2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63 #include <linux/kthread.h>
65 #include <linux/atomic.h>
67 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
68 #define CSS_DEACT_BIAS INT_MIN
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
86 static DEFINE_MUTEX(cgroup_mutex
);
87 static DEFINE_MUTEX(cgroup_root_mutex
);
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
91 * populated with the built in subsystems, and modular subsystems are
92 * registered after that. The mutable section of this array is protected by
95 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
96 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
97 static struct cgroup_subsys
*subsys
[CGROUP_SUBSYS_COUNT
] = {
98 #include <linux/cgroup_subsys.h>
101 #define MAX_CGROUP_ROOT_NAMELEN 64
104 * A cgroupfs_root represents the root of a cgroup hierarchy,
105 * and may be associated with a superblock to form an active
108 struct cgroupfs_root
{
109 struct super_block
*sb
;
112 * The bitmask of subsystems intended to be attached to this
115 unsigned long subsys_mask
;
117 /* Unique id for this hierarchy. */
120 /* The bitmask of subsystems currently attached to this hierarchy */
121 unsigned long actual_subsys_mask
;
123 /* A list running through the attached subsystems */
124 struct list_head subsys_list
;
126 /* The root cgroup for this hierarchy */
127 struct cgroup top_cgroup
;
129 /* Tracks how many cgroups are currently defined in hierarchy.*/
130 int number_of_cgroups
;
132 /* A list running through the active hierarchies */
133 struct list_head root_list
;
135 /* All cgroups on this root, cgroup_mutex protected */
136 struct list_head allcg_list
;
138 /* Hierarchy-specific flags */
141 /* The path to use for release notifications. */
142 char release_agent_path
[PATH_MAX
];
144 /* The name for this hierarchy - may be empty */
145 char name
[MAX_CGROUP_ROOT_NAMELEN
];
149 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
150 * subsystems that are otherwise unattached - it never has more than a
151 * single cgroup, and all tasks are part of that cgroup.
153 static struct cgroupfs_root rootnode
;
156 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
159 struct list_head node
;
160 struct dentry
*dentry
;
165 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
166 * cgroup_subsys->use_id != 0.
168 #define CSS_ID_MAX (65535)
171 * The css to which this ID points. This pointer is set to valid value
172 * after cgroup is populated. If cgroup is removed, this will be NULL.
173 * This pointer is expected to be RCU-safe because destroy()
174 * is called after synchronize_rcu(). But for safe use, css_is_removed()
175 * css_tryget() should be used for avoiding race.
177 struct cgroup_subsys_state __rcu
*css
;
183 * Depth in hierarchy which this ID belongs to.
185 unsigned short depth
;
187 * ID is freed by RCU. (and lookup routine is RCU safe.)
189 struct rcu_head rcu_head
;
191 * Hierarchy of CSS ID belongs to.
193 unsigned short stack
[0]; /* Array of Length (depth+1) */
197 * cgroup_event represents events which userspace want to receive.
199 struct cgroup_event
{
201 * Cgroup which the event belongs to.
205 * Control file which the event associated.
209 * eventfd to signal userspace about the event.
211 struct eventfd_ctx
*eventfd
;
213 * Each of these stored in a list by the cgroup.
215 struct list_head list
;
217 * All fields below needed to unregister event when
218 * userspace closes eventfd.
221 wait_queue_head_t
*wqh
;
223 struct work_struct remove
;
226 /* The list of hierarchy roots */
228 static LIST_HEAD(roots
);
229 static int root_count
;
231 static DEFINE_IDA(hierarchy_ida
);
232 static int next_hierarchy_id
;
233 static DEFINE_SPINLOCK(hierarchy_id_lock
);
235 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
236 #define dummytop (&rootnode.top_cgroup)
238 /* This flag indicates whether tasks in the fork and exit paths should
239 * check for fork/exit handlers to call. This avoids us having to do
240 * extra work in the fork/exit path if none of the subsystems need to
243 static int need_forkexit_callback __read_mostly
;
245 #ifdef CONFIG_PROVE_LOCKING
246 int cgroup_lock_is_held(void)
248 return lockdep_is_held(&cgroup_mutex
);
250 #else /* #ifdef CONFIG_PROVE_LOCKING */
251 int cgroup_lock_is_held(void)
253 return mutex_is_locked(&cgroup_mutex
);
255 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
257 EXPORT_SYMBOL_GPL(cgroup_lock_is_held
);
259 static int css_unbias_refcnt(int refcnt
)
261 return refcnt
>= 0 ? refcnt
: refcnt
- CSS_DEACT_BIAS
;
264 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
265 static int css_refcnt(struct cgroup_subsys_state
*css
)
267 int v
= atomic_read(&css
->refcnt
);
269 return css_unbias_refcnt(v
);
272 /* convenient tests for these bits */
273 inline int cgroup_is_removed(const struct cgroup
*cgrp
)
275 return test_bit(CGRP_REMOVED
, &cgrp
->flags
);
278 /* bits in struct cgroupfs_root flags field */
280 ROOT_NOPREFIX
, /* mounted subsystems have no named prefix */
281 ROOT_XATTR
, /* supports extended attributes */
284 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
287 (1 << CGRP_RELEASABLE
) |
288 (1 << CGRP_NOTIFY_ON_RELEASE
);
289 return (cgrp
->flags
& bits
) == bits
;
292 static int notify_on_release(const struct cgroup
*cgrp
)
294 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
297 static int clone_children(const struct cgroup
*cgrp
)
299 return test_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
303 * for_each_subsys() allows you to iterate on each subsystem attached to
304 * an active hierarchy
306 #define for_each_subsys(_root, _ss) \
307 list_for_each_entry(_ss, &_root->subsys_list, sibling)
309 /* for_each_active_root() allows you to iterate across the active hierarchies */
310 #define for_each_active_root(_root) \
311 list_for_each_entry(_root, &roots, root_list)
313 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
315 return dentry
->d_fsdata
;
318 static inline struct cfent
*__d_cfe(struct dentry
*dentry
)
320 return dentry
->d_fsdata
;
323 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
325 return __d_cfe(dentry
)->type
;
328 /* the list of cgroups eligible for automatic release. Protected by
329 * release_list_lock */
330 static LIST_HEAD(release_list
);
331 static DEFINE_RAW_SPINLOCK(release_list_lock
);
332 static void cgroup_release_agent(struct work_struct
*work
);
333 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
334 static void check_for_release(struct cgroup
*cgrp
);
336 /* Link structure for associating css_set objects with cgroups */
337 struct cg_cgroup_link
{
339 * List running through cg_cgroup_links associated with a
340 * cgroup, anchored on cgroup->css_sets
342 struct list_head cgrp_link_list
;
345 * List running through cg_cgroup_links pointing at a
346 * single css_set object, anchored on css_set->cg_links
348 struct list_head cg_link_list
;
352 /* The default css_set - used by init and its children prior to any
353 * hierarchies being mounted. It contains a pointer to the root state
354 * for each subsystem. Also used to anchor the list of css_sets. Not
355 * reference-counted, to improve performance when child cgroups
356 * haven't been created.
359 static struct css_set init_css_set
;
360 static struct cg_cgroup_link init_css_set_link
;
362 static int cgroup_init_idr(struct cgroup_subsys
*ss
,
363 struct cgroup_subsys_state
*css
);
365 /* css_set_lock protects the list of css_set objects, and the
366 * chain of tasks off each css_set. Nests outside task->alloc_lock
367 * due to cgroup_iter_start() */
368 static DEFINE_RWLOCK(css_set_lock
);
369 static int css_set_count
;
372 * hash table for cgroup groups. This improves the performance to find
373 * an existing css_set. This hash doesn't (currently) take into
374 * account cgroups in empty hierarchies.
376 #define CSS_SET_HASH_BITS 7
377 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
378 static struct hlist_head css_set_table
[CSS_SET_TABLE_SIZE
];
380 static struct hlist_head
*css_set_hash(struct cgroup_subsys_state
*css
[])
384 unsigned long tmp
= 0UL;
386 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++)
387 tmp
+= (unsigned long)css
[i
];
388 tmp
= (tmp
>> 16) ^ tmp
;
390 index
= hash_long(tmp
, CSS_SET_HASH_BITS
);
392 return &css_set_table
[index
];
395 /* We don't maintain the lists running through each css_set to its
396 * task until after the first call to cgroup_iter_start(). This
397 * reduces the fork()/exit() overhead for people who have cgroups
398 * compiled into their kernel but not actually in use */
399 static int use_task_css_set_links __read_mostly
;
401 static void __put_css_set(struct css_set
*cg
, int taskexit
)
403 struct cg_cgroup_link
*link
;
404 struct cg_cgroup_link
*saved_link
;
406 * Ensure that the refcount doesn't hit zero while any readers
407 * can see it. Similar to atomic_dec_and_lock(), but for an
410 if (atomic_add_unless(&cg
->refcount
, -1, 1))
412 write_lock(&css_set_lock
);
413 if (!atomic_dec_and_test(&cg
->refcount
)) {
414 write_unlock(&css_set_lock
);
418 /* This css_set is dead. unlink it and release cgroup refcounts */
419 hlist_del(&cg
->hlist
);
422 list_for_each_entry_safe(link
, saved_link
, &cg
->cg_links
,
424 struct cgroup
*cgrp
= link
->cgrp
;
425 list_del(&link
->cg_link_list
);
426 list_del(&link
->cgrp_link_list
);
427 if (atomic_dec_and_test(&cgrp
->count
) &&
428 notify_on_release(cgrp
)) {
430 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
431 check_for_release(cgrp
);
437 write_unlock(&css_set_lock
);
438 kfree_rcu(cg
, rcu_head
);
442 * refcounted get/put for css_set objects
444 static inline void get_css_set(struct css_set
*cg
)
446 atomic_inc(&cg
->refcount
);
449 static inline void put_css_set(struct css_set
*cg
)
451 __put_css_set(cg
, 0);
454 static inline void put_css_set_taskexit(struct css_set
*cg
)
456 __put_css_set(cg
, 1);
460 * compare_css_sets - helper function for find_existing_css_set().
461 * @cg: candidate css_set being tested
462 * @old_cg: existing css_set for a task
463 * @new_cgrp: cgroup that's being entered by the task
464 * @template: desired set of css pointers in css_set (pre-calculated)
466 * Returns true if "cg" matches "old_cg" except for the hierarchy
467 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
469 static bool compare_css_sets(struct css_set
*cg
,
470 struct css_set
*old_cg
,
471 struct cgroup
*new_cgrp
,
472 struct cgroup_subsys_state
*template[])
474 struct list_head
*l1
, *l2
;
476 if (memcmp(template, cg
->subsys
, sizeof(cg
->subsys
))) {
477 /* Not all subsystems matched */
482 * Compare cgroup pointers in order to distinguish between
483 * different cgroups in heirarchies with no subsystems. We
484 * could get by with just this check alone (and skip the
485 * memcmp above) but on most setups the memcmp check will
486 * avoid the need for this more expensive check on almost all
491 l2
= &old_cg
->cg_links
;
493 struct cg_cgroup_link
*cgl1
, *cgl2
;
494 struct cgroup
*cg1
, *cg2
;
498 /* See if we reached the end - both lists are equal length. */
499 if (l1
== &cg
->cg_links
) {
500 BUG_ON(l2
!= &old_cg
->cg_links
);
503 BUG_ON(l2
== &old_cg
->cg_links
);
505 /* Locate the cgroups associated with these links. */
506 cgl1
= list_entry(l1
, struct cg_cgroup_link
, cg_link_list
);
507 cgl2
= list_entry(l2
, struct cg_cgroup_link
, cg_link_list
);
510 /* Hierarchies should be linked in the same order. */
511 BUG_ON(cg1
->root
!= cg2
->root
);
514 * If this hierarchy is the hierarchy of the cgroup
515 * that's changing, then we need to check that this
516 * css_set points to the new cgroup; if it's any other
517 * hierarchy, then this css_set should point to the
518 * same cgroup as the old css_set.
520 if (cg1
->root
== new_cgrp
->root
) {
532 * find_existing_css_set() is a helper for
533 * find_css_set(), and checks to see whether an existing
534 * css_set is suitable.
536 * oldcg: the cgroup group that we're using before the cgroup
539 * cgrp: the cgroup that we're moving into
541 * template: location in which to build the desired set of subsystem
542 * state objects for the new cgroup group
544 static struct css_set
*find_existing_css_set(
545 struct css_set
*oldcg
,
547 struct cgroup_subsys_state
*template[])
550 struct cgroupfs_root
*root
= cgrp
->root
;
551 struct hlist_head
*hhead
;
552 struct hlist_node
*node
;
556 * Build the set of subsystem state objects that we want to see in the
557 * new css_set. while subsystems can change globally, the entries here
558 * won't change, so no need for locking.
560 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
561 if (root
->subsys_mask
& (1UL << i
)) {
562 /* Subsystem is in this hierarchy. So we want
563 * the subsystem state from the new
565 template[i
] = cgrp
->subsys
[i
];
567 /* Subsystem is not in this hierarchy, so we
568 * don't want to change the subsystem state */
569 template[i
] = oldcg
->subsys
[i
];
573 hhead
= css_set_hash(template);
574 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
575 if (!compare_css_sets(cg
, oldcg
, cgrp
, template))
578 /* This css_set matches what we need */
582 /* No existing cgroup group matched */
586 static void free_cg_links(struct list_head
*tmp
)
588 struct cg_cgroup_link
*link
;
589 struct cg_cgroup_link
*saved_link
;
591 list_for_each_entry_safe(link
, saved_link
, tmp
, cgrp_link_list
) {
592 list_del(&link
->cgrp_link_list
);
598 * allocate_cg_links() allocates "count" cg_cgroup_link structures
599 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
600 * success or a negative error
602 static int allocate_cg_links(int count
, struct list_head
*tmp
)
604 struct cg_cgroup_link
*link
;
607 for (i
= 0; i
< count
; i
++) {
608 link
= kmalloc(sizeof(*link
), GFP_KERNEL
);
613 list_add(&link
->cgrp_link_list
, tmp
);
619 * link_css_set - a helper function to link a css_set to a cgroup
620 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
621 * @cg: the css_set to be linked
622 * @cgrp: the destination cgroup
624 static void link_css_set(struct list_head
*tmp_cg_links
,
625 struct css_set
*cg
, struct cgroup
*cgrp
)
627 struct cg_cgroup_link
*link
;
629 BUG_ON(list_empty(tmp_cg_links
));
630 link
= list_first_entry(tmp_cg_links
, struct cg_cgroup_link
,
634 atomic_inc(&cgrp
->count
);
635 list_move(&link
->cgrp_link_list
, &cgrp
->css_sets
);
637 * Always add links to the tail of the list so that the list
638 * is sorted by order of hierarchy creation
640 list_add_tail(&link
->cg_link_list
, &cg
->cg_links
);
644 * find_css_set() takes an existing cgroup group and a
645 * cgroup object, and returns a css_set object that's
646 * equivalent to the old group, but with the given cgroup
647 * substituted into the appropriate hierarchy. Must be called with
650 static struct css_set
*find_css_set(
651 struct css_set
*oldcg
, struct cgroup
*cgrp
)
654 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
656 struct list_head tmp_cg_links
;
658 struct hlist_head
*hhead
;
659 struct cg_cgroup_link
*link
;
661 /* First see if we already have a cgroup group that matches
663 read_lock(&css_set_lock
);
664 res
= find_existing_css_set(oldcg
, cgrp
, template);
667 read_unlock(&css_set_lock
);
672 res
= kmalloc(sizeof(*res
), GFP_KERNEL
);
676 /* Allocate all the cg_cgroup_link objects that we'll need */
677 if (allocate_cg_links(root_count
, &tmp_cg_links
) < 0) {
682 atomic_set(&res
->refcount
, 1);
683 INIT_LIST_HEAD(&res
->cg_links
);
684 INIT_LIST_HEAD(&res
->tasks
);
685 INIT_HLIST_NODE(&res
->hlist
);
687 /* Copy the set of subsystem state objects generated in
688 * find_existing_css_set() */
689 memcpy(res
->subsys
, template, sizeof(res
->subsys
));
691 write_lock(&css_set_lock
);
692 /* Add reference counts and links from the new css_set. */
693 list_for_each_entry(link
, &oldcg
->cg_links
, cg_link_list
) {
694 struct cgroup
*c
= link
->cgrp
;
695 if (c
->root
== cgrp
->root
)
697 link_css_set(&tmp_cg_links
, res
, c
);
700 BUG_ON(!list_empty(&tmp_cg_links
));
704 /* Add this cgroup group to the hash table */
705 hhead
= css_set_hash(res
->subsys
);
706 hlist_add_head(&res
->hlist
, hhead
);
708 write_unlock(&css_set_lock
);
714 * Return the cgroup for "task" from the given hierarchy. Must be
715 * called with cgroup_mutex held.
717 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
718 struct cgroupfs_root
*root
)
721 struct cgroup
*res
= NULL
;
723 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
724 read_lock(&css_set_lock
);
726 * No need to lock the task - since we hold cgroup_mutex the
727 * task can't change groups, so the only thing that can happen
728 * is that it exits and its css is set back to init_css_set.
731 if (css
== &init_css_set
) {
732 res
= &root
->top_cgroup
;
734 struct cg_cgroup_link
*link
;
735 list_for_each_entry(link
, &css
->cg_links
, cg_link_list
) {
736 struct cgroup
*c
= link
->cgrp
;
737 if (c
->root
== root
) {
743 read_unlock(&css_set_lock
);
749 * There is one global cgroup mutex. We also require taking
750 * task_lock() when dereferencing a task's cgroup subsys pointers.
751 * See "The task_lock() exception", at the end of this comment.
753 * A task must hold cgroup_mutex to modify cgroups.
755 * Any task can increment and decrement the count field without lock.
756 * So in general, code holding cgroup_mutex can't rely on the count
757 * field not changing. However, if the count goes to zero, then only
758 * cgroup_attach_task() can increment it again. Because a count of zero
759 * means that no tasks are currently attached, therefore there is no
760 * way a task attached to that cgroup can fork (the other way to
761 * increment the count). So code holding cgroup_mutex can safely
762 * assume that if the count is zero, it will stay zero. Similarly, if
763 * a task holds cgroup_mutex on a cgroup with zero count, it
764 * knows that the cgroup won't be removed, as cgroup_rmdir()
767 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
768 * (usually) take cgroup_mutex. These are the two most performance
769 * critical pieces of code here. The exception occurs on cgroup_exit(),
770 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
771 * is taken, and if the cgroup count is zero, a usermode call made
772 * to the release agent with the name of the cgroup (path relative to
773 * the root of cgroup file system) as the argument.
775 * A cgroup can only be deleted if both its 'count' of using tasks
776 * is zero, and its list of 'children' cgroups is empty. Since all
777 * tasks in the system use _some_ cgroup, and since there is always at
778 * least one task in the system (init, pid == 1), therefore, top_cgroup
779 * always has either children cgroups and/or using tasks. So we don't
780 * need a special hack to ensure that top_cgroup cannot be deleted.
782 * The task_lock() exception
784 * The need for this exception arises from the action of
785 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
786 * another. It does so using cgroup_mutex, however there are
787 * several performance critical places that need to reference
788 * task->cgroup without the expense of grabbing a system global
789 * mutex. Therefore except as noted below, when dereferencing or, as
790 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
791 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
792 * the task_struct routinely used for such matters.
794 * P.S. One more locking exception. RCU is used to guard the
795 * update of a tasks cgroup pointer by cgroup_attach_task()
799 * cgroup_lock - lock out any changes to cgroup structures
802 void cgroup_lock(void)
804 mutex_lock(&cgroup_mutex
);
806 EXPORT_SYMBOL_GPL(cgroup_lock
);
809 * cgroup_unlock - release lock on cgroup changes
811 * Undo the lock taken in a previous cgroup_lock() call.
813 void cgroup_unlock(void)
815 mutex_unlock(&cgroup_mutex
);
817 EXPORT_SYMBOL_GPL(cgroup_unlock
);
820 * A couple of forward declarations required, due to cyclic reference loop:
821 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
822 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
826 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
);
827 static struct dentry
*cgroup_lookup(struct inode
*, struct dentry
*, unsigned int);
828 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
829 static int cgroup_populate_dir(struct cgroup
*cgrp
, bool base_files
,
830 unsigned long subsys_mask
);
831 static const struct inode_operations cgroup_dir_inode_operations
;
832 static const struct file_operations proc_cgroupstats_operations
;
834 static struct backing_dev_info cgroup_backing_dev_info
= {
836 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
839 static int alloc_css_id(struct cgroup_subsys
*ss
,
840 struct cgroup
*parent
, struct cgroup
*child
);
842 static struct inode
*cgroup_new_inode(umode_t mode
, struct super_block
*sb
)
844 struct inode
*inode
= new_inode(sb
);
847 inode
->i_ino
= get_next_ino();
848 inode
->i_mode
= mode
;
849 inode
->i_uid
= current_fsuid();
850 inode
->i_gid
= current_fsgid();
851 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
852 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
858 * Call subsys's pre_destroy handler.
859 * This is called before css refcnt check.
861 static int cgroup_call_pre_destroy(struct cgroup
*cgrp
)
863 struct cgroup_subsys
*ss
;
866 for_each_subsys(cgrp
->root
, ss
) {
867 if (!ss
->pre_destroy
)
870 ret
= ss
->pre_destroy(cgrp
);
872 /* ->pre_destroy() failure is being deprecated */
873 WARN_ON_ONCE(!ss
->__DEPRECATED_clear_css_refs
);
881 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
883 /* is dentry a directory ? if so, kfree() associated cgroup */
884 if (S_ISDIR(inode
->i_mode
)) {
885 struct cgroup
*cgrp
= dentry
->d_fsdata
;
886 struct cgroup_subsys
*ss
;
887 BUG_ON(!(cgroup_is_removed(cgrp
)));
888 /* It's possible for external users to be holding css
889 * reference counts on a cgroup; css_put() needs to
890 * be able to access the cgroup after decrementing
891 * the reference count in order to know if it needs to
892 * queue the cgroup to be handled by the release
896 mutex_lock(&cgroup_mutex
);
898 * Release the subsystem state objects.
900 for_each_subsys(cgrp
->root
, ss
)
903 cgrp
->root
->number_of_cgroups
--;
904 mutex_unlock(&cgroup_mutex
);
907 * Drop the active superblock reference that we took when we
910 deactivate_super(cgrp
->root
->sb
);
913 * if we're getting rid of the cgroup, refcount should ensure
914 * that there are no pidlists left.
916 BUG_ON(!list_empty(&cgrp
->pidlists
));
918 simple_xattrs_free(&cgrp
->xattrs
);
920 kfree_rcu(cgrp
, rcu_head
);
922 struct cfent
*cfe
= __d_cfe(dentry
);
923 struct cgroup
*cgrp
= dentry
->d_parent
->d_fsdata
;
924 struct cftype
*cft
= cfe
->type
;
926 WARN_ONCE(!list_empty(&cfe
->node
) &&
927 cgrp
!= &cgrp
->root
->top_cgroup
,
928 "cfe still linked for %s\n", cfe
->type
->name
);
930 simple_xattrs_free(&cft
->xattrs
);
935 static int cgroup_delete(const struct dentry
*d
)
940 static void remove_dir(struct dentry
*d
)
942 struct dentry
*parent
= dget(d
->d_parent
);
945 simple_rmdir(parent
->d_inode
, d
);
949 static int cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
953 lockdep_assert_held(&cgrp
->dentry
->d_inode
->i_mutex
);
954 lockdep_assert_held(&cgroup_mutex
);
956 list_for_each_entry(cfe
, &cgrp
->files
, node
) {
957 struct dentry
*d
= cfe
->dentry
;
959 if (cft
&& cfe
->type
!= cft
)
964 simple_unlink(cgrp
->dentry
->d_inode
, d
);
965 list_del_init(&cfe
->node
);
974 * cgroup_clear_directory - selective removal of base and subsystem files
975 * @dir: directory containing the files
976 * @base_files: true if the base files should be removed
977 * @subsys_mask: mask of the subsystem ids whose files should be removed
979 static void cgroup_clear_directory(struct dentry
*dir
, bool base_files
,
980 unsigned long subsys_mask
)
982 struct cgroup
*cgrp
= __d_cgrp(dir
);
983 struct cgroup_subsys
*ss
;
985 for_each_subsys(cgrp
->root
, ss
) {
986 struct cftype_set
*set
;
987 if (!test_bit(ss
->subsys_id
, &subsys_mask
))
989 list_for_each_entry(set
, &ss
->cftsets
, node
)
990 cgroup_rm_file(cgrp
, set
->cfts
);
993 while (!list_empty(&cgrp
->files
))
994 cgroup_rm_file(cgrp
, NULL
);
999 * NOTE : the dentry must have been dget()'ed
1001 static void cgroup_d_remove_dir(struct dentry
*dentry
)
1003 struct dentry
*parent
;
1004 struct cgroupfs_root
*root
= dentry
->d_sb
->s_fs_info
;
1006 cgroup_clear_directory(dentry
, true, root
->subsys_mask
);
1008 parent
= dentry
->d_parent
;
1009 spin_lock(&parent
->d_lock
);
1010 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1011 list_del_init(&dentry
->d_u
.d_child
);
1012 spin_unlock(&dentry
->d_lock
);
1013 spin_unlock(&parent
->d_lock
);
1018 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
1019 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
1020 * reference to css->refcnt. In general, this refcnt is expected to goes down
1023 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
1025 static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq
);
1027 static void cgroup_wakeup_rmdir_waiter(struct cgroup
*cgrp
)
1029 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
)))
1030 wake_up_all(&cgroup_rmdir_waitq
);
1033 void cgroup_exclude_rmdir(struct cgroup_subsys_state
*css
)
1038 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state
*css
)
1040 cgroup_wakeup_rmdir_waiter(css
->cgroup
);
1045 * Call with cgroup_mutex held. Drops reference counts on modules, including
1046 * any duplicate ones that parse_cgroupfs_options took. If this function
1047 * returns an error, no reference counts are touched.
1049 static int rebind_subsystems(struct cgroupfs_root
*root
,
1050 unsigned long final_subsys_mask
)
1052 unsigned long added_mask
, removed_mask
;
1053 struct cgroup
*cgrp
= &root
->top_cgroup
;
1056 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
1057 BUG_ON(!mutex_is_locked(&cgroup_root_mutex
));
1059 removed_mask
= root
->actual_subsys_mask
& ~final_subsys_mask
;
1060 added_mask
= final_subsys_mask
& ~root
->actual_subsys_mask
;
1061 /* Check that any added subsystems are currently free */
1062 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1063 unsigned long bit
= 1UL << i
;
1064 struct cgroup_subsys
*ss
= subsys
[i
];
1065 if (!(bit
& added_mask
))
1068 * Nobody should tell us to do a subsys that doesn't exist:
1069 * parse_cgroupfs_options should catch that case and refcounts
1070 * ensure that subsystems won't disappear once selected.
1073 if (ss
->root
!= &rootnode
) {
1074 /* Subsystem isn't free */
1079 /* Currently we don't handle adding/removing subsystems when
1080 * any child cgroups exist. This is theoretically supportable
1081 * but involves complex error handling, so it's being left until
1083 if (root
->number_of_cgroups
> 1)
1086 /* Process each subsystem */
1087 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1088 struct cgroup_subsys
*ss
= subsys
[i
];
1089 unsigned long bit
= 1UL << i
;
1090 if (bit
& added_mask
) {
1091 /* We're binding this subsystem to this hierarchy */
1093 BUG_ON(cgrp
->subsys
[i
]);
1094 BUG_ON(!dummytop
->subsys
[i
]);
1095 BUG_ON(dummytop
->subsys
[i
]->cgroup
!= dummytop
);
1096 cgrp
->subsys
[i
] = dummytop
->subsys
[i
];
1097 cgrp
->subsys
[i
]->cgroup
= cgrp
;
1098 list_move(&ss
->sibling
, &root
->subsys_list
);
1102 /* refcount was already taken, and we're keeping it */
1103 } else if (bit
& removed_mask
) {
1104 /* We're removing this subsystem */
1106 BUG_ON(cgrp
->subsys
[i
] != dummytop
->subsys
[i
]);
1107 BUG_ON(cgrp
->subsys
[i
]->cgroup
!= cgrp
);
1110 dummytop
->subsys
[i
]->cgroup
= dummytop
;
1111 cgrp
->subsys
[i
] = NULL
;
1112 subsys
[i
]->root
= &rootnode
;
1113 list_move(&ss
->sibling
, &rootnode
.subsys_list
);
1114 /* subsystem is now free - drop reference on module */
1115 module_put(ss
->module
);
1116 } else if (bit
& final_subsys_mask
) {
1117 /* Subsystem state should already exist */
1119 BUG_ON(!cgrp
->subsys
[i
]);
1121 * a refcount was taken, but we already had one, so
1122 * drop the extra reference.
1124 module_put(ss
->module
);
1125 #ifdef CONFIG_MODULE_UNLOAD
1126 BUG_ON(ss
->module
&& !module_refcount(ss
->module
));
1129 /* Subsystem state shouldn't exist */
1130 BUG_ON(cgrp
->subsys
[i
]);
1133 root
->subsys_mask
= root
->actual_subsys_mask
= final_subsys_mask
;
1139 static int cgroup_show_options(struct seq_file
*seq
, struct dentry
*dentry
)
1141 struct cgroupfs_root
*root
= dentry
->d_sb
->s_fs_info
;
1142 struct cgroup_subsys
*ss
;
1144 mutex_lock(&cgroup_root_mutex
);
1145 for_each_subsys(root
, ss
)
1146 seq_printf(seq
, ",%s", ss
->name
);
1147 if (test_bit(ROOT_NOPREFIX
, &root
->flags
))
1148 seq_puts(seq
, ",noprefix");
1149 if (test_bit(ROOT_XATTR
, &root
->flags
))
1150 seq_puts(seq
, ",xattr");
1151 if (strlen(root
->release_agent_path
))
1152 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
1153 if (clone_children(&root
->top_cgroup
))
1154 seq_puts(seq
, ",clone_children");
1155 if (strlen(root
->name
))
1156 seq_printf(seq
, ",name=%s", root
->name
);
1157 mutex_unlock(&cgroup_root_mutex
);
1161 struct cgroup_sb_opts
{
1162 unsigned long subsys_mask
;
1163 unsigned long flags
;
1164 char *release_agent
;
1165 bool clone_children
;
1167 /* User explicitly requested empty subsystem */
1170 struct cgroupfs_root
*new_root
;
1175 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1176 * with cgroup_mutex held to protect the subsys[] array. This function takes
1177 * refcounts on subsystems to be used, unless it returns error, in which case
1178 * no refcounts are taken.
1180 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1182 char *token
, *o
= data
;
1183 bool all_ss
= false, one_ss
= false;
1184 unsigned long mask
= (unsigned long)-1;
1186 bool module_pin_failed
= false;
1188 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
1190 #ifdef CONFIG_CPUSETS
1191 mask
= ~(1UL << cpuset_subsys_id
);
1194 memset(opts
, 0, sizeof(*opts
));
1196 while ((token
= strsep(&o
, ",")) != NULL
) {
1199 if (!strcmp(token
, "none")) {
1200 /* Explicitly have no subsystems */
1204 if (!strcmp(token
, "all")) {
1205 /* Mutually exclusive option 'all' + subsystem name */
1211 if (!strcmp(token
, "noprefix")) {
1212 set_bit(ROOT_NOPREFIX
, &opts
->flags
);
1215 if (!strcmp(token
, "clone_children")) {
1216 opts
->clone_children
= true;
1219 if (!strcmp(token
, "xattr")) {
1220 set_bit(ROOT_XATTR
, &opts
->flags
);
1223 if (!strncmp(token
, "release_agent=", 14)) {
1224 /* Specifying two release agents is forbidden */
1225 if (opts
->release_agent
)
1227 opts
->release_agent
=
1228 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1229 if (!opts
->release_agent
)
1233 if (!strncmp(token
, "name=", 5)) {
1234 const char *name
= token
+ 5;
1235 /* Can't specify an empty name */
1238 /* Must match [\w.-]+ */
1239 for (i
= 0; i
< strlen(name
); i
++) {
1243 if ((c
== '.') || (c
== '-') || (c
== '_'))
1247 /* Specifying two names is forbidden */
1250 opts
->name
= kstrndup(name
,
1251 MAX_CGROUP_ROOT_NAMELEN
- 1,
1259 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1260 struct cgroup_subsys
*ss
= subsys
[i
];
1263 if (strcmp(token
, ss
->name
))
1268 /* Mutually exclusive option 'all' + subsystem name */
1271 set_bit(i
, &opts
->subsys_mask
);
1276 if (i
== CGROUP_SUBSYS_COUNT
)
1281 * If the 'all' option was specified select all the subsystems,
1282 * otherwise if 'none', 'name=' and a subsystem name options
1283 * were not specified, let's default to 'all'
1285 if (all_ss
|| (!one_ss
&& !opts
->none
&& !opts
->name
)) {
1286 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1287 struct cgroup_subsys
*ss
= subsys
[i
];
1292 set_bit(i
, &opts
->subsys_mask
);
1296 /* Consistency checks */
1299 * Option noprefix was introduced just for backward compatibility
1300 * with the old cpuset, so we allow noprefix only if mounting just
1301 * the cpuset subsystem.
1303 if (test_bit(ROOT_NOPREFIX
, &opts
->flags
) &&
1304 (opts
->subsys_mask
& mask
))
1308 /* Can't specify "none" and some subsystems */
1309 if (opts
->subsys_mask
&& opts
->none
)
1313 * We either have to specify by name or by subsystems. (So all
1314 * empty hierarchies must have a name).
1316 if (!opts
->subsys_mask
&& !opts
->name
)
1320 * Grab references on all the modules we'll need, so the subsystems
1321 * don't dance around before rebind_subsystems attaches them. This may
1322 * take duplicate reference counts on a subsystem that's already used,
1323 * but rebind_subsystems handles this case.
1325 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1326 unsigned long bit
= 1UL << i
;
1328 if (!(bit
& opts
->subsys_mask
))
1330 if (!try_module_get(subsys
[i
]->module
)) {
1331 module_pin_failed
= true;
1335 if (module_pin_failed
) {
1337 * oops, one of the modules was going away. this means that we
1338 * raced with a module_delete call, and to the user this is
1339 * essentially a "subsystem doesn't exist" case.
1341 for (i
--; i
>= 0; i
--) {
1342 /* drop refcounts only on the ones we took */
1343 unsigned long bit
= 1UL << i
;
1345 if (!(bit
& opts
->subsys_mask
))
1347 module_put(subsys
[i
]->module
);
1355 static void drop_parsed_module_refcounts(unsigned long subsys_mask
)
1358 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1359 unsigned long bit
= 1UL << i
;
1361 if (!(bit
& subsys_mask
))
1363 module_put(subsys
[i
]->module
);
1367 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
1370 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1371 struct cgroup
*cgrp
= &root
->top_cgroup
;
1372 struct cgroup_sb_opts opts
;
1373 unsigned long added_mask
, removed_mask
;
1375 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
1376 mutex_lock(&cgroup_mutex
);
1377 mutex_lock(&cgroup_root_mutex
);
1379 /* See what subsystems are wanted */
1380 ret
= parse_cgroupfs_options(data
, &opts
);
1384 /* See feature-removal-schedule.txt */
1385 if (opts
.subsys_mask
!= root
->actual_subsys_mask
|| opts
.release_agent
)
1386 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1387 task_tgid_nr(current
), current
->comm
);
1389 added_mask
= opts
.subsys_mask
& ~root
->subsys_mask
;
1390 removed_mask
= root
->subsys_mask
& ~opts
.subsys_mask
;
1392 /* Don't allow flags or name to change at remount */
1393 if (opts
.flags
!= root
->flags
||
1394 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1396 drop_parsed_module_refcounts(opts
.subsys_mask
);
1400 ret
= rebind_subsystems(root
, opts
.subsys_mask
);
1402 drop_parsed_module_refcounts(opts
.subsys_mask
);
1406 /* clear out any existing files and repopulate subsystem files */
1407 cgroup_clear_directory(cgrp
->dentry
, false, removed_mask
);
1408 /* re-populate subsystem files */
1409 cgroup_populate_dir(cgrp
, false, added_mask
);
1411 if (opts
.release_agent
)
1412 strcpy(root
->release_agent_path
, opts
.release_agent
);
1414 kfree(opts
.release_agent
);
1416 mutex_unlock(&cgroup_root_mutex
);
1417 mutex_unlock(&cgroup_mutex
);
1418 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
1422 static const struct super_operations cgroup_ops
= {
1423 .statfs
= simple_statfs
,
1424 .drop_inode
= generic_delete_inode
,
1425 .show_options
= cgroup_show_options
,
1426 .remount_fs
= cgroup_remount
,
1429 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1431 INIT_LIST_HEAD(&cgrp
->sibling
);
1432 INIT_LIST_HEAD(&cgrp
->children
);
1433 INIT_LIST_HEAD(&cgrp
->files
);
1434 INIT_LIST_HEAD(&cgrp
->css_sets
);
1435 INIT_LIST_HEAD(&cgrp
->release_list
);
1436 INIT_LIST_HEAD(&cgrp
->pidlists
);
1437 mutex_init(&cgrp
->pidlist_mutex
);
1438 INIT_LIST_HEAD(&cgrp
->event_list
);
1439 spin_lock_init(&cgrp
->event_list_lock
);
1440 simple_xattrs_init(&cgrp
->xattrs
);
1443 static void init_cgroup_root(struct cgroupfs_root
*root
)
1445 struct cgroup
*cgrp
= &root
->top_cgroup
;
1447 INIT_LIST_HEAD(&root
->subsys_list
);
1448 INIT_LIST_HEAD(&root
->root_list
);
1449 INIT_LIST_HEAD(&root
->allcg_list
);
1450 root
->number_of_cgroups
= 1;
1452 cgrp
->top_cgroup
= cgrp
;
1453 list_add_tail(&cgrp
->allcg_node
, &root
->allcg_list
);
1454 init_cgroup_housekeeping(cgrp
);
1457 static bool init_root_id(struct cgroupfs_root
*root
)
1462 if (!ida_pre_get(&hierarchy_ida
, GFP_KERNEL
))
1464 spin_lock(&hierarchy_id_lock
);
1465 /* Try to allocate the next unused ID */
1466 ret
= ida_get_new_above(&hierarchy_ida
, next_hierarchy_id
,
1467 &root
->hierarchy_id
);
1469 /* Try again starting from 0 */
1470 ret
= ida_get_new(&hierarchy_ida
, &root
->hierarchy_id
);
1472 next_hierarchy_id
= root
->hierarchy_id
+ 1;
1473 } else if (ret
!= -EAGAIN
) {
1474 /* Can only get here if the 31-bit IDR is full ... */
1477 spin_unlock(&hierarchy_id_lock
);
1482 static int cgroup_test_super(struct super_block
*sb
, void *data
)
1484 struct cgroup_sb_opts
*opts
= data
;
1485 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1487 /* If we asked for a name then it must match */
1488 if (opts
->name
&& strcmp(opts
->name
, root
->name
))
1492 * If we asked for subsystems (or explicitly for no
1493 * subsystems) then they must match
1495 if ((opts
->subsys_mask
|| opts
->none
)
1496 && (opts
->subsys_mask
!= root
->subsys_mask
))
1502 static struct cgroupfs_root
*cgroup_root_from_opts(struct cgroup_sb_opts
*opts
)
1504 struct cgroupfs_root
*root
;
1506 if (!opts
->subsys_mask
&& !opts
->none
)
1509 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1511 return ERR_PTR(-ENOMEM
);
1513 if (!init_root_id(root
)) {
1515 return ERR_PTR(-ENOMEM
);
1517 init_cgroup_root(root
);
1519 root
->subsys_mask
= opts
->subsys_mask
;
1520 root
->flags
= opts
->flags
;
1521 if (opts
->release_agent
)
1522 strcpy(root
->release_agent_path
, opts
->release_agent
);
1524 strcpy(root
->name
, opts
->name
);
1525 if (opts
->clone_children
)
1526 set_bit(CGRP_CLONE_CHILDREN
, &root
->top_cgroup
.flags
);
1530 static void cgroup_drop_root(struct cgroupfs_root
*root
)
1535 BUG_ON(!root
->hierarchy_id
);
1536 spin_lock(&hierarchy_id_lock
);
1537 ida_remove(&hierarchy_ida
, root
->hierarchy_id
);
1538 spin_unlock(&hierarchy_id_lock
);
1542 static int cgroup_set_super(struct super_block
*sb
, void *data
)
1545 struct cgroup_sb_opts
*opts
= data
;
1547 /* If we don't have a new root, we can't set up a new sb */
1548 if (!opts
->new_root
)
1551 BUG_ON(!opts
->subsys_mask
&& !opts
->none
);
1553 ret
= set_anon_super(sb
, NULL
);
1557 sb
->s_fs_info
= opts
->new_root
;
1558 opts
->new_root
->sb
= sb
;
1560 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
1561 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
1562 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
1563 sb
->s_op
= &cgroup_ops
;
1568 static int cgroup_get_rootdir(struct super_block
*sb
)
1570 static const struct dentry_operations cgroup_dops
= {
1571 .d_iput
= cgroup_diput
,
1572 .d_delete
= cgroup_delete
,
1575 struct inode
*inode
=
1576 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
1581 inode
->i_fop
= &simple_dir_operations
;
1582 inode
->i_op
= &cgroup_dir_inode_operations
;
1583 /* directories start off with i_nlink == 2 (for "." entry) */
1585 sb
->s_root
= d_make_root(inode
);
1588 /* for everything else we want ->d_op set */
1589 sb
->s_d_op
= &cgroup_dops
;
1593 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
1594 int flags
, const char *unused_dev_name
,
1597 struct cgroup_sb_opts opts
;
1598 struct cgroupfs_root
*root
;
1600 struct super_block
*sb
;
1601 struct cgroupfs_root
*new_root
;
1602 struct inode
*inode
;
1604 /* First find the desired set of subsystems */
1605 mutex_lock(&cgroup_mutex
);
1606 ret
= parse_cgroupfs_options(data
, &opts
);
1607 mutex_unlock(&cgroup_mutex
);
1612 * Allocate a new cgroup root. We may not need it if we're
1613 * reusing an existing hierarchy.
1615 new_root
= cgroup_root_from_opts(&opts
);
1616 if (IS_ERR(new_root
)) {
1617 ret
= PTR_ERR(new_root
);
1620 opts
.new_root
= new_root
;
1622 /* Locate an existing or new sb for this hierarchy */
1623 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, 0, &opts
);
1626 cgroup_drop_root(opts
.new_root
);
1630 root
= sb
->s_fs_info
;
1632 if (root
== opts
.new_root
) {
1633 /* We used the new root structure, so this is a new hierarchy */
1634 struct list_head tmp_cg_links
;
1635 struct cgroup
*root_cgrp
= &root
->top_cgroup
;
1636 struct cgroupfs_root
*existing_root
;
1637 const struct cred
*cred
;
1640 BUG_ON(sb
->s_root
!= NULL
);
1642 ret
= cgroup_get_rootdir(sb
);
1644 goto drop_new_super
;
1645 inode
= sb
->s_root
->d_inode
;
1647 mutex_lock(&inode
->i_mutex
);
1648 mutex_lock(&cgroup_mutex
);
1649 mutex_lock(&cgroup_root_mutex
);
1651 /* Check for name clashes with existing mounts */
1653 if (strlen(root
->name
))
1654 for_each_active_root(existing_root
)
1655 if (!strcmp(existing_root
->name
, root
->name
))
1659 * We're accessing css_set_count without locking
1660 * css_set_lock here, but that's OK - it can only be
1661 * increased by someone holding cgroup_lock, and
1662 * that's us. The worst that can happen is that we
1663 * have some link structures left over
1665 ret
= allocate_cg_links(css_set_count
, &tmp_cg_links
);
1669 ret
= rebind_subsystems(root
, root
->subsys_mask
);
1670 if (ret
== -EBUSY
) {
1671 free_cg_links(&tmp_cg_links
);
1675 * There must be no failure case after here, since rebinding
1676 * takes care of subsystems' refcounts, which are explicitly
1677 * dropped in the failure exit path.
1680 /* EBUSY should be the only error here */
1683 list_add(&root
->root_list
, &roots
);
1686 sb
->s_root
->d_fsdata
= root_cgrp
;
1687 root
->top_cgroup
.dentry
= sb
->s_root
;
1689 /* Link the top cgroup in this hierarchy into all
1690 * the css_set objects */
1691 write_lock(&css_set_lock
);
1692 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
1693 struct hlist_head
*hhead
= &css_set_table
[i
];
1694 struct hlist_node
*node
;
1697 hlist_for_each_entry(cg
, node
, hhead
, hlist
)
1698 link_css_set(&tmp_cg_links
, cg
, root_cgrp
);
1700 write_unlock(&css_set_lock
);
1702 free_cg_links(&tmp_cg_links
);
1704 BUG_ON(!list_empty(&root_cgrp
->sibling
));
1705 BUG_ON(!list_empty(&root_cgrp
->children
));
1706 BUG_ON(root
->number_of_cgroups
!= 1);
1708 cred
= override_creds(&init_cred
);
1709 cgroup_populate_dir(root_cgrp
, true, root
->subsys_mask
);
1711 mutex_unlock(&cgroup_root_mutex
);
1712 mutex_unlock(&cgroup_mutex
);
1713 mutex_unlock(&inode
->i_mutex
);
1716 * We re-used an existing hierarchy - the new root (if
1717 * any) is not needed
1719 cgroup_drop_root(opts
.new_root
);
1720 /* no subsys rebinding, so refcounts don't change */
1721 drop_parsed_module_refcounts(opts
.subsys_mask
);
1724 kfree(opts
.release_agent
);
1726 return dget(sb
->s_root
);
1729 mutex_unlock(&cgroup_root_mutex
);
1730 mutex_unlock(&cgroup_mutex
);
1731 mutex_unlock(&inode
->i_mutex
);
1733 deactivate_locked_super(sb
);
1735 drop_parsed_module_refcounts(opts
.subsys_mask
);
1737 kfree(opts
.release_agent
);
1739 return ERR_PTR(ret
);
1742 static void cgroup_kill_sb(struct super_block
*sb
) {
1743 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1744 struct cgroup
*cgrp
= &root
->top_cgroup
;
1746 struct cg_cgroup_link
*link
;
1747 struct cg_cgroup_link
*saved_link
;
1751 BUG_ON(root
->number_of_cgroups
!= 1);
1752 BUG_ON(!list_empty(&cgrp
->children
));
1753 BUG_ON(!list_empty(&cgrp
->sibling
));
1755 mutex_lock(&cgroup_mutex
);
1756 mutex_lock(&cgroup_root_mutex
);
1758 /* Rebind all subsystems back to the default hierarchy */
1759 ret
= rebind_subsystems(root
, 0);
1760 /* Shouldn't be able to fail ... */
1764 * Release all the links from css_sets to this hierarchy's
1767 write_lock(&css_set_lock
);
1769 list_for_each_entry_safe(link
, saved_link
, &cgrp
->css_sets
,
1771 list_del(&link
->cg_link_list
);
1772 list_del(&link
->cgrp_link_list
);
1775 write_unlock(&css_set_lock
);
1777 if (!list_empty(&root
->root_list
)) {
1778 list_del(&root
->root_list
);
1782 mutex_unlock(&cgroup_root_mutex
);
1783 mutex_unlock(&cgroup_mutex
);
1785 simple_xattrs_free(&cgrp
->xattrs
);
1787 kill_litter_super(sb
);
1788 cgroup_drop_root(root
);
1791 static struct file_system_type cgroup_fs_type
= {
1793 .mount
= cgroup_mount
,
1794 .kill_sb
= cgroup_kill_sb
,
1797 static struct kobject
*cgroup_kobj
;
1800 * cgroup_path - generate the path of a cgroup
1801 * @cgrp: the cgroup in question
1802 * @buf: the buffer to write the path into
1803 * @buflen: the length of the buffer
1805 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1806 * reference. Writes path of cgroup into buf. Returns 0 on success,
1809 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1812 struct dentry
*dentry
= rcu_dereference_check(cgrp
->dentry
,
1813 cgroup_lock_is_held());
1815 if (!dentry
|| cgrp
== dummytop
) {
1817 * Inactive subsystems have no dentry for their root
1824 start
= buf
+ buflen
;
1828 int len
= dentry
->d_name
.len
;
1830 if ((start
-= len
) < buf
)
1831 return -ENAMETOOLONG
;
1832 memcpy(start
, dentry
->d_name
.name
, len
);
1833 cgrp
= cgrp
->parent
;
1837 dentry
= rcu_dereference_check(cgrp
->dentry
,
1838 cgroup_lock_is_held());
1842 return -ENAMETOOLONG
;
1845 memmove(buf
, start
, buf
+ buflen
- start
);
1848 EXPORT_SYMBOL_GPL(cgroup_path
);
1851 * Control Group taskset
1853 struct task_and_cgroup
{
1854 struct task_struct
*task
;
1855 struct cgroup
*cgrp
;
1859 struct cgroup_taskset
{
1860 struct task_and_cgroup single
;
1861 struct flex_array
*tc_array
;
1864 struct cgroup
*cur_cgrp
;
1868 * cgroup_taskset_first - reset taskset and return the first task
1869 * @tset: taskset of interest
1871 * @tset iteration is initialized and the first task is returned.
1873 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
)
1875 if (tset
->tc_array
) {
1877 return cgroup_taskset_next(tset
);
1879 tset
->cur_cgrp
= tset
->single
.cgrp
;
1880 return tset
->single
.task
;
1883 EXPORT_SYMBOL_GPL(cgroup_taskset_first
);
1886 * cgroup_taskset_next - iterate to the next task in taskset
1887 * @tset: taskset of interest
1889 * Return the next task in @tset. Iteration must have been initialized
1890 * with cgroup_taskset_first().
1892 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
)
1894 struct task_and_cgroup
*tc
;
1896 if (!tset
->tc_array
|| tset
->idx
>= tset
->tc_array_len
)
1899 tc
= flex_array_get(tset
->tc_array
, tset
->idx
++);
1900 tset
->cur_cgrp
= tc
->cgrp
;
1903 EXPORT_SYMBOL_GPL(cgroup_taskset_next
);
1906 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1907 * @tset: taskset of interest
1909 * Return the cgroup for the current (last returned) task of @tset. This
1910 * function must be preceded by either cgroup_taskset_first() or
1911 * cgroup_taskset_next().
1913 struct cgroup
*cgroup_taskset_cur_cgroup(struct cgroup_taskset
*tset
)
1915 return tset
->cur_cgrp
;
1917 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup
);
1920 * cgroup_taskset_size - return the number of tasks in taskset
1921 * @tset: taskset of interest
1923 int cgroup_taskset_size(struct cgroup_taskset
*tset
)
1925 return tset
->tc_array
? tset
->tc_array_len
: 1;
1927 EXPORT_SYMBOL_GPL(cgroup_taskset_size
);
1931 * cgroup_task_migrate - move a task from one cgroup to another.
1933 * 'guarantee' is set if the caller promises that a new css_set for the task
1934 * will already exist. If not set, this function might sleep, and can fail with
1935 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1937 static void cgroup_task_migrate(struct cgroup
*cgrp
, struct cgroup
*oldcgrp
,
1938 struct task_struct
*tsk
, struct css_set
*newcg
)
1940 struct css_set
*oldcg
;
1943 * We are synchronized through threadgroup_lock() against PF_EXITING
1944 * setting such that we can't race against cgroup_exit() changing the
1945 * css_set to init_css_set and dropping the old one.
1947 WARN_ON_ONCE(tsk
->flags
& PF_EXITING
);
1948 oldcg
= tsk
->cgroups
;
1951 rcu_assign_pointer(tsk
->cgroups
, newcg
);
1954 /* Update the css_set linked lists if we're using them */
1955 write_lock(&css_set_lock
);
1956 if (!list_empty(&tsk
->cg_list
))
1957 list_move(&tsk
->cg_list
, &newcg
->tasks
);
1958 write_unlock(&css_set_lock
);
1961 * We just gained a reference on oldcg by taking it from the task. As
1962 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1963 * it here; it will be freed under RCU.
1965 set_bit(CGRP_RELEASABLE
, &oldcgrp
->flags
);
1970 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1971 * @cgrp: the cgroup the task is attaching to
1972 * @tsk: the task to be attached
1974 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1977 int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
1980 struct cgroup_subsys
*ss
, *failed_ss
= NULL
;
1981 struct cgroup
*oldcgrp
;
1982 struct cgroupfs_root
*root
= cgrp
->root
;
1983 struct cgroup_taskset tset
= { };
1984 struct css_set
*newcg
;
1986 /* @tsk either already exited or can't exit until the end */
1987 if (tsk
->flags
& PF_EXITING
)
1990 /* Nothing to do if the task is already in that cgroup */
1991 oldcgrp
= task_cgroup_from_root(tsk
, root
);
1992 if (cgrp
== oldcgrp
)
1995 tset
.single
.task
= tsk
;
1996 tset
.single
.cgrp
= oldcgrp
;
1998 for_each_subsys(root
, ss
) {
1999 if (ss
->can_attach
) {
2000 retval
= ss
->can_attach(cgrp
, &tset
);
2003 * Remember on which subsystem the can_attach()
2004 * failed, so that we only call cancel_attach()
2005 * against the subsystems whose can_attach()
2006 * succeeded. (See below)
2014 newcg
= find_css_set(tsk
->cgroups
, cgrp
);
2020 cgroup_task_migrate(cgrp
, oldcgrp
, tsk
, newcg
);
2022 for_each_subsys(root
, ss
) {
2024 ss
->attach(cgrp
, &tset
);
2030 * wake up rmdir() waiter. the rmdir should fail since the cgroup
2031 * is no longer empty.
2033 cgroup_wakeup_rmdir_waiter(cgrp
);
2036 for_each_subsys(root
, ss
) {
2037 if (ss
== failed_ss
)
2039 * This subsystem was the one that failed the
2040 * can_attach() check earlier, so we don't need
2041 * to call cancel_attach() against it or any
2042 * remaining subsystems.
2045 if (ss
->cancel_attach
)
2046 ss
->cancel_attach(cgrp
, &tset
);
2053 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2054 * @from: attach to all cgroups of a given task
2055 * @tsk: the task to be attached
2057 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
2059 struct cgroupfs_root
*root
;
2063 for_each_active_root(root
) {
2064 struct cgroup
*from_cg
= task_cgroup_from_root(from
, root
);
2066 retval
= cgroup_attach_task(from_cg
, tsk
);
2074 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
2077 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2078 * @cgrp: the cgroup to attach to
2079 * @leader: the threadgroup leader task_struct of the group to be attached
2081 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2082 * task_lock of each thread in leader's threadgroup individually in turn.
2084 static int cgroup_attach_proc(struct cgroup
*cgrp
, struct task_struct
*leader
)
2086 int retval
, i
, group_size
;
2087 struct cgroup_subsys
*ss
, *failed_ss
= NULL
;
2088 /* guaranteed to be initialized later, but the compiler needs this */
2089 struct cgroupfs_root
*root
= cgrp
->root
;
2090 /* threadgroup list cursor and array */
2091 struct task_struct
*tsk
;
2092 struct task_and_cgroup
*tc
;
2093 struct flex_array
*group
;
2094 struct cgroup_taskset tset
= { };
2097 * step 0: in order to do expensive, possibly blocking operations for
2098 * every thread, we cannot iterate the thread group list, since it needs
2099 * rcu or tasklist locked. instead, build an array of all threads in the
2100 * group - group_rwsem prevents new threads from appearing, and if
2101 * threads exit, this will just be an over-estimate.
2103 group_size
= get_nr_threads(leader
);
2104 /* flex_array supports very large thread-groups better than kmalloc. */
2105 group
= flex_array_alloc(sizeof(*tc
), group_size
, GFP_KERNEL
);
2108 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2109 retval
= flex_array_prealloc(group
, 0, group_size
- 1, GFP_KERNEL
);
2111 goto out_free_group_list
;
2116 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2117 * already PF_EXITING could be freed from underneath us unless we
2118 * take an rcu_read_lock.
2122 struct task_and_cgroup ent
;
2124 /* @tsk either already exited or can't exit until the end */
2125 if (tsk
->flags
& PF_EXITING
)
2128 /* as per above, nr_threads may decrease, but not increase. */
2129 BUG_ON(i
>= group_size
);
2131 ent
.cgrp
= task_cgroup_from_root(tsk
, root
);
2132 /* nothing to do if this task is already in the cgroup */
2133 if (ent
.cgrp
== cgrp
)
2136 * saying GFP_ATOMIC has no effect here because we did prealloc
2137 * earlier, but it's good form to communicate our expectations.
2139 retval
= flex_array_put(group
, i
, &ent
, GFP_ATOMIC
);
2140 BUG_ON(retval
!= 0);
2142 } while_each_thread(leader
, tsk
);
2144 /* remember the number of threads in the array for later. */
2146 tset
.tc_array
= group
;
2147 tset
.tc_array_len
= group_size
;
2149 /* methods shouldn't be called if no task is actually migrating */
2152 goto out_free_group_list
;
2155 * step 1: check that we can legitimately attach to the cgroup.
2157 for_each_subsys(root
, ss
) {
2158 if (ss
->can_attach
) {
2159 retval
= ss
->can_attach(cgrp
, &tset
);
2162 goto out_cancel_attach
;
2168 * step 2: make sure css_sets exist for all threads to be migrated.
2169 * we use find_css_set, which allocates a new one if necessary.
2171 for (i
= 0; i
< group_size
; i
++) {
2172 tc
= flex_array_get(group
, i
);
2173 tc
->cg
= find_css_set(tc
->task
->cgroups
, cgrp
);
2176 goto out_put_css_set_refs
;
2181 * step 3: now that we're guaranteed success wrt the css_sets,
2182 * proceed to move all tasks to the new cgroup. There are no
2183 * failure cases after here, so this is the commit point.
2185 for (i
= 0; i
< group_size
; i
++) {
2186 tc
= flex_array_get(group
, i
);
2187 cgroup_task_migrate(cgrp
, tc
->cgrp
, tc
->task
, tc
->cg
);
2189 /* nothing is sensitive to fork() after this point. */
2192 * step 4: do subsystem attach callbacks.
2194 for_each_subsys(root
, ss
) {
2196 ss
->attach(cgrp
, &tset
);
2200 * step 5: success! and cleanup
2203 cgroup_wakeup_rmdir_waiter(cgrp
);
2205 out_put_css_set_refs
:
2207 for (i
= 0; i
< group_size
; i
++) {
2208 tc
= flex_array_get(group
, i
);
2211 put_css_set(tc
->cg
);
2216 for_each_subsys(root
, ss
) {
2217 if (ss
== failed_ss
)
2219 if (ss
->cancel_attach
)
2220 ss
->cancel_attach(cgrp
, &tset
);
2223 out_free_group_list
:
2224 flex_array_free(group
);
2229 * Find the task_struct of the task to attach by vpid and pass it along to the
2230 * function to attach either it or all tasks in its threadgroup. Will lock
2231 * cgroup_mutex and threadgroup; may take task_lock of task.
2233 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
, bool threadgroup
)
2235 struct task_struct
*tsk
;
2236 const struct cred
*cred
= current_cred(), *tcred
;
2239 if (!cgroup_lock_live_group(cgrp
))
2245 tsk
= find_task_by_vpid(pid
);
2249 goto out_unlock_cgroup
;
2252 * even if we're attaching all tasks in the thread group, we
2253 * only need to check permissions on one of them.
2255 tcred
= __task_cred(tsk
);
2256 if (!uid_eq(cred
->euid
, GLOBAL_ROOT_UID
) &&
2257 !uid_eq(cred
->euid
, tcred
->uid
) &&
2258 !uid_eq(cred
->euid
, tcred
->suid
)) {
2261 goto out_unlock_cgroup
;
2267 tsk
= tsk
->group_leader
;
2270 * Workqueue threads may acquire PF_THREAD_BOUND and become
2271 * trapped in a cpuset, or RT worker may be born in a cgroup
2272 * with no rt_runtime allocated. Just say no.
2274 if (tsk
== kthreadd_task
|| (tsk
->flags
& PF_THREAD_BOUND
)) {
2277 goto out_unlock_cgroup
;
2280 get_task_struct(tsk
);
2283 threadgroup_lock(tsk
);
2285 if (!thread_group_leader(tsk
)) {
2287 * a race with de_thread from another thread's exec()
2288 * may strip us of our leadership, if this happens,
2289 * there is no choice but to throw this task away and
2290 * try again; this is
2291 * "double-double-toil-and-trouble-check locking".
2293 threadgroup_unlock(tsk
);
2294 put_task_struct(tsk
);
2295 goto retry_find_task
;
2297 ret
= cgroup_attach_proc(cgrp
, tsk
);
2299 ret
= cgroup_attach_task(cgrp
, tsk
);
2300 threadgroup_unlock(tsk
);
2302 put_task_struct(tsk
);
2308 static int cgroup_tasks_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 pid
)
2310 return attach_task_by_pid(cgrp
, pid
, false);
2313 static int cgroup_procs_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 tgid
)
2315 return attach_task_by_pid(cgrp
, tgid
, true);
2319 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2320 * @cgrp: the cgroup to be checked for liveness
2322 * On success, returns true; the lock should be later released with
2323 * cgroup_unlock(). On failure returns false with no lock held.
2325 bool cgroup_lock_live_group(struct cgroup
*cgrp
)
2327 mutex_lock(&cgroup_mutex
);
2328 if (cgroup_is_removed(cgrp
)) {
2329 mutex_unlock(&cgroup_mutex
);
2334 EXPORT_SYMBOL_GPL(cgroup_lock_live_group
);
2336 static int cgroup_release_agent_write(struct cgroup
*cgrp
, struct cftype
*cft
,
2339 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
2340 if (strlen(buffer
) >= PATH_MAX
)
2342 if (!cgroup_lock_live_group(cgrp
))
2344 mutex_lock(&cgroup_root_mutex
);
2345 strcpy(cgrp
->root
->release_agent_path
, buffer
);
2346 mutex_unlock(&cgroup_root_mutex
);
2351 static int cgroup_release_agent_show(struct cgroup
*cgrp
, struct cftype
*cft
,
2352 struct seq_file
*seq
)
2354 if (!cgroup_lock_live_group(cgrp
))
2356 seq_puts(seq
, cgrp
->root
->release_agent_path
);
2357 seq_putc(seq
, '\n');
2362 /* A buffer size big enough for numbers or short strings */
2363 #define CGROUP_LOCAL_BUFFER_SIZE 64
2365 static ssize_t
cgroup_write_X64(struct cgroup
*cgrp
, struct cftype
*cft
,
2367 const char __user
*userbuf
,
2368 size_t nbytes
, loff_t
*unused_ppos
)
2370 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
2376 if (nbytes
>= sizeof(buffer
))
2378 if (copy_from_user(buffer
, userbuf
, nbytes
))
2381 buffer
[nbytes
] = 0; /* nul-terminate */
2382 if (cft
->write_u64
) {
2383 u64 val
= simple_strtoull(strstrip(buffer
), &end
, 0);
2386 retval
= cft
->write_u64(cgrp
, cft
, val
);
2388 s64 val
= simple_strtoll(strstrip(buffer
), &end
, 0);
2391 retval
= cft
->write_s64(cgrp
, cft
, val
);
2398 static ssize_t
cgroup_write_string(struct cgroup
*cgrp
, struct cftype
*cft
,
2400 const char __user
*userbuf
,
2401 size_t nbytes
, loff_t
*unused_ppos
)
2403 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
2405 size_t max_bytes
= cft
->max_write_len
;
2406 char *buffer
= local_buffer
;
2409 max_bytes
= sizeof(local_buffer
) - 1;
2410 if (nbytes
>= max_bytes
)
2412 /* Allocate a dynamic buffer if we need one */
2413 if (nbytes
>= sizeof(local_buffer
)) {
2414 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
2418 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
2423 buffer
[nbytes
] = 0; /* nul-terminate */
2424 retval
= cft
->write_string(cgrp
, cft
, strstrip(buffer
));
2428 if (buffer
!= local_buffer
)
2433 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
2434 size_t nbytes
, loff_t
*ppos
)
2436 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2437 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2439 if (cgroup_is_removed(cgrp
))
2442 return cft
->write(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2443 if (cft
->write_u64
|| cft
->write_s64
)
2444 return cgroup_write_X64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2445 if (cft
->write_string
)
2446 return cgroup_write_string(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2448 int ret
= cft
->trigger(cgrp
, (unsigned int)cft
->private);
2449 return ret
? ret
: nbytes
;
2454 static ssize_t
cgroup_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
,
2456 char __user
*buf
, size_t nbytes
,
2459 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2460 u64 val
= cft
->read_u64(cgrp
, cft
);
2461 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
2463 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2466 static ssize_t
cgroup_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
,
2468 char __user
*buf
, size_t nbytes
,
2471 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2472 s64 val
= cft
->read_s64(cgrp
, cft
);
2473 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
2475 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2478 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
2479 size_t nbytes
, loff_t
*ppos
)
2481 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2482 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2484 if (cgroup_is_removed(cgrp
))
2488 return cft
->read(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2490 return cgroup_read_u64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2492 return cgroup_read_s64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2497 * seqfile ops/methods for returning structured data. Currently just
2498 * supports string->u64 maps, but can be extended in future.
2501 struct cgroup_seqfile_state
{
2503 struct cgroup
*cgroup
;
2506 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
2508 struct seq_file
*sf
= cb
->state
;
2509 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
2512 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
2514 struct cgroup_seqfile_state
*state
= m
->private;
2515 struct cftype
*cft
= state
->cft
;
2516 if (cft
->read_map
) {
2517 struct cgroup_map_cb cb
= {
2518 .fill
= cgroup_map_add
,
2521 return cft
->read_map(state
->cgroup
, cft
, &cb
);
2523 return cft
->read_seq_string(state
->cgroup
, cft
, m
);
2526 static int cgroup_seqfile_release(struct inode
*inode
, struct file
*file
)
2528 struct seq_file
*seq
= file
->private_data
;
2529 kfree(seq
->private);
2530 return single_release(inode
, file
);
2533 static const struct file_operations cgroup_seqfile_operations
= {
2535 .write
= cgroup_file_write
,
2536 .llseek
= seq_lseek
,
2537 .release
= cgroup_seqfile_release
,
2540 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
2545 err
= generic_file_open(inode
, file
);
2548 cft
= __d_cft(file
->f_dentry
);
2550 if (cft
->read_map
|| cft
->read_seq_string
) {
2551 struct cgroup_seqfile_state
*state
=
2552 kzalloc(sizeof(*state
), GFP_USER
);
2556 state
->cgroup
= __d_cgrp(file
->f_dentry
->d_parent
);
2557 file
->f_op
= &cgroup_seqfile_operations
;
2558 err
= single_open(file
, cgroup_seqfile_show
, state
);
2561 } else if (cft
->open
)
2562 err
= cft
->open(inode
, file
);
2569 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
2571 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2573 return cft
->release(inode
, file
);
2578 * cgroup_rename - Only allow simple rename of directories in place.
2580 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
2581 struct inode
*new_dir
, struct dentry
*new_dentry
)
2583 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
2585 if (new_dentry
->d_inode
)
2587 if (old_dir
!= new_dir
)
2589 return simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
2592 static struct simple_xattrs
*__d_xattrs(struct dentry
*dentry
)
2594 if (S_ISDIR(dentry
->d_inode
->i_mode
))
2595 return &__d_cgrp(dentry
)->xattrs
;
2597 return &__d_cft(dentry
)->xattrs
;
2600 static inline int xattr_enabled(struct dentry
*dentry
)
2602 struct cgroupfs_root
*root
= dentry
->d_sb
->s_fs_info
;
2603 return test_bit(ROOT_XATTR
, &root
->flags
);
2606 static bool is_valid_xattr(const char *name
)
2608 if (!strncmp(name
, XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
) ||
2609 !strncmp(name
, XATTR_SECURITY_PREFIX
, XATTR_SECURITY_PREFIX_LEN
))
2614 static int cgroup_setxattr(struct dentry
*dentry
, const char *name
,
2615 const void *val
, size_t size
, int flags
)
2617 if (!xattr_enabled(dentry
))
2619 if (!is_valid_xattr(name
))
2621 return simple_xattr_set(__d_xattrs(dentry
), name
, val
, size
, flags
);
2624 static int cgroup_removexattr(struct dentry
*dentry
, const char *name
)
2626 if (!xattr_enabled(dentry
))
2628 if (!is_valid_xattr(name
))
2630 return simple_xattr_remove(__d_xattrs(dentry
), name
);
2633 static ssize_t
cgroup_getxattr(struct dentry
*dentry
, const char *name
,
2634 void *buf
, size_t size
)
2636 if (!xattr_enabled(dentry
))
2638 if (!is_valid_xattr(name
))
2640 return simple_xattr_get(__d_xattrs(dentry
), name
, buf
, size
);
2643 static ssize_t
cgroup_listxattr(struct dentry
*dentry
, char *buf
, size_t size
)
2645 if (!xattr_enabled(dentry
))
2647 return simple_xattr_list(__d_xattrs(dentry
), buf
, size
);
2650 static const struct file_operations cgroup_file_operations
= {
2651 .read
= cgroup_file_read
,
2652 .write
= cgroup_file_write
,
2653 .llseek
= generic_file_llseek
,
2654 .open
= cgroup_file_open
,
2655 .release
= cgroup_file_release
,
2658 static const struct inode_operations cgroup_file_inode_operations
= {
2659 .setxattr
= cgroup_setxattr
,
2660 .getxattr
= cgroup_getxattr
,
2661 .listxattr
= cgroup_listxattr
,
2662 .removexattr
= cgroup_removexattr
,
2665 static const struct inode_operations cgroup_dir_inode_operations
= {
2666 .lookup
= cgroup_lookup
,
2667 .mkdir
= cgroup_mkdir
,
2668 .rmdir
= cgroup_rmdir
,
2669 .rename
= cgroup_rename
,
2670 .setxattr
= cgroup_setxattr
,
2671 .getxattr
= cgroup_getxattr
,
2672 .listxattr
= cgroup_listxattr
,
2673 .removexattr
= cgroup_removexattr
,
2676 static struct dentry
*cgroup_lookup(struct inode
*dir
, struct dentry
*dentry
, unsigned int flags
)
2678 if (dentry
->d_name
.len
> NAME_MAX
)
2679 return ERR_PTR(-ENAMETOOLONG
);
2680 d_add(dentry
, NULL
);
2685 * Check if a file is a control file
2687 static inline struct cftype
*__file_cft(struct file
*file
)
2689 if (file
->f_dentry
->d_inode
->i_fop
!= &cgroup_file_operations
)
2690 return ERR_PTR(-EINVAL
);
2691 return __d_cft(file
->f_dentry
);
2694 static int cgroup_create_file(struct dentry
*dentry
, umode_t mode
,
2695 struct super_block
*sb
)
2697 struct inode
*inode
;
2701 if (dentry
->d_inode
)
2704 inode
= cgroup_new_inode(mode
, sb
);
2708 if (S_ISDIR(mode
)) {
2709 inode
->i_op
= &cgroup_dir_inode_operations
;
2710 inode
->i_fop
= &simple_dir_operations
;
2712 /* start off with i_nlink == 2 (for "." entry) */
2715 /* start with the directory inode held, so that we can
2716 * populate it without racing with another mkdir */
2717 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2718 } else if (S_ISREG(mode
)) {
2720 inode
->i_fop
= &cgroup_file_operations
;
2721 inode
->i_op
= &cgroup_file_inode_operations
;
2723 d_instantiate(dentry
, inode
);
2724 dget(dentry
); /* Extra count - pin the dentry in core */
2729 * cgroup_create_dir - create a directory for an object.
2730 * @cgrp: the cgroup we create the directory for. It must have a valid
2731 * ->parent field. And we are going to fill its ->dentry field.
2732 * @dentry: dentry of the new cgroup
2733 * @mode: mode to set on new directory.
2735 static int cgroup_create_dir(struct cgroup
*cgrp
, struct dentry
*dentry
,
2738 struct dentry
*parent
;
2741 parent
= cgrp
->parent
->dentry
;
2742 error
= cgroup_create_file(dentry
, S_IFDIR
| mode
, cgrp
->root
->sb
);
2744 dentry
->d_fsdata
= cgrp
;
2745 inc_nlink(parent
->d_inode
);
2746 rcu_assign_pointer(cgrp
->dentry
, dentry
);
2755 * cgroup_file_mode - deduce file mode of a control file
2756 * @cft: the control file in question
2758 * returns cft->mode if ->mode is not 0
2759 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2760 * returns S_IRUGO if it has only a read handler
2761 * returns S_IWUSR if it has only a write hander
2763 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
2770 if (cft
->read
|| cft
->read_u64
|| cft
->read_s64
||
2771 cft
->read_map
|| cft
->read_seq_string
)
2774 if (cft
->write
|| cft
->write_u64
|| cft
->write_s64
||
2775 cft
->write_string
|| cft
->trigger
)
2781 static int cgroup_add_file(struct cgroup
*cgrp
, struct cgroup_subsys
*subsys
,
2784 struct dentry
*dir
= cgrp
->dentry
;
2785 struct cgroup
*parent
= __d_cgrp(dir
);
2786 struct dentry
*dentry
;
2790 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
2792 simple_xattrs_init(&cft
->xattrs
);
2794 /* does @cft->flags tell us to skip creation on @cgrp? */
2795 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgrp
->parent
)
2797 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgrp
->parent
)
2800 if (subsys
&& !test_bit(ROOT_NOPREFIX
, &cgrp
->root
->flags
)) {
2801 strcpy(name
, subsys
->name
);
2804 strcat(name
, cft
->name
);
2806 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
2808 cfe
= kzalloc(sizeof(*cfe
), GFP_KERNEL
);
2812 dentry
= lookup_one_len(name
, dir
, strlen(name
));
2813 if (IS_ERR(dentry
)) {
2814 error
= PTR_ERR(dentry
);
2818 mode
= cgroup_file_mode(cft
);
2819 error
= cgroup_create_file(dentry
, mode
| S_IFREG
, cgrp
->root
->sb
);
2821 cfe
->type
= (void *)cft
;
2822 cfe
->dentry
= dentry
;
2823 dentry
->d_fsdata
= cfe
;
2824 list_add_tail(&cfe
->node
, &parent
->files
);
2833 static int cgroup_addrm_files(struct cgroup
*cgrp
, struct cgroup_subsys
*subsys
,
2834 struct cftype cfts
[], bool is_add
)
2839 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
2841 err
= cgroup_add_file(cgrp
, subsys
, cft
);
2843 err
= cgroup_rm_file(cgrp
, cft
);
2845 pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
2846 is_add
? "add" : "remove", cft
->name
, err
);
2853 static DEFINE_MUTEX(cgroup_cft_mutex
);
2855 static void cgroup_cfts_prepare(void)
2856 __acquires(&cgroup_cft_mutex
) __acquires(&cgroup_mutex
)
2859 * Thanks to the entanglement with vfs inode locking, we can't walk
2860 * the existing cgroups under cgroup_mutex and create files.
2861 * Instead, we increment reference on all cgroups and build list of
2862 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2863 * exclusive access to the field.
2865 mutex_lock(&cgroup_cft_mutex
);
2866 mutex_lock(&cgroup_mutex
);
2869 static void cgroup_cfts_commit(struct cgroup_subsys
*ss
,
2870 struct cftype
*cfts
, bool is_add
)
2871 __releases(&cgroup_mutex
) __releases(&cgroup_cft_mutex
)
2874 struct cgroup
*cgrp
, *n
;
2876 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2877 if (cfts
&& ss
->root
!= &rootnode
) {
2878 list_for_each_entry(cgrp
, &ss
->root
->allcg_list
, allcg_node
) {
2880 list_add_tail(&cgrp
->cft_q_node
, &pending
);
2884 mutex_unlock(&cgroup_mutex
);
2887 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2888 * files for all cgroups which were created before.
2890 list_for_each_entry_safe(cgrp
, n
, &pending
, cft_q_node
) {
2891 struct inode
*inode
= cgrp
->dentry
->d_inode
;
2893 mutex_lock(&inode
->i_mutex
);
2894 mutex_lock(&cgroup_mutex
);
2895 if (!cgroup_is_removed(cgrp
))
2896 cgroup_addrm_files(cgrp
, ss
, cfts
, is_add
);
2897 mutex_unlock(&cgroup_mutex
);
2898 mutex_unlock(&inode
->i_mutex
);
2900 list_del_init(&cgrp
->cft_q_node
);
2904 mutex_unlock(&cgroup_cft_mutex
);
2908 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2909 * @ss: target cgroup subsystem
2910 * @cfts: zero-length name terminated array of cftypes
2912 * Register @cfts to @ss. Files described by @cfts are created for all
2913 * existing cgroups to which @ss is attached and all future cgroups will
2914 * have them too. This function can be called anytime whether @ss is
2917 * Returns 0 on successful registration, -errno on failure. Note that this
2918 * function currently returns 0 as long as @cfts registration is successful
2919 * even if some file creation attempts on existing cgroups fail.
2921 int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
2923 struct cftype_set
*set
;
2925 set
= kzalloc(sizeof(*set
), GFP_KERNEL
);
2929 cgroup_cfts_prepare();
2931 list_add_tail(&set
->node
, &ss
->cftsets
);
2932 cgroup_cfts_commit(ss
, cfts
, true);
2936 EXPORT_SYMBOL_GPL(cgroup_add_cftypes
);
2939 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2940 * @ss: target cgroup subsystem
2941 * @cfts: zero-length name terminated array of cftypes
2943 * Unregister @cfts from @ss. Files described by @cfts are removed from
2944 * all existing cgroups to which @ss is attached and all future cgroups
2945 * won't have them either. This function can be called anytime whether @ss
2946 * is attached or not.
2948 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2949 * registered with @ss.
2951 int cgroup_rm_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
2953 struct cftype_set
*set
;
2955 cgroup_cfts_prepare();
2957 list_for_each_entry(set
, &ss
->cftsets
, node
) {
2958 if (set
->cfts
== cfts
) {
2959 list_del_init(&set
->node
);
2960 cgroup_cfts_commit(ss
, cfts
, false);
2965 cgroup_cfts_commit(ss
, NULL
, false);
2970 * cgroup_task_count - count the number of tasks in a cgroup.
2971 * @cgrp: the cgroup in question
2973 * Return the number of tasks in the cgroup.
2975 int cgroup_task_count(const struct cgroup
*cgrp
)
2978 struct cg_cgroup_link
*link
;
2980 read_lock(&css_set_lock
);
2981 list_for_each_entry(link
, &cgrp
->css_sets
, cgrp_link_list
) {
2982 count
+= atomic_read(&link
->cg
->refcount
);
2984 read_unlock(&css_set_lock
);
2989 * Advance a list_head iterator. The iterator should be positioned at
2990 * the start of a css_set
2992 static void cgroup_advance_iter(struct cgroup
*cgrp
,
2993 struct cgroup_iter
*it
)
2995 struct list_head
*l
= it
->cg_link
;
2996 struct cg_cgroup_link
*link
;
2999 /* Advance to the next non-empty css_set */
3002 if (l
== &cgrp
->css_sets
) {
3006 link
= list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
3008 } while (list_empty(&cg
->tasks
));
3010 it
->task
= cg
->tasks
.next
;
3014 * To reduce the fork() overhead for systems that are not actually
3015 * using their cgroups capability, we don't maintain the lists running
3016 * through each css_set to its tasks until we see the list actually
3017 * used - in other words after the first call to cgroup_iter_start().
3019 static void cgroup_enable_task_cg_lists(void)
3021 struct task_struct
*p
, *g
;
3022 write_lock(&css_set_lock
);
3023 use_task_css_set_links
= 1;
3025 * We need tasklist_lock because RCU is not safe against
3026 * while_each_thread(). Besides, a forking task that has passed
3027 * cgroup_post_fork() without seeing use_task_css_set_links = 1
3028 * is not guaranteed to have its child immediately visible in the
3029 * tasklist if we walk through it with RCU.
3031 read_lock(&tasklist_lock
);
3032 do_each_thread(g
, p
) {
3035 * We should check if the process is exiting, otherwise
3036 * it will race with cgroup_exit() in that the list
3037 * entry won't be deleted though the process has exited.
3039 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
3040 list_add(&p
->cg_list
, &p
->cgroups
->tasks
);
3042 } while_each_thread(g
, p
);
3043 read_unlock(&tasklist_lock
);
3044 write_unlock(&css_set_lock
);
3047 void cgroup_iter_start(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
3048 __acquires(css_set_lock
)
3051 * The first time anyone tries to iterate across a cgroup,
3052 * we need to enable the list linking each css_set to its
3053 * tasks, and fix up all existing tasks.
3055 if (!use_task_css_set_links
)
3056 cgroup_enable_task_cg_lists();
3058 read_lock(&css_set_lock
);
3059 it
->cg_link
= &cgrp
->css_sets
;
3060 cgroup_advance_iter(cgrp
, it
);
3063 struct task_struct
*cgroup_iter_next(struct cgroup
*cgrp
,
3064 struct cgroup_iter
*it
)
3066 struct task_struct
*res
;
3067 struct list_head
*l
= it
->task
;
3068 struct cg_cgroup_link
*link
;
3070 /* If the iterator cg is NULL, we have no tasks */
3073 res
= list_entry(l
, struct task_struct
, cg_list
);
3074 /* Advance iterator to find next entry */
3076 link
= list_entry(it
->cg_link
, struct cg_cgroup_link
, cgrp_link_list
);
3077 if (l
== &link
->cg
->tasks
) {
3078 /* We reached the end of this task list - move on to
3079 * the next cg_cgroup_link */
3080 cgroup_advance_iter(cgrp
, it
);
3087 void cgroup_iter_end(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
3088 __releases(css_set_lock
)
3090 read_unlock(&css_set_lock
);
3093 static inline int started_after_time(struct task_struct
*t1
,
3094 struct timespec
*time
,
3095 struct task_struct
*t2
)
3097 int start_diff
= timespec_compare(&t1
->start_time
, time
);
3098 if (start_diff
> 0) {
3100 } else if (start_diff
< 0) {
3104 * Arbitrarily, if two processes started at the same
3105 * time, we'll say that the lower pointer value
3106 * started first. Note that t2 may have exited by now
3107 * so this may not be a valid pointer any longer, but
3108 * that's fine - it still serves to distinguish
3109 * between two tasks started (effectively) simultaneously.
3116 * This function is a callback from heap_insert() and is used to order
3118 * In this case we order the heap in descending task start time.
3120 static inline int started_after(void *p1
, void *p2
)
3122 struct task_struct
*t1
= p1
;
3123 struct task_struct
*t2
= p2
;
3124 return started_after_time(t1
, &t2
->start_time
, t2
);
3128 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3129 * @scan: struct cgroup_scanner containing arguments for the scan
3131 * Arguments include pointers to callback functions test_task() and
3133 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3134 * and if it returns true, call process_task() for it also.
3135 * The test_task pointer may be NULL, meaning always true (select all tasks).
3136 * Effectively duplicates cgroup_iter_{start,next,end}()
3137 * but does not lock css_set_lock for the call to process_task().
3138 * The struct cgroup_scanner may be embedded in any structure of the caller's
3140 * It is guaranteed that process_task() will act on every task that
3141 * is a member of the cgroup for the duration of this call. This
3142 * function may or may not call process_task() for tasks that exit
3143 * or move to a different cgroup during the call, or are forked or
3144 * move into the cgroup during the call.
3146 * Note that test_task() may be called with locks held, and may in some
3147 * situations be called multiple times for the same task, so it should
3149 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3150 * pre-allocated and will be used for heap operations (and its "gt" member will
3151 * be overwritten), else a temporary heap will be used (allocation of which
3152 * may cause this function to fail).
3154 int cgroup_scan_tasks(struct cgroup_scanner
*scan
)
3157 struct cgroup_iter it
;
3158 struct task_struct
*p
, *dropped
;
3159 /* Never dereference latest_task, since it's not refcounted */
3160 struct task_struct
*latest_task
= NULL
;
3161 struct ptr_heap tmp_heap
;
3162 struct ptr_heap
*heap
;
3163 struct timespec latest_time
= { 0, 0 };
3166 /* The caller supplied our heap and pre-allocated its memory */
3168 heap
->gt
= &started_after
;
3170 /* We need to allocate our own heap memory */
3172 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
3174 /* cannot allocate the heap */
3180 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3181 * to determine which are of interest, and using the scanner's
3182 * "process_task" callback to process any of them that need an update.
3183 * Since we don't want to hold any locks during the task updates,
3184 * gather tasks to be processed in a heap structure.
3185 * The heap is sorted by descending task start time.
3186 * If the statically-sized heap fills up, we overflow tasks that
3187 * started later, and in future iterations only consider tasks that
3188 * started after the latest task in the previous pass. This
3189 * guarantees forward progress and that we don't miss any tasks.
3192 cgroup_iter_start(scan
->cg
, &it
);
3193 while ((p
= cgroup_iter_next(scan
->cg
, &it
))) {
3195 * Only affect tasks that qualify per the caller's callback,
3196 * if he provided one
3198 if (scan
->test_task
&& !scan
->test_task(p
, scan
))
3201 * Only process tasks that started after the last task
3204 if (!started_after_time(p
, &latest_time
, latest_task
))
3206 dropped
= heap_insert(heap
, p
);
3207 if (dropped
== NULL
) {
3209 * The new task was inserted; the heap wasn't
3213 } else if (dropped
!= p
) {
3215 * The new task was inserted, and pushed out a
3219 put_task_struct(dropped
);
3222 * Else the new task was newer than anything already in
3223 * the heap and wasn't inserted
3226 cgroup_iter_end(scan
->cg
, &it
);
3229 for (i
= 0; i
< heap
->size
; i
++) {
3230 struct task_struct
*q
= heap
->ptrs
[i
];
3232 latest_time
= q
->start_time
;
3235 /* Process the task per the caller's callback */
3236 scan
->process_task(q
, scan
);
3240 * If we had to process any tasks at all, scan again
3241 * in case some of them were in the middle of forking
3242 * children that didn't get processed.
3243 * Not the most efficient way to do it, but it avoids
3244 * having to take callback_mutex in the fork path
3248 if (heap
== &tmp_heap
)
3249 heap_free(&tmp_heap
);
3254 * Stuff for reading the 'tasks'/'procs' files.
3256 * Reading this file can return large amounts of data if a cgroup has
3257 * *lots* of attached tasks. So it may need several calls to read(),
3258 * but we cannot guarantee that the information we produce is correct
3259 * unless we produce it entirely atomically.
3263 /* which pidlist file are we talking about? */
3264 enum cgroup_filetype
{
3270 * A pidlist is a list of pids that virtually represents the contents of one
3271 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3272 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3275 struct cgroup_pidlist
{
3277 * used to find which pidlist is wanted. doesn't change as long as
3278 * this particular list stays in the list.
3280 struct { enum cgroup_filetype type
; struct pid_namespace
*ns
; } key
;
3283 /* how many elements the above list has */
3285 /* how many files are using the current array */
3287 /* each of these stored in a list by its cgroup */
3288 struct list_head links
;
3289 /* pointer to the cgroup we belong to, for list removal purposes */
3290 struct cgroup
*owner
;
3291 /* protects the other fields */
3292 struct rw_semaphore mutex
;
3296 * The following two functions "fix" the issue where there are more pids
3297 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3298 * TODO: replace with a kernel-wide solution to this problem
3300 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3301 static void *pidlist_allocate(int count
)
3303 if (PIDLIST_TOO_LARGE(count
))
3304 return vmalloc(count
* sizeof(pid_t
));
3306 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
3308 static void pidlist_free(void *p
)
3310 if (is_vmalloc_addr(p
))
3315 static void *pidlist_resize(void *p
, int newcount
)
3318 /* note: if new alloc fails, old p will still be valid either way */
3319 if (is_vmalloc_addr(p
)) {
3320 newlist
= vmalloc(newcount
* sizeof(pid_t
));
3323 memcpy(newlist
, p
, newcount
* sizeof(pid_t
));
3326 newlist
= krealloc(p
, newcount
* sizeof(pid_t
), GFP_KERNEL
);
3332 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3333 * If the new stripped list is sufficiently smaller and there's enough memory
3334 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3335 * number of unique elements.
3337 /* is the size difference enough that we should re-allocate the array? */
3338 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3339 static int pidlist_uniq(pid_t
**p
, int length
)
3346 * we presume the 0th element is unique, so i starts at 1. trivial
3347 * edge cases first; no work needs to be done for either
3349 if (length
== 0 || length
== 1)
3351 /* src and dest walk down the list; dest counts unique elements */
3352 for (src
= 1; src
< length
; src
++) {
3353 /* find next unique element */
3354 while (list
[src
] == list
[src
-1]) {
3359 /* dest always points to where the next unique element goes */
3360 list
[dest
] = list
[src
];
3365 * if the length difference is large enough, we want to allocate a
3366 * smaller buffer to save memory. if this fails due to out of memory,
3367 * we'll just stay with what we've got.
3369 if (PIDLIST_REALLOC_DIFFERENCE(length
, dest
)) {
3370 newlist
= pidlist_resize(list
, dest
);
3377 static int cmppid(const void *a
, const void *b
)
3379 return *(pid_t
*)a
- *(pid_t
*)b
;
3383 * find the appropriate pidlist for our purpose (given procs vs tasks)
3384 * returns with the lock on that pidlist already held, and takes care
3385 * of the use count, or returns NULL with no locks held if we're out of
3388 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
3389 enum cgroup_filetype type
)
3391 struct cgroup_pidlist
*l
;
3392 /* don't need task_nsproxy() if we're looking at ourself */
3393 struct pid_namespace
*ns
= current
->nsproxy
->pid_ns
;
3396 * We can't drop the pidlist_mutex before taking the l->mutex in case
3397 * the last ref-holder is trying to remove l from the list at the same
3398 * time. Holding the pidlist_mutex precludes somebody taking whichever
3399 * list we find out from under us - compare release_pid_array().
3401 mutex_lock(&cgrp
->pidlist_mutex
);
3402 list_for_each_entry(l
, &cgrp
->pidlists
, links
) {
3403 if (l
->key
.type
== type
&& l
->key
.ns
== ns
) {
3404 /* make sure l doesn't vanish out from under us */
3405 down_write(&l
->mutex
);
3406 mutex_unlock(&cgrp
->pidlist_mutex
);
3410 /* entry not found; create a new one */
3411 l
= kmalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
3413 mutex_unlock(&cgrp
->pidlist_mutex
);
3416 init_rwsem(&l
->mutex
);
3417 down_write(&l
->mutex
);
3419 l
->key
.ns
= get_pid_ns(ns
);
3420 l
->use_count
= 0; /* don't increment here */
3423 list_add(&l
->links
, &cgrp
->pidlists
);
3424 mutex_unlock(&cgrp
->pidlist_mutex
);
3429 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3431 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
3432 struct cgroup_pidlist
**lp
)
3436 int pid
, n
= 0; /* used for populating the array */
3437 struct cgroup_iter it
;
3438 struct task_struct
*tsk
;
3439 struct cgroup_pidlist
*l
;
3442 * If cgroup gets more users after we read count, we won't have
3443 * enough space - tough. This race is indistinguishable to the
3444 * caller from the case that the additional cgroup users didn't
3445 * show up until sometime later on.
3447 length
= cgroup_task_count(cgrp
);
3448 array
= pidlist_allocate(length
);
3451 /* now, populate the array */
3452 cgroup_iter_start(cgrp
, &it
);
3453 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
3454 if (unlikely(n
== length
))
3456 /* get tgid or pid for procs or tasks file respectively */
3457 if (type
== CGROUP_FILE_PROCS
)
3458 pid
= task_tgid_vnr(tsk
);
3460 pid
= task_pid_vnr(tsk
);
3461 if (pid
> 0) /* make sure to only use valid results */
3464 cgroup_iter_end(cgrp
, &it
);
3466 /* now sort & (if procs) strip out duplicates */
3467 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
3468 if (type
== CGROUP_FILE_PROCS
)
3469 length
= pidlist_uniq(&array
, length
);
3470 l
= cgroup_pidlist_find(cgrp
, type
);
3472 pidlist_free(array
);
3475 /* store array, freeing old if necessary - lock already held */
3476 pidlist_free(l
->list
);
3480 up_write(&l
->mutex
);
3486 * cgroupstats_build - build and fill cgroupstats
3487 * @stats: cgroupstats to fill information into
3488 * @dentry: A dentry entry belonging to the cgroup for which stats have
3491 * Build and fill cgroupstats so that taskstats can export it to user
3494 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
3497 struct cgroup
*cgrp
;
3498 struct cgroup_iter it
;
3499 struct task_struct
*tsk
;
3502 * Validate dentry by checking the superblock operations,
3503 * and make sure it's a directory.
3505 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
3506 !S_ISDIR(dentry
->d_inode
->i_mode
))
3510 cgrp
= dentry
->d_fsdata
;
3512 cgroup_iter_start(cgrp
, &it
);
3513 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
3514 switch (tsk
->state
) {
3516 stats
->nr_running
++;
3518 case TASK_INTERRUPTIBLE
:
3519 stats
->nr_sleeping
++;
3521 case TASK_UNINTERRUPTIBLE
:
3522 stats
->nr_uninterruptible
++;
3525 stats
->nr_stopped
++;
3528 if (delayacct_is_task_waiting_on_io(tsk
))
3529 stats
->nr_io_wait
++;
3533 cgroup_iter_end(cgrp
, &it
);
3541 * seq_file methods for the tasks/procs files. The seq_file position is the
3542 * next pid to display; the seq_file iterator is a pointer to the pid
3543 * in the cgroup->l->list array.
3546 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
3549 * Initially we receive a position value that corresponds to
3550 * one more than the last pid shown (or 0 on the first call or
3551 * after a seek to the start). Use a binary-search to find the
3552 * next pid to display, if any
3554 struct cgroup_pidlist
*l
= s
->private;
3555 int index
= 0, pid
= *pos
;
3558 down_read(&l
->mutex
);
3560 int end
= l
->length
;
3562 while (index
< end
) {
3563 int mid
= (index
+ end
) / 2;
3564 if (l
->list
[mid
] == pid
) {
3567 } else if (l
->list
[mid
] <= pid
)
3573 /* If we're off the end of the array, we're done */
3574 if (index
>= l
->length
)
3576 /* Update the abstract position to be the actual pid that we found */
3577 iter
= l
->list
+ index
;
3582 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
3584 struct cgroup_pidlist
*l
= s
->private;
3588 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
3590 struct cgroup_pidlist
*l
= s
->private;
3592 pid_t
*end
= l
->list
+ l
->length
;
3594 * Advance to the next pid in the array. If this goes off the
3606 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
3608 return seq_printf(s
, "%d\n", *(int *)v
);
3612 * seq_operations functions for iterating on pidlists through seq_file -
3613 * independent of whether it's tasks or procs
3615 static const struct seq_operations cgroup_pidlist_seq_operations
= {
3616 .start
= cgroup_pidlist_start
,
3617 .stop
= cgroup_pidlist_stop
,
3618 .next
= cgroup_pidlist_next
,
3619 .show
= cgroup_pidlist_show
,
3622 static void cgroup_release_pid_array(struct cgroup_pidlist
*l
)
3625 * the case where we're the last user of this particular pidlist will
3626 * have us remove it from the cgroup's list, which entails taking the
3627 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3628 * pidlist_mutex, we have to take pidlist_mutex first.
3630 mutex_lock(&l
->owner
->pidlist_mutex
);
3631 down_write(&l
->mutex
);
3632 BUG_ON(!l
->use_count
);
3633 if (!--l
->use_count
) {
3634 /* we're the last user if refcount is 0; remove and free */
3635 list_del(&l
->links
);
3636 mutex_unlock(&l
->owner
->pidlist_mutex
);
3637 pidlist_free(l
->list
);
3638 put_pid_ns(l
->key
.ns
);
3639 up_write(&l
->mutex
);
3643 mutex_unlock(&l
->owner
->pidlist_mutex
);
3644 up_write(&l
->mutex
);
3647 static int cgroup_pidlist_release(struct inode
*inode
, struct file
*file
)
3649 struct cgroup_pidlist
*l
;
3650 if (!(file
->f_mode
& FMODE_READ
))
3653 * the seq_file will only be initialized if the file was opened for
3654 * reading; hence we check if it's not null only in that case.
3656 l
= ((struct seq_file
*)file
->private_data
)->private;
3657 cgroup_release_pid_array(l
);
3658 return seq_release(inode
, file
);
3661 static const struct file_operations cgroup_pidlist_operations
= {
3663 .llseek
= seq_lseek
,
3664 .write
= cgroup_file_write
,
3665 .release
= cgroup_pidlist_release
,
3669 * The following functions handle opens on a file that displays a pidlist
3670 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3673 /* helper function for the two below it */
3674 static int cgroup_pidlist_open(struct file
*file
, enum cgroup_filetype type
)
3676 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
3677 struct cgroup_pidlist
*l
;
3680 /* Nothing to do for write-only files */
3681 if (!(file
->f_mode
& FMODE_READ
))
3684 /* have the array populated */
3685 retval
= pidlist_array_load(cgrp
, type
, &l
);
3688 /* configure file information */
3689 file
->f_op
= &cgroup_pidlist_operations
;
3691 retval
= seq_open(file
, &cgroup_pidlist_seq_operations
);
3693 cgroup_release_pid_array(l
);
3696 ((struct seq_file
*)file
->private_data
)->private = l
;
3699 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
3701 return cgroup_pidlist_open(file
, CGROUP_FILE_TASKS
);
3703 static int cgroup_procs_open(struct inode
*unused
, struct file
*file
)
3705 return cgroup_pidlist_open(file
, CGROUP_FILE_PROCS
);
3708 static u64
cgroup_read_notify_on_release(struct cgroup
*cgrp
,
3711 return notify_on_release(cgrp
);
3714 static int cgroup_write_notify_on_release(struct cgroup
*cgrp
,
3718 clear_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
3720 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3722 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3727 * Unregister event and free resources.
3729 * Gets called from workqueue.
3731 static void cgroup_event_remove(struct work_struct
*work
)
3733 struct cgroup_event
*event
= container_of(work
, struct cgroup_event
,
3735 struct cgroup
*cgrp
= event
->cgrp
;
3737 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
3739 eventfd_ctx_put(event
->eventfd
);
3745 * Gets called on POLLHUP on eventfd when user closes it.
3747 * Called with wqh->lock held and interrupts disabled.
3749 static int cgroup_event_wake(wait_queue_t
*wait
, unsigned mode
,
3750 int sync
, void *key
)
3752 struct cgroup_event
*event
= container_of(wait
,
3753 struct cgroup_event
, wait
);
3754 struct cgroup
*cgrp
= event
->cgrp
;
3755 unsigned long flags
= (unsigned long)key
;
3757 if (flags
& POLLHUP
) {
3758 __remove_wait_queue(event
->wqh
, &event
->wait
);
3759 spin_lock(&cgrp
->event_list_lock
);
3760 list_del(&event
->list
);
3761 spin_unlock(&cgrp
->event_list_lock
);
3763 * We are in atomic context, but cgroup_event_remove() may
3764 * sleep, so we have to call it in workqueue.
3766 schedule_work(&event
->remove
);
3772 static void cgroup_event_ptable_queue_proc(struct file
*file
,
3773 wait_queue_head_t
*wqh
, poll_table
*pt
)
3775 struct cgroup_event
*event
= container_of(pt
,
3776 struct cgroup_event
, pt
);
3779 add_wait_queue(wqh
, &event
->wait
);
3783 * Parse input and register new cgroup event handler.
3785 * Input must be in format '<event_fd> <control_fd> <args>'.
3786 * Interpretation of args is defined by control file implementation.
3788 static int cgroup_write_event_control(struct cgroup
*cgrp
, struct cftype
*cft
,
3791 struct cgroup_event
*event
= NULL
;
3792 unsigned int efd
, cfd
;
3793 struct file
*efile
= NULL
;
3794 struct file
*cfile
= NULL
;
3798 efd
= simple_strtoul(buffer
, &endp
, 10);
3803 cfd
= simple_strtoul(buffer
, &endp
, 10);
3804 if ((*endp
!= ' ') && (*endp
!= '\0'))
3808 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3812 INIT_LIST_HEAD(&event
->list
);
3813 init_poll_funcptr(&event
->pt
, cgroup_event_ptable_queue_proc
);
3814 init_waitqueue_func_entry(&event
->wait
, cgroup_event_wake
);
3815 INIT_WORK(&event
->remove
, cgroup_event_remove
);
3817 efile
= eventfd_fget(efd
);
3818 if (IS_ERR(efile
)) {
3819 ret
= PTR_ERR(efile
);
3823 event
->eventfd
= eventfd_ctx_fileget(efile
);
3824 if (IS_ERR(event
->eventfd
)) {
3825 ret
= PTR_ERR(event
->eventfd
);
3835 /* the process need read permission on control file */
3836 /* AV: shouldn't we check that it's been opened for read instead? */
3837 ret
= inode_permission(cfile
->f_path
.dentry
->d_inode
, MAY_READ
);
3841 event
->cft
= __file_cft(cfile
);
3842 if (IS_ERR(event
->cft
)) {
3843 ret
= PTR_ERR(event
->cft
);
3847 if (!event
->cft
->register_event
|| !event
->cft
->unregister_event
) {
3852 ret
= event
->cft
->register_event(cgrp
, event
->cft
,
3853 event
->eventfd
, buffer
);
3857 if (efile
->f_op
->poll(efile
, &event
->pt
) & POLLHUP
) {
3858 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
3864 * Events should be removed after rmdir of cgroup directory, but before
3865 * destroying subsystem state objects. Let's take reference to cgroup
3866 * directory dentry to do that.
3870 spin_lock(&cgrp
->event_list_lock
);
3871 list_add(&event
->list
, &cgrp
->event_list
);
3872 spin_unlock(&cgrp
->event_list_lock
);
3883 if (event
&& event
->eventfd
&& !IS_ERR(event
->eventfd
))
3884 eventfd_ctx_put(event
->eventfd
);
3886 if (!IS_ERR_OR_NULL(efile
))
3894 static u64
cgroup_clone_children_read(struct cgroup
*cgrp
,
3897 return clone_children(cgrp
);
3900 static int cgroup_clone_children_write(struct cgroup
*cgrp
,
3905 set_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
3907 clear_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
3912 * for the common functions, 'private' gives the type of file
3914 /* for hysterical raisins, we can't put this on the older files */
3915 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3916 static struct cftype files
[] = {
3919 .open
= cgroup_tasks_open
,
3920 .write_u64
= cgroup_tasks_write
,
3921 .release
= cgroup_pidlist_release
,
3922 .mode
= S_IRUGO
| S_IWUSR
,
3925 .name
= CGROUP_FILE_GENERIC_PREFIX
"procs",
3926 .open
= cgroup_procs_open
,
3927 .write_u64
= cgroup_procs_write
,
3928 .release
= cgroup_pidlist_release
,
3929 .mode
= S_IRUGO
| S_IWUSR
,
3932 .name
= "notify_on_release",
3933 .read_u64
= cgroup_read_notify_on_release
,
3934 .write_u64
= cgroup_write_notify_on_release
,
3937 .name
= CGROUP_FILE_GENERIC_PREFIX
"event_control",
3938 .write_string
= cgroup_write_event_control
,
3942 .name
= "cgroup.clone_children",
3943 .read_u64
= cgroup_clone_children_read
,
3944 .write_u64
= cgroup_clone_children_write
,
3947 .name
= "release_agent",
3948 .flags
= CFTYPE_ONLY_ON_ROOT
,
3949 .read_seq_string
= cgroup_release_agent_show
,
3950 .write_string
= cgroup_release_agent_write
,
3951 .max_write_len
= PATH_MAX
,
3957 * cgroup_populate_dir - selectively creation of files in a directory
3958 * @cgrp: target cgroup
3959 * @base_files: true if the base files should be added
3960 * @subsys_mask: mask of the subsystem ids whose files should be added
3962 static int cgroup_populate_dir(struct cgroup
*cgrp
, bool base_files
,
3963 unsigned long subsys_mask
)
3966 struct cgroup_subsys
*ss
;
3969 err
= cgroup_addrm_files(cgrp
, NULL
, files
, true);
3974 /* process cftsets of each subsystem */
3975 for_each_subsys(cgrp
->root
, ss
) {
3976 struct cftype_set
*set
;
3977 if (!test_bit(ss
->subsys_id
, &subsys_mask
))
3980 list_for_each_entry(set
, &ss
->cftsets
, node
)
3981 cgroup_addrm_files(cgrp
, ss
, set
->cfts
, true);
3984 /* This cgroup is ready now */
3985 for_each_subsys(cgrp
->root
, ss
) {
3986 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3988 * Update id->css pointer and make this css visible from
3989 * CSS ID functions. This pointer will be dereferened
3990 * from RCU-read-side without locks.
3993 rcu_assign_pointer(css
->id
->css
, css
);
3999 static void css_dput_fn(struct work_struct
*work
)
4001 struct cgroup_subsys_state
*css
=
4002 container_of(work
, struct cgroup_subsys_state
, dput_work
);
4003 struct dentry
*dentry
= css
->cgroup
->dentry
;
4004 struct super_block
*sb
= dentry
->d_sb
;
4006 atomic_inc(&sb
->s_active
);
4008 deactivate_super(sb
);
4011 static void init_cgroup_css(struct cgroup_subsys_state
*css
,
4012 struct cgroup_subsys
*ss
,
4013 struct cgroup
*cgrp
)
4016 atomic_set(&css
->refcnt
, 1);
4019 if (cgrp
== dummytop
)
4020 set_bit(CSS_ROOT
, &css
->flags
);
4021 BUG_ON(cgrp
->subsys
[ss
->subsys_id
]);
4022 cgrp
->subsys
[ss
->subsys_id
] = css
;
4025 * If !clear_css_refs, css holds an extra ref to @cgrp->dentry
4026 * which is put on the last css_put(). dput() requires process
4027 * context, which css_put() may be called without. @css->dput_work
4028 * will be used to invoke dput() asynchronously from css_put().
4030 INIT_WORK(&css
->dput_work
, css_dput_fn
);
4031 if (ss
->__DEPRECATED_clear_css_refs
)
4032 set_bit(CSS_CLEAR_CSS_REFS
, &css
->flags
);
4036 * cgroup_create - create a cgroup
4037 * @parent: cgroup that will be parent of the new cgroup
4038 * @dentry: dentry of the new cgroup
4039 * @mode: mode to set on new inode
4041 * Must be called with the mutex on the parent inode held
4043 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
4046 struct cgroup
*cgrp
;
4047 struct cgroupfs_root
*root
= parent
->root
;
4049 struct cgroup_subsys
*ss
;
4050 struct super_block
*sb
= root
->sb
;
4052 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
4056 /* Grab a reference on the superblock so the hierarchy doesn't
4057 * get deleted on unmount if there are child cgroups. This
4058 * can be done outside cgroup_mutex, since the sb can't
4059 * disappear while someone has an open control file on the
4061 atomic_inc(&sb
->s_active
);
4063 mutex_lock(&cgroup_mutex
);
4065 init_cgroup_housekeeping(cgrp
);
4067 cgrp
->parent
= parent
;
4068 cgrp
->root
= parent
->root
;
4069 cgrp
->top_cgroup
= parent
->top_cgroup
;
4071 if (notify_on_release(parent
))
4072 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
4074 if (clone_children(parent
))
4075 set_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
4077 for_each_subsys(root
, ss
) {
4078 struct cgroup_subsys_state
*css
;
4080 css
= ss
->create(cgrp
);
4085 init_cgroup_css(css
, ss
, cgrp
);
4087 err
= alloc_css_id(ss
, parent
, cgrp
);
4091 /* At error, ->destroy() callback has to free assigned ID. */
4092 if (clone_children(parent
) && ss
->post_clone
)
4093 ss
->post_clone(cgrp
);
4095 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
4097 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4098 current
->comm
, current
->pid
, ss
->name
);
4099 if (!strcmp(ss
->name
, "memory"))
4100 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4101 ss
->warned_broken_hierarchy
= true;
4105 list_add(&cgrp
->sibling
, &cgrp
->parent
->children
);
4106 root
->number_of_cgroups
++;
4108 err
= cgroup_create_dir(cgrp
, dentry
, mode
);
4112 /* If !clear_css_refs, each css holds a ref to the cgroup's dentry */
4113 for_each_subsys(root
, ss
)
4114 if (!ss
->__DEPRECATED_clear_css_refs
)
4117 /* The cgroup directory was pre-locked for us */
4118 BUG_ON(!mutex_is_locked(&cgrp
->dentry
->d_inode
->i_mutex
));
4120 list_add_tail(&cgrp
->allcg_node
, &root
->allcg_list
);
4122 err
= cgroup_populate_dir(cgrp
, true, root
->subsys_mask
);
4123 /* If err < 0, we have a half-filled directory - oh well ;) */
4125 mutex_unlock(&cgroup_mutex
);
4126 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
4132 list_del(&cgrp
->sibling
);
4133 root
->number_of_cgroups
--;
4137 for_each_subsys(root
, ss
) {
4138 if (cgrp
->subsys
[ss
->subsys_id
])
4142 mutex_unlock(&cgroup_mutex
);
4144 /* Release the reference count that we took on the superblock */
4145 deactivate_super(sb
);
4151 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
4153 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
4155 /* the vfs holds inode->i_mutex already */
4156 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
4160 * Check the reference count on each subsystem. Since we already
4161 * established that there are no tasks in the cgroup, if the css refcount
4162 * is also 1, then there should be no outstanding references, so the
4163 * subsystem is safe to destroy. We scan across all subsystems rather than
4164 * using the per-hierarchy linked list of mounted subsystems since we can
4165 * be called via check_for_release() with no synchronization other than
4166 * RCU, and the subsystem linked list isn't RCU-safe.
4168 static int cgroup_has_css_refs(struct cgroup
*cgrp
)
4173 * We won't need to lock the subsys array, because the subsystems
4174 * we're concerned about aren't going anywhere since our cgroup root
4175 * has a reference on them.
4177 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4178 struct cgroup_subsys
*ss
= subsys
[i
];
4179 struct cgroup_subsys_state
*css
;
4181 /* Skip subsystems not present or not in this hierarchy */
4182 if (ss
== NULL
|| ss
->root
!= cgrp
->root
)
4185 css
= cgrp
->subsys
[ss
->subsys_id
];
4187 * When called from check_for_release() it's possible
4188 * that by this point the cgroup has been removed
4189 * and the css deleted. But a false-positive doesn't
4190 * matter, since it can only happen if the cgroup
4191 * has been deleted and hence no longer needs the
4192 * release agent to be called anyway.
4194 if (css
&& css_refcnt(css
) > 1)
4201 * Atomically mark all (or else none) of the cgroup's CSS objects as
4202 * CSS_REMOVED. Return true on success, or false if the cgroup has
4203 * busy subsystems. Call with cgroup_mutex held
4205 * Depending on whether a subsys has __DEPRECATED_clear_css_refs set or
4206 * not, cgroup removal behaves differently.
4208 * If clear is set, css refcnt for the subsystem should be zero before
4209 * cgroup removal can be committed. This is implemented by
4210 * CGRP_WAIT_ON_RMDIR and retry logic around ->pre_destroy(), which may be
4211 * called multiple times until all css refcnts reach zero and is allowed to
4212 * veto removal on any invocation. This behavior is deprecated and will be
4213 * removed as soon as the existing user (memcg) is updated.
4215 * If clear is not set, each css holds an extra reference to the cgroup's
4216 * dentry and cgroup removal proceeds regardless of css refs.
4217 * ->pre_destroy() will be called at least once and is not allowed to fail.
4218 * On the last put of each css, whenever that may be, the extra dentry ref
4219 * is put so that dentry destruction happens only after all css's are
4222 static int cgroup_clear_css_refs(struct cgroup
*cgrp
)
4224 struct cgroup_subsys
*ss
;
4225 unsigned long flags
;
4226 bool failed
= false;
4228 local_irq_save(flags
);
4231 * Block new css_tryget() by deactivating refcnt. If all refcnts
4232 * for subsystems w/ clear_css_refs set were 1 at the moment of
4233 * deactivation, we succeeded.
4235 for_each_subsys(cgrp
->root
, ss
) {
4236 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
4238 WARN_ON(atomic_read(&css
->refcnt
) < 0);
4239 atomic_add(CSS_DEACT_BIAS
, &css
->refcnt
);
4241 if (ss
->__DEPRECATED_clear_css_refs
)
4242 failed
|= css_refcnt(css
) != 1;
4246 * If succeeded, set REMOVED and put all the base refs; otherwise,
4247 * restore refcnts to positive values. Either way, all in-progress
4248 * css_tryget() will be released.
4250 for_each_subsys(cgrp
->root
, ss
) {
4251 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
4254 set_bit(CSS_REMOVED
, &css
->flags
);
4257 atomic_sub(CSS_DEACT_BIAS
, &css
->refcnt
);
4261 local_irq_restore(flags
);
4265 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
4267 struct cgroup
*cgrp
= dentry
->d_fsdata
;
4269 struct cgroup
*parent
;
4271 struct cgroup_event
*event
, *tmp
;
4274 /* the vfs holds both inode->i_mutex already */
4276 mutex_lock(&cgroup_mutex
);
4277 if (atomic_read(&cgrp
->count
) != 0) {
4278 mutex_unlock(&cgroup_mutex
);
4281 if (!list_empty(&cgrp
->children
)) {
4282 mutex_unlock(&cgroup_mutex
);
4285 mutex_unlock(&cgroup_mutex
);
4288 * In general, subsystem has no css->refcnt after pre_destroy(). But
4289 * in racy cases, subsystem may have to get css->refcnt after
4290 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
4291 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4292 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4293 * and subsystem's reference count handling. Please see css_get/put
4294 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4296 set_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
4299 * Call pre_destroy handlers of subsys. Notify subsystems
4300 * that rmdir() request comes.
4302 ret
= cgroup_call_pre_destroy(cgrp
);
4304 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
4308 mutex_lock(&cgroup_mutex
);
4309 parent
= cgrp
->parent
;
4310 if (atomic_read(&cgrp
->count
) || !list_empty(&cgrp
->children
)) {
4311 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
4312 mutex_unlock(&cgroup_mutex
);
4315 prepare_to_wait(&cgroup_rmdir_waitq
, &wait
, TASK_INTERRUPTIBLE
);
4316 if (!cgroup_clear_css_refs(cgrp
)) {
4317 mutex_unlock(&cgroup_mutex
);
4319 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4320 * prepare_to_wait(), we need to check this flag.
4322 if (test_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
))
4324 finish_wait(&cgroup_rmdir_waitq
, &wait
);
4325 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
4326 if (signal_pending(current
))
4330 /* NO css_tryget() can success after here. */
4331 finish_wait(&cgroup_rmdir_waitq
, &wait
);
4332 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
4334 raw_spin_lock(&release_list_lock
);
4335 set_bit(CGRP_REMOVED
, &cgrp
->flags
);
4336 if (!list_empty(&cgrp
->release_list
))
4337 list_del_init(&cgrp
->release_list
);
4338 raw_spin_unlock(&release_list_lock
);
4340 /* delete this cgroup from parent->children */
4341 list_del_init(&cgrp
->sibling
);
4343 list_del_init(&cgrp
->allcg_node
);
4345 d
= dget(cgrp
->dentry
);
4347 cgroup_d_remove_dir(d
);
4350 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
4351 check_for_release(parent
);
4354 * Unregister events and notify userspace.
4355 * Notify userspace about cgroup removing only after rmdir of cgroup
4356 * directory to avoid race between userspace and kernelspace
4358 spin_lock(&cgrp
->event_list_lock
);
4359 list_for_each_entry_safe(event
, tmp
, &cgrp
->event_list
, list
) {
4360 list_del(&event
->list
);
4361 remove_wait_queue(event
->wqh
, &event
->wait
);
4362 eventfd_signal(event
->eventfd
, 1);
4363 schedule_work(&event
->remove
);
4365 spin_unlock(&cgrp
->event_list_lock
);
4367 mutex_unlock(&cgroup_mutex
);
4371 static void __init_or_module
cgroup_init_cftsets(struct cgroup_subsys
*ss
)
4373 INIT_LIST_HEAD(&ss
->cftsets
);
4376 * base_cftset is embedded in subsys itself, no need to worry about
4379 if (ss
->base_cftypes
) {
4380 ss
->base_cftset
.cfts
= ss
->base_cftypes
;
4381 list_add_tail(&ss
->base_cftset
.node
, &ss
->cftsets
);
4385 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
4387 struct cgroup_subsys_state
*css
;
4389 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
4391 /* init base cftset */
4392 cgroup_init_cftsets(ss
);
4394 /* Create the top cgroup state for this subsystem */
4395 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
4396 ss
->root
= &rootnode
;
4397 css
= ss
->create(dummytop
);
4398 /* We don't handle early failures gracefully */
4399 BUG_ON(IS_ERR(css
));
4400 init_cgroup_css(css
, ss
, dummytop
);
4402 /* Update the init_css_set to contain a subsys
4403 * pointer to this state - since the subsystem is
4404 * newly registered, all tasks and hence the
4405 * init_css_set is in the subsystem's top cgroup. */
4406 init_css_set
.subsys
[ss
->subsys_id
] = dummytop
->subsys
[ss
->subsys_id
];
4408 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
4410 /* At system boot, before all subsystems have been
4411 * registered, no tasks have been forked, so we don't
4412 * need to invoke fork callbacks here. */
4413 BUG_ON(!list_empty(&init_task
.tasks
));
4417 /* this function shouldn't be used with modular subsystems, since they
4418 * need to register a subsys_id, among other things */
4423 * cgroup_load_subsys: load and register a modular subsystem at runtime
4424 * @ss: the subsystem to load
4426 * This function should be called in a modular subsystem's initcall. If the
4427 * subsystem is built as a module, it will be assigned a new subsys_id and set
4428 * up for use. If the subsystem is built-in anyway, work is delegated to the
4429 * simpler cgroup_init_subsys.
4431 int __init_or_module
cgroup_load_subsys(struct cgroup_subsys
*ss
)
4434 struct cgroup_subsys_state
*css
;
4436 /* check name and function validity */
4437 if (ss
->name
== NULL
|| strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
||
4438 ss
->create
== NULL
|| ss
->destroy
== NULL
)
4442 * we don't support callbacks in modular subsystems. this check is
4443 * before the ss->module check for consistency; a subsystem that could
4444 * be a module should still have no callbacks even if the user isn't
4445 * compiling it as one.
4447 if (ss
->fork
|| ss
->exit
)
4451 * an optionally modular subsystem is built-in: we want to do nothing,
4452 * since cgroup_init_subsys will have already taken care of it.
4454 if (ss
->module
== NULL
) {
4455 /* a sanity check */
4456 BUG_ON(subsys
[ss
->subsys_id
] != ss
);
4460 /* init base cftset */
4461 cgroup_init_cftsets(ss
);
4463 mutex_lock(&cgroup_mutex
);
4464 subsys
[ss
->subsys_id
] = ss
;
4467 * no ss->create seems to need anything important in the ss struct, so
4468 * this can happen first (i.e. before the rootnode attachment).
4470 css
= ss
->create(dummytop
);
4472 /* failure case - need to deassign the subsys[] slot. */
4473 subsys
[ss
->subsys_id
] = NULL
;
4474 mutex_unlock(&cgroup_mutex
);
4475 return PTR_ERR(css
);
4478 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
4479 ss
->root
= &rootnode
;
4481 /* our new subsystem will be attached to the dummy hierarchy. */
4482 init_cgroup_css(css
, ss
, dummytop
);
4483 /* init_idr must be after init_cgroup_css because it sets css->id. */
4485 int ret
= cgroup_init_idr(ss
, css
);
4487 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
4488 ss
->destroy(dummytop
);
4489 subsys
[ss
->subsys_id
] = NULL
;
4490 mutex_unlock(&cgroup_mutex
);
4496 * Now we need to entangle the css into the existing css_sets. unlike
4497 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4498 * will need a new pointer to it; done by iterating the css_set_table.
4499 * furthermore, modifying the existing css_sets will corrupt the hash
4500 * table state, so each changed css_set will need its hash recomputed.
4501 * this is all done under the css_set_lock.
4503 write_lock(&css_set_lock
);
4504 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
4506 struct hlist_node
*node
, *tmp
;
4507 struct hlist_head
*bucket
= &css_set_table
[i
], *new_bucket
;
4509 hlist_for_each_entry_safe(cg
, node
, tmp
, bucket
, hlist
) {
4510 /* skip entries that we already rehashed */
4511 if (cg
->subsys
[ss
->subsys_id
])
4513 /* remove existing entry */
4514 hlist_del(&cg
->hlist
);
4516 cg
->subsys
[ss
->subsys_id
] = css
;
4517 /* recompute hash and restore entry */
4518 new_bucket
= css_set_hash(cg
->subsys
);
4519 hlist_add_head(&cg
->hlist
, new_bucket
);
4522 write_unlock(&css_set_lock
);
4527 mutex_unlock(&cgroup_mutex
);
4530 EXPORT_SYMBOL_GPL(cgroup_load_subsys
);
4533 * cgroup_unload_subsys: unload a modular subsystem
4534 * @ss: the subsystem to unload
4536 * This function should be called in a modular subsystem's exitcall. When this
4537 * function is invoked, the refcount on the subsystem's module will be 0, so
4538 * the subsystem will not be attached to any hierarchy.
4540 void cgroup_unload_subsys(struct cgroup_subsys
*ss
)
4542 struct cg_cgroup_link
*link
;
4543 struct hlist_head
*hhead
;
4545 BUG_ON(ss
->module
== NULL
);
4548 * we shouldn't be called if the subsystem is in use, and the use of
4549 * try_module_get in parse_cgroupfs_options should ensure that it
4550 * doesn't start being used while we're killing it off.
4552 BUG_ON(ss
->root
!= &rootnode
);
4554 mutex_lock(&cgroup_mutex
);
4555 /* deassign the subsys_id */
4556 subsys
[ss
->subsys_id
] = NULL
;
4558 /* remove subsystem from rootnode's list of subsystems */
4559 list_del_init(&ss
->sibling
);
4562 * disentangle the css from all css_sets attached to the dummytop. as
4563 * in loading, we need to pay our respects to the hashtable gods.
4565 write_lock(&css_set_lock
);
4566 list_for_each_entry(link
, &dummytop
->css_sets
, cgrp_link_list
) {
4567 struct css_set
*cg
= link
->cg
;
4569 hlist_del(&cg
->hlist
);
4570 BUG_ON(!cg
->subsys
[ss
->subsys_id
]);
4571 cg
->subsys
[ss
->subsys_id
] = NULL
;
4572 hhead
= css_set_hash(cg
->subsys
);
4573 hlist_add_head(&cg
->hlist
, hhead
);
4575 write_unlock(&css_set_lock
);
4578 * remove subsystem's css from the dummytop and free it - need to free
4579 * before marking as null because ss->destroy needs the cgrp->subsys
4580 * pointer to find their state. note that this also takes care of
4581 * freeing the css_id.
4583 ss
->destroy(dummytop
);
4584 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
4586 mutex_unlock(&cgroup_mutex
);
4588 EXPORT_SYMBOL_GPL(cgroup_unload_subsys
);
4591 * cgroup_init_early - cgroup initialization at system boot
4593 * Initialize cgroups at system boot, and initialize any
4594 * subsystems that request early init.
4596 int __init
cgroup_init_early(void)
4599 atomic_set(&init_css_set
.refcount
, 1);
4600 INIT_LIST_HEAD(&init_css_set
.cg_links
);
4601 INIT_LIST_HEAD(&init_css_set
.tasks
);
4602 INIT_HLIST_NODE(&init_css_set
.hlist
);
4604 init_cgroup_root(&rootnode
);
4606 init_task
.cgroups
= &init_css_set
;
4608 init_css_set_link
.cg
= &init_css_set
;
4609 init_css_set_link
.cgrp
= dummytop
;
4610 list_add(&init_css_set_link
.cgrp_link_list
,
4611 &rootnode
.top_cgroup
.css_sets
);
4612 list_add(&init_css_set_link
.cg_link_list
,
4613 &init_css_set
.cg_links
);
4615 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++)
4616 INIT_HLIST_HEAD(&css_set_table
[i
]);
4618 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4619 struct cgroup_subsys
*ss
= subsys
[i
];
4621 /* at bootup time, we don't worry about modular subsystems */
4622 if (!ss
|| ss
->module
)
4626 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
4627 BUG_ON(!ss
->create
);
4628 BUG_ON(!ss
->destroy
);
4629 if (ss
->subsys_id
!= i
) {
4630 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
4631 ss
->name
, ss
->subsys_id
);
4636 cgroup_init_subsys(ss
);
4642 * cgroup_init - cgroup initialization
4644 * Register cgroup filesystem and /proc file, and initialize
4645 * any subsystems that didn't request early init.
4647 int __init
cgroup_init(void)
4651 struct hlist_head
*hhead
;
4653 err
= bdi_init(&cgroup_backing_dev_info
);
4657 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4658 struct cgroup_subsys
*ss
= subsys
[i
];
4660 /* at bootup time, we don't worry about modular subsystems */
4661 if (!ss
|| ss
->module
)
4663 if (!ss
->early_init
)
4664 cgroup_init_subsys(ss
);
4666 cgroup_init_idr(ss
, init_css_set
.subsys
[ss
->subsys_id
]);
4669 /* Add init_css_set to the hash table */
4670 hhead
= css_set_hash(init_css_set
.subsys
);
4671 hlist_add_head(&init_css_set
.hlist
, hhead
);
4672 BUG_ON(!init_root_id(&rootnode
));
4674 cgroup_kobj
= kobject_create_and_add("cgroup", fs_kobj
);
4680 err
= register_filesystem(&cgroup_fs_type
);
4682 kobject_put(cgroup_kobj
);
4686 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
4690 bdi_destroy(&cgroup_backing_dev_info
);
4696 * proc_cgroup_show()
4697 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4698 * - Used for /proc/<pid>/cgroup.
4699 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4700 * doesn't really matter if tsk->cgroup changes after we read it,
4701 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4702 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4703 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4704 * cgroup to top_cgroup.
4707 /* TODO: Use a proper seq_file iterator */
4708 static int proc_cgroup_show(struct seq_file
*m
, void *v
)
4711 struct task_struct
*tsk
;
4714 struct cgroupfs_root
*root
;
4717 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4723 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
4729 mutex_lock(&cgroup_mutex
);
4731 for_each_active_root(root
) {
4732 struct cgroup_subsys
*ss
;
4733 struct cgroup
*cgrp
;
4736 seq_printf(m
, "%d:", root
->hierarchy_id
);
4737 for_each_subsys(root
, ss
)
4738 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
4739 if (strlen(root
->name
))
4740 seq_printf(m
, "%sname=%s", count
? "," : "",
4743 cgrp
= task_cgroup_from_root(tsk
, root
);
4744 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
4752 mutex_unlock(&cgroup_mutex
);
4753 put_task_struct(tsk
);
4760 static int cgroup_open(struct inode
*inode
, struct file
*file
)
4762 struct pid
*pid
= PROC_I(inode
)->pid
;
4763 return single_open(file
, proc_cgroup_show
, pid
);
4766 const struct file_operations proc_cgroup_operations
= {
4767 .open
= cgroup_open
,
4769 .llseek
= seq_lseek
,
4770 .release
= single_release
,
4773 /* Display information about each subsystem and each hierarchy */
4774 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
4778 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4780 * ideally we don't want subsystems moving around while we do this.
4781 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4782 * subsys/hierarchy state.
4784 mutex_lock(&cgroup_mutex
);
4785 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4786 struct cgroup_subsys
*ss
= subsys
[i
];
4789 seq_printf(m
, "%s\t%d\t%d\t%d\n",
4790 ss
->name
, ss
->root
->hierarchy_id
,
4791 ss
->root
->number_of_cgroups
, !ss
->disabled
);
4793 mutex_unlock(&cgroup_mutex
);
4797 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
4799 return single_open(file
, proc_cgroupstats_show
, NULL
);
4802 static const struct file_operations proc_cgroupstats_operations
= {
4803 .open
= cgroupstats_open
,
4805 .llseek
= seq_lseek
,
4806 .release
= single_release
,
4810 * cgroup_fork - attach newly forked task to its parents cgroup.
4811 * @child: pointer to task_struct of forking parent process.
4813 * Description: A task inherits its parent's cgroup at fork().
4815 * A pointer to the shared css_set was automatically copied in
4816 * fork.c by dup_task_struct(). However, we ignore that copy, since
4817 * it was not made under the protection of RCU or cgroup_mutex, so
4818 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4819 * have already changed current->cgroups, allowing the previously
4820 * referenced cgroup group to be removed and freed.
4822 * At the point that cgroup_fork() is called, 'current' is the parent
4823 * task, and the passed argument 'child' points to the child task.
4825 void cgroup_fork(struct task_struct
*child
)
4828 child
->cgroups
= current
->cgroups
;
4829 get_css_set(child
->cgroups
);
4830 task_unlock(current
);
4831 INIT_LIST_HEAD(&child
->cg_list
);
4835 * cgroup_fork_callbacks - run fork callbacks
4836 * @child: the new task
4838 * Called on a new task very soon before adding it to the
4839 * tasklist. No need to take any locks since no-one can
4840 * be operating on this task.
4842 void cgroup_fork_callbacks(struct task_struct
*child
)
4844 if (need_forkexit_callback
) {
4846 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4847 struct cgroup_subsys
*ss
= subsys
[i
];
4850 * forkexit callbacks are only supported for
4851 * builtin subsystems.
4853 if (!ss
|| ss
->module
)
4863 * cgroup_post_fork - called on a new task after adding it to the task list
4864 * @child: the task in question
4866 * Adds the task to the list running through its css_set if necessary.
4867 * Has to be after the task is visible on the task list in case we race
4868 * with the first call to cgroup_iter_start() - to guarantee that the
4869 * new task ends up on its list.
4871 void cgroup_post_fork(struct task_struct
*child
)
4874 * use_task_css_set_links is set to 1 before we walk the tasklist
4875 * under the tasklist_lock and we read it here after we added the child
4876 * to the tasklist under the tasklist_lock as well. If the child wasn't
4877 * yet in the tasklist when we walked through it from
4878 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4879 * should be visible now due to the paired locking and barriers implied
4880 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4881 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4884 if (use_task_css_set_links
) {
4885 write_lock(&css_set_lock
);
4887 if (list_empty(&child
->cg_list
))
4888 list_add(&child
->cg_list
, &child
->cgroups
->tasks
);
4890 write_unlock(&css_set_lock
);
4894 * cgroup_exit - detach cgroup from exiting task
4895 * @tsk: pointer to task_struct of exiting process
4896 * @run_callback: run exit callbacks?
4898 * Description: Detach cgroup from @tsk and release it.
4900 * Note that cgroups marked notify_on_release force every task in
4901 * them to take the global cgroup_mutex mutex when exiting.
4902 * This could impact scaling on very large systems. Be reluctant to
4903 * use notify_on_release cgroups where very high task exit scaling
4904 * is required on large systems.
4906 * the_top_cgroup_hack:
4908 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4910 * We call cgroup_exit() while the task is still competent to
4911 * handle notify_on_release(), then leave the task attached to the
4912 * root cgroup in each hierarchy for the remainder of its exit.
4914 * To do this properly, we would increment the reference count on
4915 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4916 * code we would add a second cgroup function call, to drop that
4917 * reference. This would just create an unnecessary hot spot on
4918 * the top_cgroup reference count, to no avail.
4920 * Normally, holding a reference to a cgroup without bumping its
4921 * count is unsafe. The cgroup could go away, or someone could
4922 * attach us to a different cgroup, decrementing the count on
4923 * the first cgroup that we never incremented. But in this case,
4924 * top_cgroup isn't going away, and either task has PF_EXITING set,
4925 * which wards off any cgroup_attach_task() attempts, or task is a failed
4926 * fork, never visible to cgroup_attach_task.
4928 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
4934 * Unlink from the css_set task list if necessary.
4935 * Optimistically check cg_list before taking
4938 if (!list_empty(&tsk
->cg_list
)) {
4939 write_lock(&css_set_lock
);
4940 if (!list_empty(&tsk
->cg_list
))
4941 list_del_init(&tsk
->cg_list
);
4942 write_unlock(&css_set_lock
);
4945 /* Reassign the task to the init_css_set. */
4948 tsk
->cgroups
= &init_css_set
;
4950 if (run_callbacks
&& need_forkexit_callback
) {
4951 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4952 struct cgroup_subsys
*ss
= subsys
[i
];
4954 /* modular subsystems can't use callbacks */
4955 if (!ss
|| ss
->module
)
4959 struct cgroup
*old_cgrp
=
4960 rcu_dereference_raw(cg
->subsys
[i
])->cgroup
;
4961 struct cgroup
*cgrp
= task_cgroup(tsk
, i
);
4962 ss
->exit(cgrp
, old_cgrp
, tsk
);
4969 put_css_set_taskexit(cg
);
4973 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4974 * @cgrp: the cgroup in question
4975 * @task: the task in question
4977 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4980 * If we are sending in dummytop, then presumably we are creating
4981 * the top cgroup in the subsystem.
4983 * Called only by the ns (nsproxy) cgroup.
4985 int cgroup_is_descendant(const struct cgroup
*cgrp
, struct task_struct
*task
)
4988 struct cgroup
*target
;
4990 if (cgrp
== dummytop
)
4993 target
= task_cgroup_from_root(task
, cgrp
->root
);
4994 while (cgrp
!= target
&& cgrp
!= cgrp
->top_cgroup
)
4995 cgrp
= cgrp
->parent
;
4996 ret
= (cgrp
== target
);
5000 static void check_for_release(struct cgroup
*cgrp
)
5002 /* All of these checks rely on RCU to keep the cgroup
5003 * structure alive */
5004 if (cgroup_is_releasable(cgrp
) && !atomic_read(&cgrp
->count
)
5005 && list_empty(&cgrp
->children
) && !cgroup_has_css_refs(cgrp
)) {
5006 /* Control Group is currently removeable. If it's not
5007 * already queued for a userspace notification, queue
5009 int need_schedule_work
= 0;
5010 raw_spin_lock(&release_list_lock
);
5011 if (!cgroup_is_removed(cgrp
) &&
5012 list_empty(&cgrp
->release_list
)) {
5013 list_add(&cgrp
->release_list
, &release_list
);
5014 need_schedule_work
= 1;
5016 raw_spin_unlock(&release_list_lock
);
5017 if (need_schedule_work
)
5018 schedule_work(&release_agent_work
);
5022 /* Caller must verify that the css is not for root cgroup */
5023 bool __css_tryget(struct cgroup_subsys_state
*css
)
5026 int v
= css_refcnt(css
);
5028 if (atomic_cmpxchg(&css
->refcnt
, v
, v
+ 1) == v
)
5031 } while (!test_bit(CSS_REMOVED
, &css
->flags
));
5035 EXPORT_SYMBOL_GPL(__css_tryget
);
5037 /* Caller must verify that the css is not for root cgroup */
5038 void __css_put(struct cgroup_subsys_state
*css
)
5040 struct cgroup
*cgrp
= css
->cgroup
;
5044 v
= css_unbias_refcnt(atomic_dec_return(&css
->refcnt
));
5048 if (notify_on_release(cgrp
)) {
5049 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
5050 check_for_release(cgrp
);
5052 cgroup_wakeup_rmdir_waiter(cgrp
);
5055 if (!test_bit(CSS_CLEAR_CSS_REFS
, &css
->flags
))
5056 schedule_work(&css
->dput_work
);
5061 EXPORT_SYMBOL_GPL(__css_put
);
5064 * Notify userspace when a cgroup is released, by running the
5065 * configured release agent with the name of the cgroup (path
5066 * relative to the root of cgroup file system) as the argument.
5068 * Most likely, this user command will try to rmdir this cgroup.
5070 * This races with the possibility that some other task will be
5071 * attached to this cgroup before it is removed, or that some other
5072 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5073 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5074 * unused, and this cgroup will be reprieved from its death sentence,
5075 * to continue to serve a useful existence. Next time it's released,
5076 * we will get notified again, if it still has 'notify_on_release' set.
5078 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5079 * means only wait until the task is successfully execve()'d. The
5080 * separate release agent task is forked by call_usermodehelper(),
5081 * then control in this thread returns here, without waiting for the
5082 * release agent task. We don't bother to wait because the caller of
5083 * this routine has no use for the exit status of the release agent
5084 * task, so no sense holding our caller up for that.
5086 static void cgroup_release_agent(struct work_struct
*work
)
5088 BUG_ON(work
!= &release_agent_work
);
5089 mutex_lock(&cgroup_mutex
);
5090 raw_spin_lock(&release_list_lock
);
5091 while (!list_empty(&release_list
)) {
5092 char *argv
[3], *envp
[3];
5094 char *pathbuf
= NULL
, *agentbuf
= NULL
;
5095 struct cgroup
*cgrp
= list_entry(release_list
.next
,
5098 list_del_init(&cgrp
->release_list
);
5099 raw_spin_unlock(&release_list_lock
);
5100 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
5103 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
5105 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
5110 argv
[i
++] = agentbuf
;
5111 argv
[i
++] = pathbuf
;
5115 /* minimal command environment */
5116 envp
[i
++] = "HOME=/";
5117 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5120 /* Drop the lock while we invoke the usermode helper,
5121 * since the exec could involve hitting disk and hence
5122 * be a slow process */
5123 mutex_unlock(&cgroup_mutex
);
5124 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
5125 mutex_lock(&cgroup_mutex
);
5129 raw_spin_lock(&release_list_lock
);
5131 raw_spin_unlock(&release_list_lock
);
5132 mutex_unlock(&cgroup_mutex
);
5135 static int __init
cgroup_disable(char *str
)
5140 while ((token
= strsep(&str
, ",")) != NULL
) {
5143 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
5144 struct cgroup_subsys
*ss
= subsys
[i
];
5147 * cgroup_disable, being at boot time, can't
5148 * know about module subsystems, so we don't
5151 if (!ss
|| ss
->module
)
5154 if (!strcmp(token
, ss
->name
)) {
5156 printk(KERN_INFO
"Disabling %s control group"
5157 " subsystem\n", ss
->name
);
5164 __setup("cgroup_disable=", cgroup_disable
);
5167 * Functons for CSS ID.
5171 *To get ID other than 0, this should be called when !cgroup_is_removed().
5173 unsigned short css_id(struct cgroup_subsys_state
*css
)
5175 struct css_id
*cssid
;
5178 * This css_id() can return correct value when somone has refcnt
5179 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5180 * it's unchanged until freed.
5182 cssid
= rcu_dereference_check(css
->id
, css_refcnt(css
));
5188 EXPORT_SYMBOL_GPL(css_id
);
5190 unsigned short css_depth(struct cgroup_subsys_state
*css
)
5192 struct css_id
*cssid
;
5194 cssid
= rcu_dereference_check(css
->id
, css_refcnt(css
));
5197 return cssid
->depth
;
5200 EXPORT_SYMBOL_GPL(css_depth
);
5203 * css_is_ancestor - test "root" css is an ancestor of "child"
5204 * @child: the css to be tested.
5205 * @root: the css supporsed to be an ancestor of the child.
5207 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5208 * this function reads css->id, the caller must hold rcu_read_lock().
5209 * But, considering usual usage, the csses should be valid objects after test.
5210 * Assuming that the caller will do some action to the child if this returns
5211 * returns true, the caller must take "child";s reference count.
5212 * If "child" is valid object and this returns true, "root" is valid, too.
5215 bool css_is_ancestor(struct cgroup_subsys_state
*child
,
5216 const struct cgroup_subsys_state
*root
)
5218 struct css_id
*child_id
;
5219 struct css_id
*root_id
;
5221 child_id
= rcu_dereference(child
->id
);
5224 root_id
= rcu_dereference(root
->id
);
5227 if (child_id
->depth
< root_id
->depth
)
5229 if (child_id
->stack
[root_id
->depth
] != root_id
->id
)
5234 void free_css_id(struct cgroup_subsys
*ss
, struct cgroup_subsys_state
*css
)
5236 struct css_id
*id
= css
->id
;
5237 /* When this is called before css_id initialization, id can be NULL */
5241 BUG_ON(!ss
->use_id
);
5243 rcu_assign_pointer(id
->css
, NULL
);
5244 rcu_assign_pointer(css
->id
, NULL
);
5245 spin_lock(&ss
->id_lock
);
5246 idr_remove(&ss
->idr
, id
->id
);
5247 spin_unlock(&ss
->id_lock
);
5248 kfree_rcu(id
, rcu_head
);
5250 EXPORT_SYMBOL_GPL(free_css_id
);
5253 * This is called by init or create(). Then, calls to this function are
5254 * always serialized (By cgroup_mutex() at create()).
5257 static struct css_id
*get_new_cssid(struct cgroup_subsys
*ss
, int depth
)
5259 struct css_id
*newid
;
5260 int myid
, error
, size
;
5262 BUG_ON(!ss
->use_id
);
5264 size
= sizeof(*newid
) + sizeof(unsigned short) * (depth
+ 1);
5265 newid
= kzalloc(size
, GFP_KERNEL
);
5267 return ERR_PTR(-ENOMEM
);
5269 if (unlikely(!idr_pre_get(&ss
->idr
, GFP_KERNEL
))) {
5273 spin_lock(&ss
->id_lock
);
5274 /* Don't use 0. allocates an ID of 1-65535 */
5275 error
= idr_get_new_above(&ss
->idr
, newid
, 1, &myid
);
5276 spin_unlock(&ss
->id_lock
);
5278 /* Returns error when there are no free spaces for new ID.*/
5283 if (myid
> CSS_ID_MAX
)
5287 newid
->depth
= depth
;
5291 spin_lock(&ss
->id_lock
);
5292 idr_remove(&ss
->idr
, myid
);
5293 spin_unlock(&ss
->id_lock
);
5296 return ERR_PTR(error
);
5300 static int __init_or_module
cgroup_init_idr(struct cgroup_subsys
*ss
,
5301 struct cgroup_subsys_state
*rootcss
)
5303 struct css_id
*newid
;
5305 spin_lock_init(&ss
->id_lock
);
5308 newid
= get_new_cssid(ss
, 0);
5310 return PTR_ERR(newid
);
5312 newid
->stack
[0] = newid
->id
;
5313 newid
->css
= rootcss
;
5314 rootcss
->id
= newid
;
5318 static int alloc_css_id(struct cgroup_subsys
*ss
, struct cgroup
*parent
,
5319 struct cgroup
*child
)
5321 int subsys_id
, i
, depth
= 0;
5322 struct cgroup_subsys_state
*parent_css
, *child_css
;
5323 struct css_id
*child_id
, *parent_id
;
5325 subsys_id
= ss
->subsys_id
;
5326 parent_css
= parent
->subsys
[subsys_id
];
5327 child_css
= child
->subsys
[subsys_id
];
5328 parent_id
= parent_css
->id
;
5329 depth
= parent_id
->depth
+ 1;
5331 child_id
= get_new_cssid(ss
, depth
);
5332 if (IS_ERR(child_id
))
5333 return PTR_ERR(child_id
);
5335 for (i
= 0; i
< depth
; i
++)
5336 child_id
->stack
[i
] = parent_id
->stack
[i
];
5337 child_id
->stack
[depth
] = child_id
->id
;
5339 * child_id->css pointer will be set after this cgroup is available
5340 * see cgroup_populate_dir()
5342 rcu_assign_pointer(child_css
->id
, child_id
);
5348 * css_lookup - lookup css by id
5349 * @ss: cgroup subsys to be looked into.
5352 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5353 * NULL if not. Should be called under rcu_read_lock()
5355 struct cgroup_subsys_state
*css_lookup(struct cgroup_subsys
*ss
, int id
)
5357 struct css_id
*cssid
= NULL
;
5359 BUG_ON(!ss
->use_id
);
5360 cssid
= idr_find(&ss
->idr
, id
);
5362 if (unlikely(!cssid
))
5365 return rcu_dereference(cssid
->css
);
5367 EXPORT_SYMBOL_GPL(css_lookup
);
5370 * css_get_next - lookup next cgroup under specified hierarchy.
5371 * @ss: pointer to subsystem
5372 * @id: current position of iteration.
5373 * @root: pointer to css. search tree under this.
5374 * @foundid: position of found object.
5376 * Search next css under the specified hierarchy of rootid. Calling under
5377 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5379 struct cgroup_subsys_state
*
5380 css_get_next(struct cgroup_subsys
*ss
, int id
,
5381 struct cgroup_subsys_state
*root
, int *foundid
)
5383 struct cgroup_subsys_state
*ret
= NULL
;
5386 int rootid
= css_id(root
);
5387 int depth
= css_depth(root
);
5392 BUG_ON(!ss
->use_id
);
5393 WARN_ON_ONCE(!rcu_read_lock_held());
5395 /* fill start point for scan */
5399 * scan next entry from bitmap(tree), tmpid is updated after
5402 tmp
= idr_get_next(&ss
->idr
, &tmpid
);
5405 if (tmp
->depth
>= depth
&& tmp
->stack
[depth
] == rootid
) {
5406 ret
= rcu_dereference(tmp
->css
);
5412 /* continue to scan from next id */
5419 * get corresponding css from file open on cgroupfs directory
5421 struct cgroup_subsys_state
*cgroup_css_from_dir(struct file
*f
, int id
)
5423 struct cgroup
*cgrp
;
5424 struct inode
*inode
;
5425 struct cgroup_subsys_state
*css
;
5427 inode
= f
->f_dentry
->d_inode
;
5428 /* check in cgroup filesystem dir */
5429 if (inode
->i_op
!= &cgroup_dir_inode_operations
)
5430 return ERR_PTR(-EBADF
);
5432 if (id
< 0 || id
>= CGROUP_SUBSYS_COUNT
)
5433 return ERR_PTR(-EINVAL
);
5436 cgrp
= __d_cgrp(f
->f_dentry
);
5437 css
= cgrp
->subsys
[id
];
5438 return css
? css
: ERR_PTR(-ENOENT
);
5441 #ifdef CONFIG_CGROUP_DEBUG
5442 static struct cgroup_subsys_state
*debug_create(struct cgroup
*cont
)
5444 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
5447 return ERR_PTR(-ENOMEM
);
5452 static void debug_destroy(struct cgroup
*cont
)
5454 kfree(cont
->subsys
[debug_subsys_id
]);
5457 static u64
cgroup_refcount_read(struct cgroup
*cont
, struct cftype
*cft
)
5459 return atomic_read(&cont
->count
);
5462 static u64
debug_taskcount_read(struct cgroup
*cont
, struct cftype
*cft
)
5464 return cgroup_task_count(cont
);
5467 static u64
current_css_set_read(struct cgroup
*cont
, struct cftype
*cft
)
5469 return (u64
)(unsigned long)current
->cgroups
;
5472 static u64
current_css_set_refcount_read(struct cgroup
*cont
,
5478 count
= atomic_read(¤t
->cgroups
->refcount
);
5483 static int current_css_set_cg_links_read(struct cgroup
*cont
,
5485 struct seq_file
*seq
)
5487 struct cg_cgroup_link
*link
;
5490 read_lock(&css_set_lock
);
5492 cg
= rcu_dereference(current
->cgroups
);
5493 list_for_each_entry(link
, &cg
->cg_links
, cg_link_list
) {
5494 struct cgroup
*c
= link
->cgrp
;
5498 name
= c
->dentry
->d_name
.name
;
5501 seq_printf(seq
, "Root %d group %s\n",
5502 c
->root
->hierarchy_id
, name
);
5505 read_unlock(&css_set_lock
);
5509 #define MAX_TASKS_SHOWN_PER_CSS 25
5510 static int cgroup_css_links_read(struct cgroup
*cont
,
5512 struct seq_file
*seq
)
5514 struct cg_cgroup_link
*link
;
5516 read_lock(&css_set_lock
);
5517 list_for_each_entry(link
, &cont
->css_sets
, cgrp_link_list
) {
5518 struct css_set
*cg
= link
->cg
;
5519 struct task_struct
*task
;
5521 seq_printf(seq
, "css_set %p\n", cg
);
5522 list_for_each_entry(task
, &cg
->tasks
, cg_list
) {
5523 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
) {
5524 seq_puts(seq
, " ...\n");
5527 seq_printf(seq
, " task %d\n",
5528 task_pid_vnr(task
));
5532 read_unlock(&css_set_lock
);
5536 static u64
releasable_read(struct cgroup
*cgrp
, struct cftype
*cft
)
5538 return test_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
5541 static struct cftype debug_files
[] = {
5543 .name
= "cgroup_refcount",
5544 .read_u64
= cgroup_refcount_read
,
5547 .name
= "taskcount",
5548 .read_u64
= debug_taskcount_read
,
5552 .name
= "current_css_set",
5553 .read_u64
= current_css_set_read
,
5557 .name
= "current_css_set_refcount",
5558 .read_u64
= current_css_set_refcount_read
,
5562 .name
= "current_css_set_cg_links",
5563 .read_seq_string
= current_css_set_cg_links_read
,
5567 .name
= "cgroup_css_links",
5568 .read_seq_string
= cgroup_css_links_read
,
5572 .name
= "releasable",
5573 .read_u64
= releasable_read
,
5579 struct cgroup_subsys debug_subsys
= {
5581 .create
= debug_create
,
5582 .destroy
= debug_destroy
,
5583 .subsys_id
= debug_subsys_id
,
5584 .base_cftypes
= debug_files
,
5586 #endif /* CONFIG_CGROUP_DEBUG */