USB: isp1760: use a specific PLX bridge instead of any bdridge
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / mac80211 / rx.c
blob6db854505193ec178d60a657fa14534e8e5b25f5
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/kernel.h>
14 #include <linux/skbuff.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/rcupdate.h>
18 #include <net/mac80211.h>
19 #include <net/ieee80211_radiotap.h>
21 #include "ieee80211_i.h"
22 #include "led.h"
23 #include "mesh.h"
24 #include "wep.h"
25 #include "wpa.h"
26 #include "tkip.h"
27 #include "wme.h"
29 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
30 struct tid_ampdu_rx *tid_agg_rx,
31 struct sk_buff *skb, u16 mpdu_seq_num,
32 int bar_req);
34 * monitor mode reception
36 * This function cleans up the SKB, i.e. it removes all the stuff
37 * only useful for monitoring.
39 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
40 struct sk_buff *skb,
41 int rtap_len)
43 skb_pull(skb, rtap_len);
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 skb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 skb = NULL;
56 return skb;
59 static inline int should_drop_frame(struct ieee80211_rx_status *status,
60 struct sk_buff *skb,
61 int present_fcs_len,
62 int radiotap_len)
64 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
66 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
67 return 1;
68 if (unlikely(skb->len < 16 + present_fcs_len + radiotap_len))
69 return 1;
70 if (ieee80211_is_ctl(hdr->frame_control) &&
71 !ieee80211_is_pspoll(hdr->frame_control) &&
72 !ieee80211_is_back_req(hdr->frame_control))
73 return 1;
74 return 0;
77 static int
78 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
79 struct ieee80211_rx_status *status)
81 int len;
83 /* always present fields */
84 len = sizeof(struct ieee80211_radiotap_header) + 9;
86 if (status->flag & RX_FLAG_TSFT)
87 len += 8;
88 if (local->hw.flags & IEEE80211_HW_SIGNAL_DB ||
89 local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
90 len += 1;
91 if (local->hw.flags & IEEE80211_HW_NOISE_DBM)
92 len += 1;
94 if (len & 1) /* padding for RX_FLAGS if necessary */
95 len++;
97 /* make sure radiotap starts at a naturally aligned address */
98 if (len % 8)
99 len = roundup(len, 8);
101 return len;
105 * ieee80211_add_rx_radiotap_header - add radiotap header
107 * add a radiotap header containing all the fields which the hardware provided.
109 static void
110 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
111 struct sk_buff *skb,
112 struct ieee80211_rx_status *status,
113 struct ieee80211_rate *rate,
114 int rtap_len)
116 struct ieee80211_radiotap_header *rthdr;
117 unsigned char *pos;
119 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
120 memset(rthdr, 0, rtap_len);
122 /* radiotap header, set always present flags */
123 rthdr->it_present =
124 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
125 (1 << IEEE80211_RADIOTAP_RATE) |
126 (1 << IEEE80211_RADIOTAP_CHANNEL) |
127 (1 << IEEE80211_RADIOTAP_ANTENNA) |
128 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
129 rthdr->it_len = cpu_to_le16(rtap_len);
131 pos = (unsigned char *)(rthdr+1);
133 /* the order of the following fields is important */
135 /* IEEE80211_RADIOTAP_TSFT */
136 if (status->flag & RX_FLAG_TSFT) {
137 *(__le64 *)pos = cpu_to_le64(status->mactime);
138 rthdr->it_present |=
139 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
140 pos += 8;
143 /* IEEE80211_RADIOTAP_FLAGS */
144 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
145 *pos |= IEEE80211_RADIOTAP_F_FCS;
146 pos++;
148 /* IEEE80211_RADIOTAP_RATE */
149 *pos = rate->bitrate / 5;
150 pos++;
152 /* IEEE80211_RADIOTAP_CHANNEL */
153 *(__le16 *)pos = cpu_to_le16(status->freq);
154 pos += 2;
155 if (status->band == IEEE80211_BAND_5GHZ)
156 *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_OFDM |
157 IEEE80211_CHAN_5GHZ);
158 else
159 *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_DYN |
160 IEEE80211_CHAN_2GHZ);
161 pos += 2;
163 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
164 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
165 *pos = status->signal;
166 rthdr->it_present |=
167 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
168 pos++;
171 /* IEEE80211_RADIOTAP_DBM_ANTNOISE */
172 if (local->hw.flags & IEEE80211_HW_NOISE_DBM) {
173 *pos = status->noise;
174 rthdr->it_present |=
175 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTNOISE);
176 pos++;
179 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
181 /* IEEE80211_RADIOTAP_ANTENNA */
182 *pos = status->antenna;
183 pos++;
185 /* IEEE80211_RADIOTAP_DB_ANTSIGNAL */
186 if (local->hw.flags & IEEE80211_HW_SIGNAL_DB) {
187 *pos = status->signal;
188 rthdr->it_present |=
189 cpu_to_le32(1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL);
190 pos++;
193 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
195 /* IEEE80211_RADIOTAP_RX_FLAGS */
196 /* ensure 2 byte alignment for the 2 byte field as required */
197 if ((pos - (unsigned char *)rthdr) & 1)
198 pos++;
199 /* FIXME: when radiotap gets a 'bad PLCP' flag use it here */
200 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
201 *(__le16 *)pos |= cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADFCS);
202 pos += 2;
206 * This function copies a received frame to all monitor interfaces and
207 * returns a cleaned-up SKB that no longer includes the FCS nor the
208 * radiotap header the driver might have added.
210 static struct sk_buff *
211 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
212 struct ieee80211_rx_status *status,
213 struct ieee80211_rate *rate)
215 struct ieee80211_sub_if_data *sdata;
216 int needed_headroom = 0;
217 struct sk_buff *skb, *skb2;
218 struct net_device *prev_dev = NULL;
219 int present_fcs_len = 0;
220 int rtap_len = 0;
223 * First, we may need to make a copy of the skb because
224 * (1) we need to modify it for radiotap (if not present), and
225 * (2) the other RX handlers will modify the skb we got.
227 * We don't need to, of course, if we aren't going to return
228 * the SKB because it has a bad FCS/PLCP checksum.
230 if (status->flag & RX_FLAG_RADIOTAP)
231 rtap_len = ieee80211_get_radiotap_len(origskb->data);
232 else
233 /* room for the radiotap header based on driver features */
234 needed_headroom = ieee80211_rx_radiotap_len(local, status);
236 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
237 present_fcs_len = FCS_LEN;
239 if (!local->monitors) {
240 if (should_drop_frame(status, origskb, present_fcs_len,
241 rtap_len)) {
242 dev_kfree_skb(origskb);
243 return NULL;
246 return remove_monitor_info(local, origskb, rtap_len);
249 if (should_drop_frame(status, origskb, present_fcs_len, rtap_len)) {
250 /* only need to expand headroom if necessary */
251 skb = origskb;
252 origskb = NULL;
255 * This shouldn't trigger often because most devices have an
256 * RX header they pull before we get here, and that should
257 * be big enough for our radiotap information. We should
258 * probably export the length to drivers so that we can have
259 * them allocate enough headroom to start with.
261 if (skb_headroom(skb) < needed_headroom &&
262 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
263 dev_kfree_skb(skb);
264 return NULL;
266 } else {
268 * Need to make a copy and possibly remove radiotap header
269 * and FCS from the original.
271 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
273 origskb = remove_monitor_info(local, origskb, rtap_len);
275 if (!skb)
276 return origskb;
279 /* if necessary, prepend radiotap information */
280 if (!(status->flag & RX_FLAG_RADIOTAP))
281 ieee80211_add_rx_radiotap_header(local, skb, status, rate,
282 needed_headroom);
284 skb_reset_mac_header(skb);
285 skb->ip_summed = CHECKSUM_UNNECESSARY;
286 skb->pkt_type = PACKET_OTHERHOST;
287 skb->protocol = htons(ETH_P_802_2);
289 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
290 if (!netif_running(sdata->dev))
291 continue;
293 if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR)
294 continue;
296 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
297 continue;
299 if (prev_dev) {
300 skb2 = skb_clone(skb, GFP_ATOMIC);
301 if (skb2) {
302 skb2->dev = prev_dev;
303 netif_rx(skb2);
307 prev_dev = sdata->dev;
308 sdata->dev->stats.rx_packets++;
309 sdata->dev->stats.rx_bytes += skb->len;
312 if (prev_dev) {
313 skb->dev = prev_dev;
314 netif_rx(skb);
315 } else
316 dev_kfree_skb(skb);
318 return origskb;
322 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
324 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
325 int tid;
327 /* does the frame have a qos control field? */
328 if (ieee80211_is_data_qos(hdr->frame_control)) {
329 u8 *qc = ieee80211_get_qos_ctl(hdr);
330 /* frame has qos control */
331 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
332 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
333 rx->flags |= IEEE80211_RX_AMSDU;
334 else
335 rx->flags &= ~IEEE80211_RX_AMSDU;
336 } else {
338 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
340 * Sequence numbers for management frames, QoS data
341 * frames with a broadcast/multicast address in the
342 * Address 1 field, and all non-QoS data frames sent
343 * by QoS STAs are assigned using an additional single
344 * modulo-4096 counter, [...]
346 * We also use that counter for non-QoS STAs.
348 tid = NUM_RX_DATA_QUEUES - 1;
351 rx->queue = tid;
352 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
353 * For now, set skb->priority to 0 for other cases. */
354 rx->skb->priority = (tid > 7) ? 0 : tid;
357 static void ieee80211_verify_ip_alignment(struct ieee80211_rx_data *rx)
359 #ifdef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT
360 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
361 int hdrlen;
363 if (!ieee80211_is_data_present(hdr->frame_control))
364 return;
367 * Drivers are required to align the payload data in a way that
368 * guarantees that the contained IP header is aligned to a four-
369 * byte boundary. In the case of regular frames, this simply means
370 * aligning the payload to a four-byte boundary (because either
371 * the IP header is directly contained, or IV/RFC1042 headers that
372 * have a length divisible by four are in front of it.
374 * With A-MSDU frames, however, the payload data address must
375 * yield two modulo four because there are 14-byte 802.3 headers
376 * within the A-MSDU frames that push the IP header further back
377 * to a multiple of four again. Thankfully, the specs were sane
378 * enough this time around to require padding each A-MSDU subframe
379 * to a length that is a multiple of four.
381 * Padding like atheros hardware adds which is inbetween the 802.11
382 * header and the payload is not supported, the driver is required
383 * to move the 802.11 header further back in that case.
385 hdrlen = ieee80211_hdrlen(hdr->frame_control);
386 if (rx->flags & IEEE80211_RX_AMSDU)
387 hdrlen += ETH_HLEN;
388 WARN_ON_ONCE(((unsigned long)(rx->skb->data + hdrlen)) & 3);
389 #endif
393 /* rx handlers */
395 static ieee80211_rx_result debug_noinline
396 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
398 struct ieee80211_local *local = rx->local;
399 struct sk_buff *skb = rx->skb;
401 if (unlikely(local->sta_hw_scanning))
402 return ieee80211_sta_rx_scan(rx->dev, skb, rx->status);
404 if (unlikely(local->sta_sw_scanning)) {
405 /* drop all the other packets during a software scan anyway */
406 if (ieee80211_sta_rx_scan(rx->dev, skb, rx->status)
407 != RX_QUEUED)
408 dev_kfree_skb(skb);
409 return RX_QUEUED;
412 if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) {
413 /* scanning finished during invoking of handlers */
414 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
415 return RX_DROP_UNUSABLE;
418 return RX_CONTINUE;
421 static ieee80211_rx_result
422 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
424 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
425 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
427 if (ieee80211_is_data(hdr->frame_control)) {
428 if (!ieee80211_has_a4(hdr->frame_control))
429 return RX_DROP_MONITOR;
430 if (memcmp(hdr->addr4, rx->dev->dev_addr, ETH_ALEN) == 0)
431 return RX_DROP_MONITOR;
434 /* If there is not an established peer link and this is not a peer link
435 * establisment frame, beacon or probe, drop the frame.
438 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
439 struct ieee80211_mgmt *mgmt;
441 if (!ieee80211_is_mgmt(hdr->frame_control))
442 return RX_DROP_MONITOR;
444 if (ieee80211_is_action(hdr->frame_control)) {
445 mgmt = (struct ieee80211_mgmt *)hdr;
446 if (mgmt->u.action.category != PLINK_CATEGORY)
447 return RX_DROP_MONITOR;
448 return RX_CONTINUE;
451 if (ieee80211_is_probe_req(hdr->frame_control) ||
452 ieee80211_is_probe_resp(hdr->frame_control) ||
453 ieee80211_is_beacon(hdr->frame_control))
454 return RX_CONTINUE;
456 return RX_DROP_MONITOR;
460 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
462 if (ieee80211_is_data(hdr->frame_control) &&
463 is_multicast_ether_addr(hdr->addr1) &&
464 mesh_rmc_check(hdr->addr4, msh_h_get(hdr, hdrlen), rx->dev))
465 return RX_DROP_MONITOR;
466 #undef msh_h_get
468 return RX_CONTINUE;
472 static ieee80211_rx_result debug_noinline
473 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
475 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
477 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
478 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
479 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
480 rx->sta->last_seq_ctrl[rx->queue] ==
481 hdr->seq_ctrl)) {
482 if (rx->flags & IEEE80211_RX_RA_MATCH) {
483 rx->local->dot11FrameDuplicateCount++;
484 rx->sta->num_duplicates++;
486 return RX_DROP_MONITOR;
487 } else
488 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
491 if (unlikely(rx->skb->len < 16)) {
492 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
493 return RX_DROP_MONITOR;
496 /* Drop disallowed frame classes based on STA auth/assoc state;
497 * IEEE 802.11, Chap 5.5.
499 * 80211.o does filtering only based on association state, i.e., it
500 * drops Class 3 frames from not associated stations. hostapd sends
501 * deauth/disassoc frames when needed. In addition, hostapd is
502 * responsible for filtering on both auth and assoc states.
505 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
506 return ieee80211_rx_mesh_check(rx);
508 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
509 ieee80211_is_pspoll(hdr->frame_control)) &&
510 rx->sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
511 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
512 if ((!ieee80211_has_fromds(hdr->frame_control) &&
513 !ieee80211_has_tods(hdr->frame_control) &&
514 ieee80211_is_data(hdr->frame_control)) ||
515 !(rx->flags & IEEE80211_RX_RA_MATCH)) {
516 /* Drop IBSS frames and frames for other hosts
517 * silently. */
518 return RX_DROP_MONITOR;
521 return RX_DROP_MONITOR;
524 return RX_CONTINUE;
528 static ieee80211_rx_result debug_noinline
529 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
531 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
532 int keyidx;
533 int hdrlen;
534 ieee80211_rx_result result = RX_DROP_UNUSABLE;
535 struct ieee80211_key *stakey = NULL;
538 * Key selection 101
540 * There are three types of keys:
541 * - GTK (group keys)
542 * - PTK (pairwise keys)
543 * - STK (station-to-station pairwise keys)
545 * When selecting a key, we have to distinguish between multicast
546 * (including broadcast) and unicast frames, the latter can only
547 * use PTKs and STKs while the former always use GTKs. Unless, of
548 * course, actual WEP keys ("pre-RSNA") are used, then unicast
549 * frames can also use key indizes like GTKs. Hence, if we don't
550 * have a PTK/STK we check the key index for a WEP key.
552 * Note that in a regular BSS, multicast frames are sent by the
553 * AP only, associated stations unicast the frame to the AP first
554 * which then multicasts it on their behalf.
556 * There is also a slight problem in IBSS mode: GTKs are negotiated
557 * with each station, that is something we don't currently handle.
558 * The spec seems to expect that one negotiates the same key with
559 * every station but there's no such requirement; VLANs could be
560 * possible.
563 if (!ieee80211_has_protected(hdr->frame_control))
564 return RX_CONTINUE;
567 * No point in finding a key and decrypting if the frame is neither
568 * addressed to us nor a multicast frame.
570 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
571 return RX_CONTINUE;
573 if (rx->sta)
574 stakey = rcu_dereference(rx->sta->key);
576 if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
577 rx->key = stakey;
578 } else {
580 * The device doesn't give us the IV so we won't be
581 * able to look up the key. That's ok though, we
582 * don't need to decrypt the frame, we just won't
583 * be able to keep statistics accurate.
584 * Except for key threshold notifications, should
585 * we somehow allow the driver to tell us which key
586 * the hardware used if this flag is set?
588 if ((rx->status->flag & RX_FLAG_DECRYPTED) &&
589 (rx->status->flag & RX_FLAG_IV_STRIPPED))
590 return RX_CONTINUE;
592 hdrlen = ieee80211_hdrlen(hdr->frame_control);
594 if (rx->skb->len < 8 + hdrlen)
595 return RX_DROP_UNUSABLE; /* TODO: count this? */
598 * no need to call ieee80211_wep_get_keyidx,
599 * it verifies a bunch of things we've done already
601 keyidx = rx->skb->data[hdrlen + 3] >> 6;
603 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
606 * RSNA-protected unicast frames should always be sent with
607 * pairwise or station-to-station keys, but for WEP we allow
608 * using a key index as well.
610 if (rx->key && rx->key->conf.alg != ALG_WEP &&
611 !is_multicast_ether_addr(hdr->addr1))
612 rx->key = NULL;
615 if (rx->key) {
616 rx->key->tx_rx_count++;
617 /* TODO: add threshold stuff again */
618 } else {
619 return RX_DROP_MONITOR;
622 /* Check for weak IVs if possible */
623 if (rx->sta && rx->key->conf.alg == ALG_WEP &&
624 ieee80211_is_data(hdr->frame_control) &&
625 (!(rx->status->flag & RX_FLAG_IV_STRIPPED) ||
626 !(rx->status->flag & RX_FLAG_DECRYPTED)) &&
627 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
628 rx->sta->wep_weak_iv_count++;
630 switch (rx->key->conf.alg) {
631 case ALG_WEP:
632 result = ieee80211_crypto_wep_decrypt(rx);
633 break;
634 case ALG_TKIP:
635 result = ieee80211_crypto_tkip_decrypt(rx);
636 break;
637 case ALG_CCMP:
638 result = ieee80211_crypto_ccmp_decrypt(rx);
639 break;
642 /* either the frame has been decrypted or will be dropped */
643 rx->status->flag |= RX_FLAG_DECRYPTED;
645 return result;
648 static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
650 struct ieee80211_sub_if_data *sdata;
651 DECLARE_MAC_BUF(mac);
653 sdata = sta->sdata;
655 atomic_inc(&sdata->bss->num_sta_ps);
656 set_and_clear_sta_flags(sta, WLAN_STA_PS, WLAN_STA_PSPOLL);
657 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
658 printk(KERN_DEBUG "%s: STA %s aid %d enters power save mode\n",
659 dev->name, print_mac(mac, sta->addr), sta->aid);
660 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
663 static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
665 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
666 struct sk_buff *skb;
667 int sent = 0;
668 struct ieee80211_sub_if_data *sdata;
669 struct ieee80211_tx_info *info;
670 DECLARE_MAC_BUF(mac);
672 sdata = sta->sdata;
674 atomic_dec(&sdata->bss->num_sta_ps);
676 clear_sta_flags(sta, WLAN_STA_PS | WLAN_STA_PSPOLL);
678 if (!skb_queue_empty(&sta->ps_tx_buf))
679 sta_info_clear_tim_bit(sta);
681 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
682 printk(KERN_DEBUG "%s: STA %s aid %d exits power save mode\n",
683 dev->name, print_mac(mac, sta->addr), sta->aid);
684 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
686 /* Send all buffered frames to the station */
687 while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
688 info = IEEE80211_SKB_CB(skb);
689 sent++;
690 info->flags |= IEEE80211_TX_CTL_REQUEUE;
691 dev_queue_xmit(skb);
693 while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
694 info = IEEE80211_SKB_CB(skb);
695 local->total_ps_buffered--;
696 sent++;
697 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
698 printk(KERN_DEBUG "%s: STA %s aid %d send PS frame "
699 "since STA not sleeping anymore\n", dev->name,
700 print_mac(mac, sta->addr), sta->aid);
701 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
702 info->flags |= IEEE80211_TX_CTL_REQUEUE;
703 dev_queue_xmit(skb);
706 return sent;
709 static ieee80211_rx_result debug_noinline
710 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
712 struct sta_info *sta = rx->sta;
713 struct net_device *dev = rx->dev;
714 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
716 if (!sta)
717 return RX_CONTINUE;
719 /* Update last_rx only for IBSS packets which are for the current
720 * BSSID to avoid keeping the current IBSS network alive in cases where
721 * other STAs are using different BSSID. */
722 if (rx->sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
723 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
724 IEEE80211_IF_TYPE_IBSS);
725 if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
726 sta->last_rx = jiffies;
727 } else
728 if (!is_multicast_ether_addr(hdr->addr1) ||
729 rx->sdata->vif.type == IEEE80211_IF_TYPE_STA) {
730 /* Update last_rx only for unicast frames in order to prevent
731 * the Probe Request frames (the only broadcast frames from a
732 * STA in infrastructure mode) from keeping a connection alive.
733 * Mesh beacons will update last_rx when if they are found to
734 * match the current local configuration when processed.
736 sta->last_rx = jiffies;
739 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
740 return RX_CONTINUE;
742 sta->rx_fragments++;
743 sta->rx_bytes += rx->skb->len;
744 sta->last_signal = rx->status->signal;
745 sta->last_qual = rx->status->qual;
746 sta->last_noise = rx->status->noise;
748 if (!ieee80211_has_morefrags(hdr->frame_control) &&
749 (rx->sdata->vif.type == IEEE80211_IF_TYPE_AP ||
750 rx->sdata->vif.type == IEEE80211_IF_TYPE_VLAN)) {
751 /* Change STA power saving mode only in the end of a frame
752 * exchange sequence */
753 if (test_sta_flags(sta, WLAN_STA_PS) &&
754 !ieee80211_has_pm(hdr->frame_control))
755 rx->sent_ps_buffered += ap_sta_ps_end(dev, sta);
756 else if (!test_sta_flags(sta, WLAN_STA_PS) &&
757 ieee80211_has_pm(hdr->frame_control))
758 ap_sta_ps_start(dev, sta);
761 /* Drop data::nullfunc frames silently, since they are used only to
762 * control station power saving mode. */
763 if (ieee80211_is_nullfunc(hdr->frame_control)) {
764 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
765 /* Update counter and free packet here to avoid counting this
766 * as a dropped packed. */
767 sta->rx_packets++;
768 dev_kfree_skb(rx->skb);
769 return RX_QUEUED;
772 return RX_CONTINUE;
773 } /* ieee80211_rx_h_sta_process */
775 static inline struct ieee80211_fragment_entry *
776 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
777 unsigned int frag, unsigned int seq, int rx_queue,
778 struct sk_buff **skb)
780 struct ieee80211_fragment_entry *entry;
781 int idx;
783 idx = sdata->fragment_next;
784 entry = &sdata->fragments[sdata->fragment_next++];
785 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
786 sdata->fragment_next = 0;
788 if (!skb_queue_empty(&entry->skb_list)) {
789 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
790 struct ieee80211_hdr *hdr =
791 (struct ieee80211_hdr *) entry->skb_list.next->data;
792 DECLARE_MAC_BUF(mac);
793 DECLARE_MAC_BUF(mac2);
794 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
795 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
796 "addr1=%s addr2=%s\n",
797 sdata->dev->name, idx,
798 jiffies - entry->first_frag_time, entry->seq,
799 entry->last_frag, print_mac(mac, hdr->addr1),
800 print_mac(mac2, hdr->addr2));
801 #endif
802 __skb_queue_purge(&entry->skb_list);
805 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
806 *skb = NULL;
807 entry->first_frag_time = jiffies;
808 entry->seq = seq;
809 entry->rx_queue = rx_queue;
810 entry->last_frag = frag;
811 entry->ccmp = 0;
812 entry->extra_len = 0;
814 return entry;
817 static inline struct ieee80211_fragment_entry *
818 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
819 u16 fc, unsigned int frag, unsigned int seq,
820 int rx_queue, struct ieee80211_hdr *hdr)
822 struct ieee80211_fragment_entry *entry;
823 int i, idx;
825 idx = sdata->fragment_next;
826 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
827 struct ieee80211_hdr *f_hdr;
828 u16 f_fc;
830 idx--;
831 if (idx < 0)
832 idx = IEEE80211_FRAGMENT_MAX - 1;
834 entry = &sdata->fragments[idx];
835 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
836 entry->rx_queue != rx_queue ||
837 entry->last_frag + 1 != frag)
838 continue;
840 f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data;
841 f_fc = le16_to_cpu(f_hdr->frame_control);
843 if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) ||
844 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
845 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
846 continue;
848 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
849 __skb_queue_purge(&entry->skb_list);
850 continue;
852 return entry;
855 return NULL;
858 static ieee80211_rx_result debug_noinline
859 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
861 struct ieee80211_hdr *hdr;
862 u16 sc;
863 unsigned int frag, seq;
864 struct ieee80211_fragment_entry *entry;
865 struct sk_buff *skb;
866 DECLARE_MAC_BUF(mac);
868 hdr = (struct ieee80211_hdr *) rx->skb->data;
869 sc = le16_to_cpu(hdr->seq_ctrl);
870 frag = sc & IEEE80211_SCTL_FRAG;
872 if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) ||
873 (rx->skb)->len < 24 ||
874 is_multicast_ether_addr(hdr->addr1))) {
875 /* not fragmented */
876 goto out;
878 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
880 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
882 if (frag == 0) {
883 /* This is the first fragment of a new frame. */
884 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
885 rx->queue, &(rx->skb));
886 if (rx->key && rx->key->conf.alg == ALG_CCMP &&
887 (rx->fc & IEEE80211_FCTL_PROTECTED)) {
888 /* Store CCMP PN so that we can verify that the next
889 * fragment has a sequential PN value. */
890 entry->ccmp = 1;
891 memcpy(entry->last_pn,
892 rx->key->u.ccmp.rx_pn[rx->queue],
893 CCMP_PN_LEN);
895 return RX_QUEUED;
898 /* This is a fragment for a frame that should already be pending in
899 * fragment cache. Add this fragment to the end of the pending entry.
901 entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq,
902 rx->queue, hdr);
903 if (!entry) {
904 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
905 return RX_DROP_MONITOR;
908 /* Verify that MPDUs within one MSDU have sequential PN values.
909 * (IEEE 802.11i, 8.3.3.4.5) */
910 if (entry->ccmp) {
911 int i;
912 u8 pn[CCMP_PN_LEN], *rpn;
913 if (!rx->key || rx->key->conf.alg != ALG_CCMP)
914 return RX_DROP_UNUSABLE;
915 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
916 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
917 pn[i]++;
918 if (pn[i])
919 break;
921 rpn = rx->key->u.ccmp.rx_pn[rx->queue];
922 if (memcmp(pn, rpn, CCMP_PN_LEN))
923 return RX_DROP_UNUSABLE;
924 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
927 skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
928 __skb_queue_tail(&entry->skb_list, rx->skb);
929 entry->last_frag = frag;
930 entry->extra_len += rx->skb->len;
931 if (rx->fc & IEEE80211_FCTL_MOREFRAGS) {
932 rx->skb = NULL;
933 return RX_QUEUED;
936 rx->skb = __skb_dequeue(&entry->skb_list);
937 if (skb_tailroom(rx->skb) < entry->extra_len) {
938 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
939 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
940 GFP_ATOMIC))) {
941 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
942 __skb_queue_purge(&entry->skb_list);
943 return RX_DROP_UNUSABLE;
946 while ((skb = __skb_dequeue(&entry->skb_list))) {
947 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
948 dev_kfree_skb(skb);
951 /* Complete frame has been reassembled - process it now */
952 rx->flags |= IEEE80211_RX_FRAGMENTED;
954 out:
955 if (rx->sta)
956 rx->sta->rx_packets++;
957 if (is_multicast_ether_addr(hdr->addr1))
958 rx->local->dot11MulticastReceivedFrameCount++;
959 else
960 ieee80211_led_rx(rx->local);
961 return RX_CONTINUE;
964 static ieee80211_rx_result debug_noinline
965 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
967 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
968 struct sk_buff *skb;
969 int no_pending_pkts;
970 DECLARE_MAC_BUF(mac);
972 if (likely(!rx->sta ||
973 (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL ||
974 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL ||
975 !(rx->flags & IEEE80211_RX_RA_MATCH)))
976 return RX_CONTINUE;
978 if ((sdata->vif.type != IEEE80211_IF_TYPE_AP) &&
979 (sdata->vif.type != IEEE80211_IF_TYPE_VLAN))
980 return RX_DROP_UNUSABLE;
982 skb = skb_dequeue(&rx->sta->tx_filtered);
983 if (!skb) {
984 skb = skb_dequeue(&rx->sta->ps_tx_buf);
985 if (skb)
986 rx->local->total_ps_buffered--;
988 no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
989 skb_queue_empty(&rx->sta->ps_tx_buf);
991 if (skb) {
992 struct ieee80211_hdr *hdr =
993 (struct ieee80211_hdr *) skb->data;
996 * Tell TX path to send one frame even though the STA may
997 * still remain is PS mode after this frame exchange.
999 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1001 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1002 printk(KERN_DEBUG "STA %s aid %d: PS Poll (entries after %d)\n",
1003 print_mac(mac, rx->sta->addr), rx->sta->aid,
1004 skb_queue_len(&rx->sta->ps_tx_buf));
1005 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1007 /* Use MoreData flag to indicate whether there are more
1008 * buffered frames for this STA */
1009 if (no_pending_pkts)
1010 hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1011 else
1012 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1014 dev_queue_xmit(skb);
1016 if (no_pending_pkts)
1017 sta_info_clear_tim_bit(rx->sta);
1018 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1019 } else if (!rx->sent_ps_buffered) {
1021 * FIXME: This can be the result of a race condition between
1022 * us expiring a frame and the station polling for it.
1023 * Should we send it a null-func frame indicating we
1024 * have nothing buffered for it?
1026 printk(KERN_DEBUG "%s: STA %s sent PS Poll even "
1027 "though there are no buffered frames for it\n",
1028 rx->dev->name, print_mac(mac, rx->sta->addr));
1029 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1032 /* Free PS Poll skb here instead of returning RX_DROP that would
1033 * count as an dropped frame. */
1034 dev_kfree_skb(rx->skb);
1036 return RX_QUEUED;
1039 static ieee80211_rx_result debug_noinline
1040 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1042 u8 *data = rx->skb->data;
1043 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1045 if (!ieee80211_is_data_qos(hdr->frame_control))
1046 return RX_CONTINUE;
1048 /* remove the qos control field, update frame type and meta-data */
1049 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1050 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1051 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1052 /* change frame type to non QOS */
1053 rx->fc &= ~IEEE80211_STYPE_QOS_DATA;
1054 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1056 return RX_CONTINUE;
1059 static int
1060 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1062 if (unlikely(!rx->sta ||
1063 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1064 return -EACCES;
1066 return 0;
1069 static int
1070 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx)
1073 * Pass through unencrypted frames if the hardware has
1074 * decrypted them already.
1076 if (rx->status->flag & RX_FLAG_DECRYPTED)
1077 return 0;
1079 /* Drop unencrypted frames if key is set. */
1080 if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) &&
1081 (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
1082 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
1083 (rx->key || rx->sdata->drop_unencrypted)))
1084 return -EACCES;
1086 return 0;
1089 static int
1090 ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1092 struct net_device *dev = rx->dev;
1093 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
1094 u16 fc, hdrlen, ethertype;
1095 u8 *payload;
1096 u8 dst[ETH_ALEN];
1097 u8 src[ETH_ALEN] __aligned(2);
1098 struct sk_buff *skb = rx->skb;
1099 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1100 DECLARE_MAC_BUF(mac);
1101 DECLARE_MAC_BUF(mac2);
1102 DECLARE_MAC_BUF(mac3);
1103 DECLARE_MAC_BUF(mac4);
1105 fc = rx->fc;
1107 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1108 return -1;
1110 hdrlen = ieee80211_get_hdrlen(fc);
1112 if (ieee80211_vif_is_mesh(&sdata->vif))
1113 hdrlen += ieee80211_get_mesh_hdrlen(
1114 (struct ieee80211s_hdr *) (skb->data + hdrlen));
1116 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
1117 * header
1118 * IEEE 802.11 address fields:
1119 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
1120 * 0 0 DA SA BSSID n/a
1121 * 0 1 DA BSSID SA n/a
1122 * 1 0 BSSID SA DA n/a
1123 * 1 1 RA TA DA SA
1126 switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
1127 case IEEE80211_FCTL_TODS:
1128 /* BSSID SA DA */
1129 memcpy(dst, hdr->addr3, ETH_ALEN);
1130 memcpy(src, hdr->addr2, ETH_ALEN);
1132 if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_AP &&
1133 sdata->vif.type != IEEE80211_IF_TYPE_VLAN))
1134 return -1;
1135 break;
1136 case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
1137 /* RA TA DA SA */
1138 memcpy(dst, hdr->addr3, ETH_ALEN);
1139 memcpy(src, hdr->addr4, ETH_ALEN);
1141 if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_WDS &&
1142 sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT))
1143 return -1;
1144 break;
1145 case IEEE80211_FCTL_FROMDS:
1146 /* DA BSSID SA */
1147 memcpy(dst, hdr->addr1, ETH_ALEN);
1148 memcpy(src, hdr->addr3, ETH_ALEN);
1150 if (sdata->vif.type != IEEE80211_IF_TYPE_STA ||
1151 (is_multicast_ether_addr(dst) &&
1152 !compare_ether_addr(src, dev->dev_addr)))
1153 return -1;
1154 break;
1155 case 0:
1156 /* DA SA BSSID */
1157 memcpy(dst, hdr->addr1, ETH_ALEN);
1158 memcpy(src, hdr->addr2, ETH_ALEN);
1160 if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
1161 return -1;
1162 break;
1165 if (unlikely(skb->len - hdrlen < 8))
1166 return -1;
1168 payload = skb->data + hdrlen;
1169 ethertype = (payload[6] << 8) | payload[7];
1171 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1172 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1173 compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
1174 /* remove RFC1042 or Bridge-Tunnel encapsulation and
1175 * replace EtherType */
1176 skb_pull(skb, hdrlen + 6);
1177 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
1178 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
1179 } else {
1180 struct ethhdr *ehdr;
1181 __be16 len;
1183 skb_pull(skb, hdrlen);
1184 len = htons(skb->len);
1185 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
1186 memcpy(ehdr->h_dest, dst, ETH_ALEN);
1187 memcpy(ehdr->h_source, src, ETH_ALEN);
1188 ehdr->h_proto = len;
1190 return 0;
1194 * requires that rx->skb is a frame with ethernet header
1196 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx)
1198 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1199 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1200 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1203 * Allow EAPOL frames to us/the PAE group address regardless
1204 * of whether the frame was encrypted or not.
1206 if (ehdr->h_proto == htons(ETH_P_PAE) &&
1207 (compare_ether_addr(ehdr->h_dest, rx->dev->dev_addr) == 0 ||
1208 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1209 return true;
1211 if (ieee80211_802_1x_port_control(rx) ||
1212 ieee80211_drop_unencrypted(rx))
1213 return false;
1215 return true;
1219 * requires that rx->skb is a frame with ethernet header
1221 static void
1222 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1224 struct net_device *dev = rx->dev;
1225 struct ieee80211_local *local = rx->local;
1226 struct sk_buff *skb, *xmit_skb;
1227 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1228 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1229 struct sta_info *dsta;
1231 skb = rx->skb;
1232 xmit_skb = NULL;
1234 if (local->bridge_packets && (sdata->vif.type == IEEE80211_IF_TYPE_AP ||
1235 sdata->vif.type == IEEE80211_IF_TYPE_VLAN) &&
1236 (rx->flags & IEEE80211_RX_RA_MATCH)) {
1237 if (is_multicast_ether_addr(ehdr->h_dest)) {
1239 * send multicast frames both to higher layers in
1240 * local net stack and back to the wireless medium
1242 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1243 if (!xmit_skb && net_ratelimit())
1244 printk(KERN_DEBUG "%s: failed to clone "
1245 "multicast frame\n", dev->name);
1246 } else {
1247 dsta = sta_info_get(local, skb->data);
1248 if (dsta && dsta->sdata->dev == dev) {
1250 * The destination station is associated to
1251 * this AP (in this VLAN), so send the frame
1252 * directly to it and do not pass it to local
1253 * net stack.
1255 xmit_skb = skb;
1256 skb = NULL;
1261 if (skb) {
1262 /* deliver to local stack */
1263 skb->protocol = eth_type_trans(skb, dev);
1264 memset(skb->cb, 0, sizeof(skb->cb));
1265 netif_rx(skb);
1268 if (xmit_skb) {
1269 /* send to wireless media */
1270 xmit_skb->protocol = htons(ETH_P_802_3);
1271 skb_reset_network_header(xmit_skb);
1272 skb_reset_mac_header(xmit_skb);
1273 dev_queue_xmit(xmit_skb);
1277 static ieee80211_rx_result debug_noinline
1278 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1280 struct net_device *dev = rx->dev;
1281 struct ieee80211_local *local = rx->local;
1282 u16 fc, ethertype;
1283 u8 *payload;
1284 struct sk_buff *skb = rx->skb, *frame = NULL;
1285 const struct ethhdr *eth;
1286 int remaining, err;
1287 u8 dst[ETH_ALEN];
1288 u8 src[ETH_ALEN];
1289 DECLARE_MAC_BUF(mac);
1291 fc = rx->fc;
1292 if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1293 return RX_CONTINUE;
1295 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1296 return RX_DROP_MONITOR;
1298 if (!(rx->flags & IEEE80211_RX_AMSDU))
1299 return RX_CONTINUE;
1301 err = ieee80211_data_to_8023(rx);
1302 if (unlikely(err))
1303 return RX_DROP_UNUSABLE;
1305 skb->dev = dev;
1307 dev->stats.rx_packets++;
1308 dev->stats.rx_bytes += skb->len;
1310 /* skip the wrapping header */
1311 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
1312 if (!eth)
1313 return RX_DROP_UNUSABLE;
1315 while (skb != frame) {
1316 u8 padding;
1317 __be16 len = eth->h_proto;
1318 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
1320 remaining = skb->len;
1321 memcpy(dst, eth->h_dest, ETH_ALEN);
1322 memcpy(src, eth->h_source, ETH_ALEN);
1324 padding = ((4 - subframe_len) & 0x3);
1325 /* the last MSDU has no padding */
1326 if (subframe_len > remaining)
1327 return RX_DROP_UNUSABLE;
1329 skb_pull(skb, sizeof(struct ethhdr));
1330 /* if last subframe reuse skb */
1331 if (remaining <= subframe_len + padding)
1332 frame = skb;
1333 else {
1334 frame = dev_alloc_skb(local->hw.extra_tx_headroom +
1335 subframe_len);
1337 if (frame == NULL)
1338 return RX_DROP_UNUSABLE;
1340 skb_reserve(frame, local->hw.extra_tx_headroom +
1341 sizeof(struct ethhdr));
1342 memcpy(skb_put(frame, ntohs(len)), skb->data,
1343 ntohs(len));
1345 eth = (struct ethhdr *) skb_pull(skb, ntohs(len) +
1346 padding);
1347 if (!eth) {
1348 dev_kfree_skb(frame);
1349 return RX_DROP_UNUSABLE;
1353 skb_reset_network_header(frame);
1354 frame->dev = dev;
1355 frame->priority = skb->priority;
1356 rx->skb = frame;
1358 payload = frame->data;
1359 ethertype = (payload[6] << 8) | payload[7];
1361 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1362 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1363 compare_ether_addr(payload,
1364 bridge_tunnel_header) == 0)) {
1365 /* remove RFC1042 or Bridge-Tunnel
1366 * encapsulation and replace EtherType */
1367 skb_pull(frame, 6);
1368 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1369 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1370 } else {
1371 memcpy(skb_push(frame, sizeof(__be16)),
1372 &len, sizeof(__be16));
1373 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1374 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1377 if (!ieee80211_frame_allowed(rx)) {
1378 if (skb == frame) /* last frame */
1379 return RX_DROP_UNUSABLE;
1380 dev_kfree_skb(frame);
1381 continue;
1384 ieee80211_deliver_skb(rx);
1387 return RX_QUEUED;
1390 static ieee80211_rx_result debug_noinline
1391 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1393 struct ieee80211_hdr *hdr;
1394 struct ieee80211s_hdr *mesh_hdr;
1395 unsigned int hdrlen;
1396 struct sk_buff *skb = rx->skb, *fwd_skb;
1398 hdr = (struct ieee80211_hdr *) skb->data;
1399 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1400 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1402 if (!ieee80211_is_data(hdr->frame_control))
1403 return RX_CONTINUE;
1405 if (!mesh_hdr->ttl)
1406 /* illegal frame */
1407 return RX_DROP_MONITOR;
1409 if (compare_ether_addr(rx->dev->dev_addr, hdr->addr3) == 0)
1410 return RX_CONTINUE;
1412 mesh_hdr->ttl--;
1414 if (rx->flags & IEEE80211_RX_RA_MATCH) {
1415 if (!mesh_hdr->ttl)
1416 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.sta,
1417 dropped_frames_ttl);
1418 else {
1419 struct ieee80211_hdr *fwd_hdr;
1420 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1422 if (!fwd_skb && net_ratelimit())
1423 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1424 rx->dev->name);
1426 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1428 * Save TA to addr1 to send TA a path error if a
1429 * suitable next hop is not found
1431 memcpy(fwd_hdr->addr1, fwd_hdr->addr2, ETH_ALEN);
1432 memcpy(fwd_hdr->addr2, rx->dev->dev_addr, ETH_ALEN);
1433 fwd_skb->dev = rx->local->mdev;
1434 fwd_skb->iif = rx->dev->ifindex;
1435 dev_queue_xmit(fwd_skb);
1439 if (is_multicast_ether_addr(hdr->addr3) ||
1440 rx->dev->flags & IFF_PROMISC)
1441 return RX_CONTINUE;
1442 else
1443 return RX_DROP_MONITOR;
1447 static ieee80211_rx_result debug_noinline
1448 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1450 struct net_device *dev = rx->dev;
1451 u16 fc;
1452 int err;
1454 fc = rx->fc;
1455 if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1456 return RX_CONTINUE;
1458 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1459 return RX_DROP_MONITOR;
1461 err = ieee80211_data_to_8023(rx);
1462 if (unlikely(err))
1463 return RX_DROP_UNUSABLE;
1465 if (!ieee80211_frame_allowed(rx))
1466 return RX_DROP_MONITOR;
1468 rx->skb->dev = dev;
1470 dev->stats.rx_packets++;
1471 dev->stats.rx_bytes += rx->skb->len;
1473 ieee80211_deliver_skb(rx);
1475 return RX_QUEUED;
1478 static ieee80211_rx_result debug_noinline
1479 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
1481 struct ieee80211_local *local = rx->local;
1482 struct ieee80211_hw *hw = &local->hw;
1483 struct sk_buff *skb = rx->skb;
1484 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1485 struct tid_ampdu_rx *tid_agg_rx;
1486 u16 start_seq_num;
1487 u16 tid;
1489 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1490 return RX_CONTINUE;
1492 if (ieee80211_is_back_req(bar->frame_control)) {
1493 if (!rx->sta)
1494 return RX_CONTINUE;
1495 tid = le16_to_cpu(bar->control) >> 12;
1496 if (rx->sta->ampdu_mlme.tid_state_rx[tid]
1497 != HT_AGG_STATE_OPERATIONAL)
1498 return RX_CONTINUE;
1499 tid_agg_rx = rx->sta->ampdu_mlme.tid_rx[tid];
1501 start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4;
1503 /* reset session timer */
1504 if (tid_agg_rx->timeout) {
1505 unsigned long expires =
1506 jiffies + (tid_agg_rx->timeout / 1000) * HZ;
1507 mod_timer(&tid_agg_rx->session_timer, expires);
1510 /* manage reordering buffer according to requested */
1511 /* sequence number */
1512 rcu_read_lock();
1513 ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, NULL,
1514 start_seq_num, 1);
1515 rcu_read_unlock();
1516 return RX_DROP_UNUSABLE;
1519 return RX_CONTINUE;
1522 static ieee80211_rx_result debug_noinline
1523 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
1525 struct ieee80211_sub_if_data *sdata;
1527 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1528 return RX_DROP_MONITOR;
1530 sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
1531 if ((sdata->vif.type == IEEE80211_IF_TYPE_STA ||
1532 sdata->vif.type == IEEE80211_IF_TYPE_IBSS ||
1533 sdata->vif.type == IEEE80211_IF_TYPE_MESH_POINT) &&
1534 !(sdata->flags & IEEE80211_SDATA_USERSPACE_MLME))
1535 ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->status);
1536 else
1537 return RX_DROP_MONITOR;
1539 return RX_QUEUED;
1542 static void ieee80211_rx_michael_mic_report(struct net_device *dev,
1543 struct ieee80211_hdr *hdr,
1544 struct ieee80211_rx_data *rx)
1546 int keyidx;
1547 unsigned int hdrlen;
1548 DECLARE_MAC_BUF(mac);
1549 DECLARE_MAC_BUF(mac2);
1551 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1552 if (rx->skb->len >= hdrlen + 4)
1553 keyidx = rx->skb->data[hdrlen + 3] >> 6;
1554 else
1555 keyidx = -1;
1557 if (!rx->sta) {
1559 * Some hardware seem to generate incorrect Michael MIC
1560 * reports; ignore them to avoid triggering countermeasures.
1562 goto ignore;
1565 if (!ieee80211_has_protected(hdr->frame_control))
1566 goto ignore;
1568 if (rx->sdata->vif.type == IEEE80211_IF_TYPE_AP && keyidx) {
1570 * APs with pairwise keys should never receive Michael MIC
1571 * errors for non-zero keyidx because these are reserved for
1572 * group keys and only the AP is sending real multicast
1573 * frames in the BSS.
1575 goto ignore;
1578 if (!ieee80211_is_data(hdr->frame_control) &&
1579 !ieee80211_is_auth(hdr->frame_control))
1580 goto ignore;
1582 mac80211_ev_michael_mic_failure(rx->dev, keyidx, hdr);
1583 ignore:
1584 dev_kfree_skb(rx->skb);
1585 rx->skb = NULL;
1588 /* TODO: use IEEE80211_RX_FRAGMENTED */
1589 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx)
1591 struct ieee80211_sub_if_data *sdata;
1592 struct ieee80211_local *local = rx->local;
1593 struct ieee80211_rtap_hdr {
1594 struct ieee80211_radiotap_header hdr;
1595 u8 flags;
1596 u8 rate;
1597 __le16 chan_freq;
1598 __le16 chan_flags;
1599 } __attribute__ ((packed)) *rthdr;
1600 struct sk_buff *skb = rx->skb, *skb2;
1601 struct net_device *prev_dev = NULL;
1602 struct ieee80211_rx_status *status = rx->status;
1604 if (rx->flags & IEEE80211_RX_CMNTR_REPORTED)
1605 goto out_free_skb;
1607 if (skb_headroom(skb) < sizeof(*rthdr) &&
1608 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
1609 goto out_free_skb;
1611 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
1612 memset(rthdr, 0, sizeof(*rthdr));
1613 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
1614 rthdr->hdr.it_present =
1615 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
1616 (1 << IEEE80211_RADIOTAP_RATE) |
1617 (1 << IEEE80211_RADIOTAP_CHANNEL));
1619 rthdr->rate = rx->rate->bitrate / 5;
1620 rthdr->chan_freq = cpu_to_le16(status->freq);
1622 if (status->band == IEEE80211_BAND_5GHZ)
1623 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
1624 IEEE80211_CHAN_5GHZ);
1625 else
1626 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
1627 IEEE80211_CHAN_2GHZ);
1629 skb_set_mac_header(skb, 0);
1630 skb->ip_summed = CHECKSUM_UNNECESSARY;
1631 skb->pkt_type = PACKET_OTHERHOST;
1632 skb->protocol = htons(ETH_P_802_2);
1634 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1635 if (!netif_running(sdata->dev))
1636 continue;
1638 if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR ||
1639 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
1640 continue;
1642 if (prev_dev) {
1643 skb2 = skb_clone(skb, GFP_ATOMIC);
1644 if (skb2) {
1645 skb2->dev = prev_dev;
1646 netif_rx(skb2);
1650 prev_dev = sdata->dev;
1651 sdata->dev->stats.rx_packets++;
1652 sdata->dev->stats.rx_bytes += skb->len;
1655 if (prev_dev) {
1656 skb->dev = prev_dev;
1657 netif_rx(skb);
1658 skb = NULL;
1659 } else
1660 goto out_free_skb;
1662 rx->flags |= IEEE80211_RX_CMNTR_REPORTED;
1663 return;
1665 out_free_skb:
1666 dev_kfree_skb(skb);
1670 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata,
1671 struct ieee80211_rx_data *rx,
1672 struct sk_buff *skb)
1674 ieee80211_rx_result res = RX_DROP_MONITOR;
1676 rx->skb = skb;
1677 rx->sdata = sdata;
1678 rx->dev = sdata->dev;
1680 #define CALL_RXH(rxh) \
1681 do { \
1682 res = rxh(rx); \
1683 if (res != RX_CONTINUE) \
1684 goto rxh_done; \
1685 } while (0);
1687 CALL_RXH(ieee80211_rx_h_passive_scan)
1688 CALL_RXH(ieee80211_rx_h_check)
1689 CALL_RXH(ieee80211_rx_h_decrypt)
1690 CALL_RXH(ieee80211_rx_h_sta_process)
1691 CALL_RXH(ieee80211_rx_h_defragment)
1692 CALL_RXH(ieee80211_rx_h_ps_poll)
1693 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
1694 /* must be after MMIC verify so header is counted in MPDU mic */
1695 CALL_RXH(ieee80211_rx_h_remove_qos_control)
1696 CALL_RXH(ieee80211_rx_h_amsdu)
1697 if (ieee80211_vif_is_mesh(&sdata->vif))
1698 CALL_RXH(ieee80211_rx_h_mesh_fwding);
1699 CALL_RXH(ieee80211_rx_h_data)
1700 CALL_RXH(ieee80211_rx_h_ctrl)
1701 CALL_RXH(ieee80211_rx_h_mgmt)
1703 #undef CALL_RXH
1705 rxh_done:
1706 switch (res) {
1707 case RX_DROP_MONITOR:
1708 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
1709 if (rx->sta)
1710 rx->sta->rx_dropped++;
1711 /* fall through */
1712 case RX_CONTINUE:
1713 ieee80211_rx_cooked_monitor(rx);
1714 break;
1715 case RX_DROP_UNUSABLE:
1716 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
1717 if (rx->sta)
1718 rx->sta->rx_dropped++;
1719 dev_kfree_skb(rx->skb);
1720 break;
1721 case RX_QUEUED:
1722 I802_DEBUG_INC(sdata->local->rx_handlers_queued);
1723 break;
1727 /* main receive path */
1729 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
1730 u8 *bssid, struct ieee80211_rx_data *rx,
1731 struct ieee80211_hdr *hdr)
1733 int multicast = is_multicast_ether_addr(hdr->addr1);
1735 switch (sdata->vif.type) {
1736 case IEEE80211_IF_TYPE_STA:
1737 if (!bssid)
1738 return 0;
1739 if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1740 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1741 return 0;
1742 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1743 } else if (!multicast &&
1744 compare_ether_addr(sdata->dev->dev_addr,
1745 hdr->addr1) != 0) {
1746 if (!(sdata->dev->flags & IFF_PROMISC))
1747 return 0;
1748 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1750 break;
1751 case IEEE80211_IF_TYPE_IBSS:
1752 if (!bssid)
1753 return 0;
1754 if (ieee80211_is_beacon(hdr->frame_control)) {
1755 if (!rx->sta)
1756 rx->sta = ieee80211_ibss_add_sta(sdata->dev,
1757 rx->skb, bssid, hdr->addr2,
1758 BIT(rx->status->rate_idx));
1759 return 1;
1761 else if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1762 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1763 return 0;
1764 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1765 } else if (!multicast &&
1766 compare_ether_addr(sdata->dev->dev_addr,
1767 hdr->addr1) != 0) {
1768 if (!(sdata->dev->flags & IFF_PROMISC))
1769 return 0;
1770 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1771 } else if (!rx->sta)
1772 rx->sta = ieee80211_ibss_add_sta(sdata->dev, rx->skb,
1773 bssid, hdr->addr2,
1774 BIT(rx->status->rate_idx));
1775 break;
1776 case IEEE80211_IF_TYPE_MESH_POINT:
1777 if (!multicast &&
1778 compare_ether_addr(sdata->dev->dev_addr,
1779 hdr->addr1) != 0) {
1780 if (!(sdata->dev->flags & IFF_PROMISC))
1781 return 0;
1783 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1785 break;
1786 case IEEE80211_IF_TYPE_VLAN:
1787 case IEEE80211_IF_TYPE_AP:
1788 if (!bssid) {
1789 if (compare_ether_addr(sdata->dev->dev_addr,
1790 hdr->addr1))
1791 return 0;
1792 } else if (!ieee80211_bssid_match(bssid,
1793 sdata->dev->dev_addr)) {
1794 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1795 return 0;
1796 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1798 break;
1799 case IEEE80211_IF_TYPE_WDS:
1800 if (bssid || !ieee80211_is_data(hdr->frame_control))
1801 return 0;
1802 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
1803 return 0;
1804 break;
1805 case IEEE80211_IF_TYPE_MNTR:
1806 /* take everything */
1807 break;
1808 case IEEE80211_IF_TYPE_INVALID:
1809 /* should never get here */
1810 WARN_ON(1);
1811 break;
1814 return 1;
1818 * This is the actual Rx frames handler. as it blongs to Rx path it must
1819 * be called with rcu_read_lock protection.
1821 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
1822 struct sk_buff *skb,
1823 struct ieee80211_rx_status *status,
1824 struct ieee80211_rate *rate)
1826 struct ieee80211_local *local = hw_to_local(hw);
1827 struct ieee80211_sub_if_data *sdata;
1828 struct ieee80211_hdr *hdr;
1829 struct ieee80211_rx_data rx;
1830 u16 type;
1831 int prepares;
1832 struct ieee80211_sub_if_data *prev = NULL;
1833 struct sk_buff *skb_new;
1834 u8 *bssid;
1836 hdr = (struct ieee80211_hdr *) skb->data;
1837 memset(&rx, 0, sizeof(rx));
1838 rx.skb = skb;
1839 rx.local = local;
1841 rx.status = status;
1842 rx.rate = rate;
1843 rx.fc = le16_to_cpu(hdr->frame_control);
1844 type = rx.fc & IEEE80211_FCTL_FTYPE;
1846 if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT)
1847 local->dot11ReceivedFragmentCount++;
1849 rx.sta = sta_info_get(local, hdr->addr2);
1850 if (rx.sta) {
1851 rx.sdata = rx.sta->sdata;
1852 rx.dev = rx.sta->sdata->dev;
1855 if ((status->flag & RX_FLAG_MMIC_ERROR)) {
1856 ieee80211_rx_michael_mic_report(local->mdev, hdr, &rx);
1857 return;
1860 if (unlikely(local->sta_sw_scanning || local->sta_hw_scanning))
1861 rx.flags |= IEEE80211_RX_IN_SCAN;
1863 ieee80211_parse_qos(&rx);
1864 ieee80211_verify_ip_alignment(&rx);
1866 skb = rx.skb;
1868 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1869 if (!netif_running(sdata->dev))
1870 continue;
1872 if (sdata->vif.type == IEEE80211_IF_TYPE_MNTR)
1873 continue;
1875 bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
1876 rx.flags |= IEEE80211_RX_RA_MATCH;
1877 prepares = prepare_for_handlers(sdata, bssid, &rx, hdr);
1879 if (!prepares)
1880 continue;
1883 * frame is destined for this interface, but if it's not
1884 * also for the previous one we handle that after the
1885 * loop to avoid copying the SKB once too much
1888 if (!prev) {
1889 prev = sdata;
1890 continue;
1894 * frame was destined for the previous interface
1895 * so invoke RX handlers for it
1898 skb_new = skb_copy(skb, GFP_ATOMIC);
1899 if (!skb_new) {
1900 if (net_ratelimit())
1901 printk(KERN_DEBUG "%s: failed to copy "
1902 "multicast frame for %s\n",
1903 wiphy_name(local->hw.wiphy),
1904 prev->dev->name);
1905 continue;
1907 rx.fc = le16_to_cpu(hdr->frame_control);
1908 ieee80211_invoke_rx_handlers(prev, &rx, skb_new);
1909 prev = sdata;
1911 if (prev) {
1912 rx.fc = le16_to_cpu(hdr->frame_control);
1913 ieee80211_invoke_rx_handlers(prev, &rx, skb);
1914 } else
1915 dev_kfree_skb(skb);
1918 #define SEQ_MODULO 0x1000
1919 #define SEQ_MASK 0xfff
1921 static inline int seq_less(u16 sq1, u16 sq2)
1923 return (((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1));
1926 static inline u16 seq_inc(u16 sq)
1928 return ((sq + 1) & SEQ_MASK);
1931 static inline u16 seq_sub(u16 sq1, u16 sq2)
1933 return ((sq1 - sq2) & SEQ_MASK);
1938 * As it function blongs to Rx path it must be called with
1939 * the proper rcu_read_lock protection for its flow.
1941 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
1942 struct tid_ampdu_rx *tid_agg_rx,
1943 struct sk_buff *skb, u16 mpdu_seq_num,
1944 int bar_req)
1946 struct ieee80211_local *local = hw_to_local(hw);
1947 struct ieee80211_rx_status status;
1948 u16 head_seq_num, buf_size;
1949 int index;
1950 struct ieee80211_supported_band *sband;
1951 struct ieee80211_rate *rate;
1953 buf_size = tid_agg_rx->buf_size;
1954 head_seq_num = tid_agg_rx->head_seq_num;
1956 /* frame with out of date sequence number */
1957 if (seq_less(mpdu_seq_num, head_seq_num)) {
1958 dev_kfree_skb(skb);
1959 return 1;
1962 /* if frame sequence number exceeds our buffering window size or
1963 * block Ack Request arrived - release stored frames */
1964 if ((!seq_less(mpdu_seq_num, head_seq_num + buf_size)) || (bar_req)) {
1965 /* new head to the ordering buffer */
1966 if (bar_req)
1967 head_seq_num = mpdu_seq_num;
1968 else
1969 head_seq_num =
1970 seq_inc(seq_sub(mpdu_seq_num, buf_size));
1971 /* release stored frames up to new head to stack */
1972 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1973 index = seq_sub(tid_agg_rx->head_seq_num,
1974 tid_agg_rx->ssn)
1975 % tid_agg_rx->buf_size;
1977 if (tid_agg_rx->reorder_buf[index]) {
1978 /* release the reordered frames to stack */
1979 memcpy(&status,
1980 tid_agg_rx->reorder_buf[index]->cb,
1981 sizeof(status));
1982 sband = local->hw.wiphy->bands[status.band];
1983 rate = &sband->bitrates[status.rate_idx];
1984 __ieee80211_rx_handle_packet(hw,
1985 tid_agg_rx->reorder_buf[index],
1986 &status, rate);
1987 tid_agg_rx->stored_mpdu_num--;
1988 tid_agg_rx->reorder_buf[index] = NULL;
1990 tid_agg_rx->head_seq_num =
1991 seq_inc(tid_agg_rx->head_seq_num);
1993 if (bar_req)
1994 return 1;
1997 /* now the new frame is always in the range of the reordering */
1998 /* buffer window */
1999 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn)
2000 % tid_agg_rx->buf_size;
2001 /* check if we already stored this frame */
2002 if (tid_agg_rx->reorder_buf[index]) {
2003 dev_kfree_skb(skb);
2004 return 1;
2007 /* if arrived mpdu is in the right order and nothing else stored */
2008 /* release it immediately */
2009 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
2010 tid_agg_rx->stored_mpdu_num == 0) {
2011 tid_agg_rx->head_seq_num =
2012 seq_inc(tid_agg_rx->head_seq_num);
2013 return 0;
2016 /* put the frame in the reordering buffer */
2017 tid_agg_rx->reorder_buf[index] = skb;
2018 tid_agg_rx->stored_mpdu_num++;
2019 /* release the buffer until next missing frame */
2020 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn)
2021 % tid_agg_rx->buf_size;
2022 while (tid_agg_rx->reorder_buf[index]) {
2023 /* release the reordered frame back to stack */
2024 memcpy(&status, tid_agg_rx->reorder_buf[index]->cb,
2025 sizeof(status));
2026 sband = local->hw.wiphy->bands[status.band];
2027 rate = &sband->bitrates[status.rate_idx];
2028 __ieee80211_rx_handle_packet(hw, tid_agg_rx->reorder_buf[index],
2029 &status, rate);
2030 tid_agg_rx->stored_mpdu_num--;
2031 tid_agg_rx->reorder_buf[index] = NULL;
2032 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
2033 index = seq_sub(tid_agg_rx->head_seq_num,
2034 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
2036 return 1;
2039 static u8 ieee80211_rx_reorder_ampdu(struct ieee80211_local *local,
2040 struct sk_buff *skb)
2042 struct ieee80211_hw *hw = &local->hw;
2043 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2044 struct sta_info *sta;
2045 struct tid_ampdu_rx *tid_agg_rx;
2046 u16 sc;
2047 u16 mpdu_seq_num;
2048 u8 ret = 0;
2049 int tid;
2051 sta = sta_info_get(local, hdr->addr2);
2052 if (!sta)
2053 return ret;
2055 /* filter the QoS data rx stream according to
2056 * STA/TID and check if this STA/TID is on aggregation */
2057 if (!ieee80211_is_data_qos(hdr->frame_control))
2058 goto end_reorder;
2060 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
2062 if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_OPERATIONAL)
2063 goto end_reorder;
2065 tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
2067 /* qos null data frames are excluded */
2068 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
2069 goto end_reorder;
2071 /* new un-ordered ampdu frame - process it */
2073 /* reset session timer */
2074 if (tid_agg_rx->timeout) {
2075 unsigned long expires =
2076 jiffies + (tid_agg_rx->timeout / 1000) * HZ;
2077 mod_timer(&tid_agg_rx->session_timer, expires);
2080 /* if this mpdu is fragmented - terminate rx aggregation session */
2081 sc = le16_to_cpu(hdr->seq_ctrl);
2082 if (sc & IEEE80211_SCTL_FRAG) {
2083 ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
2084 tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP);
2085 ret = 1;
2086 goto end_reorder;
2089 /* according to mpdu sequence number deal with reordering buffer */
2090 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
2091 ret = ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb,
2092 mpdu_seq_num, 0);
2093 end_reorder:
2094 return ret;
2098 * This is the receive path handler. It is called by a low level driver when an
2099 * 802.11 MPDU is received from the hardware.
2101 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
2102 struct ieee80211_rx_status *status)
2104 struct ieee80211_local *local = hw_to_local(hw);
2105 struct ieee80211_rate *rate = NULL;
2106 struct ieee80211_supported_band *sband;
2108 if (status->band < 0 ||
2109 status->band >= IEEE80211_NUM_BANDS) {
2110 WARN_ON(1);
2111 return;
2114 sband = local->hw.wiphy->bands[status->band];
2116 if (!sband ||
2117 status->rate_idx < 0 ||
2118 status->rate_idx >= sband->n_bitrates) {
2119 WARN_ON(1);
2120 return;
2123 rate = &sband->bitrates[status->rate_idx];
2126 * key references and virtual interfaces are protected using RCU
2127 * and this requires that we are in a read-side RCU section during
2128 * receive processing
2130 rcu_read_lock();
2133 * Frames with failed FCS/PLCP checksum are not returned,
2134 * all other frames are returned without radiotap header
2135 * if it was previously present.
2136 * Also, frames with less than 16 bytes are dropped.
2138 skb = ieee80211_rx_monitor(local, skb, status, rate);
2139 if (!skb) {
2140 rcu_read_unlock();
2141 return;
2144 if (!ieee80211_rx_reorder_ampdu(local, skb))
2145 __ieee80211_rx_handle_packet(hw, skb, status, rate);
2147 rcu_read_unlock();
2149 EXPORT_SYMBOL(__ieee80211_rx);
2151 /* This is a version of the rx handler that can be called from hard irq
2152 * context. Post the skb on the queue and schedule the tasklet */
2153 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
2154 struct ieee80211_rx_status *status)
2156 struct ieee80211_local *local = hw_to_local(hw);
2158 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2160 skb->dev = local->mdev;
2161 /* copy status into skb->cb for use by tasklet */
2162 memcpy(skb->cb, status, sizeof(*status));
2163 skb->pkt_type = IEEE80211_RX_MSG;
2164 skb_queue_tail(&local->skb_queue, skb);
2165 tasklet_schedule(&local->tasklet);
2167 EXPORT_SYMBOL(ieee80211_rx_irqsafe);