ide: rework PowerMac media-bay support (take 2)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ide / ppc / pmac.c
blob7889f5f5c49a1449e279bc2b6d1dad84a4b7d0fc
1 /*
2 * Support for IDE interfaces on PowerMacs.
4 * These IDE interfaces are memory-mapped and have a DBDMA channel
5 * for doing DMA.
7 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8 * Copyright (C) 2007 Bartlomiej Zolnierkiewicz
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Some code taken from drivers/ide/ide-dma.c:
17 * Copyright (c) 1995-1998 Mark Lord
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
22 * big table
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/ide.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/pci.h>
33 #include <linux/adb.h>
34 #include <linux/pmu.h>
35 #include <linux/scatterlist.h>
37 #include <asm/prom.h>
38 #include <asm/io.h>
39 #include <asm/dbdma.h>
40 #include <asm/ide.h>
41 #include <asm/pci-bridge.h>
42 #include <asm/machdep.h>
43 #include <asm/pmac_feature.h>
44 #include <asm/sections.h>
45 #include <asm/irq.h>
47 #ifndef CONFIG_PPC64
48 #include <asm/mediabay.h>
49 #endif
51 #include "../ide-timing.h"
53 #undef IDE_PMAC_DEBUG
55 #define DMA_WAIT_TIMEOUT 50
57 typedef struct pmac_ide_hwif {
58 unsigned long regbase;
59 int irq;
60 int kind;
61 int aapl_bus_id;
62 unsigned cable_80 : 1;
63 unsigned mediabay : 1;
64 unsigned broken_dma : 1;
65 unsigned broken_dma_warn : 1;
66 struct device_node* node;
67 struct macio_dev *mdev;
68 u32 timings[4];
69 volatile u32 __iomem * *kauai_fcr;
70 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
71 /* Those fields are duplicating what is in hwif. We currently
72 * can't use the hwif ones because of some assumptions that are
73 * beeing done by the generic code about the kind of dma controller
74 * and format of the dma table. This will have to be fixed though.
76 volatile struct dbdma_regs __iomem * dma_regs;
77 struct dbdma_cmd* dma_table_cpu;
78 #endif
80 } pmac_ide_hwif_t;
82 static pmac_ide_hwif_t pmac_ide[MAX_HWIFS];
83 static int pmac_ide_count;
85 enum {
86 controller_ohare, /* OHare based */
87 controller_heathrow, /* Heathrow/Paddington */
88 controller_kl_ata3, /* KeyLargo ATA-3 */
89 controller_kl_ata4, /* KeyLargo ATA-4 */
90 controller_un_ata6, /* UniNorth2 ATA-6 */
91 controller_k2_ata6, /* K2 ATA-6 */
92 controller_sh_ata6, /* Shasta ATA-6 */
95 static const char* model_name[] = {
96 "OHare ATA", /* OHare based */
97 "Heathrow ATA", /* Heathrow/Paddington */
98 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
99 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
100 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
101 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
102 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
106 * Extra registers, both 32-bit little-endian
108 #define IDE_TIMING_CONFIG 0x200
109 #define IDE_INTERRUPT 0x300
111 /* Kauai (U2) ATA has different register setup */
112 #define IDE_KAUAI_PIO_CONFIG 0x200
113 #define IDE_KAUAI_ULTRA_CONFIG 0x210
114 #define IDE_KAUAI_POLL_CONFIG 0x220
117 * Timing configuration register definitions
120 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
121 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
122 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
123 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
124 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
126 /* 133Mhz cell, found in shasta.
127 * See comments about 100 Mhz Uninorth 2...
128 * Note that PIO_MASK and MDMA_MASK seem to overlap
130 #define TR_133_PIOREG_PIO_MASK 0xff000fff
131 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
132 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
133 #define TR_133_UDMAREG_UDMA_EN 0x00000001
135 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
136 * this one yet, it appears as a pci device (106b/0033) on uninorth
137 * internal PCI bus and it's clock is controlled like gem or fw. It
138 * appears to be an evolution of keylargo ATA4 with a timing register
139 * extended to 2 32bits registers and a similar DBDMA channel. Other
140 * registers seem to exist but I can't tell much about them.
142 * So far, I'm using pre-calculated tables for this extracted from
143 * the values used by the MacOS X driver.
145 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
146 * register controls the UDMA timings. At least, it seems bit 0
147 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
148 * cycle time in units of 10ns. Bits 8..15 are used by I don't
149 * know their meaning yet
151 #define TR_100_PIOREG_PIO_MASK 0xff000fff
152 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
153 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
154 #define TR_100_UDMAREG_UDMA_EN 0x00000001
157 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
158 * 40 connector cable and to 4 on 80 connector one.
159 * Clock unit is 15ns (66Mhz)
161 * 3 Values can be programmed:
162 * - Write data setup, which appears to match the cycle time. They
163 * also call it DIOW setup.
164 * - Ready to pause time (from spec)
165 * - Address setup. That one is weird. I don't see where exactly
166 * it fits in UDMA cycles, I got it's name from an obscure piece
167 * of commented out code in Darwin. They leave it to 0, we do as
168 * well, despite a comment that would lead to think it has a
169 * min value of 45ns.
170 * Apple also add 60ns to the write data setup (or cycle time ?) on
171 * reads.
173 #define TR_66_UDMA_MASK 0xfff00000
174 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
175 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
176 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
177 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
178 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
179 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
180 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
181 #define TR_66_MDMA_MASK 0x000ffc00
182 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
183 #define TR_66_MDMA_RECOVERY_SHIFT 15
184 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
185 #define TR_66_MDMA_ACCESS_SHIFT 10
186 #define TR_66_PIO_MASK 0x000003ff
187 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
188 #define TR_66_PIO_RECOVERY_SHIFT 5
189 #define TR_66_PIO_ACCESS_MASK 0x0000001f
190 #define TR_66_PIO_ACCESS_SHIFT 0
192 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
193 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
195 * The access time and recovery time can be programmed. Some older
196 * Darwin code base limit OHare to 150ns cycle time. I decided to do
197 * the same here fore safety against broken old hardware ;)
198 * The HalfTick bit, when set, adds half a clock (15ns) to the access
199 * time and removes one from recovery. It's not supported on KeyLargo
200 * implementation afaik. The E bit appears to be set for PIO mode 0 and
201 * is used to reach long timings used in this mode.
203 #define TR_33_MDMA_MASK 0x003ff800
204 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
205 #define TR_33_MDMA_RECOVERY_SHIFT 16
206 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
207 #define TR_33_MDMA_ACCESS_SHIFT 11
208 #define TR_33_MDMA_HALFTICK 0x00200000
209 #define TR_33_PIO_MASK 0x000007ff
210 #define TR_33_PIO_E 0x00000400
211 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
212 #define TR_33_PIO_RECOVERY_SHIFT 5
213 #define TR_33_PIO_ACCESS_MASK 0x0000001f
214 #define TR_33_PIO_ACCESS_SHIFT 0
217 * Interrupt register definitions
219 #define IDE_INTR_DMA 0x80000000
220 #define IDE_INTR_DEVICE 0x40000000
223 * FCR Register on Kauai. Not sure what bit 0x4 is ...
225 #define KAUAI_FCR_UATA_MAGIC 0x00000004
226 #define KAUAI_FCR_UATA_RESET_N 0x00000002
227 #define KAUAI_FCR_UATA_ENABLE 0x00000001
229 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
231 /* Rounded Multiword DMA timings
233 * I gave up finding a generic formula for all controller
234 * types and instead, built tables based on timing values
235 * used by Apple in Darwin's implementation.
237 struct mdma_timings_t {
238 int accessTime;
239 int recoveryTime;
240 int cycleTime;
243 struct mdma_timings_t mdma_timings_33[] =
245 { 240, 240, 480 },
246 { 180, 180, 360 },
247 { 135, 135, 270 },
248 { 120, 120, 240 },
249 { 105, 105, 210 },
250 { 90, 90, 180 },
251 { 75, 75, 150 },
252 { 75, 45, 120 },
253 { 0, 0, 0 }
256 struct mdma_timings_t mdma_timings_33k[] =
258 { 240, 240, 480 },
259 { 180, 180, 360 },
260 { 150, 150, 300 },
261 { 120, 120, 240 },
262 { 90, 120, 210 },
263 { 90, 90, 180 },
264 { 90, 60, 150 },
265 { 90, 30, 120 },
266 { 0, 0, 0 }
269 struct mdma_timings_t mdma_timings_66[] =
271 { 240, 240, 480 },
272 { 180, 180, 360 },
273 { 135, 135, 270 },
274 { 120, 120, 240 },
275 { 105, 105, 210 },
276 { 90, 90, 180 },
277 { 90, 75, 165 },
278 { 75, 45, 120 },
279 { 0, 0, 0 }
282 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
283 struct {
284 int addrSetup; /* ??? */
285 int rdy2pause;
286 int wrDataSetup;
287 } kl66_udma_timings[] =
289 { 0, 180, 120 }, /* Mode 0 */
290 { 0, 150, 90 }, /* 1 */
291 { 0, 120, 60 }, /* 2 */
292 { 0, 90, 45 }, /* 3 */
293 { 0, 90, 30 } /* 4 */
296 /* UniNorth 2 ATA/100 timings */
297 struct kauai_timing {
298 int cycle_time;
299 u32 timing_reg;
302 static struct kauai_timing kauai_pio_timings[] =
304 { 930 , 0x08000fff },
305 { 600 , 0x08000a92 },
306 { 383 , 0x0800060f },
307 { 360 , 0x08000492 },
308 { 330 , 0x0800048f },
309 { 300 , 0x080003cf },
310 { 270 , 0x080003cc },
311 { 240 , 0x0800038b },
312 { 239 , 0x0800030c },
313 { 180 , 0x05000249 },
314 { 120 , 0x04000148 },
315 { 0 , 0 },
318 static struct kauai_timing kauai_mdma_timings[] =
320 { 1260 , 0x00fff000 },
321 { 480 , 0x00618000 },
322 { 360 , 0x00492000 },
323 { 270 , 0x0038e000 },
324 { 240 , 0x0030c000 },
325 { 210 , 0x002cb000 },
326 { 180 , 0x00249000 },
327 { 150 , 0x00209000 },
328 { 120 , 0x00148000 },
329 { 0 , 0 },
332 static struct kauai_timing kauai_udma_timings[] =
334 { 120 , 0x000070c0 },
335 { 90 , 0x00005d80 },
336 { 60 , 0x00004a60 },
337 { 45 , 0x00003a50 },
338 { 30 , 0x00002a30 },
339 { 20 , 0x00002921 },
340 { 0 , 0 },
343 static struct kauai_timing shasta_pio_timings[] =
345 { 930 , 0x08000fff },
346 { 600 , 0x0A000c97 },
347 { 383 , 0x07000712 },
348 { 360 , 0x040003cd },
349 { 330 , 0x040003cd },
350 { 300 , 0x040003cd },
351 { 270 , 0x040003cd },
352 { 240 , 0x040003cd },
353 { 239 , 0x040003cd },
354 { 180 , 0x0400028b },
355 { 120 , 0x0400010a },
356 { 0 , 0 },
359 static struct kauai_timing shasta_mdma_timings[] =
361 { 1260 , 0x00fff000 },
362 { 480 , 0x00820800 },
363 { 360 , 0x00820800 },
364 { 270 , 0x00820800 },
365 { 240 , 0x00820800 },
366 { 210 , 0x00820800 },
367 { 180 , 0x00820800 },
368 { 150 , 0x0028b000 },
369 { 120 , 0x001ca000 },
370 { 0 , 0 },
373 static struct kauai_timing shasta_udma133_timings[] =
375 { 120 , 0x00035901, },
376 { 90 , 0x000348b1, },
377 { 60 , 0x00033881, },
378 { 45 , 0x00033861, },
379 { 30 , 0x00033841, },
380 { 20 , 0x00033031, },
381 { 15 , 0x00033021, },
382 { 0 , 0 },
386 static inline u32
387 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
389 int i;
391 for (i=0; table[i].cycle_time; i++)
392 if (cycle_time > table[i+1].cycle_time)
393 return table[i].timing_reg;
394 BUG();
395 return 0;
398 /* allow up to 256 DBDMA commands per xfer */
399 #define MAX_DCMDS 256
402 * Wait 1s for disk to answer on IDE bus after a hard reset
403 * of the device (via GPIO/FCR).
405 * Some devices seem to "pollute" the bus even after dropping
406 * the BSY bit (typically some combo drives slave on the UDMA
407 * bus) after a hard reset. Since we hard reset all drives on
408 * KeyLargo ATA66, we have to keep that delay around. I may end
409 * up not hard resetting anymore on these and keep the delay only
410 * for older interfaces instead (we have to reset when coming
411 * from MacOS...) --BenH.
413 #define IDE_WAKEUP_DELAY (1*HZ)
415 static int pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif);
416 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
417 static void pmac_ide_selectproc(ide_drive_t *drive);
418 static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
420 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
423 * N.B. this can't be an initfunc, because the media-bay task can
424 * call ide_[un]register at any time.
426 void
427 pmac_ide_init_hwif_ports(hw_regs_t *hw,
428 unsigned long data_port, unsigned long ctrl_port,
429 int *irq)
431 int i, ix;
433 if (data_port == 0)
434 return;
436 for (ix = 0; ix < MAX_HWIFS; ++ix)
437 if (data_port == pmac_ide[ix].regbase)
438 break;
440 if (ix >= MAX_HWIFS)
441 return; /* not an IDE PMAC interface */
443 for (i = 0; i < 8; ++i)
444 hw->io_ports[i] = data_port + i * 0x10;
445 hw->io_ports[8] = data_port + 0x160;
447 if (irq != NULL)
448 *irq = pmac_ide[ix].irq;
450 hw->dev = &pmac_ide[ix].mdev->ofdev.dev;
453 #define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x)))
456 * Apply the timings of the proper unit (master/slave) to the shared
457 * timing register when selecting that unit. This version is for
458 * ASICs with a single timing register
460 static void
461 pmac_ide_selectproc(ide_drive_t *drive)
463 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
465 if (pmif == NULL)
466 return;
468 if (drive->select.b.unit & 0x01)
469 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
470 else
471 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
472 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
476 * Apply the timings of the proper unit (master/slave) to the shared
477 * timing register when selecting that unit. This version is for
478 * ASICs with a dual timing register (Kauai)
480 static void
481 pmac_ide_kauai_selectproc(ide_drive_t *drive)
483 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
485 if (pmif == NULL)
486 return;
488 if (drive->select.b.unit & 0x01) {
489 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
490 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
491 } else {
492 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
493 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
495 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
499 * Force an update of controller timing values for a given drive
501 static void
502 pmac_ide_do_update_timings(ide_drive_t *drive)
504 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
506 if (pmif == NULL)
507 return;
509 if (pmif->kind == controller_sh_ata6 ||
510 pmif->kind == controller_un_ata6 ||
511 pmif->kind == controller_k2_ata6)
512 pmac_ide_kauai_selectproc(drive);
513 else
514 pmac_ide_selectproc(drive);
517 static void
518 pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port)
520 u32 tmp;
522 writeb(value, (void __iomem *) port);
523 tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
527 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
529 static void
530 pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
532 u32 *timings, t;
533 unsigned accessTicks, recTicks;
534 unsigned accessTime, recTime;
535 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
536 unsigned int cycle_time;
538 if (pmif == NULL)
539 return;
541 /* which drive is it ? */
542 timings = &pmif->timings[drive->select.b.unit & 0x01];
543 t = *timings;
545 cycle_time = ide_pio_cycle_time(drive, pio);
547 switch (pmif->kind) {
548 case controller_sh_ata6: {
549 /* 133Mhz cell */
550 u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
551 t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
552 break;
554 case controller_un_ata6:
555 case controller_k2_ata6: {
556 /* 100Mhz cell */
557 u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
558 t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
559 break;
561 case controller_kl_ata4:
562 /* 66Mhz cell */
563 recTime = cycle_time - ide_pio_timings[pio].active_time
564 - ide_pio_timings[pio].setup_time;
565 recTime = max(recTime, 150U);
566 accessTime = ide_pio_timings[pio].active_time;
567 accessTime = max(accessTime, 150U);
568 accessTicks = SYSCLK_TICKS_66(accessTime);
569 accessTicks = min(accessTicks, 0x1fU);
570 recTicks = SYSCLK_TICKS_66(recTime);
571 recTicks = min(recTicks, 0x1fU);
572 t = (t & ~TR_66_PIO_MASK) |
573 (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
574 (recTicks << TR_66_PIO_RECOVERY_SHIFT);
575 break;
576 default: {
577 /* 33Mhz cell */
578 int ebit = 0;
579 recTime = cycle_time - ide_pio_timings[pio].active_time
580 - ide_pio_timings[pio].setup_time;
581 recTime = max(recTime, 150U);
582 accessTime = ide_pio_timings[pio].active_time;
583 accessTime = max(accessTime, 150U);
584 accessTicks = SYSCLK_TICKS(accessTime);
585 accessTicks = min(accessTicks, 0x1fU);
586 accessTicks = max(accessTicks, 4U);
587 recTicks = SYSCLK_TICKS(recTime);
588 recTicks = min(recTicks, 0x1fU);
589 recTicks = max(recTicks, 5U) - 4;
590 if (recTicks > 9) {
591 recTicks--; /* guess, but it's only for PIO0, so... */
592 ebit = 1;
594 t = (t & ~TR_33_PIO_MASK) |
595 (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
596 (recTicks << TR_33_PIO_RECOVERY_SHIFT);
597 if (ebit)
598 t |= TR_33_PIO_E;
599 break;
603 #ifdef IDE_PMAC_DEBUG
604 printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
605 drive->name, pio, *timings);
606 #endif
608 *timings = t;
609 pmac_ide_do_update_timings(drive);
612 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
615 * Calculate KeyLargo ATA/66 UDMA timings
617 static int
618 set_timings_udma_ata4(u32 *timings, u8 speed)
620 unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
622 if (speed > XFER_UDMA_4)
623 return 1;
625 rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
626 wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
627 addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
629 *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
630 (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
631 (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
632 (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
633 TR_66_UDMA_EN;
634 #ifdef IDE_PMAC_DEBUG
635 printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
636 speed & 0xf, *timings);
637 #endif
639 return 0;
643 * Calculate Kauai ATA/100 UDMA timings
645 static int
646 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
648 struct ide_timing *t = ide_timing_find_mode(speed);
649 u32 tr;
651 if (speed > XFER_UDMA_5 || t == NULL)
652 return 1;
653 tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
654 *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
655 *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
657 return 0;
661 * Calculate Shasta ATA/133 UDMA timings
663 static int
664 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
666 struct ide_timing *t = ide_timing_find_mode(speed);
667 u32 tr;
669 if (speed > XFER_UDMA_6 || t == NULL)
670 return 1;
671 tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
672 *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
673 *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
675 return 0;
679 * Calculate MDMA timings for all cells
681 static void
682 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
683 u8 speed)
685 int cycleTime, accessTime = 0, recTime = 0;
686 unsigned accessTicks, recTicks;
687 struct hd_driveid *id = drive->id;
688 struct mdma_timings_t* tm = NULL;
689 int i;
691 /* Get default cycle time for mode */
692 switch(speed & 0xf) {
693 case 0: cycleTime = 480; break;
694 case 1: cycleTime = 150; break;
695 case 2: cycleTime = 120; break;
696 default:
697 BUG();
698 break;
701 /* Check if drive provides explicit DMA cycle time */
702 if ((id->field_valid & 2) && id->eide_dma_time)
703 cycleTime = max_t(int, id->eide_dma_time, cycleTime);
705 /* OHare limits according to some old Apple sources */
706 if ((intf_type == controller_ohare) && (cycleTime < 150))
707 cycleTime = 150;
708 /* Get the proper timing array for this controller */
709 switch(intf_type) {
710 case controller_sh_ata6:
711 case controller_un_ata6:
712 case controller_k2_ata6:
713 break;
714 case controller_kl_ata4:
715 tm = mdma_timings_66;
716 break;
717 case controller_kl_ata3:
718 tm = mdma_timings_33k;
719 break;
720 default:
721 tm = mdma_timings_33;
722 break;
724 if (tm != NULL) {
725 /* Lookup matching access & recovery times */
726 i = -1;
727 for (;;) {
728 if (tm[i+1].cycleTime < cycleTime)
729 break;
730 i++;
732 cycleTime = tm[i].cycleTime;
733 accessTime = tm[i].accessTime;
734 recTime = tm[i].recoveryTime;
736 #ifdef IDE_PMAC_DEBUG
737 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
738 drive->name, cycleTime, accessTime, recTime);
739 #endif
741 switch(intf_type) {
742 case controller_sh_ata6: {
743 /* 133Mhz cell */
744 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
745 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
746 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
748 case controller_un_ata6:
749 case controller_k2_ata6: {
750 /* 100Mhz cell */
751 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
752 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
753 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
755 break;
756 case controller_kl_ata4:
757 /* 66Mhz cell */
758 accessTicks = SYSCLK_TICKS_66(accessTime);
759 accessTicks = min(accessTicks, 0x1fU);
760 accessTicks = max(accessTicks, 0x1U);
761 recTicks = SYSCLK_TICKS_66(recTime);
762 recTicks = min(recTicks, 0x1fU);
763 recTicks = max(recTicks, 0x3U);
764 /* Clear out mdma bits and disable udma */
765 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
766 (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
767 (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
768 break;
769 case controller_kl_ata3:
770 /* 33Mhz cell on KeyLargo */
771 accessTicks = SYSCLK_TICKS(accessTime);
772 accessTicks = max(accessTicks, 1U);
773 accessTicks = min(accessTicks, 0x1fU);
774 accessTime = accessTicks * IDE_SYSCLK_NS;
775 recTicks = SYSCLK_TICKS(recTime);
776 recTicks = max(recTicks, 1U);
777 recTicks = min(recTicks, 0x1fU);
778 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
779 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
780 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
781 break;
782 default: {
783 /* 33Mhz cell on others */
784 int halfTick = 0;
785 int origAccessTime = accessTime;
786 int origRecTime = recTime;
788 accessTicks = SYSCLK_TICKS(accessTime);
789 accessTicks = max(accessTicks, 1U);
790 accessTicks = min(accessTicks, 0x1fU);
791 accessTime = accessTicks * IDE_SYSCLK_NS;
792 recTicks = SYSCLK_TICKS(recTime);
793 recTicks = max(recTicks, 2U) - 1;
794 recTicks = min(recTicks, 0x1fU);
795 recTime = (recTicks + 1) * IDE_SYSCLK_NS;
796 if ((accessTicks > 1) &&
797 ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
798 ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
799 halfTick = 1;
800 accessTicks--;
802 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
803 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
804 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
805 if (halfTick)
806 *timings |= TR_33_MDMA_HALFTICK;
809 #ifdef IDE_PMAC_DEBUG
810 printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
811 drive->name, speed & 0xf, *timings);
812 #endif
814 #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
816 static void pmac_ide_set_dma_mode(ide_drive_t *drive, const u8 speed)
818 int unit = (drive->select.b.unit & 0x01);
819 int ret = 0;
820 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
821 u32 *timings, *timings2, tl[2];
823 timings = &pmif->timings[unit];
824 timings2 = &pmif->timings[unit+2];
826 /* Copy timings to local image */
827 tl[0] = *timings;
828 tl[1] = *timings2;
830 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
831 if (speed >= XFER_UDMA_0) {
832 if (pmif->kind == controller_kl_ata4)
833 ret = set_timings_udma_ata4(&tl[0], speed);
834 else if (pmif->kind == controller_un_ata6
835 || pmif->kind == controller_k2_ata6)
836 ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
837 else if (pmif->kind == controller_sh_ata6)
838 ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
839 else
840 ret = -1;
841 } else
842 set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
843 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
844 if (ret)
845 return;
847 /* Apply timings to controller */
848 *timings = tl[0];
849 *timings2 = tl[1];
851 pmac_ide_do_update_timings(drive);
855 * Blast some well known "safe" values to the timing registers at init or
856 * wakeup from sleep time, before we do real calculation
858 static void
859 sanitize_timings(pmac_ide_hwif_t *pmif)
861 unsigned int value, value2 = 0;
863 switch(pmif->kind) {
864 case controller_sh_ata6:
865 value = 0x0a820c97;
866 value2 = 0x00033031;
867 break;
868 case controller_un_ata6:
869 case controller_k2_ata6:
870 value = 0x08618a92;
871 value2 = 0x00002921;
872 break;
873 case controller_kl_ata4:
874 value = 0x0008438c;
875 break;
876 case controller_kl_ata3:
877 value = 0x00084526;
878 break;
879 case controller_heathrow:
880 case controller_ohare:
881 default:
882 value = 0x00074526;
883 break;
885 pmif->timings[0] = pmif->timings[1] = value;
886 pmif->timings[2] = pmif->timings[3] = value2;
889 unsigned long
890 pmac_ide_get_base(int index)
892 return pmac_ide[index].regbase;
896 pmac_ide_check_base(unsigned long base)
898 int ix;
900 for (ix = 0; ix < MAX_HWIFS; ++ix)
901 if (base == pmac_ide[ix].regbase)
902 return ix;
903 return -1;
907 pmac_ide_get_irq(unsigned long base)
909 int ix;
911 for (ix = 0; ix < MAX_HWIFS; ++ix)
912 if (base == pmac_ide[ix].regbase)
913 return pmac_ide[ix].irq;
914 return 0;
917 static int ide_majors[] = { 3, 22, 33, 34, 56, 57 };
919 dev_t __init
920 pmac_find_ide_boot(char *bootdevice, int n)
922 int i;
925 * Look through the list of IDE interfaces for this one.
927 for (i = 0; i < pmac_ide_count; ++i) {
928 char *name;
929 if (!pmac_ide[i].node || !pmac_ide[i].node->full_name)
930 continue;
931 name = pmac_ide[i].node->full_name;
932 if (memcmp(name, bootdevice, n) == 0 && name[n] == 0) {
933 /* XXX should cope with the 2nd drive as well... */
934 return MKDEV(ide_majors[i], 0);
938 return 0;
941 /* Suspend call back, should be called after the child devices
942 * have actually been suspended
944 static int
945 pmac_ide_do_suspend(ide_hwif_t *hwif)
947 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
949 /* We clear the timings */
950 pmif->timings[0] = 0;
951 pmif->timings[1] = 0;
953 disable_irq(pmif->irq);
955 /* The media bay will handle itself just fine */
956 if (pmif->mediabay)
957 return 0;
959 /* Kauai has bus control FCRs directly here */
960 if (pmif->kauai_fcr) {
961 u32 fcr = readl(pmif->kauai_fcr);
962 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
963 writel(fcr, pmif->kauai_fcr);
966 /* Disable the bus on older machines and the cell on kauai */
967 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
970 return 0;
973 /* Resume call back, should be called before the child devices
974 * are resumed
976 static int
977 pmac_ide_do_resume(ide_hwif_t *hwif)
979 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
981 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
982 if (!pmif->mediabay) {
983 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
984 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
985 msleep(10);
986 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
988 /* Kauai has it different */
989 if (pmif->kauai_fcr) {
990 u32 fcr = readl(pmif->kauai_fcr);
991 fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
992 writel(fcr, pmif->kauai_fcr);
995 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
998 /* Sanitize drive timings */
999 sanitize_timings(pmif);
1001 enable_irq(pmif->irq);
1003 return 0;
1006 static const struct ide_port_info pmac_port_info = {
1007 .chipset = ide_pmac,
1008 .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1009 IDE_HFLAG_PIO_NO_DOWNGRADE |
1010 IDE_HFLAG_POST_SET_MODE |
1011 IDE_HFLAG_NO_DMA | /* no SFF-style DMA */
1012 IDE_HFLAG_UNMASK_IRQS,
1013 .pio_mask = ATA_PIO4,
1014 .mwdma_mask = ATA_MWDMA2,
1018 * Setup, register & probe an IDE channel driven by this driver, this is
1019 * called by one of the 2 probe functions (macio or PCI). Note that a channel
1020 * that ends up beeing free of any device is not kept around by this driver
1021 * (it is kept in 2.4). This introduce an interface numbering change on some
1022 * rare machines unfortunately, but it's better this way.
1024 static int __devinit
1025 pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif, hw_regs_t *hw)
1027 struct device_node *np = pmif->node;
1028 const int *bidp;
1029 u8 idx[4] = { 0xff, 0xff, 0xff, 0xff };
1030 struct ide_port_info d = pmac_port_info;
1032 pmif->cable_80 = 0;
1033 pmif->broken_dma = pmif->broken_dma_warn = 0;
1034 if (of_device_is_compatible(np, "shasta-ata")) {
1035 pmif->kind = controller_sh_ata6;
1036 d.udma_mask = ATA_UDMA6;
1037 } else if (of_device_is_compatible(np, "kauai-ata")) {
1038 pmif->kind = controller_un_ata6;
1039 d.udma_mask = ATA_UDMA5;
1040 } else if (of_device_is_compatible(np, "K2-UATA")) {
1041 pmif->kind = controller_k2_ata6;
1042 d.udma_mask = ATA_UDMA5;
1043 } else if (of_device_is_compatible(np, "keylargo-ata")) {
1044 if (strcmp(np->name, "ata-4") == 0) {
1045 pmif->kind = controller_kl_ata4;
1046 d.udma_mask = ATA_UDMA4;
1047 } else
1048 pmif->kind = controller_kl_ata3;
1049 } else if (of_device_is_compatible(np, "heathrow-ata")) {
1050 pmif->kind = controller_heathrow;
1051 } else {
1052 pmif->kind = controller_ohare;
1053 pmif->broken_dma = 1;
1056 bidp = of_get_property(np, "AAPL,bus-id", NULL);
1057 pmif->aapl_bus_id = bidp ? *bidp : 0;
1059 /* Get cable type from device-tree */
1060 if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6
1061 || pmif->kind == controller_k2_ata6
1062 || pmif->kind == controller_sh_ata6) {
1063 const char* cable = of_get_property(np, "cable-type", NULL);
1064 if (cable && !strncmp(cable, "80-", 3))
1065 pmif->cable_80 = 1;
1067 /* G5's seem to have incorrect cable type in device-tree. Let's assume
1068 * they have a 80 conductor cable, this seem to be always the case unless
1069 * the user mucked around
1071 if (of_device_is_compatible(np, "K2-UATA") ||
1072 of_device_is_compatible(np, "shasta-ata"))
1073 pmif->cable_80 = 1;
1075 /* On Kauai-type controllers, we make sure the FCR is correct */
1076 if (pmif->kauai_fcr)
1077 writel(KAUAI_FCR_UATA_MAGIC |
1078 KAUAI_FCR_UATA_RESET_N |
1079 KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1081 pmif->mediabay = 0;
1083 /* Make sure we have sane timings */
1084 sanitize_timings(pmif);
1086 #ifndef CONFIG_PPC64
1087 /* XXX FIXME: Media bay stuff need re-organizing */
1088 if (np->parent && np->parent->name
1089 && strcasecmp(np->parent->name, "media-bay") == 0) {
1090 #ifdef CONFIG_PMAC_MEDIABAY
1091 media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq,
1092 hwif);
1093 #endif /* CONFIG_PMAC_MEDIABAY */
1094 pmif->mediabay = 1;
1095 if (!bidp)
1096 pmif->aapl_bus_id = 1;
1097 } else if (pmif->kind == controller_ohare) {
1098 /* The code below is having trouble on some ohare machines
1099 * (timing related ?). Until I can put my hand on one of these
1100 * units, I keep the old way
1102 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1103 } else
1104 #endif
1106 /* This is necessary to enable IDE when net-booting */
1107 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1108 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1109 msleep(10);
1110 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1111 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1114 /* Setup MMIO ops */
1115 default_hwif_mmiops(hwif);
1116 hwif->OUTBSYNC = pmac_outbsync;
1118 /* Tell common code _not_ to mess with resources */
1119 hwif->mmio = 1;
1120 hwif->hwif_data = pmif;
1121 ide_init_port_hw(hwif, hw);
1122 hwif->noprobe = pmif->mediabay;
1123 hwif->hold = pmif->mediabay;
1124 hwif->cbl = pmif->cable_80 ? ATA_CBL_PATA80 : ATA_CBL_PATA40;
1125 hwif->set_pio_mode = pmac_ide_set_pio_mode;
1126 if (pmif->kind == controller_un_ata6
1127 || pmif->kind == controller_k2_ata6
1128 || pmif->kind == controller_sh_ata6)
1129 hwif->selectproc = pmac_ide_kauai_selectproc;
1130 else
1131 hwif->selectproc = pmac_ide_selectproc;
1132 hwif->set_dma_mode = pmac_ide_set_dma_mode;
1134 printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
1135 hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
1136 pmif->mediabay ? " (mediabay)" : "", hwif->irq);
1138 #ifdef CONFIG_PMAC_MEDIABAY
1139 if (pmif->mediabay && check_media_bay_by_base(pmif->regbase, MB_CD) == 0)
1140 hwif->noprobe = 0;
1141 #endif /* CONFIG_PMAC_MEDIABAY */
1143 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1144 if (pmif->cable_80 == 0)
1145 d.udma_mask &= ATA_UDMA2;
1146 /* has a DBDMA controller channel */
1147 if (pmif->dma_regs == 0 || pmac_ide_setup_dma(pmif, hwif) < 0)
1148 #endif
1149 d.udma_mask = d.mwdma_mask = 0;
1151 idx[0] = hwif->index;
1153 ide_device_add(idx, &d);
1155 return 0;
1159 * Attach to a macio probed interface
1161 static int __devinit
1162 pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1164 void __iomem *base;
1165 unsigned long regbase;
1166 int irq;
1167 ide_hwif_t *hwif;
1168 pmac_ide_hwif_t *pmif;
1169 int i, rc;
1170 hw_regs_t hw;
1172 i = 0;
1173 while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
1174 || pmac_ide[i].node != NULL))
1175 ++i;
1176 if (i >= MAX_HWIFS) {
1177 printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
1178 printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
1179 return -ENODEV;
1182 pmif = &pmac_ide[i];
1183 hwif = &ide_hwifs[i];
1185 if (macio_resource_count(mdev) == 0) {
1186 printk(KERN_WARNING "ide%d: no address for %s\n",
1187 i, mdev->ofdev.node->full_name);
1188 return -ENXIO;
1191 /* Request memory resource for IO ports */
1192 if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1193 printk(KERN_ERR "ide%d: can't request mmio resource !\n", i);
1194 return -EBUSY;
1197 /* XXX This is bogus. Should be fixed in the registry by checking
1198 * the kind of host interrupt controller, a bit like gatwick
1199 * fixes in irq.c. That works well enough for the single case
1200 * where that happens though...
1202 if (macio_irq_count(mdev) == 0) {
1203 printk(KERN_WARNING "ide%d: no intrs for device %s, using 13\n",
1204 i, mdev->ofdev.node->full_name);
1205 irq = irq_create_mapping(NULL, 13);
1206 } else
1207 irq = macio_irq(mdev, 0);
1209 base = ioremap(macio_resource_start(mdev, 0), 0x400);
1210 regbase = (unsigned long) base;
1212 hwif->dev = &mdev->bus->pdev->dev;
1214 pmif->mdev = mdev;
1215 pmif->node = mdev->ofdev.node;
1216 pmif->regbase = regbase;
1217 pmif->irq = irq;
1218 pmif->kauai_fcr = NULL;
1219 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1220 if (macio_resource_count(mdev) >= 2) {
1221 if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1222 printk(KERN_WARNING "ide%d: can't request DMA resource !\n", i);
1223 else
1224 pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1225 } else
1226 pmif->dma_regs = NULL;
1227 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1228 dev_set_drvdata(&mdev->ofdev.dev, hwif);
1230 memset(&hw, 0, sizeof(hw));
1231 pmac_ide_init_hwif_ports(&hw, pmif->regbase, 0, NULL);
1232 hw.irq = irq;
1233 hw.dev = &mdev->ofdev.dev;
1235 rc = pmac_ide_setup_device(pmif, hwif, &hw);
1236 if (rc != 0) {
1237 /* The inteface is released to the common IDE layer */
1238 dev_set_drvdata(&mdev->ofdev.dev, NULL);
1239 iounmap(base);
1240 if (pmif->dma_regs) {
1241 iounmap(pmif->dma_regs);
1242 macio_release_resource(mdev, 1);
1244 memset(pmif, 0, sizeof(*pmif));
1245 macio_release_resource(mdev, 0);
1248 return rc;
1251 static int
1252 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1254 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1255 int rc = 0;
1257 if (mesg.event != mdev->ofdev.dev.power.power_state.event
1258 && (mesg.event & PM_EVENT_SLEEP)) {
1259 rc = pmac_ide_do_suspend(hwif);
1260 if (rc == 0)
1261 mdev->ofdev.dev.power.power_state = mesg;
1264 return rc;
1267 static int
1268 pmac_ide_macio_resume(struct macio_dev *mdev)
1270 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1271 int rc = 0;
1273 if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1274 rc = pmac_ide_do_resume(hwif);
1275 if (rc == 0)
1276 mdev->ofdev.dev.power.power_state = PMSG_ON;
1279 return rc;
1283 * Attach to a PCI probed interface
1285 static int __devinit
1286 pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1288 ide_hwif_t *hwif;
1289 struct device_node *np;
1290 pmac_ide_hwif_t *pmif;
1291 void __iomem *base;
1292 unsigned long rbase, rlen;
1293 int i, rc;
1294 hw_regs_t hw;
1296 np = pci_device_to_OF_node(pdev);
1297 if (np == NULL) {
1298 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1299 return -ENODEV;
1301 i = 0;
1302 while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
1303 || pmac_ide[i].node != NULL))
1304 ++i;
1305 if (i >= MAX_HWIFS) {
1306 printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
1307 printk(KERN_ERR " %s\n", np->full_name);
1308 return -ENODEV;
1311 pmif = &pmac_ide[i];
1312 hwif = &ide_hwifs[i];
1314 if (pci_enable_device(pdev)) {
1315 printk(KERN_WARNING "ide%i: Can't enable PCI device for %s\n",
1316 i, np->full_name);
1317 return -ENXIO;
1319 pci_set_master(pdev);
1321 if (pci_request_regions(pdev, "Kauai ATA")) {
1322 printk(KERN_ERR "ide%d: Cannot obtain PCI resources for %s\n",
1323 i, np->full_name);
1324 return -ENXIO;
1327 hwif->dev = &pdev->dev;
1328 pmif->mdev = NULL;
1329 pmif->node = np;
1331 rbase = pci_resource_start(pdev, 0);
1332 rlen = pci_resource_len(pdev, 0);
1334 base = ioremap(rbase, rlen);
1335 pmif->regbase = (unsigned long) base + 0x2000;
1336 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1337 pmif->dma_regs = base + 0x1000;
1338 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1339 pmif->kauai_fcr = base;
1340 pmif->irq = pdev->irq;
1342 pci_set_drvdata(pdev, hwif);
1344 memset(&hw, 0, sizeof(hw));
1345 pmac_ide_init_hwif_ports(&hw, pmif->regbase, 0, NULL);
1346 hw.irq = pdev->irq;
1347 hw.dev = &pdev->dev;
1349 rc = pmac_ide_setup_device(pmif, hwif, &hw);
1350 if (rc != 0) {
1351 /* The inteface is released to the common IDE layer */
1352 pci_set_drvdata(pdev, NULL);
1353 iounmap(base);
1354 memset(pmif, 0, sizeof(*pmif));
1355 pci_release_regions(pdev);
1358 return rc;
1361 static int
1362 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1364 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1365 int rc = 0;
1367 if (mesg.event != pdev->dev.power.power_state.event
1368 && (mesg.event & PM_EVENT_SLEEP)) {
1369 rc = pmac_ide_do_suspend(hwif);
1370 if (rc == 0)
1371 pdev->dev.power.power_state = mesg;
1374 return rc;
1377 static int
1378 pmac_ide_pci_resume(struct pci_dev *pdev)
1380 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1381 int rc = 0;
1383 if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1384 rc = pmac_ide_do_resume(hwif);
1385 if (rc == 0)
1386 pdev->dev.power.power_state = PMSG_ON;
1389 return rc;
1392 static struct of_device_id pmac_ide_macio_match[] =
1395 .name = "IDE",
1398 .name = "ATA",
1401 .type = "ide",
1404 .type = "ata",
1409 static struct macio_driver pmac_ide_macio_driver =
1411 .name = "ide-pmac",
1412 .match_table = pmac_ide_macio_match,
1413 .probe = pmac_ide_macio_attach,
1414 .suspend = pmac_ide_macio_suspend,
1415 .resume = pmac_ide_macio_resume,
1418 static const struct pci_device_id pmac_ide_pci_match[] = {
1419 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
1420 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
1421 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
1422 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
1423 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
1427 static struct pci_driver pmac_ide_pci_driver = {
1428 .name = "ide-pmac",
1429 .id_table = pmac_ide_pci_match,
1430 .probe = pmac_ide_pci_attach,
1431 .suspend = pmac_ide_pci_suspend,
1432 .resume = pmac_ide_pci_resume,
1434 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1436 int __init pmac_ide_probe(void)
1438 int error;
1440 if (!machine_is(powermac))
1441 return -ENODEV;
1443 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1444 error = pci_register_driver(&pmac_ide_pci_driver);
1445 if (error)
1446 goto out;
1447 error = macio_register_driver(&pmac_ide_macio_driver);
1448 if (error) {
1449 pci_unregister_driver(&pmac_ide_pci_driver);
1450 goto out;
1452 #else
1453 error = macio_register_driver(&pmac_ide_macio_driver);
1454 if (error)
1455 goto out;
1456 error = pci_register_driver(&pmac_ide_pci_driver);
1457 if (error) {
1458 macio_unregister_driver(&pmac_ide_macio_driver);
1459 goto out;
1461 #endif
1462 out:
1463 return error;
1466 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1469 * pmac_ide_build_dmatable builds the DBDMA command list
1470 * for a transfer and sets the DBDMA channel to point to it.
1472 static int
1473 pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
1475 struct dbdma_cmd *table;
1476 int i, count = 0;
1477 ide_hwif_t *hwif = HWIF(drive);
1478 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1479 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1480 struct scatterlist *sg;
1481 int wr = (rq_data_dir(rq) == WRITE);
1483 /* DMA table is already aligned */
1484 table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1486 /* Make sure DMA controller is stopped (necessary ?) */
1487 writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1488 while (readl(&dma->status) & RUN)
1489 udelay(1);
1491 hwif->sg_nents = i = ide_build_sglist(drive, rq);
1493 if (!i)
1494 return 0;
1496 /* Build DBDMA commands list */
1497 sg = hwif->sg_table;
1498 while (i && sg_dma_len(sg)) {
1499 u32 cur_addr;
1500 u32 cur_len;
1502 cur_addr = sg_dma_address(sg);
1503 cur_len = sg_dma_len(sg);
1505 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1506 if (pmif->broken_dma_warn == 0) {
1507 printk(KERN_WARNING "%s: DMA on non aligned address, "
1508 "switching to PIO on Ohare chipset\n", drive->name);
1509 pmif->broken_dma_warn = 1;
1511 goto use_pio_instead;
1513 while (cur_len) {
1514 unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1516 if (count++ >= MAX_DCMDS) {
1517 printk(KERN_WARNING "%s: DMA table too small\n",
1518 drive->name);
1519 goto use_pio_instead;
1521 st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1522 st_le16(&table->req_count, tc);
1523 st_le32(&table->phy_addr, cur_addr);
1524 table->cmd_dep = 0;
1525 table->xfer_status = 0;
1526 table->res_count = 0;
1527 cur_addr += tc;
1528 cur_len -= tc;
1529 ++table;
1531 sg = sg_next(sg);
1532 i--;
1535 /* convert the last command to an input/output last command */
1536 if (count) {
1537 st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1538 /* add the stop command to the end of the list */
1539 memset(table, 0, sizeof(struct dbdma_cmd));
1540 st_le16(&table->command, DBDMA_STOP);
1541 mb();
1542 writel(hwif->dmatable_dma, &dma->cmdptr);
1543 return 1;
1546 printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1548 use_pio_instead:
1549 ide_destroy_dmatable(drive);
1551 return 0; /* revert to PIO for this request */
1554 /* Teardown mappings after DMA has completed. */
1555 static void
1556 pmac_ide_destroy_dmatable (ide_drive_t *drive)
1558 ide_hwif_t *hwif = drive->hwif;
1560 if (hwif->sg_nents) {
1561 ide_destroy_dmatable(drive);
1562 hwif->sg_nents = 0;
1567 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1568 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1570 static int
1571 pmac_ide_dma_setup(ide_drive_t *drive)
1573 ide_hwif_t *hwif = HWIF(drive);
1574 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1575 struct request *rq = HWGROUP(drive)->rq;
1576 u8 unit = (drive->select.b.unit & 0x01);
1577 u8 ata4;
1579 if (pmif == NULL)
1580 return 1;
1581 ata4 = (pmif->kind == controller_kl_ata4);
1583 if (!pmac_ide_build_dmatable(drive, rq)) {
1584 ide_map_sg(drive, rq);
1585 return 1;
1588 /* Apple adds 60ns to wrDataSetup on reads */
1589 if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1590 writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
1591 PMAC_IDE_REG(IDE_TIMING_CONFIG));
1592 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1595 drive->waiting_for_dma = 1;
1597 return 0;
1600 static void
1601 pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
1603 /* issue cmd to drive */
1604 ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
1608 * Kick the DMA controller into life after the DMA command has been issued
1609 * to the drive.
1611 static void
1612 pmac_ide_dma_start(ide_drive_t *drive)
1614 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1615 volatile struct dbdma_regs __iomem *dma;
1617 dma = pmif->dma_regs;
1619 writel((RUN << 16) | RUN, &dma->control);
1620 /* Make sure it gets to the controller right now */
1621 (void)readl(&dma->control);
1625 * After a DMA transfer, make sure the controller is stopped
1627 static int
1628 pmac_ide_dma_end (ide_drive_t *drive)
1630 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1631 volatile struct dbdma_regs __iomem *dma;
1632 u32 dstat;
1634 if (pmif == NULL)
1635 return 0;
1636 dma = pmif->dma_regs;
1638 drive->waiting_for_dma = 0;
1639 dstat = readl(&dma->status);
1640 writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1641 pmac_ide_destroy_dmatable(drive);
1642 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1643 * in theory, but with ATAPI decices doing buffer underruns, that would
1644 * cause us to disable DMA, which isn't what we want
1646 return (dstat & (RUN|DEAD)) != RUN;
1650 * Check out that the interrupt we got was for us. We can't always know this
1651 * for sure with those Apple interfaces (well, we could on the recent ones but
1652 * that's not implemented yet), on the other hand, we don't have shared interrupts
1653 * so it's not really a problem
1655 static int
1656 pmac_ide_dma_test_irq (ide_drive_t *drive)
1658 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1659 volatile struct dbdma_regs __iomem *dma;
1660 unsigned long status, timeout;
1662 if (pmif == NULL)
1663 return 0;
1664 dma = pmif->dma_regs;
1666 /* We have to things to deal with here:
1668 * - The dbdma won't stop if the command was started
1669 * but completed with an error without transferring all
1670 * datas. This happens when bad blocks are met during
1671 * a multi-block transfer.
1673 * - The dbdma fifo hasn't yet finished flushing to
1674 * to system memory when the disk interrupt occurs.
1678 /* If ACTIVE is cleared, the STOP command have passed and
1679 * transfer is complete.
1681 status = readl(&dma->status);
1682 if (!(status & ACTIVE))
1683 return 1;
1684 if (!drive->waiting_for_dma)
1685 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1686 called while not waiting\n", HWIF(drive)->index);
1688 /* If dbdma didn't execute the STOP command yet, the
1689 * active bit is still set. We consider that we aren't
1690 * sharing interrupts (which is hopefully the case with
1691 * those controllers) and so we just try to flush the
1692 * channel for pending data in the fifo
1694 udelay(1);
1695 writel((FLUSH << 16) | FLUSH, &dma->control);
1696 timeout = 0;
1697 for (;;) {
1698 udelay(1);
1699 status = readl(&dma->status);
1700 if ((status & FLUSH) == 0)
1701 break;
1702 if (++timeout > 100) {
1703 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1704 timeout flushing channel\n", HWIF(drive)->index);
1705 break;
1708 return 1;
1711 static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1715 static void
1716 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1718 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1719 volatile struct dbdma_regs __iomem *dma;
1720 unsigned long status;
1722 if (pmif == NULL)
1723 return;
1724 dma = pmif->dma_regs;
1726 status = readl(&dma->status);
1727 printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1731 * Allocate the data structures needed for using DMA with an interface
1732 * and fill the proper list of functions pointers
1734 static int __devinit pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
1736 struct pci_dev *dev = to_pci_dev(hwif->dev);
1738 /* We won't need pci_dev if we switch to generic consistent
1739 * DMA routines ...
1741 if (dev == NULL)
1742 return -ENODEV;
1744 * Allocate space for the DBDMA commands.
1745 * The +2 is +1 for the stop command and +1 to allow for
1746 * aligning the start address to a multiple of 16 bytes.
1748 pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
1749 dev,
1750 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1751 &hwif->dmatable_dma);
1752 if (pmif->dma_table_cpu == NULL) {
1753 printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1754 hwif->name);
1755 return -ENOMEM;
1758 hwif->sg_max_nents = MAX_DCMDS;
1760 hwif->dma_host_set = &pmac_ide_dma_host_set;
1761 hwif->dma_setup = &pmac_ide_dma_setup;
1762 hwif->dma_exec_cmd = &pmac_ide_dma_exec_cmd;
1763 hwif->dma_start = &pmac_ide_dma_start;
1764 hwif->ide_dma_end = &pmac_ide_dma_end;
1765 hwif->ide_dma_test_irq = &pmac_ide_dma_test_irq;
1766 hwif->dma_timeout = &ide_dma_timeout;
1767 hwif->dma_lost_irq = &pmac_ide_dma_lost_irq;
1769 return 0;
1772 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1774 module_init(pmac_ide_probe);
1776 MODULE_LICENSE("GPL");