4 | The entry point sSIN computes the sine of an input argument
5 | sCOS computes the cosine, and sSINCOS computes both. The
6 | corresponding entry points with a "d" computes the same
7 | corresponding function values for denormalized inputs.
9 | Input: Double-extended number X in location pointed to
10 | by address register a0.
12 | Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or
13 | COS is requested. Otherwise, for SINCOS, sin(X) is returned
14 | in Fp0, and cos(X) is returned in Fp1.
16 | Modifies: Fp0 for SIN or COS; both Fp0 and Fp1 for SINCOS.
18 | Accuracy and Monotonicity: The returned result is within 1 ulp in
19 | 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
20 | result is subsequently rounded to double precision. The
21 | result is provably monotonic in double precision.
23 | Speed: The programs sSIN and sCOS take approximately 150 cycles for
24 | input argument X such that |X| < 15Pi, which is the usual
25 | situation. The speed for sSINCOS is approximately 190 cycles.
30 | 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1.
32 | 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7.
34 | 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
35 | k = N mod 4, so in particular, k = 0,1,2,or 3. Overwrite
38 | 4. If k is even, go to 6.
40 | 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. Return sgn*cos(r)
41 | where cos(r) is approximated by an even polynomial in r,
42 | 1 + r*r*(B1+s*(B2+ ... + s*B8)), s = r*r.
45 | 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r)
46 | where sin(r) is approximated by an odd polynomial in r
47 | r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r.
50 | 7. If |X| > 1, go to 9.
52 | 8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1.
54 | 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3.
57 | 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
59 | 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
60 | k = N mod 4, so in particular, k = 0,1,2,or 3.
62 | 3. If k is even, go to 5.
64 | 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), i.e.
65 | j1 exclusive or with the l.s.b. of k.
66 | sgn1 := (-1)**j1, sgn2 := (-1)**j2.
67 | SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where
68 | sin(r) and cos(r) are computed as odd and even polynomials
69 | in r, respectively. Exit
71 | 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1.
72 | SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where
73 | sin(r) and cos(r) are computed as odd and even polynomials
74 | in r, respectively. Exit
76 | 6. If |X| > 1, go to 8.
78 | 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit.
80 | 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
83 | Copyright (C) Motorola, Inc. 1990
86 | For details on the license for this file, please see the
87 | file, README, in this same directory.
89 |SSIN idnt 2,1 | Motorola 040 Floating Point Software Package
95 BOUNDS1: .long 0x3FD78000,0x4004BC7E
96 TWOBYPI: .long 0x3FE45F30,0x6DC9C883
98 SINA7: .long 0xBD6AAA77,0xCCC994F5
99 SINA6: .long 0x3DE61209,0x7AAE8DA1
101 SINA5: .long 0xBE5AE645,0x2A118AE4
102 SINA4: .long 0x3EC71DE3,0xA5341531
104 SINA3: .long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000
106 SINA2: .long 0x3FF80000,0x88888888,0x888859AF,0x00000000
108 SINA1: .long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000
110 COSB8: .long 0x3D2AC4D0,0xD6011EE3
111 COSB7: .long 0xBDA9396F,0x9F45AC19
113 COSB6: .long 0x3E21EED9,0x0612C972
114 COSB5: .long 0xBE927E4F,0xB79D9FCF
116 COSB4: .long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000
118 COSB3: .long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000
120 COSB2: .long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E
121 COSB1: .long 0xBF000000
123 INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A
125 TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
126 TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
153 |--SIN(X) = X FOR DENORMALIZED X
158 |--COS(X) = 1 FOR DENORMALIZED X
160 fmoves #0x3F800000,%fp0
162 | 9D25B Fix: Sometimes the previous fmove.s sets fpsr bits
180 |--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE
182 fmovex (%a0),%fp0 | ...LOAD INPUT
187 andil #0x7FFFFFFF,%d0 | ...COMPACTIFY X
189 cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)?
194 cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI?
199 |--THIS IS THE USUAL CASE, |X| <= 15 PI.
200 |--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
202 fmuld TWOBYPI,%fp1 | ...X*2/PI
204 |--HIDE THE NEXT THREE INSTRUCTIONS
205 lea PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
209 fmovel %fp1,N(%a6) | ...CONVERT TO INTEGER
213 addal %d0,%a1 | ...A1 IS THE ADDRESS OF N*PIBY2
214 | ...WHICH IS IN TWO PIECES Y1 & Y2
216 fsubx (%a1)+,%fp0 | ...X-Y1
218 fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2
221 |--continuation from REDUCEX
223 |--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED
225 addl ADJN(%a6),%d0 | ...SEE IF D0 IS ODD OR EVEN
226 rorl #1,%d0 | ...D0 WAS ODD IFF D0 IS NEGATIVE
231 |--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
232 |--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
233 |--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE
234 |--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS
235 |--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])
237 |--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION
238 |--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT.
239 fmovex %fp0,X(%a6) | ...X IS R
240 fmulx %fp0,%fp0 | ...FP0 IS S
241 |---HIDE THE NEXT TWO WHILE WAITING FOR FP0
246 fmulx %fp1,%fp1 | ...FP1 IS T
247 |--HIDE THE NEXT TWO WHILE WAITING FOR FP1
250 andil #0x80000000,%d0
251 | ...LEAST SIG. BIT OF D0 IN SIGN POSITION
252 eorl %d0,X(%a6) | ...X IS NOW R'= SGN*R
254 fmulx %fp1,%fp3 | ...TA7
255 fmulx %fp1,%fp2 | ...TA6
257 faddd SINA5,%fp3 | ...A5+TA7
258 faddd SINA4,%fp2 | ...A4+TA6
260 fmulx %fp1,%fp3 | ...T(A5+TA7)
261 fmulx %fp1,%fp2 | ...T(A4+TA6)
263 faddd SINA3,%fp3 | ...A3+T(A5+TA7)
264 faddx SINA2,%fp2 | ...A2+T(A4+TA6)
266 fmulx %fp3,%fp1 | ...T(A3+T(A5+TA7))
268 fmulx %fp0,%fp2 | ...S(A2+T(A4+TA6))
269 faddx SINA1,%fp1 | ...A1+T(A3+T(A5+TA7))
270 fmulx X(%a6),%fp0 | ...R'*S
272 faddx %fp2,%fp1 | ...[A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]
273 |--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
274 |--FP2 RELEASED, RESTORE NOW AND TAKE FULL ADVANTAGE OF HIDING
277 fmulx %fp1,%fp0 | ...SIN(R')-R'
280 fmovel %d1,%FPCR |restore users exceptions
281 faddx X(%a6),%fp0 |last inst - possible exception set
286 |--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
287 |--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY
288 |--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE
289 |--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS
290 |--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])
292 |--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION
293 |--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2
294 |--AND IS THEREFORE STORED AS SINGLE PRECISION.
296 fmulx %fp0,%fp0 | ...FP0 IS S
297 |---HIDE THE NEXT TWO WHILE WAITING FOR FP0
302 fmulx %fp1,%fp1 | ...FP1 IS T
303 |--HIDE THE NEXT TWO WHILE WAITING FOR FP1
304 fmovex %fp0,X(%a6) | ...X IS S
306 andil #0x80000000,%d0
307 | ...LEAST SIG. BIT OF D0 IN SIGN POSITION
309 fmulx %fp1,%fp2 | ...TB8
310 |--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
311 eorl %d0,X(%a6) | ...X IS NOW S'= SGN*S
312 andil #0x80000000,%d0
314 fmulx %fp1,%fp3 | ...TB7
315 |--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
316 oril #0x3F800000,%d0 | ...D0 IS SGN IN SINGLE
317 movel %d0,POSNEG1(%a6)
319 faddd COSB6,%fp2 | ...B6+TB8
320 faddd COSB5,%fp3 | ...B5+TB7
322 fmulx %fp1,%fp2 | ...T(B6+TB8)
323 fmulx %fp1,%fp3 | ...T(B5+TB7)
325 faddd COSB4,%fp2 | ...B4+T(B6+TB8)
326 faddx COSB3,%fp3 | ...B3+T(B5+TB7)
328 fmulx %fp1,%fp2 | ...T(B4+T(B6+TB8))
329 fmulx %fp3,%fp1 | ...T(B3+T(B5+TB7))
331 faddx COSB2,%fp2 | ...B2+T(B4+T(B6+TB8))
332 fadds COSB1,%fp1 | ...B1+T(B3+T(B5+TB7))
334 fmulx %fp2,%fp0 | ...S(B2+T(B4+T(B6+TB8)))
335 |--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
344 fmovel %d1,%FPCR |restore users exceptions
345 fadds POSNEG1(%a6),%fp0 |last inst - possible exception set
350 |--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
351 |--IF |X| < 2**(-40), RETURN X OR 1.
352 cmpil #0x3FFF8000,%d0
362 movew #0x0000,XDCARE(%a6) | ...JUST IN CASE
363 fmovel %d1,%FPCR |restore users exceptions
364 fmovex X(%a6),%fp0 |last inst - possible exception set
369 fmoves #0x3F800000,%fp0
371 fmovel %d1,%FPCR |restore users exceptions
372 fsubs #0x00800000,%fp0 |last inst - possible exception set
377 |--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
378 |--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
379 |--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
381 fmovemx %fp2-%fp5,-(%a7) | ...save FP2 through FP5
383 fmoves #0x00000000,%fp1
384 |--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
385 |--there is a danger of unwanted overflow in first LOOP iteration. In this
386 |--case, reduce argument by one remainder step to make subsequent reduction
388 cmpil #0x7ffeffff,%d0 |is argument dangerously large?
390 movel #0x7ffe0000,FP_SCR2(%a6) |yes
391 | ;create 2**16383*PI/2
392 movel #0xc90fdaa2,FP_SCR2+4(%a6)
394 ftstx %fp0 |test sign of argument
395 movel #0x7fdc0000,FP_SCR3(%a6) |create low half of 2**16383*
397 movel #0x85a308d3,FP_SCR3+4(%a6)
400 orw #0x8000,FP_SCR2(%a6) |positive arg
401 orw #0x8000,FP_SCR3(%a6)
403 faddx FP_SCR2(%a6),%fp0 |high part of reduction is exact
404 fmovex %fp0,%fp1 |save high result in fp1
405 faddx FP_SCR3(%a6),%fp0 |low part of reduction
406 fsubx %fp0,%fp1 |determine low component of result
407 faddx FP_SCR3(%a6),%fp1 |fp0/fp1 are reduced argument.
409 |--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
410 |--integer quotient will be stored in N
411 |--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)
414 fmovex %fp0,INARG(%a6) | ...+-2**K * F, 1 <= F < 2
416 movel %d0,%a1 | ...save a copy of D0
417 andil #0x00007FFF,%d0
418 subil #0x00003FFF,%d0 | ...D0 IS K
422 subil #27,%d0 | ...D0 IS L := K-27
423 movel #0,ENDFLAG(%a6)
426 clrl %d0 | ...D0 IS L := 0
427 movel #1,ENDFLAG(%a6)
430 |--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
431 |--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
433 |--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
434 |--2**L * (PIby2_1), 2**L * (PIby2_2)
436 movel #0x00003FFE,%d2 | ...BIASED EXPO OF 2/PI
437 subl %d0,%d2 | ...BIASED EXPO OF 2**(-L)*(2/PI)
439 movel #0xA2F9836E,FP_SCR1+4(%a6)
440 movel #0x4E44152A,FP_SCR1+8(%a6)
441 movew %d2,FP_SCR1(%a6) | ...FP_SCR1 is 2**(-L)*(2/PI)
444 fmulx FP_SCR1(%a6),%fp2
445 |--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
446 |--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
447 |--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
448 |--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
449 |--US THE DESIRED VALUE IN FLOATING POINT.
451 |--HIDE SIX CYCLES OF INSTRUCTION
454 andil #0x80000000,%d2
455 oril #0x5F000000,%d2 | ...D2 IS SIGN(INARG)*2**63 IN SGL
456 movel %d2,TWOTO63(%a6)
459 addil #0x00003FFF,%d2 | ...BIASED EXPO OF 2**L * (PI/2)
462 fadds TWOTO63(%a6),%fp2 | ...THE FRACTIONAL PART OF FP1 IS ROUNDED
464 |--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2
465 movew %d2,FP_SCR2(%a6)
467 movel #0xC90FDAA2,FP_SCR2+4(%a6)
468 clrl FP_SCR2+8(%a6) | ...FP_SCR2 is 2**(L) * Piby2_1
471 fsubs TWOTO63(%a6),%fp2 | ...FP2 is N
473 addil #0x00003FDD,%d0
474 movew %d0,FP_SCR3(%a6)
476 movel #0x85A308D3,FP_SCR3+4(%a6)
477 clrl FP_SCR3+8(%a6) | ...FP_SCR3 is 2**(L) * Piby2_2
479 movel ENDFLAG(%a6),%d0
481 |--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
482 |--P2 = 2**(L) * Piby2_2
484 fmulx FP_SCR2(%a6),%fp4 | ...W = N*P1
486 fmulx FP_SCR3(%a6),%fp5 | ...w = N*P2
488 |--we want P+p = W+w but |p| <= half ulp of P
489 |--Then, we need to compute A := R-P and a := r-p
490 faddx %fp5,%fp3 | ...FP3 is P
491 fsubx %fp3,%fp4 | ...W-P
493 fsubx %fp3,%fp0 | ...FP0 is A := R - P
494 faddx %fp5,%fp4 | ...FP4 is p = (W-P)+w
496 fmovex %fp0,%fp3 | ...FP3 A
497 fsubx %fp4,%fp1 | ...FP1 is a := r - p
499 |--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
500 |--|r| <= half ulp of R.
501 faddx %fp1,%fp0 | ...FP0 is R := A+a
502 |--No need to calculate r if this is the last loop
506 |--Need to calculate r
507 fsubx %fp0,%fp3 | ...A-R
508 faddx %fp3,%fp1 | ...FP1 is r := (A-R)+a
514 fmovemx (%a7)+,%fp2-%fp5
525 |--SIN AND COS OF X FOR DENORMALIZED X
527 fmoves #0x3F800000,%fp1
528 bsr sto_cos |store cosine result
536 fmovex (%a0),%fp0 | ...LOAD INPUT
541 andil #0x7FFFFFFF,%d0 | ...COMPACTIFY X
543 cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)?
548 cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI?
554 |--THIS IS THE USUAL CASE, |X| <= 15 PI.
555 |--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
557 fmuld TWOBYPI,%fp1 | ...X*2/PI
559 |--HIDE THE NEXT THREE INSTRUCTIONS
560 lea PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
564 fmovel %fp1,N(%a6) | ...CONVERT TO INTEGER
568 addal %d0,%a1 | ...ADDRESS OF N*PIBY2, IN Y1, Y2
570 fsubx (%a1)+,%fp0 | ...X-Y1
571 fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2
574 |--continuation point from REDUCEX
580 cmpil #0,%d0 | ...D0 < 0 IFF N IS ODD
584 |--REGISTERS SAVED SO FAR: D0, A0, FP2.
586 fmovex %fp0,RPRIME(%a6)
587 fmulx %fp0,%fp0 | ...FP0 IS S = R*R
588 fmoved SINA7,%fp1 | ...A7
589 fmoved COSB8,%fp2 | ...B8
590 fmulx %fp0,%fp1 | ...SA7
593 fmulx %fp0,%fp2 | ...SB8
595 andil #0x80000000,%d2
597 faddd SINA6,%fp1 | ...A6+SA7
599 andil #0x80000000,%d2
600 faddd COSB7,%fp2 | ...B7+SB8
602 fmulx %fp0,%fp1 | ...S(A6+SA7)
605 fmulx %fp0,%fp2 | ...S(B7+SB8)
607 andil #0x80000000,%d0
609 faddd SINA5,%fp1 | ...A5+S(A6+SA7)
610 movel #0x3F800000,POSNEG1(%a6)
611 eorl %d0,POSNEG1(%a6)
612 faddd COSB6,%fp2 | ...B6+S(B7+SB8)
614 fmulx %fp0,%fp1 | ...S(A5+S(A6+SA7))
615 fmulx %fp0,%fp2 | ...S(B6+S(B7+SB8))
616 fmovex %fp0,SPRIME(%a6)
618 faddd SINA4,%fp1 | ...A4+S(A5+S(A6+SA7))
620 faddd COSB5,%fp2 | ...B5+S(B6+S(B7+SB8))
622 fmulx %fp0,%fp1 | ...S(A4+...)
623 fmulx %fp0,%fp2 | ...S(B5+...)
625 faddd SINA3,%fp1 | ...A3+S(A4+...)
626 faddd COSB4,%fp2 | ...B4+S(B5+...)
628 fmulx %fp0,%fp1 | ...S(A3+...)
629 fmulx %fp0,%fp2 | ...S(B4+...)
631 faddx SINA2,%fp1 | ...A2+S(A3+...)
632 faddx COSB3,%fp2 | ...B3+S(B4+...)
634 fmulx %fp0,%fp1 | ...S(A2+...)
635 fmulx %fp0,%fp2 | ...S(B3+...)
637 faddx SINA1,%fp1 | ...A1+S(A2+...)
638 faddx COSB2,%fp2 | ...B2+S(B3+...)
640 fmulx %fp0,%fp1 | ...S(A1+...)
641 fmulx %fp2,%fp0 | ...S(B2+...)
645 fmulx RPRIME(%a6),%fp1 | ...R'S(A1+...)
646 fadds COSB1,%fp0 | ...B1+S(B2...)
647 fmulx SPRIME(%a6),%fp0 | ...S'(B1+S(B2+...))
649 movel %d1,-(%sp) |restore users mode & precision
650 andil #0xff,%d1 |mask off all exceptions
652 faddx RPRIME(%a6),%fp1 | ...COS(X)
653 bsr sto_cos |store cosine result
654 fmovel (%sp)+,%FPCR |restore users exceptions
655 fadds POSNEG1(%a6),%fp0 | ...SIN(X)
661 |--REGISTERS SAVED SO FAR: FP2.
663 fmovex %fp0,RPRIME(%a6)
664 fmulx %fp0,%fp0 | ...FP0 IS S = R*R
665 fmoved COSB8,%fp1 | ...B8
666 fmoved SINA7,%fp2 | ...A7
667 fmulx %fp0,%fp1 | ...SB8
668 fmovex %fp0,SPRIME(%a6)
669 fmulx %fp0,%fp2 | ...SA7
671 andil #0x80000000,%d0
672 faddd COSB7,%fp1 | ...B7+SB8
673 faddd SINA6,%fp2 | ...A6+SA7
676 fmulx %fp0,%fp1 | ...S(B7+SB8)
678 movel %d0,POSNEG1(%a6)
679 fmulx %fp0,%fp2 | ...S(A6+SA7)
681 faddd COSB6,%fp1 | ...B6+S(B7+SB8)
682 faddd SINA5,%fp2 | ...A5+S(A6+SA7)
684 fmulx %fp0,%fp1 | ...S(B6+S(B7+SB8))
685 fmulx %fp0,%fp2 | ...S(A5+S(A6+SA7))
687 faddd COSB5,%fp1 | ...B5+S(B6+S(B7+SB8))
688 faddd SINA4,%fp2 | ...A4+S(A5+S(A6+SA7))
690 fmulx %fp0,%fp1 | ...S(B5+...)
691 fmulx %fp0,%fp2 | ...S(A4+...)
693 faddd COSB4,%fp1 | ...B4+S(B5+...)
694 faddd SINA3,%fp2 | ...A3+S(A4+...)
696 fmulx %fp0,%fp1 | ...S(B4+...)
697 fmulx %fp0,%fp2 | ...S(A3+...)
699 faddx COSB3,%fp1 | ...B3+S(B4+...)
700 faddx SINA2,%fp2 | ...A2+S(A3+...)
702 fmulx %fp0,%fp1 | ...S(B3+...)
703 fmulx %fp0,%fp2 | ...S(A2+...)
705 faddx COSB2,%fp1 | ...B2+S(B3+...)
706 faddx SINA1,%fp2 | ...A1+S(A2+...)
708 fmulx %fp0,%fp1 | ...S(B2+...)
709 fmulx %fp2,%fp0 | ...s(a1+...)
713 fadds COSB1,%fp1 | ...B1+S(B2...)
714 fmulx RPRIME(%a6),%fp0 | ...R'S(A1+...)
715 fmulx SPRIME(%a6),%fp1 | ...S'(B1+S(B2+...))
717 movel %d1,-(%sp) |save users mode & precision
718 andil #0xff,%d1 |mask off all exceptions
720 fadds POSNEG1(%a6),%fp1 | ...COS(X)
721 bsr sto_cos |store cosine result
722 fmovel (%sp)+,%FPCR |restore users exceptions
723 faddx RPRIME(%a6),%fp0 | ...SIN(X)
728 cmpil #0x3FFF8000,%d0
733 movew #0x0000,XDCARE(%a6)
734 fmoves #0x3F800000,%fp1
736 movel %d1,-(%sp) |save users mode & precision
737 andil #0xff,%d1 |mask off all exceptions
739 fsubs #0x00800000,%fp1
740 bsr sto_cos |store cosine result
741 fmovel (%sp)+,%FPCR |restore users exceptions