto out;
1605 break;
1607 case KVM_CREATE_IRQCHIP:
1608 r = -ENOMEM;
1609 kvm->arch.vpic = kvm_create_pic(kvm);
1610 if (kvm->arch.vpic) {
1611 r = kvm_ioapic_init(kvm);
1612 if (r) {
1613 kfree(kvm->arch.vpic);
1614 kvm->arch.vpic = NULL;
1615 goto out;
1617 } else
1618 goto out;
1619 break;
1620 case KVM_CREATE_PIT:
1621 r = -ENOMEM;
1622 kvm->arch.vpit = kvm_create_pit(kvm);
1623 if (kvm->arch.vpit)
1624 r = 0;
1625 break;
1626 case KVM_IRQ_LINE: {
1627 struct kvm_irq_level irq_event;
1629 r = -EFAULT;
1630 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1631 goto out;
1632 if (irqchip_in_kernel(kvm)) {
1633 mutex_lock(&kvm->lock);
1634 if (irq_event.irq < 16)
1635 kvm_pic_set_irq(pic_irqchip(kvm),
1636 irq_event.irq,
1637 irq_event.level);
1638 kvm_ioapic_set_irq(kvm->arch.vioapic,
1639 irq_event.irq,
1640 irq_event.level);
1641 mutex_unlock(&kvm->lock);
1642 r = 0;
1644 break;
1646 case KVM_GET_IRQCHIP: {
1647 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1648 struct kvm_irqchip chip;
1650 r = -EFAULT;
1651 if (copy_from_user(&chip, argp, sizeof chip))
1652 goto out;
1653 r = -ENXIO;
1654 if (!irqchip_in_kernel(kvm))
1655 goto out;
1656 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1657 if (r)
1658 goto out;
1659 r = -EFAULT;
1660 if (copy_to_user(argp, &chip, sizeof chip))
1661 goto out;
1662 r = 0;
1663 break;
1665 case KVM_SET_IRQCHIP: {
1666 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1667 struct kvm_irqchip chip;
1669 r = -EFAULT;
1670 if (copy_from_user(&chip, argp, sizeof chip))
1671 goto out;
1672 r = -ENXIO;
1673 if (!irqchip_in_kernel(kvm))
1674 goto out;
1675 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1676 if (r)
1677 goto out;
1678 r = 0;
1679 break;
1681 case KVM_GET_PIT: {
1682 struct kvm_pit_state ps;
1683 r = -EFAULT;
1684 if (copy_from_user(&ps, argp, sizeof ps))
1685 goto out;
1686 r = -ENXIO;
1687 if (!kvm->arch.vpit)
1688 goto out;
1689 r = kvm_vm_ioctl_get_pit(kvm, &ps);
1690 if (r)
1691 goto out;
1692 r = -EFAULT;
1693 if (copy_to_user(argp, &ps, sizeof ps))
1694 goto out;
1695 r = 0;
1696 break;
1698 case KVM_SET_PIT: {
1699 struct kvm_pit_state ps;
1700 r = -EFAULT;
1701 if (copy_from_user(&ps, argp, sizeof ps))
1702 goto out;
1703 r = -ENXIO;
1704 if (!kvm->arch.vpit)
1705 goto out;
1706 r = kvm_vm_ioctl_set_pit(kvm, &ps);
1707 if (r)
1708 goto out;
1709 r = 0;
1710 break;
1712 default:
1715 out:
1716 return r;
1719 static void kvm_init_msr_list(void)
1721 u32 dummy[2];
1722 unsigned i, j;
1724 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1725 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1726 continue;
1727 if (j < i)
1728 msrs_to_save[j] = msrs_to_save[i];
1729 j++;
1731 num_msrs_to_save = j;
1735 * Only apic need an MMIO device hook, so shortcut now..
1737 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1738 gpa_t addr)
1740 struct kvm_io_device *dev;
1742 if (vcpu->arch.apic) {
1743 dev = &vcpu->arch.apic->dev;
1744 if (dev->in_range(dev, addr))
1745 return dev;
1747 return NULL;
1751 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1752 gpa_t addr)
1754 struct kvm_io_device *dev;
1756 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1757 if (dev == NULL)
1758 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1759 return dev;
1762 int emulator_read_std(unsigned long addr,
1763 void *val,
1764 unsigned int bytes,
1765 struct kvm_vcpu *vcpu)
1767 void *data = val;
1768 int r = X86EMUL_CONTINUE;
1770 down_read(&vcpu->kvm->slots_lock);
1771 while (bytes) {
1772 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1773 unsigned offset = addr & (PAGE_SIZE-1);
1774 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1775 int ret;
1777 if (gpa == UNMAPPED_GVA) {
1778 r = X86EMUL_PROPAGATE_FAULT;
1779 goto out;
1781 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1782 if (ret < 0) {
1783 r = X86EMUL_UNHANDLEABLE;
1784 goto out;
1787 bytes -= tocopy;
1788 data += tocopy;
1789 addr += tocopy;
1791 out:
1792 up_read(&vcpu->kvm->slots_lock);
1793 return r;
1795 EXPORT_SYMBOL_GPL(emulator_read_std);
1797 static int emulator_read_emulated(unsigned long addr,
1798 void *val,
1799 unsigned int bytes,
1800 struct kvm_vcpu *vcpu)
1802 struct kvm_io_device *mmio_dev;
1803 gpa_t gpa;
1805 if (vcpu->mmio_read_completed) {
1806 memcpy(val, vcpu->mmio_data, bytes);
1807 vcpu->mmio_read_completed = 0;
1808 return X86EMUL_CONTINUE;
1811 down_read(&vcpu->kvm->slots_lock);
1812 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1813 up_read(&vcpu->kvm->slots_lock);
1815 /* For APIC access vmexit */
1816 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1817 goto mmio;
1819 if (emulator_read_std(addr, val, bytes, vcpu)
1820 == X86EMUL_CONTINUE)
1821 return X86EMUL_CONTINUE;
1822 if (gpa == UNMAPPED_GVA)
1823 return X86EMUL_PROPAGATE_FAULT;
1825 mmio:
1827 * Is this MMIO handled locally?
1829 mutex_lock(&vcpu->kvm->lock);
1830 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1831 if (mmio_dev) {
1832 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1833 mutex_unlock(&vcpu->kvm->lock);
1834 return X86EMUL_CONTINUE;
1836 mutex_unlock(&vcpu->kvm->lock);
1838 vcpu->mmio_needed = 1;
1839 vcpu->mmio_phys_addr = gpa;
1840 vcpu->mmio_size = bytes;
1841 vcpu->mmio_is_write = 0;
1843 return X86EMUL_UNHANDLEABLE;
1846 int __emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1847 const void *val, int bytes)
1849 int ret;
1851 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1852 if (ret < 0)
1853 return 0;
1854 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1855 return 1;
1858 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1859 const void *val, int bytes)
1861 int ret;
1863 down_read(&vcpu->kvm->slots_lock);
1864 ret =__emulator_write_phys(vcpu, gpa, val, bytes);
1865 up_read(&vcpu->kvm->slots_lock);
1866 return ret;
1869 static int emulator_write_emulated_onepage(unsigned long addr,
1870 const void *val,
1871 unsigned int bytes,
1872 struct kvm_vcpu *vcpu)
1874 struct kvm_io_device *mmio_dev;
1875 gpa_t gpa;
1877 down_read(&vcpu->kvm->slots_lock);
1878 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1879 up_read(&vcpu->kvm->slots_lock);
1881 if (gpa == UNMAPPED_GVA) {
1882 kvm_inject_page_fault(vcpu, addr, 2);
1883 return X86EMUL_PROPAGATE_FAULT;
1886 /* For APIC access vmexit */
1887 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1888 goto mmio;
1890 if (emulator_write_phys(vcpu, gpa, val, bytes))
1891 return X86EMUL_CONTINUE;
1893 mmio:
1895 * Is this MMIO handled locally?
1897 mutex_lock(&vcpu->kvm->lock);
1898 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1899 if (mmio_dev) {
1900 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1901 mutex_unlock(&vcpu->kvm->lock);
1902 return X86EMUL_CONTINUE;
1904 mutex_unlock(&vcpu->kvm->lock);
1906 vcpu->mmio_needed = 1;
1907 vcpu->mmio_phys_addr = gpa;
1908 vcpu->mmio_size = bytes;
1909 vcpu->mmio_is_write = 1;
1910 memcpy(vcpu->mmio_data, val, bytes);
1912 return X86EMUL_CONTINUE;
1915 int emulator_write_emulated(unsigned long addr,
1916 const void *val,
1917 unsigned int bytes,
1918 struct kvm_vcpu *vcpu)
1920 /* Crossing a page boundary? */
1921 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1922 int rc, now;
1924 now = -addr & ~PAGE_MASK;
1925 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1926 if (rc != X86EMUL_CONTINUE)
1927 return rc;
1928 addr += now;
1929 val += now;
1930 bytes -= now;
1932 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1934 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1936 static int emulator_cmpxchg_emulated(unsigned long addr,
1937 const void *old,
1938 const void *new,
1939 unsigned int bytes,
1940 struct kvm_vcpu *vcpu)
1942 static int reported;
1944 if (!reported) {
1945 reported = 1;
1946 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1948 #ifndef CONFIG_X86_64
1949 /* guests cmpxchg8b have to be emulated atomically */
1950 if (bytes == 8) {
1951 gpa_t gpa;
1952 struct page *page;
1953 char *kaddr;
1954 u64 val;
1956 down_read(&vcpu->kvm->slots_lock);
1957 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1959 if (gpa == UNMAPPED_GVA ||
1960 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1961 goto emul_write;
1963 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
1964 goto emul_write;
1966 val = *(u64 *)new;
1968 down_read(&current->mm->mmap_sem);
1969 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1970 up_read(&current->mm->mmap_sem);
1972 kaddr = kmap_atomic(page, KM_USER0);
1973 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
1974 kunmap_atomic(kaddr, KM_USER0);
1975 kvm_release_page_dirty(page);
1976 emul_write:
1977 up_read(&vcpu->kvm->slots_lock);
1979 #endif
1981 return emulator_write_emulated(addr, new, bytes, vcpu);
1984 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1986 return kvm_x86_ops->get_segment_base(vcpu, seg);
1989 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1991 return X86EMUL_CONTINUE;
1994 int emulate_clts(struct kvm_vcpu *vcpu)
1996 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
1997 return X86EMUL_CONTINUE;
2000 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2002 struct kvm_vcpu *vcpu = ctxt->vcpu;
2004 switch (dr) {
2005 case 0 ... 3:
2006 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2007 return X86EMUL_CONTINUE;
2008 default:
2009 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2010 return X86EMUL_UNHANDLEABLE;
2014 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2016 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2017 int exception;
2019 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2020 if (exception) {
2021 /* FIXME: better handling */
2022 return X86EMUL_UNHANDLEABLE;
2024 return X86EMUL_CONTINUE;
2027 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2029 static int reported;
2030 u8 opcodes[4];
2031 unsigned long rip = vcpu->arch.rip;
2032 unsigned long rip_linear;
2034 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2036 if (reported)
2037 return;
2039 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2041 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2042 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2043 reported = 1;
2045 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2047 static struct x86_emulate_ops emulate_ops = {
2048 .read_std = emulator_read_std,
2049 .read_emulated = emulator_read_emulated,
2050 .write_emulated = emulator_write_emulated,
2051 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2054 int emulate_instruction(struct kvm_vcpu *vcpu,
2055 struct kvm_run *run,
2056 unsigned long cr2,
2057 u16 error_code,
2058 int emulation_type)
2060 int r;
2061 struct decode_cache *c;
2063 vcpu->arch.mmio_fault_cr2 = cr2;
2064 kvm_x86_ops->cache_regs(vcpu);
2066 vcpu->mmio_is_write = 0;
2067 vcpu->arch.pio.string = 0;
2069 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2070 int cs_db, cs_l;
2071 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2073 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2074 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2075 vcpu->arch.emulate_ctxt.mode =
2076 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2077 ? X86EMUL_MODE_REAL : cs_l
2078 ? X86EMUL_MODE_PROT64 : cs_db
2079 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2081 if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
2082 vcpu->arch.emulate_ctxt.cs_base = 0;
2083 vcpu->arch.emulate_ctxt.ds_base = 0;
2084 vcpu->arch.emulate_ctxt.es_base = 0;
2085 vcpu->arch.emulate_ctxt.ss_base = 0;
2086 } else {
2087 vcpu->arch.emulate_ctxt.cs_base =
2088 get_segment_base(vcpu, VCPU_SREG_CS);
2089 vcpu->arch.emulate_ctxt.ds_base =
2090 get_segment_base(vcpu, VCPU_SREG_DS);
2091 vcpu->arch.emulate_ctxt.es_base =
2092 get_segment_base(vcpu, VCPU_SREG_ES);
2093 vcpu->arch.emulate_ctxt.ss_base =
2094 get_segment_base(vcpu, VCPU_SREG_SS);
2097 vcpu->arch.emulate_ctxt.gs_base =
2098 get_segment_base(vcpu, VCPU_SREG_GS);
2099 vcpu->arch.emulate_ctxt.fs_base =
2100 get_segment_base(vcpu, VCPU_SREG_FS);
2102 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2104 /* Reject the instructions other than VMCALL/VMMCALL when
2105 * try to emulate invalid opcode */
2106 c = &vcpu->arch.emulate_ctxt.decode;
2107 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2108 (!(c->twobyte && c->b == 0x01 &&
2109 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2110 c->modrm_mod == 3 && c->modrm_rm == 1)))
2111 return EMULATE_FAIL;
2113 ++vcpu->stat.insn_emulation;
2114 if (r) {
2115 ++vcpu->stat.insn_emulation_fail;
2116 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2117 return EMULATE_DONE;
2118 return EMULATE_FAIL;
2122 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2124 if (vcpu->arch.pio.string)
2125 return EMULATE_DO_MMIO;
2127 if ((r || vcpu->mmio_is_write) && run) {
2128 run->exit_reason = KVM_EXIT_MMIO;
2129 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2130 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2131 run->mmio.len = vcpu->mmio_size;
2132 run->mmio.is_write = vcpu->mmio_is_write;
2135 if (r) {
2136 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2137 return EMULATE_DONE;
2138 if (!vcpu->mmio_needed) {
2139 kvm_report_emulation_failure(vcpu, "mmio");
2140 return EMULATE_FAIL;
2142 return EMULATE_DO_MMIO;
2145 kvm_x86_ops->decache_regs(vcpu);
2146 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2148 if (vcpu->mmio_is_write) {
2149 vcpu->mmio_needed = 0;
2150 return EMULATE_DO_MMIO;
2153 return EMULATE_DONE;
2155 EXPORT_SYMBOL_GPL(emulate_instruction);
2157 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2159 int i;
2161 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2162 if (vcpu->arch.pio.guest_pages[i]) {
2163 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2164 vcpu->arch.pio.guest_pages[i] = NULL;
2168 static int pio_copy_data(struct kvm_vcpu *vcpu)
2170 void *p = vcpu->arch.pio_data;
2171 void *q;
2172 unsigned bytes;
2173 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2175 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2176 PAGE_KERNEL);
2177 if (!q) {
2178 free_pio_guest_pages(vcpu);
2179 return -ENOMEM;
2181 q += vcpu->arch.pio.guest_page_offset;
2182 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2183 if (vcpu->arch.pio.in)
2184 memcpy(q, p, bytes);
2185 else
2186 memcpy(p, q, bytes);
2187 q -= vcpu->arch.pio.guest_page_offset;
2188 vunmap(q);
2189 free_pio_guest_pages(vcpu);
2190 return 0;
2193 int complete_pio(struct kvm_vcpu *vcpu)
2195 struct kvm_pio_request *io = &vcpu->arch.pio;
2196 long delta;
2197 int r;
2199 kvm_x86_ops->cache_regs(vcpu);
2201 if (!io->string) {
2202 if (io->in)
2203 memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2204 io->size);
2205 } else {
2206 if (io->in) {
2207 r = pio_copy_data(vcpu);
2208 if (r) {
2209 kvm_x86_ops->cache_regs(vcpu);
2210 return r;
2214 delta = 1;
2215 if (io->rep) {
2216 delta *= io->cur_count;
2218 * The size of the register should really depend on
2219 * current address size.
2221 vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2223 if (io->down)
2224 delta = -delta;
2225 delta *= io->size;
2226 if (io->in)
2227 vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2228 else
2229 vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2232 kvm_x86_ops->decache_regs(vcpu);
2234 io->count -= io->cur_count;
2235 io->cur_count = 0;
2237 return 0;
2240 static void kernel_pio(struct kvm_io_device *pio_dev,
2241 struct kvm_vcpu *vcpu,
2242 void *pd)
2244 /* TODO: String I/O for in kernel device */
2246 mutex_lock(&vcpu->kvm->lock);
2247 if (vcpu->arch.pio.in)
2248 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2249 vcpu->arch.pio.size,
2250 pd);
2251 else
2252 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2253 vcpu->arch.pio.size,
2254 pd);
2255 mutex_unlock(&vcpu->kvm->lock);
2258 static void pio_string_write(struct kvm_io_device *pio_dev,
2259 struct kvm_vcpu *vcpu)
2261 struct kvm_pio_request *io = &vcpu->arch.pio;
2262 void *pd = vcpu->arch.pio_data;
2263 int i;
2265 mutex_lock(&vcpu->kvm->lock);
2266 for (i = 0; i < io->cur_count; i++) {
2267 kvm_iodevice_write(pio_dev, io->port,
2268 io->size,
2269 pd);
2270 pd += io->size;
2272 mutex_unlock(&vcpu->kvm->lock);
2275 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2276 gpa_t addr)
2278 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
2281 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2282 int size, unsigned port)
2284 struct kvm_io_device *pio_dev;
2286 vcpu->run->exit_reason = KVM_EXIT_IO;
2287 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2288 vcpu->run->io.size = vcpu->arch.pio.size = size;
2289 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2290 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2291 vcpu->run->io.port = vcpu->arch.pio.port = port;
2292 vcpu->arch.pio.in = in;
2293 vcpu->arch.pio.string = 0;
2294 vcpu->arch.pio.down = 0;
2295 vcpu->arch.pio.guest_page_offset = 0;
2296 vcpu->arch.pio.rep = 0;
2298 kvm_x86_ops->cache_regs(vcpu);
2299 memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2300 kvm_x86_ops->decache_regs(vcpu);
2302 kvm_x86_ops->skip_emulated_instruction(vcpu);
2304 pio_dev = vcpu_find_pio_dev(vcpu, port);
2305 if (pio_dev) {
2306 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2307 complete_pio(vcpu);
2308 return 1;
2310 return 0;
2312 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2314 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2315 int size, unsigned long count, int down,
2316 gva_t address, int rep, unsigned port)
2318 unsigned now, in_page;
2319 int i, ret = 0;
2320 int nr_pages = 1;
2321 struct page *page;
2322 struct kvm_io_device *pio_dev;
2324 vcpu->run->exit_reason = KVM_EXIT_IO;
2325 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2326 vcpu->run->io.size = vcpu->arch.pio.size = size;
2327 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2328 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2329 vcpu->run->io.port = vcpu->arch.pio.port = port;
2330 vcpu->arch.pio.in = in;
2331 vcpu->arch.pio.string = 1;
2332 vcpu->arch.pio.down = down;
2333 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2334 vcpu->arch.pio.rep = rep;
2336 if (!count) {
2337 kvm_x86_ops->skip_emulated_instruction(vcpu);
2338 return 1;
2341 if (!down)
2342 in_page = PAGE_SIZE - offset_in_page(address);
2343 else
2344 in_page = offset_in_page(address) + size;
2345 now = min(count, (unsigned long)in_page / size);
2346 if (!now) {
2348 * String I/O straddles page boundary. Pin two guest pages
2349 * so that we satisfy atomicity constraints. Do just one
2350 * transaction to avoid complexity.
2352 nr_pages = 2;
2353 now = 1;
2355 if (down) {
2357 * String I/O in reverse. Yuck. Kill the guest, fix later.
2359 pr_unimpl(vcpu, "guest string pio down\n");
2360 kvm_inject_gp(vcpu, 0);
2361 return 1;
2363 vcpu->run->io.count = now;
2364 vcpu->arch.pio.cur_count = now;
2366 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2367 kvm_x86_ops->skip_emulated_instruction(vcpu);
2369 for (i = 0; i < nr_pages; ++i) {
2370 down_read(&vcpu->kvm->slots_lock);
2371 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2372 vcpu->arch.pio.guest_pages[i] = page;
2373 up_read(&vcpu->kvm->slots_lock);
2374 if (!page) {
2375 kvm_inject_gp(vcpu, 0);
2376 free_pio_guest_pages(vcpu);
2377 return 1;
2381 pio_dev = vcpu_find_pio_dev(vcpu, port);
2382 if (!vcpu->arch.pio.in) {
2383 /* string PIO write */
2384 ret = pio_copy_data(vcpu);
2385 if (ret >= 0 && pio_dev) {
2386 pio_string_write(pio_dev, vcpu);
2387 complete_pio(vcpu);
2388 if (vcpu->arch.pio.count == 0)
2389 ret = 1;
2391 } else if (pio_dev)
2392 pr_unimpl(vcpu, "no string pio read support yet, "
2393 "port %x size %d count %ld\n",
2394 port, size, count);
2396 return ret;
2398 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2400 int kvm_arch_init(void *opaque)
2402 int r;
2403 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2405 if (kvm_x86_ops) {
2406 printk(KERN_ERR "kvm: already loaded the other module\n");
2407 r = -EEXIST;
2408 goto out;
2411 if (!ops->cpu_has_kvm_support()) {
2412 printk(KERN_ERR "kvm: no hardware support\n");
2413 r = -EOPNOTSUPP;
2414 goto out;
2416 if (ops->disabled_by_bios()) {
2417 printk(KERN_ERR "kvm: disabled by bios\n");
2418 r = -EOPNOTSUPP;
2419 goto out;
2422 r = kvm_mmu_module_init();
2423 if (r)
2424 goto out;
2426 kvm_init_msr_list();
2428 kvm_x86_ops = ops;
2429 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2430 return 0;
2432 out:
2433 return r;
2436 void kvm_arch_exit(void)
2438 kvm_x86_ops = NULL;
2439 kvm_mmu_module_exit();
2442 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2444 ++vcpu->stat.halt_exits;
2445 if (irqchip_in_kernel(vcpu->kvm)) {
2446 vcpu->arch.mp_state = VCPU_MP_STATE_HALTED;
2447 kvm_vcpu_block(vcpu);
2448 if (vcpu->arch.mp_state != VCPU_MP_STATE_RUNNABLE)
2449 return -EINTR;
2450 return 1;
2451 } else {
2452 vcpu->run->exit_reason = KVM_EXIT_HLT;
2453 return 0;
2456 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2458 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2459 unsigned long a1)
2461 if (is_long_mode(vcpu))
2462 return a0;
2463 else
2464 return a0 | ((gpa_t)a1 << 32);
2467 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2469 unsigned long nr, a0, a1, a2, a3, ret;
2470 int r = 1;
2472 kvm_x86_ops->cache_regs(vcpu);
2474 nr = vcpu->arch.regs[VCPU_REGS_RAX];
2475 a0 = vcpu->arch.regs[VCPU_REGS_RBX];
2476 a1 = vcpu->arch.regs[VCPU_REGS_RCX];
2477 a2 = vcpu->arch.regs[VCPU_REGS_RDX];
2478 a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2480 if (!is_long_mode(vcpu)) {
2481 nr &= 0xFFFFFFFF;
2482 a0 &= 0xFFFFFFFF;
2483 a1 &= 0xFFFFFFFF;
2484 a2 &= 0xFFFFFFFF;
2485 a3 &= 0xFFFFFFFF;
2488 switch (nr) {
2489 case KVM_HC_VAPIC_POLL_IRQ:
2490 ret = 0;
2491 break;
2492 case KVM_HC_MMU_OP:
2493 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2494 break;
2495 default:
2496 ret = -KVM_ENOSYS;
2497 break;
2499 vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2500 kvm_x86_ops->decache_regs(vcpu);
2501 ++vcpu->stat.hypercalls;
2502 return r;
2504 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2506 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2508 char instruction[3];
2509 int ret = 0;
2513 * Blow out the MMU to ensure that no other VCPU has an active mapping
2514 * to ensure that the updated hypercall appears atomically across all
2515 * VCPUs.
2517 kvm_mmu_zap_all(vcpu->kvm);
2519 kvm_x86_ops->cache_regs(vcpu);
2520 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2521 if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2522 != X86EMUL_CONTINUE)
2523 ret = -EFAULT;
2525 return ret;
2528 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2530 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2533 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2535 struct descriptor_table dt = { limit, base };
2537 kvm_x86_ops->set_gdt(vcpu, &dt);
2540 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2542 struct descriptor_table dt = { limit, base };
2544 kvm_x86_ops->set_idt(vcpu, &dt);
2547 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2548 unsigned long *rflags)
2550 kvm_lmsw(vcpu, msw);
2551 *rflags = kvm_x86_ops->get_rflags(vcpu);
2554 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2556 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2557 switch (cr) {
2558 case 0:
2559 return vcpu->arch.cr0;
2560 case 2:
2561 return vcpu->arch.cr2;
2562 case 3:
2563 return vcpu->arch.cr3;
2564 case 4:
2565 return vcpu->arch.cr4;
2566 case 8:
2567 return kvm_get_cr8(vcpu);
2568 default:
2569 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2570 return 0;
2574 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2575 unsigned long *rflags)
2577 switch (cr) {
2578 case 0:
2579 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2580 *rflags = kvm_x86_ops->get_rflags(vcpu);
2581 break;
2582 case 2:
2583 vcpu->arch.cr2 = val;
2584 break;
2585 case 3:
2586 kvm_set_cr3(vcpu, val);
2587 break;
2588 case 4:
2589 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2590 break;
2591 case 8:
2592 kvm_set_cr8(vcpu, val & 0xfUL);
2593 break;
2594 default:
2595 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2599 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2601 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2602 int j, nent = vcpu->arch.cpuid_nent;
2604 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2605 /* when no next entry is found, the current entry[i] is reselected */
2606 for (j = i + 1; j == i; j = (j + 1) % nent) {
2607 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2608 if (ej->function == e->function) {
2609 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2610 return j;
2613 return 0; /* silence gcc, even though control never reaches here */
2616 /* find an entry with matching function, matching index (if needed), and that
2617 * should be read next (if it's stateful) */
2618 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2619 u32 function, u32 index)
2621 if (e->function != function)
2622 return 0;
2623 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2624 return 0;
2625 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2626 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2627 return 0;
2628 return 1;
2631 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2633 int i;
2634 u32 function, index;
2635 struct kvm_cpuid_entry2 *e, *best;
2637 kvm_x86_ops->cache_regs(vcpu);
2638 function = vcpu->arch.regs[VCPU_REGS_RAX];
2639 index = vcpu->arch.regs[VCPU_REGS_RCX];
2640 vcpu->arch.regs[VCPU_REGS_RAX] = 0;
2641 vcpu->arch.regs[VCPU_REGS_RBX] = 0;
2642 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2643 vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2644 best = NULL;
2645 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2646 e = &vcpu->arch.cpuid_entries[i];
2647 if (is_matching_cpuid_entry(e, function, index)) {
2648 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2649 move_to_next_stateful_cpuid_entry(vcpu, i);
2650 best = e;
2651 break;
2654 * Both basic or both extended?
2656 if (((e->function ^ function) & 0x80000000) == 0)
2657 if (!best || e->function > best->function)
2658 best = e;
2660 if (best) {
2661 vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
2662 vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
2663 vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
2664 vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2666 kvm_x86_ops->decache_regs(vcpu);
2667 kvm_x86_ops->skip_emulated_instruction(vcpu);
2669 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2672 * Check if userspace requested an interrupt window, and that the
2673 * interrupt window is open.
2675 * No need to exit to userspace if we already have an interrupt queued.
2677 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2678 struct kvm_run *kvm_run)
2680 return (!vcpu->arch.irq_summary &&
2681 kvm_run->request_interrupt_window &&
2682 vcpu->arch.interrupt_window_open &&
2683 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2686 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2687 struct kvm_run *kvm_run)
2689 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2690 kvm_run->cr8 = kvm_get_cr8(vcpu);
2691 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2692 if (irqchip_in_kernel(vcpu->kvm))
2693 kvm_run->ready_for_interrupt_injection = 1;
2694 else
2695 kvm_run->ready_for_interrupt_injection =
2696 (vcpu->arch.interrupt_window_open &&
2697 vcpu->arch.irq_summary == 0);
2700 static void vapic_enter(struct kvm_vcpu *vcpu)
2702 struct kvm_lapic *apic = vcpu->arch.apic;
2703 struct page *page;
2705 if (!apic || !apic->vapic_addr)
2706 return;
2708 down_read(&current->mm->mmap_sem);
2709 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2710 up_read(&current->mm->mmap_sem);
2712 vcpu->arch.apic->vapic_page = page;
2715 static void vapic_exit(struct kvm_vcpu *vcpu)
2717 struct kvm_lapic *apic = vcpu->arch.apic;
2719 if (!apic || !apic->vapic_addr)
2720 return;
2722 kvm_release_page_dirty(apic->vapic_page);
2723 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2726 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2728 int r;
2730 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
2731 pr_debug("vcpu %d received sipi with vector # %x\n",
2732 vcpu->vcpu_id, vcpu->arch.sipi_vector);
2733 kvm_lapic_reset(vcpu);
2734 r = kvm_x86_ops->vcpu_reset(vcpu);
2735 if (r)
2736 return r;
2737 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
2740 vapic_enter(vcpu);
2742 preempted:
2743 if (vcpu->guest_debug.enabled)
2744 kvm_x86_ops->guest_debug_pre(vcpu);
2746 again:
2747 if (vcpu->requests)
2748 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2749 kvm_mmu_unload(vcpu);
2751 r = kvm_mmu_reload(vcpu);
2752 if (unlikely(r))
2753 goto out;
2755 if (vcpu->requests) {
2756 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2757 __kvm_migrate_apic_timer(vcpu);
2758 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2759 &vcpu->requests)) {
2760 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2761 r = 0;
2762 goto out;
2764 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2765 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2766 r = 0;
2767 goto out;
2771 kvm_inject_pending_timer_irqs(vcpu);
2773 preempt_disable();
2775 kvm_x86_ops->prepare_guest_switch(vcpu);
2776 kvm_load_guest_fpu(vcpu);
2778 local_irq_disable();
2780 if (need_resched()) {
2781 local_irq_enable();
2782 preempt_enable();
2783 r = 1;
2784 goto out;
2787 if (vcpu->requests)
2788 if (test_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) {
2789 local_irq_enable();
2790 preempt_enable();
2791 r = 1;
2792 goto out;
2795 if (signal_pending(current)) {
2796 local_irq_enable();
2797 preempt_enable();
2798 r = -EINTR;
2799 kvm_run->exit_reason = KVM_EXIT_INTR;
2800 ++vcpu->stat.signal_exits;
2801 goto out;
2804 if (vcpu->arch.exception.pending)
2805 __queue_exception(vcpu);
2806 else if (irqchip_in_kernel(vcpu->kvm))
2807 kvm_x86_ops->inject_pending_irq(vcpu);
2808 else
2809 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2811 kvm_lapic_sync_to_vapic(vcpu);
2813 vcpu->guest_mode = 1;
2814 kvm_guest_enter();
2816 if (vcpu->requests)
2817 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2818 kvm_x86_ops->tlb_flush(vcpu);
2820 kvm_x86_ops->run(vcpu, kvm_run);
2822 vcpu->guest_mode = 0;
2823 local_irq_enable();
2825 ++vcpu->stat.exits;
2828 * We must have an instruction between local_irq_enable() and
2829 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2830 * the interrupt shadow. The stat.exits increment will do nicely.
2831 * But we need to prevent reordering, hence this barrier():
2833 barrier();
2835 kvm_guest_exit();
2837 preempt_enable();
2840 * Profile KVM exit RIPs:
2842 if (unlikely(prof_on == KVM_PROFILING)) {
2843 kvm_x86_ops->cache_regs(vcpu);
2844 profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2847 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2848 vcpu->arch.exception.pending = false;
2850 kvm_lapic_sync_from_vapic(vcpu);
2852 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2854 if (r > 0) {
2855 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2856 r = -EINTR;
2857 kvm_run->exit_reason = KVM_EXIT_INTR;
2858 ++vcpu->stat.request_irq_exits;
2859 goto out;
2861 if (!need_resched())
2862 goto again;
2865 out:
2866 if (r > 0) {
2867 kvm_resched(vcpu);
2868 goto preempted;
2871 post_kvm_run_save(vcpu, kvm_run);
2873 vapic_exit(vcpu);
2875 return r;
2878 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2880 int r;
2881 sigset_t sigsaved;
2883 vcpu_load(vcpu);
2885 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2886 kvm_vcpu_block(vcpu);
2887 vcpu_put(vcpu);
2888 return -EAGAIN;
2891 if (vcpu->sigset_active)
2892 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2894 /* re-sync apic's tpr */
2895 if (!irqchip_in_kernel(vcpu->kvm))
2896 kvm_set_cr8(vcpu, kvm_run->cr8);
2898 if (vcpu->arch.pio.cur_count) {
2899 r = complete_pio(vcpu);
2900 if (r)
2901 goto out;
2903 #if CONFIG_HAS_IOMEM
2904 if (vcpu->mmio_needed) {
2905 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2906 vcpu->mmio_read_completed = 1;
2907 vcpu->mmio_needed = 0;
2908 r = emulate_instruction(vcpu, kvm_run,
2909 vcpu->arch.mmio_fault_cr2, 0,
2910 EMULTYPE_NO_DECODE);
2911 if (r == EMULATE_DO_MMIO) {
2913 * Read-modify-write. Back to userspace.
2915 r = 0;
2916 goto out;
2919 #endif
2920 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2921 kvm_x86_ops->cache_regs(vcpu);
2922 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2923 kvm_x86_ops->decache_regs(vcpu);
2926 r = __vcpu_run(vcpu, kvm_run);
2928 out:
2929 if (vcpu->sigset_active)
2930 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2932 vcpu_put(vcpu);
2933 return r;
2936 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2938 vcpu_load(vcpu);
2940 kvm_x86_ops->cache_regs(vcpu);
2942 regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
2943 regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
2944 regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
2945 regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
2946 regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
2947 regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
2948 regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2949 regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
2950 #ifdef CONFIG_X86_64
2951 regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
2952 regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
2953 regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
2954 regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
2955 regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
2956 regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
2957 regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
2958 regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
2959 #endif
2961 regs->rip = vcpu->arch.rip;
2962 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2965 * Don't leak debug flags in case they were set for guest debugging
2967 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2968 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2970 vcpu_put(vcpu);
2972 return 0;
2975 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2977 vcpu_load(vcpu);
2979 vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
2980 vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
2981 vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
2982 vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
2983 vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
2984 vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
2985 vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
2986 vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
2987 #ifdef CONFIG_X86_64
2988 vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
2989 vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
2990 vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
2991 vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
2992 vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
2993 vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
2994 vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
2995 vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
2996 #endif
2998 vcpu->arch.rip = regs->rip;
2999 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3001 kvm_x86_ops->decache_regs(vcpu);
3003 vcpu_put(vcpu);
3005 return 0;
3008 static void get_segment(struct kvm_vcpu *vcpu,
3009 struct kvm_segment *var, int seg)
3011 kvm_x86_ops->get_segment(vcpu, var, seg);
3014 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3016 struct kvm_segment cs;
3018 get_segment(vcpu, &cs, VCPU_SREG_CS);
3019 *db = cs.db;
3020 *l = cs.l;
3022 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3024 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3025 struct kvm_sregs *sregs)
3027 struct descriptor_table dt;
3028 int pending_vec;
3030 vcpu_load(vcpu);
3032 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3033 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3034 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3035 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3036 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3037 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3039 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3040 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3042 kvm_x86_ops->get_idt(vcpu, &dt);
3043 sregs->idt.limit = dt.limit;
3044 sregs->idt.base = dt.base;
3045 kvm_x86_ops->get_gdt(vcpu, &dt);
3046 sregs->gdt.limit = dt.limit;
3047 sregs->gdt.base = dt.base;
3049 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3050 sregs->cr0 = vcpu->arch.cr0;
3051 sregs->cr2 = vcpu->arch.cr2;
3052 sregs->cr3 = vcpu->arch.cr3;
3053 sregs->cr4 = vcpu->arch.cr4;
3054 sregs->cr8 = kvm_get_cr8(vcpu);
3055 sregs->efer = vcpu->arch.shadow_efer;
3056 sregs->apic_base = kvm_get_apic_base(vcpu);
3058 if (irqchip_in_kernel(vcpu->kvm)) {
3059 memset(sregs->interrupt_bitmap, 0,
3060 sizeof sregs->interrupt_bitmap);
3061 pending_vec = kvm_x86_ops->get_irq(vcpu);
3062 if (pending_vec >= 0)
3063 set_bit(pending_vec,
3064 (unsigned long *)sregs->interrupt_bitmap);
3065 } else
3066 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3067 sizeof sregs->interrupt_bitmap);
3069 vcpu_put(vcpu);
3071 return 0;
3074 static void set_segment(struct kvm_vcpu *vcpu,
3075 struct kvm_segment *var, int seg)
3077 kvm_x86_ops->set_segment(vcpu, var, seg);
3080 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3081 struct kvm_sregs *sregs)
3083 int mmu_reset_needed = 0;
3084 int i, pending_vec, max_bits;
3085 struct descriptor_table dt;
3087 vcpu_load(vcpu);
3089 dt.limit = sregs->idt.limit;
3090 dt.base = sregs->idt.base;
3091 kvm_x86_ops->set_idt(vcpu, &dt);
3092 dt.limit = sregs->gdt.limit;
3093 dt.base = sregs->gdt.base;
3094 kvm_x86_ops->set_gdt(vcpu, &dt);
3096 vcpu->arch.cr2 = sregs->cr2;
3097 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3098 vcpu->arch.cr3 = sregs->cr3;
3100 kvm_set_cr8(vcpu, sregs->cr8);
3102 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3103 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3104 kvm_set_apic_base(vcpu, sregs->apic_base);
3106 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3108 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3109 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3110 vcpu->arch.cr0 = sregs->cr0;
3112 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3113 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3114 if (!is_long_mode(vcpu) && is_pae(vcpu))
3115 load_pdptrs(vcpu, vcpu->arch.cr3);
3117 if (mmu_reset_needed)
3118 kvm_mmu_reset_context(vcpu);
3120 if (!irqchip_in_kernel(vcpu->kvm)) {
3121 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3122 sizeof vcpu->arch.irq_pending);
3123 vcpu->arch.irq_summary = 0;
3124 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3125 if (vcpu->arch.irq_pending[i])
3126 __set_bit(i, &vcpu->arch.irq_summary);
3127 } else {
3128 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3129 pending_vec = find_first_bit(
3130 (const unsigned long *)sregs->interrupt_bitmap,
3131 max_bits);
3132 /* Only pending external irq is handled here */
3133 if (pending_vec < max_bits) {
3134 kvm_x86_ops->set_irq(vcpu, pending_vec);
3135 pr_debug("Set back pending irq %d\n",
3136 pending_vec);
3140 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3141 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3142 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3143 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3144 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3145 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3147 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3148 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3150 vcpu_put(vcpu);
3152 return 0;
3155 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3156 struct kvm_debug_guest *dbg)
3158 int r;
3160 vcpu_load(vcpu);
3162 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3164 vcpu_put(vcpu);
3166 return r;
3170 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3171 * we have asm/x86/processor.h
3173 struct fxsave {
3174 u16 cwd;
3175 u16 swd;
3176 u16 twd;
3177 u16 fop;
3178 u64 rip;
3179 u64 rdp;
3180 u32 mxcsr;
3181 u32 mxcsr_mask;
3182 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3183 #ifdef CONFIG_X86_64
3184 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3185 #else
3186 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3187 #endif
3191 * Translate a guest virtual address to a guest physical address.
3193 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3194 struct kvm_translation *tr)
3196 unsigned long vaddr = tr->linear_address;
3197 gpa_t gpa;
3199 vcpu_load(vcpu);
3200 down_read(&vcpu->kvm->slots_lock);
3201 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3202 up_read(&vcpu->kvm->slots_lock);
3203 tr->physical_address = gpa;
3204 tr->valid = gpa != UNMAPPED_GVA;
3205 tr->writeable = 1;
3206 tr->usermode = 0;
3207 vcpu_put(vcpu);
3209 return 0;
3212 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3214 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3216 vcpu_load(vcpu);
3218 memcpy(fpu->fpr, fxsave->st_space, 128);
3219 fpu->fcw = fxsave->cwd;
3220 fpu->fsw = fxsave->swd;
3221 fpu->ftwx = fxsave->twd;
3222 fpu->last_opcode = fxsave->fop;
3223 fpu->last_ip = fxsave->rip;
3224 fpu->last_dp = fxsave->rdp;
3225 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3227 vcpu_put(vcpu);
3229 return 0;
3232 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3234 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3236 vcpu_load(vcpu);
3238 memcpy(fxsave->st_space, fpu->fpr, 128);
3239 fxsave->cwd = fpu->fcw;
3240 fxsave->swd = fpu->fsw;
3241 fxsave->twd = fpu->ftwx;
3242 fxsave->fop = fpu->last_opcode;
3243 fxsave->rip = fpu->last_ip;
3244 fxsave->rdp = fpu->last_dp;
3245 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3247 vcpu_put(vcpu);
3249 return 0;
3252 void fx_init(struct kvm_vcpu *vcpu)
3254 unsigned after_mxcsr_mask;
3256 /* Initialize guest FPU by resetting ours and saving into guest's */
3257 preempt_disable();
3258 fx_save(&vcpu->arch.host_fx_image);
3259 fpu_init();
3260 fx_save(&vcpu->arch.guest_fx_image);
3261 fx_restore(&vcpu->arch.host_fx_image);
3262 preempt_enable();
3264 vcpu->arch.cr0 |= X86_CR0_ET;
3265 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3266 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3267 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3268 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3270 EXPORT_SYMBOL_GPL(fx_init);
3272 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3274 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3275 return;
3277 vcpu->guest_fpu_loaded = 1;
3278 fx_save(&vcpu->arch.host_fx_image);
3279 fx_restore(&vcpu->arch.guest_fx_image);
3281 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3283 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3285 if (!vcpu->guest_fpu_loaded)
3286 return;
3288 vcpu->guest_fpu_loaded = 0;
3289 fx_save(&vcpu->arch.guest_fx_image);
3290 fx_restore(&vcpu->arch.host_fx_image);
3291 ++vcpu->stat.fpu_reload;
3293 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3295 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3297 kvm_x86_ops->vcpu_free(vcpu);
3300 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3301 unsigned int id)
3303 return kvm_x86_ops->vcpu_create(kvm, id);
3306 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3308 int r;
3310 /* We do fxsave: this must be aligned. */
3311 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3313 vcpu_load(vcpu);
3314 r = kvm_arch_vcpu_reset(vcpu);
3315 if (r == 0)
3316 r = kvm_mmu_setup(vcpu);
3317 vcpu_put(vcpu);
3318 if (r < 0)
3319 goto free_vcpu;
3321 return 0;
3322 free_vcpu:
3323 kvm_x86_ops->vcpu_free(vcpu);
3324 return r;
3327 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3329 vcpu_load(vcpu);
3330 kvm_mmu_unload(vcpu);
3331 vcpu_put(vcpu);
3333 kvm_x86_ops->vcpu_free(vcpu);
3336 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
3338 return kvm_x86_ops->vcpu_reset(vcpu);
3341 void kvm_arch_hardware_enable(void *garbage)
3343 kvm_x86_ops->hardware_enable(garbage);
3346 void kvm_arch_hardware_disable(void *garbage)
3348 kvm_x86_ops->hardware_disable(garbage);
3351 int kvm_arch_hardware_setup(void)
3353 return kvm_x86_ops->hardware_setup();
3356 void kvm_arch_hardware_unsetup(void)
3358 kvm_x86_ops->hardware_unsetup();
3361 void kvm_arch_check_processor_compat(void *rtn)
3363 kvm_x86_ops->check_processor_compatibility(rtn);
3366 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
3368 struct page *page;
3369 struct kvm *kvm;
3370 int r;
3372 BUG_ON(vcpu->kvm == NULL);
3373 kvm = vcpu->kvm;
3375 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3376 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3377 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
3378 else
3379 vcpu->arch.mp_state = VCPU_MP_STATE_UNINITIALIZED;
3381 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3382 if (!page) {
3383 r = -ENOMEM;
3384 goto fail;
3386 vcpu->arch.pio_data = page_address(page);
3388 r = kvm_mmu_create(vcpu);
3389 if (r < 0)
3390 goto fail_free_pio_data;
3392 if (irqchip_in_kernel(kvm)) {
3393 r = kvm_create_lapic(vcpu);
3394 if (r < 0)
3395 goto fail_mmu_destroy;
3398 return 0;
3400 fail_mmu_destroy:
3401 kvm_mmu_destroy(vcpu);
3402 fail_free_pio_data:
3403 free_page((unsigned long)vcpu->arch.pio_data);
3404 fail:
3405 return r;
3408 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
3410 kvm_free_lapic(vcpu);
3411 kvm_mmu_destroy(vcpu);
3412 free_page((unsigned long)vcpu->arch.pio_data);
3415 struct kvm *kvm_arch_create_vm(void)
3417 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
3419 if (!kvm)
3420 return ERR_PTR(-ENOMEM);
3422 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3424 return kvm;
3427 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
3429 vcpu_load(vcpu);
3430 kvm_mmu_unload(vcpu);
3431 vcpu_put(vcpu);
3434 static void kvm_free_vcpus(struct kvm *kvm)
3436 unsigned int i;
3439 * Unpin any mmu pages first.
3441 for (i = 0; i < KVM_MAX_VCPUS; ++i)
3442 if (kvm->vcpus[i])
3443 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
3444 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3445 if (kvm->vcpus[i]) {
3446 kvm_arch_vcpu_free(kvm->vcpus[i]);
3447 kvm->vcpus[i] = NULL;
3453 void kvm_arch_destroy_vm(struct kvm *kvm)
3455 kvm_free_pit(kvm);
3456 kfree(kvm->arch.vpic);
3457 kfree(kvm->arch.vioapic);
3458 kvm_free_vcpus(kvm);
3459 kvm_free_physmem(kvm);
3460 kfree(kvm);
3463 int kvm_arch_set_memory_region(struct kvm *kvm,
3464 struct kvm_userspace_memory_region *mem,
3465 struct kvm_memory_slot old,
3466 int user_alloc)
3468 int npages = mem->memory_size >> PAGE_SHIFT;
3469 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
3471 /*To keep backward compatibility with older userspace,
3472 *x86 needs to hanlde !user_alloc case.
3474 if (!user_alloc) {
3475 if (npages && !old.rmap) {
3476 down_write(&current->mm->mmap_sem);
3477 memslot->userspace_addr = do_mmap(NULL, 0,
3478 npages * PAGE_SIZE,
3479 PROT_READ | PROT_WRITE,
3480 MAP_SHARED | MAP_ANONYMOUS,
3482 up_write(&current->mm->mmap_sem);
3484 if (IS_ERR((void *)memslot->userspace_addr))
3485 return PTR_ERR((void *)memslot->userspace_addr);
3486 } else {
3487 if (!old.user_alloc && old.rmap) {
3488 int ret;
3490 down_write(&current->mm->mmap_sem);
3491 ret = do_munmap(current->mm, old.userspace_addr,
3492 old.npages * PAGE_SIZE);
3493 up_write(&current->mm->mmap_sem);
3494 if (ret < 0)
3495 printk(KERN_WARNING
3496 "kvm_vm_ioctl_set_memory_region: "
3497 "failed to munmap memory\n");
3502 if (!kvm->arch.n_requested_mmu_pages) {
3503 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
3504 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
3507 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
3508 kvm_flush_remote_tlbs(kvm);
3510 return 0;
3513 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
3515 return vcpu->arch.mp_state == VCPU_MP_STATE_RUNNABLE
3516 || vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED;
3519 static void vcpu_kick_intr(void *info)
3521 #ifdef DEBUG
3522 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
3523 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
3524 #endif
3527 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3529 int ipi_pcpu = vcpu->cpu;
3531 if (waitqueue_active(&vcpu->wq)) {
3532 wake_up_interruptible(&vcpu->wq);
3533 ++vcpu->stat.halt_wakeup;
3535 if (vcpu->guest_mode)
3536 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);