x86-64, NUMA: make numa_cleanup_meminfo() prettier
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / clocksource / sh_tmu.c
blob36aba9923060f5dfbd02d250a1de675e274e7695
1 /*
2 * SuperH Timer Support - TMU
4 * Copyright (C) 2009 Magnus Damm
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/init.h>
21 #include <linux/platform_device.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/clk.h>
28 #include <linux/irq.h>
29 #include <linux/err.h>
30 #include <linux/clocksource.h>
31 #include <linux/clockchips.h>
32 #include <linux/sh_timer.h>
33 #include <linux/slab.h>
35 struct sh_tmu_priv {
36 void __iomem *mapbase;
37 struct clk *clk;
38 struct irqaction irqaction;
39 struct platform_device *pdev;
40 unsigned long rate;
41 unsigned long periodic;
42 struct clock_event_device ced;
43 struct clocksource cs;
46 static DEFINE_SPINLOCK(sh_tmu_lock);
48 #define TSTR -1 /* shared register */
49 #define TCOR 0 /* channel register */
50 #define TCNT 1 /* channel register */
51 #define TCR 2 /* channel register */
53 static inline unsigned long sh_tmu_read(struct sh_tmu_priv *p, int reg_nr)
55 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
56 void __iomem *base = p->mapbase;
57 unsigned long offs;
59 if (reg_nr == TSTR)
60 return ioread8(base - cfg->channel_offset);
62 offs = reg_nr << 2;
64 if (reg_nr == TCR)
65 return ioread16(base + offs);
66 else
67 return ioread32(base + offs);
70 static inline void sh_tmu_write(struct sh_tmu_priv *p, int reg_nr,
71 unsigned long value)
73 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
74 void __iomem *base = p->mapbase;
75 unsigned long offs;
77 if (reg_nr == TSTR) {
78 iowrite8(value, base - cfg->channel_offset);
79 return;
82 offs = reg_nr << 2;
84 if (reg_nr == TCR)
85 iowrite16(value, base + offs);
86 else
87 iowrite32(value, base + offs);
90 static void sh_tmu_start_stop_ch(struct sh_tmu_priv *p, int start)
92 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
93 unsigned long flags, value;
95 /* start stop register shared by multiple timer channels */
96 spin_lock_irqsave(&sh_tmu_lock, flags);
97 value = sh_tmu_read(p, TSTR);
99 if (start)
100 value |= 1 << cfg->timer_bit;
101 else
102 value &= ~(1 << cfg->timer_bit);
104 sh_tmu_write(p, TSTR, value);
105 spin_unlock_irqrestore(&sh_tmu_lock, flags);
108 static int sh_tmu_enable(struct sh_tmu_priv *p)
110 int ret;
112 /* enable clock */
113 ret = clk_enable(p->clk);
114 if (ret) {
115 dev_err(&p->pdev->dev, "cannot enable clock\n");
116 return ret;
119 /* make sure channel is disabled */
120 sh_tmu_start_stop_ch(p, 0);
122 /* maximum timeout */
123 sh_tmu_write(p, TCOR, 0xffffffff);
124 sh_tmu_write(p, TCNT, 0xffffffff);
126 /* configure channel to parent clock / 4, irq off */
127 p->rate = clk_get_rate(p->clk) / 4;
128 sh_tmu_write(p, TCR, 0x0000);
130 /* enable channel */
131 sh_tmu_start_stop_ch(p, 1);
133 return 0;
136 static void sh_tmu_disable(struct sh_tmu_priv *p)
138 /* disable channel */
139 sh_tmu_start_stop_ch(p, 0);
141 /* disable interrupts in TMU block */
142 sh_tmu_write(p, TCR, 0x0000);
144 /* stop clock */
145 clk_disable(p->clk);
148 static void sh_tmu_set_next(struct sh_tmu_priv *p, unsigned long delta,
149 int periodic)
151 /* stop timer */
152 sh_tmu_start_stop_ch(p, 0);
154 /* acknowledge interrupt */
155 sh_tmu_read(p, TCR);
157 /* enable interrupt */
158 sh_tmu_write(p, TCR, 0x0020);
160 /* reload delta value in case of periodic timer */
161 if (periodic)
162 sh_tmu_write(p, TCOR, delta);
163 else
164 sh_tmu_write(p, TCOR, 0xffffffff);
166 sh_tmu_write(p, TCNT, delta);
168 /* start timer */
169 sh_tmu_start_stop_ch(p, 1);
172 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
174 struct sh_tmu_priv *p = dev_id;
176 /* disable or acknowledge interrupt */
177 if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT)
178 sh_tmu_write(p, TCR, 0x0000);
179 else
180 sh_tmu_write(p, TCR, 0x0020);
182 /* notify clockevent layer */
183 p->ced.event_handler(&p->ced);
184 return IRQ_HANDLED;
187 static struct sh_tmu_priv *cs_to_sh_tmu(struct clocksource *cs)
189 return container_of(cs, struct sh_tmu_priv, cs);
192 static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
194 struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
196 return sh_tmu_read(p, TCNT) ^ 0xffffffff;
199 static int sh_tmu_clocksource_enable(struct clocksource *cs)
201 struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
203 return sh_tmu_enable(p);
206 static void sh_tmu_clocksource_disable(struct clocksource *cs)
208 sh_tmu_disable(cs_to_sh_tmu(cs));
211 static int sh_tmu_register_clocksource(struct sh_tmu_priv *p,
212 char *name, unsigned long rating)
214 struct clocksource *cs = &p->cs;
216 cs->name = name;
217 cs->rating = rating;
218 cs->read = sh_tmu_clocksource_read;
219 cs->enable = sh_tmu_clocksource_enable;
220 cs->disable = sh_tmu_clocksource_disable;
221 cs->mask = CLOCKSOURCE_MASK(32);
222 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
224 /* clk_get_rate() needs an enabled clock */
225 clk_enable(p->clk);
226 /* channel will be configured at parent clock / 4 */
227 p->rate = clk_get_rate(p->clk) / 4;
228 clk_disable(p->clk);
229 /* TODO: calculate good shift from rate and counter bit width */
230 cs->shift = 10;
231 cs->mult = clocksource_hz2mult(p->rate, cs->shift);
233 dev_info(&p->pdev->dev, "used as clock source\n");
234 clocksource_register(cs);
235 return 0;
238 static struct sh_tmu_priv *ced_to_sh_tmu(struct clock_event_device *ced)
240 return container_of(ced, struct sh_tmu_priv, ced);
243 static void sh_tmu_clock_event_start(struct sh_tmu_priv *p, int periodic)
245 struct clock_event_device *ced = &p->ced;
247 sh_tmu_enable(p);
249 /* TODO: calculate good shift from rate and counter bit width */
251 ced->shift = 32;
252 ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
253 ced->max_delta_ns = clockevent_delta2ns(0xffffffff, ced);
254 ced->min_delta_ns = 5000;
256 if (periodic) {
257 p->periodic = (p->rate + HZ/2) / HZ;
258 sh_tmu_set_next(p, p->periodic, 1);
262 static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
263 struct clock_event_device *ced)
265 struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
266 int disabled = 0;
268 /* deal with old setting first */
269 switch (ced->mode) {
270 case CLOCK_EVT_MODE_PERIODIC:
271 case CLOCK_EVT_MODE_ONESHOT:
272 sh_tmu_disable(p);
273 disabled = 1;
274 break;
275 default:
276 break;
279 switch (mode) {
280 case CLOCK_EVT_MODE_PERIODIC:
281 dev_info(&p->pdev->dev, "used for periodic clock events\n");
282 sh_tmu_clock_event_start(p, 1);
283 break;
284 case CLOCK_EVT_MODE_ONESHOT:
285 dev_info(&p->pdev->dev, "used for oneshot clock events\n");
286 sh_tmu_clock_event_start(p, 0);
287 break;
288 case CLOCK_EVT_MODE_UNUSED:
289 if (!disabled)
290 sh_tmu_disable(p);
291 break;
292 case CLOCK_EVT_MODE_SHUTDOWN:
293 default:
294 break;
298 static int sh_tmu_clock_event_next(unsigned long delta,
299 struct clock_event_device *ced)
301 struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
303 BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
305 /* program new delta value */
306 sh_tmu_set_next(p, delta, 0);
307 return 0;
310 static void sh_tmu_register_clockevent(struct sh_tmu_priv *p,
311 char *name, unsigned long rating)
313 struct clock_event_device *ced = &p->ced;
314 int ret;
316 memset(ced, 0, sizeof(*ced));
318 ced->name = name;
319 ced->features = CLOCK_EVT_FEAT_PERIODIC;
320 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
321 ced->rating = rating;
322 ced->cpumask = cpumask_of(0);
323 ced->set_next_event = sh_tmu_clock_event_next;
324 ced->set_mode = sh_tmu_clock_event_mode;
326 dev_info(&p->pdev->dev, "used for clock events\n");
327 clockevents_register_device(ced);
329 ret = setup_irq(p->irqaction.irq, &p->irqaction);
330 if (ret) {
331 dev_err(&p->pdev->dev, "failed to request irq %d\n",
332 p->irqaction.irq);
333 return;
337 static int sh_tmu_register(struct sh_tmu_priv *p, char *name,
338 unsigned long clockevent_rating,
339 unsigned long clocksource_rating)
341 if (clockevent_rating)
342 sh_tmu_register_clockevent(p, name, clockevent_rating);
343 else if (clocksource_rating)
344 sh_tmu_register_clocksource(p, name, clocksource_rating);
346 return 0;
349 static int sh_tmu_setup(struct sh_tmu_priv *p, struct platform_device *pdev)
351 struct sh_timer_config *cfg = pdev->dev.platform_data;
352 struct resource *res;
353 int irq, ret;
354 ret = -ENXIO;
356 memset(p, 0, sizeof(*p));
357 p->pdev = pdev;
359 if (!cfg) {
360 dev_err(&p->pdev->dev, "missing platform data\n");
361 goto err0;
364 platform_set_drvdata(pdev, p);
366 res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
367 if (!res) {
368 dev_err(&p->pdev->dev, "failed to get I/O memory\n");
369 goto err0;
372 irq = platform_get_irq(p->pdev, 0);
373 if (irq < 0) {
374 dev_err(&p->pdev->dev, "failed to get irq\n");
375 goto err0;
378 /* map memory, let mapbase point to our channel */
379 p->mapbase = ioremap_nocache(res->start, resource_size(res));
380 if (p->mapbase == NULL) {
381 dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
382 goto err0;
385 /* setup data for setup_irq() (too early for request_irq()) */
386 p->irqaction.name = dev_name(&p->pdev->dev);
387 p->irqaction.handler = sh_tmu_interrupt;
388 p->irqaction.dev_id = p;
389 p->irqaction.irq = irq;
390 p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \
391 IRQF_IRQPOLL | IRQF_NOBALANCING;
393 /* get hold of clock */
394 p->clk = clk_get(&p->pdev->dev, "tmu_fck");
395 if (IS_ERR(p->clk)) {
396 dev_err(&p->pdev->dev, "cannot get clock\n");
397 ret = PTR_ERR(p->clk);
398 goto err1;
401 return sh_tmu_register(p, (char *)dev_name(&p->pdev->dev),
402 cfg->clockevent_rating,
403 cfg->clocksource_rating);
404 err1:
405 iounmap(p->mapbase);
406 err0:
407 return ret;
410 static int __devinit sh_tmu_probe(struct platform_device *pdev)
412 struct sh_tmu_priv *p = platform_get_drvdata(pdev);
413 int ret;
415 if (p) {
416 dev_info(&pdev->dev, "kept as earlytimer\n");
417 return 0;
420 p = kmalloc(sizeof(*p), GFP_KERNEL);
421 if (p == NULL) {
422 dev_err(&pdev->dev, "failed to allocate driver data\n");
423 return -ENOMEM;
426 ret = sh_tmu_setup(p, pdev);
427 if (ret) {
428 kfree(p);
429 platform_set_drvdata(pdev, NULL);
431 return ret;
434 static int __devexit sh_tmu_remove(struct platform_device *pdev)
436 return -EBUSY; /* cannot unregister clockevent and clocksource */
439 static struct platform_driver sh_tmu_device_driver = {
440 .probe = sh_tmu_probe,
441 .remove = __devexit_p(sh_tmu_remove),
442 .driver = {
443 .name = "sh_tmu",
447 static int __init sh_tmu_init(void)
449 return platform_driver_register(&sh_tmu_device_driver);
452 static void __exit sh_tmu_exit(void)
454 platform_driver_unregister(&sh_tmu_device_driver);
457 early_platform_init("earlytimer", &sh_tmu_device_driver);
458 module_init(sh_tmu_init);
459 module_exit(sh_tmu_exit);
461 MODULE_AUTHOR("Magnus Damm");
462 MODULE_DESCRIPTION("SuperH TMU Timer Driver");
463 MODULE_LICENSE("GPL v2");