2 * Kernel Probes (KProbes)
3 * arch/x86_64/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
27 * <prasanna@in.ibm.com> adapted for x86_64
28 * 2005-Mar Roland McGrath <roland@redhat.com>
29 * Fixed to handle %rip-relative addressing mode correctly.
30 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
31 * Added function return probes functionality
34 #include <linux/config.h>
35 #include <linux/kprobes.h>
36 #include <linux/ptrace.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/preempt.h>
42 #include <asm/cacheflush.h>
43 #include <asm/pgtable.h>
44 #include <asm/kdebug.h>
46 static DECLARE_MUTEX(kprobe_mutex
);
48 static struct kprobe
*current_kprobe
;
49 static unsigned long kprobe_status
, kprobe_old_rflags
, kprobe_saved_rflags
;
50 static struct kprobe
*kprobe_prev
;
51 static unsigned long kprobe_status_prev
, kprobe_old_rflags_prev
, kprobe_saved_rflags_prev
;
52 static struct pt_regs jprobe_saved_regs
;
53 static long *jprobe_saved_rsp
;
54 void jprobe_return_end(void);
56 /* copy of the kernel stack at the probe fire time */
57 static kprobe_opcode_t jprobes_stack
[MAX_STACK_SIZE
];
60 * returns non-zero if opcode modifies the interrupt flag.
62 static inline int is_IF_modifier(kprobe_opcode_t
*insn
)
67 case 0xcf: /* iret/iretd */
68 case 0x9d: /* popf/popfd */
72 if (*insn
>= 0x40 && *insn
<= 0x4f && *++insn
== 0xcf)
77 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
79 /* insn: must be on special executable page on x86_64. */
81 p
->ainsn
.insn
= get_insn_slot();
90 * Determine if the instruction uses the %rip-relative addressing mode.
91 * If it does, return the address of the 32-bit displacement word.
92 * If not, return null.
94 static inline s32
*is_riprel(u8
*insn
)
96 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
97 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
98 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
99 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
100 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
102 static const u64 onebyte_has_modrm
[256 / 64] = {
103 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
104 /* ------------------------------- */
105 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
106 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
107 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
108 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
109 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
110 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
111 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
112 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
113 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
114 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
115 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
116 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
117 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
118 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
119 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
120 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
121 /* ------------------------------- */
122 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
124 static const u64 twobyte_has_modrm
[256 / 64] = {
125 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
126 /* ------------------------------- */
127 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
128 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
129 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
130 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
131 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
132 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
133 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
134 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
135 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
136 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
137 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
138 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
139 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
140 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
141 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
142 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
143 /* ------------------------------- */
144 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
149 /* Skip legacy instruction prefixes. */
169 /* Skip REX instruction prefix. */
170 if ((*insn
& 0xf0) == 0x40)
173 if (*insn
== 0x0f) { /* Two-byte opcode. */
175 need_modrm
= test_bit(*insn
, twobyte_has_modrm
);
176 } else { /* One-byte opcode. */
177 need_modrm
= test_bit(*insn
, onebyte_has_modrm
);
182 if ((modrm
& 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
183 /* Displacement follows ModRM byte. */
184 return (s32
*) ++insn
;
188 /* No %rip-relative addressing mode here. */
192 void __kprobes
arch_copy_kprobe(struct kprobe
*p
)
195 memcpy(p
->ainsn
.insn
, p
->addr
, MAX_INSN_SIZE
);
196 ripdisp
= is_riprel(p
->ainsn
.insn
);
199 * The copied instruction uses the %rip-relative
200 * addressing mode. Adjust the displacement for the
201 * difference between the original location of this
202 * instruction and the location of the copy that will
203 * actually be run. The tricky bit here is making sure
204 * that the sign extension happens correctly in this
205 * calculation, since we need a signed 32-bit result to
206 * be sign-extended to 64 bits when it's added to the
207 * %rip value and yield the same 64-bit result that the
208 * sign-extension of the original signed 32-bit
209 * displacement would have given.
211 s64 disp
= (u8
*) p
->addr
+ *ripdisp
- (u8
*) p
->ainsn
.insn
;
212 BUG_ON((s64
) (s32
) disp
!= disp
); /* Sanity check. */
215 p
->opcode
= *p
->addr
;
218 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
220 *p
->addr
= BREAKPOINT_INSTRUCTION
;
221 flush_icache_range((unsigned long) p
->addr
,
222 (unsigned long) p
->addr
+ sizeof(kprobe_opcode_t
));
225 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
227 *p
->addr
= p
->opcode
;
228 flush_icache_range((unsigned long) p
->addr
,
229 (unsigned long) p
->addr
+ sizeof(kprobe_opcode_t
));
232 void __kprobes
arch_remove_kprobe(struct kprobe
*p
)
235 free_insn_slot(p
->ainsn
.insn
);
239 static inline void save_previous_kprobe(void)
241 kprobe_prev
= current_kprobe
;
242 kprobe_status_prev
= kprobe_status
;
243 kprobe_old_rflags_prev
= kprobe_old_rflags
;
244 kprobe_saved_rflags_prev
= kprobe_saved_rflags
;
247 static inline void restore_previous_kprobe(void)
249 current_kprobe
= kprobe_prev
;
250 kprobe_status
= kprobe_status_prev
;
251 kprobe_old_rflags
= kprobe_old_rflags_prev
;
252 kprobe_saved_rflags
= kprobe_saved_rflags_prev
;
255 static inline void set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
)
258 kprobe_saved_rflags
= kprobe_old_rflags
259 = (regs
->eflags
& (TF_MASK
| IF_MASK
));
260 if (is_IF_modifier(p
->ainsn
.insn
))
261 kprobe_saved_rflags
&= ~IF_MASK
;
264 static void __kprobes
prepare_singlestep(struct kprobe
*p
, struct pt_regs
*regs
)
266 regs
->eflags
|= TF_MASK
;
267 regs
->eflags
&= ~IF_MASK
;
268 /*single step inline if the instruction is an int3*/
269 if (p
->opcode
== BREAKPOINT_INSTRUCTION
)
270 regs
->rip
= (unsigned long)p
->addr
;
272 regs
->rip
= (unsigned long)p
->ainsn
.insn
;
275 void __kprobes
arch_prepare_kretprobe(struct kretprobe
*rp
,
276 struct pt_regs
*regs
)
278 unsigned long *sara
= (unsigned long *)regs
->rsp
;
279 struct kretprobe_instance
*ri
;
281 if ((ri
= get_free_rp_inst(rp
)) != NULL
) {
284 ri
->ret_addr
= (kprobe_opcode_t
*) *sara
;
286 /* Replace the return addr with trampoline addr */
287 *sara
= (unsigned long) &kretprobe_trampoline
;
296 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
297 * remain disabled thorough out this function.
299 int __kprobes
kprobe_handler(struct pt_regs
*regs
)
303 kprobe_opcode_t
*addr
= (kprobe_opcode_t
*)(regs
->rip
- sizeof(kprobe_opcode_t
));
305 /* We're in an interrupt, but this is clear and BUG()-safe. */
308 /* Check we're not actually recursing */
309 if (kprobe_running()) {
310 /* We *are* holding lock here, so this is safe.
311 Disarm the probe we just hit, and ignore it. */
312 p
= get_kprobe(addr
);
314 if (kprobe_status
== KPROBE_HIT_SS
&&
315 *p
->ainsn
.insn
== BREAKPOINT_INSTRUCTION
) {
316 regs
->eflags
&= ~TF_MASK
;
317 regs
->eflags
|= kprobe_saved_rflags
;
320 } else if (kprobe_status
== KPROBE_HIT_SSDONE
) {
321 /* TODO: Provide re-entrancy from
322 * post_kprobes_handler() and avoid exception
323 * stack corruption while single-stepping on
324 * the instruction of the new probe.
326 arch_disarm_kprobe(p
);
327 regs
->rip
= (unsigned long)p
->addr
;
330 /* We have reentered the kprobe_handler(), since
331 * another probe was hit while within the
332 * handler. We here save the original kprobe
333 * variables and just single step on instruction
334 * of the new probe without calling any user
337 save_previous_kprobe();
338 set_current_kprobe(p
, regs
);
340 prepare_singlestep(p
, regs
);
341 kprobe_status
= KPROBE_REENTER
;
346 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
350 /* If it's not ours, can't be delete race, (we hold lock). */
355 p
= get_kprobe(addr
);
358 if (*addr
!= BREAKPOINT_INSTRUCTION
) {
360 * The breakpoint instruction was removed right
361 * after we hit it. Another cpu has removed
362 * either a probepoint or a debugger breakpoint
363 * at this address. In either case, no further
364 * handling of this interrupt is appropriate.
365 * Back up over the (now missing) int3 and run
366 * the original instruction.
368 regs
->rip
= (unsigned long)addr
;
371 /* Not one of ours: let kernel handle it */
375 kprobe_status
= KPROBE_HIT_ACTIVE
;
376 set_current_kprobe(p
, regs
);
378 if (p
->pre_handler
&& p
->pre_handler(p
, regs
))
379 /* handler has already set things up, so skip ss setup */
383 prepare_singlestep(p
, regs
);
384 kprobe_status
= KPROBE_HIT_SS
;
388 preempt_enable_no_resched();
393 * For function-return probes, init_kprobes() establishes a probepoint
394 * here. When a retprobed function returns, this probe is hit and
395 * trampoline_probe_handler() runs, calling the kretprobe's handler.
397 void kretprobe_trampoline_holder(void)
399 asm volatile ( ".global kretprobe_trampoline\n"
400 "kretprobe_trampoline: \n"
405 * Called when we hit the probe point at kretprobe_trampoline
407 int __kprobes
trampoline_probe_handler(struct kprobe
*p
, struct pt_regs
*regs
)
409 struct kretprobe_instance
*ri
= NULL
;
410 struct hlist_head
*head
;
411 struct hlist_node
*node
, *tmp
;
412 unsigned long orig_ret_address
= 0;
413 unsigned long trampoline_address
=(unsigned long)&kretprobe_trampoline
;
415 head
= kretprobe_inst_table_head(current
);
418 * It is possible to have multiple instances associated with a given
419 * task either because an multiple functions in the call path
420 * have a return probe installed on them, and/or more then one return
421 * return probe was registered for a target function.
423 * We can handle this because:
424 * - instances are always inserted at the head of the list
425 * - when multiple return probes are registered for the same
426 * function, the first instance's ret_addr will point to the
427 * real return address, and all the rest will point to
428 * kretprobe_trampoline
430 hlist_for_each_entry_safe(ri
, node
, tmp
, head
, hlist
) {
431 if (ri
->task
!= current
)
432 /* another task is sharing our hash bucket */
435 if (ri
->rp
&& ri
->rp
->handler
)
436 ri
->rp
->handler(ri
, regs
);
438 orig_ret_address
= (unsigned long)ri
->ret_addr
;
441 if (orig_ret_address
!= trampoline_address
)
443 * This is the real return address. Any other
444 * instances associated with this task are for
445 * other calls deeper on the call stack
450 BUG_ON(!orig_ret_address
|| (orig_ret_address
== trampoline_address
));
451 regs
->rip
= orig_ret_address
;
454 preempt_enable_no_resched();
457 * By returning a non-zero value, we are telling
458 * kprobe_handler() that we have handled unlocking
459 * and re-enabling preemption.
465 * Called after single-stepping. p->addr is the address of the
466 * instruction whose first byte has been replaced by the "int 3"
467 * instruction. To avoid the SMP problems that can occur when we
468 * temporarily put back the original opcode to single-step, we
469 * single-stepped a copy of the instruction. The address of this
470 * copy is p->ainsn.insn.
472 * This function prepares to return from the post-single-step
473 * interrupt. We have to fix up the stack as follows:
475 * 0) Except in the case of absolute or indirect jump or call instructions,
476 * the new rip is relative to the copied instruction. We need to make
477 * it relative to the original instruction.
479 * 1) If the single-stepped instruction was pushfl, then the TF and IF
480 * flags are set in the just-pushed eflags, and may need to be cleared.
482 * 2) If the single-stepped instruction was a call, the return address
483 * that is atop the stack is the address following the copied instruction.
484 * We need to make it the address following the original instruction.
486 static void __kprobes
resume_execution(struct kprobe
*p
, struct pt_regs
*regs
)
488 unsigned long *tos
= (unsigned long *)regs
->rsp
;
489 unsigned long next_rip
= 0;
490 unsigned long copy_rip
= (unsigned long)p
->ainsn
.insn
;
491 unsigned long orig_rip
= (unsigned long)p
->addr
;
492 kprobe_opcode_t
*insn
= p
->ainsn
.insn
;
494 /*skip the REX prefix*/
495 if (*insn
>= 0x40 && *insn
<= 0x4f)
499 case 0x9c: /* pushfl */
500 *tos
&= ~(TF_MASK
| IF_MASK
);
501 *tos
|= kprobe_old_rflags
;
503 case 0xc3: /* ret/lret */
507 regs
->eflags
&= ~TF_MASK
;
508 /* rip is already adjusted, no more changes required*/
510 case 0xe8: /* call relative - Fix return addr */
511 *tos
= orig_rip
+ (*tos
- copy_rip
);
514 if ((*insn
& 0x30) == 0x10) {
515 /* call absolute, indirect */
516 /* Fix return addr; rip is correct. */
517 next_rip
= regs
->rip
;
518 *tos
= orig_rip
+ (*tos
- copy_rip
);
519 } else if (((*insn
& 0x31) == 0x20) || /* jmp near, absolute indirect */
520 ((*insn
& 0x31) == 0x21)) { /* jmp far, absolute indirect */
521 /* rip is correct. */
522 next_rip
= regs
->rip
;
525 case 0xea: /* jmp absolute -- rip is correct */
526 next_rip
= regs
->rip
;
532 regs
->eflags
&= ~TF_MASK
;
534 regs
->rip
= next_rip
;
536 regs
->rip
= orig_rip
+ (regs
->rip
- copy_rip
);
541 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
542 * remain disabled thoroughout this function. And we hold kprobe lock.
544 int __kprobes
post_kprobe_handler(struct pt_regs
*regs
)
546 if (!kprobe_running())
549 if ((kprobe_status
!= KPROBE_REENTER
) && current_kprobe
->post_handler
) {
550 kprobe_status
= KPROBE_HIT_SSDONE
;
551 current_kprobe
->post_handler(current_kprobe
, regs
, 0);
554 resume_execution(current_kprobe
, regs
);
555 regs
->eflags
|= kprobe_saved_rflags
;
557 /* Restore the original saved kprobes variables and continue. */
558 if (kprobe_status
== KPROBE_REENTER
) {
559 restore_previous_kprobe();
565 preempt_enable_no_resched();
568 * if somebody else is singlestepping across a probe point, eflags
569 * will have TF set, in which case, continue the remaining processing
570 * of do_debug, as if this is not a probe hit.
572 if (regs
->eflags
& TF_MASK
)
578 /* Interrupts disabled, kprobe_lock held. */
579 int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
581 if (current_kprobe
->fault_handler
582 && current_kprobe
->fault_handler(current_kprobe
, regs
, trapnr
))
585 if (kprobe_status
& KPROBE_HIT_SS
) {
586 resume_execution(current_kprobe
, regs
);
587 regs
->eflags
|= kprobe_old_rflags
;
590 preempt_enable_no_resched();
596 * Wrapper routine for handling exceptions.
598 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
599 unsigned long val
, void *data
)
601 struct die_args
*args
= (struct die_args
*)data
;
604 if (kprobe_handler(args
->regs
))
608 if (post_kprobe_handler(args
->regs
))
612 if (kprobe_running() &&
613 kprobe_fault_handler(args
->regs
, args
->trapnr
))
617 if (kprobe_running() &&
618 kprobe_fault_handler(args
->regs
, args
->trapnr
))
627 int __kprobes
setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
629 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
632 jprobe_saved_regs
= *regs
;
633 jprobe_saved_rsp
= (long *) regs
->rsp
;
634 addr
= (unsigned long)jprobe_saved_rsp
;
636 * As Linus pointed out, gcc assumes that the callee
637 * owns the argument space and could overwrite it, e.g.
638 * tailcall optimization. So, to be absolutely safe
639 * we also save and restore enough stack bytes to cover
642 memcpy(jprobes_stack
, (kprobe_opcode_t
*) addr
, MIN_STACK_SIZE(addr
));
643 regs
->eflags
&= ~IF_MASK
;
644 regs
->rip
= (unsigned long)(jp
->entry
);
648 void __kprobes
jprobe_return(void)
650 preempt_enable_no_resched();
651 asm volatile (" xchg %%rbx,%%rsp \n"
653 " .globl jprobe_return_end \n"
654 " jprobe_return_end: \n"
656 (jprobe_saved_rsp
):"memory");
659 int __kprobes
longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
661 u8
*addr
= (u8
*) (regs
->rip
- 1);
662 unsigned long stack_addr
= (unsigned long)jprobe_saved_rsp
;
663 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
665 if ((addr
> (u8
*) jprobe_return
) && (addr
< (u8
*) jprobe_return_end
)) {
666 if ((long *)regs
->rsp
!= jprobe_saved_rsp
) {
667 struct pt_regs
*saved_regs
=
668 container_of(jprobe_saved_rsp
, struct pt_regs
, rsp
);
669 printk("current rsp %p does not match saved rsp %p\n",
670 (long *)regs
->rsp
, jprobe_saved_rsp
);
671 printk("Saved registers for jprobe %p\n", jp
);
672 show_registers(saved_regs
);
673 printk("Current registers\n");
674 show_registers(regs
);
677 *regs
= jprobe_saved_regs
;
678 memcpy((kprobe_opcode_t
*) stack_addr
, jprobes_stack
,
679 MIN_STACK_SIZE(stack_addr
));
685 static struct kprobe trampoline_p
= {
686 .addr
= (kprobe_opcode_t
*) &kretprobe_trampoline
,
687 .pre_handler
= trampoline_probe_handler
690 int __init
arch_init_kprobes(void)
692 return register_kprobe(&trampoline_p
);