2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
24 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
25 static unsigned long nr_huge_pages
, free_huge_pages
, resv_huge_pages
;
26 unsigned long max_huge_pages
;
27 static struct list_head hugepage_freelists
[MAX_NUMNODES
];
28 static unsigned int nr_huge_pages_node
[MAX_NUMNODES
];
29 static unsigned int free_huge_pages_node
[MAX_NUMNODES
];
30 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
31 unsigned long hugepages_treat_as_movable
;
34 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
36 static DEFINE_SPINLOCK(hugetlb_lock
);
38 static void clear_huge_page(struct page
*page
, unsigned long addr
)
43 for (i
= 0; i
< (HPAGE_SIZE
/PAGE_SIZE
); i
++) {
45 clear_user_highpage(page
+ i
, addr
);
49 static void copy_huge_page(struct page
*dst
, struct page
*src
,
50 unsigned long addr
, struct vm_area_struct
*vma
)
55 for (i
= 0; i
< HPAGE_SIZE
/PAGE_SIZE
; i
++) {
57 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
61 static void enqueue_huge_page(struct page
*page
)
63 int nid
= page_to_nid(page
);
64 list_add(&page
->lru
, &hugepage_freelists
[nid
]);
66 free_huge_pages_node
[nid
]++;
69 static struct page
*dequeue_huge_page(struct vm_area_struct
*vma
,
70 unsigned long address
)
73 struct page
*page
= NULL
;
74 struct zonelist
*zonelist
= huge_zonelist(vma
, address
,
78 for (z
= zonelist
->zones
; *z
; z
++) {
79 nid
= zone_to_nid(*z
);
80 if (cpuset_zone_allowed_softwall(*z
, htlb_alloc_mask
) &&
81 !list_empty(&hugepage_freelists
[nid
])) {
82 page
= list_entry(hugepage_freelists
[nid
].next
,
86 free_huge_pages_node
[nid
]--;
93 static void free_huge_page(struct page
*page
)
95 BUG_ON(page_count(page
));
97 INIT_LIST_HEAD(&page
->lru
);
99 spin_lock(&hugetlb_lock
);
100 enqueue_huge_page(page
);
101 spin_unlock(&hugetlb_lock
);
104 static int alloc_fresh_huge_page(void)
111 * Copy static prev_nid to local nid, work on that, then copy it
112 * back to prev_nid afterwards: otherwise there's a window in which
113 * a racer might pass invalid nid MAX_NUMNODES to alloc_pages_node.
114 * But we don't need to use a spin_lock here: it really doesn't
115 * matter if occasionally a racer chooses the same nid as we do.
117 nid
= next_node(prev_nid
, node_online_map
);
118 if (nid
== MAX_NUMNODES
)
119 nid
= first_node(node_online_map
);
122 page
= alloc_pages_node(nid
, htlb_alloc_mask
|__GFP_COMP
|__GFP_NOWARN
,
125 set_compound_page_dtor(page
, free_huge_page
);
126 spin_lock(&hugetlb_lock
);
128 nr_huge_pages_node
[page_to_nid(page
)]++;
129 spin_unlock(&hugetlb_lock
);
130 put_page(page
); /* free it into the hugepage allocator */
136 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
141 spin_lock(&hugetlb_lock
);
142 if (vma
->vm_flags
& VM_MAYSHARE
)
144 else if (free_huge_pages
<= resv_huge_pages
)
147 page
= dequeue_huge_page(vma
, addr
);
151 spin_unlock(&hugetlb_lock
);
152 set_page_refcounted(page
);
156 if (vma
->vm_flags
& VM_MAYSHARE
)
158 spin_unlock(&hugetlb_lock
);
162 static int __init
hugetlb_init(void)
166 if (HPAGE_SHIFT
== 0)
169 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
170 INIT_LIST_HEAD(&hugepage_freelists
[i
]);
172 for (i
= 0; i
< max_huge_pages
; ++i
) {
173 if (!alloc_fresh_huge_page())
176 max_huge_pages
= free_huge_pages
= nr_huge_pages
= i
;
177 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages
);
180 module_init(hugetlb_init
);
182 static int __init
hugetlb_setup(char *s
)
184 if (sscanf(s
, "%lu", &max_huge_pages
) <= 0)
188 __setup("hugepages=", hugetlb_setup
);
190 static unsigned int cpuset_mems_nr(unsigned int *array
)
195 for_each_node_mask(node
, cpuset_current_mems_allowed
)
202 static void update_and_free_page(struct page
*page
)
206 nr_huge_pages_node
[page_to_nid(page
)]--;
207 for (i
= 0; i
< (HPAGE_SIZE
/ PAGE_SIZE
); i
++) {
208 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
209 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
210 1 << PG_private
| 1<< PG_writeback
);
212 set_compound_page_dtor(page
, NULL
);
213 set_page_refcounted(page
);
214 __free_pages(page
, HUGETLB_PAGE_ORDER
);
217 #ifdef CONFIG_HIGHMEM
218 static void try_to_free_low(unsigned long count
)
222 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
223 struct page
*page
, *next
;
224 list_for_each_entry_safe(page
, next
, &hugepage_freelists
[i
], lru
) {
225 if (PageHighMem(page
))
227 list_del(&page
->lru
);
228 update_and_free_page(page
);
230 free_huge_pages_node
[page_to_nid(page
)]--;
231 if (count
>= nr_huge_pages
)
237 static inline void try_to_free_low(unsigned long count
)
242 static unsigned long set_max_huge_pages(unsigned long count
)
244 while (count
> nr_huge_pages
) {
245 if (!alloc_fresh_huge_page())
246 return nr_huge_pages
;
248 if (count
>= nr_huge_pages
)
249 return nr_huge_pages
;
251 spin_lock(&hugetlb_lock
);
252 count
= max(count
, resv_huge_pages
);
253 try_to_free_low(count
);
254 while (count
< nr_huge_pages
) {
255 struct page
*page
= dequeue_huge_page(NULL
, 0);
258 update_and_free_page(page
);
260 spin_unlock(&hugetlb_lock
);
261 return nr_huge_pages
;
264 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
265 struct file
*file
, void __user
*buffer
,
266 size_t *length
, loff_t
*ppos
)
268 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
269 max_huge_pages
= set_max_huge_pages(max_huge_pages
);
273 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
274 struct file
*file
, void __user
*buffer
,
275 size_t *length
, loff_t
*ppos
)
277 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
278 if (hugepages_treat_as_movable
)
279 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
281 htlb_alloc_mask
= GFP_HIGHUSER
;
285 #endif /* CONFIG_SYSCTL */
287 int hugetlb_report_meminfo(char *buf
)
290 "HugePages_Total: %5lu\n"
291 "HugePages_Free: %5lu\n"
292 "HugePages_Rsvd: %5lu\n"
293 "Hugepagesize: %5lu kB\n",
300 int hugetlb_report_node_meminfo(int nid
, char *buf
)
303 "Node %d HugePages_Total: %5u\n"
304 "Node %d HugePages_Free: %5u\n",
305 nid
, nr_huge_pages_node
[nid
],
306 nid
, free_huge_pages_node
[nid
]);
309 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
310 unsigned long hugetlb_total_pages(void)
312 return nr_huge_pages
* (HPAGE_SIZE
/ PAGE_SIZE
);
316 * We cannot handle pagefaults against hugetlb pages at all. They cause
317 * handle_mm_fault() to try to instantiate regular-sized pages in the
318 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
321 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
327 struct vm_operations_struct hugetlb_vm_ops
= {
328 .fault
= hugetlb_vm_op_fault
,
331 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
338 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
340 entry
= pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
342 entry
= pte_mkyoung(entry
);
343 entry
= pte_mkhuge(entry
);
348 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
349 unsigned long address
, pte_t
*ptep
)
353 entry
= pte_mkwrite(pte_mkdirty(*ptep
));
354 if (ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
355 update_mmu_cache(vma
, address
, entry
);
356 lazy_mmu_prot_update(entry
);
361 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
362 struct vm_area_struct
*vma
)
364 pte_t
*src_pte
, *dst_pte
, entry
;
365 struct page
*ptepage
;
369 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
371 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= HPAGE_SIZE
) {
372 src_pte
= huge_pte_offset(src
, addr
);
375 dst_pte
= huge_pte_alloc(dst
, addr
);
378 spin_lock(&dst
->page_table_lock
);
379 spin_lock(&src
->page_table_lock
);
380 if (!pte_none(*src_pte
)) {
382 ptep_set_wrprotect(src
, addr
, src_pte
);
384 ptepage
= pte_page(entry
);
386 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
388 spin_unlock(&src
->page_table_lock
);
389 spin_unlock(&dst
->page_table_lock
);
397 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
400 struct mm_struct
*mm
= vma
->vm_mm
;
401 unsigned long address
;
407 * A page gathering list, protected by per file i_mmap_lock. The
408 * lock is used to avoid list corruption from multiple unmapping
409 * of the same page since we are using page->lru.
411 LIST_HEAD(page_list
);
413 WARN_ON(!is_vm_hugetlb_page(vma
));
414 BUG_ON(start
& ~HPAGE_MASK
);
415 BUG_ON(end
& ~HPAGE_MASK
);
417 spin_lock(&mm
->page_table_lock
);
418 for (address
= start
; address
< end
; address
+= HPAGE_SIZE
) {
419 ptep
= huge_pte_offset(mm
, address
);
423 if (huge_pmd_unshare(mm
, &address
, ptep
))
426 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
430 page
= pte_page(pte
);
432 set_page_dirty(page
);
433 list_add(&page
->lru
, &page_list
);
435 spin_unlock(&mm
->page_table_lock
);
436 flush_tlb_range(vma
, start
, end
);
437 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
438 list_del(&page
->lru
);
443 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
447 * It is undesirable to test vma->vm_file as it should be non-null
448 * for valid hugetlb area. However, vm_file will be NULL in the error
449 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
450 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
451 * to clean up. Since no pte has actually been setup, it is safe to
452 * do nothing in this case.
455 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
456 __unmap_hugepage_range(vma
, start
, end
);
457 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
461 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
462 unsigned long address
, pte_t
*ptep
, pte_t pte
)
464 struct page
*old_page
, *new_page
;
467 old_page
= pte_page(pte
);
469 /* If no-one else is actually using this page, avoid the copy
470 * and just make the page writable */
471 avoidcopy
= (page_count(old_page
) == 1);
473 set_huge_ptep_writable(vma
, address
, ptep
);
477 page_cache_get(old_page
);
478 new_page
= alloc_huge_page(vma
, address
);
481 page_cache_release(old_page
);
485 spin_unlock(&mm
->page_table_lock
);
486 copy_huge_page(new_page
, old_page
, address
, vma
);
487 spin_lock(&mm
->page_table_lock
);
489 ptep
= huge_pte_offset(mm
, address
& HPAGE_MASK
);
490 if (likely(pte_same(*ptep
, pte
))) {
492 set_huge_pte_at(mm
, address
, ptep
,
493 make_huge_pte(vma
, new_page
, 1));
494 /* Make the old page be freed below */
497 page_cache_release(new_page
);
498 page_cache_release(old_page
);
502 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
503 unsigned long address
, pte_t
*ptep
, int write_access
)
505 int ret
= VM_FAULT_SIGBUS
;
509 struct address_space
*mapping
;
512 mapping
= vma
->vm_file
->f_mapping
;
513 idx
= ((address
- vma
->vm_start
) >> HPAGE_SHIFT
)
514 + (vma
->vm_pgoff
>> (HPAGE_SHIFT
- PAGE_SHIFT
));
517 * Use page lock to guard against racing truncation
518 * before we get page_table_lock.
521 page
= find_lock_page(mapping
, idx
);
523 size
= i_size_read(mapping
->host
) >> HPAGE_SHIFT
;
526 if (hugetlb_get_quota(mapping
))
528 page
= alloc_huge_page(vma
, address
);
530 hugetlb_put_quota(mapping
);
534 clear_huge_page(page
, address
);
536 if (vma
->vm_flags
& VM_SHARED
) {
539 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
542 hugetlb_put_quota(mapping
);
551 spin_lock(&mm
->page_table_lock
);
552 size
= i_size_read(mapping
->host
) >> HPAGE_SHIFT
;
557 if (!pte_none(*ptep
))
560 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
561 && (vma
->vm_flags
& VM_SHARED
)));
562 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
564 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
565 /* Optimization, do the COW without a second fault */
566 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
);
569 spin_unlock(&mm
->page_table_lock
);
575 spin_unlock(&mm
->page_table_lock
);
576 hugetlb_put_quota(mapping
);
582 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
583 unsigned long address
, int write_access
)
588 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
590 ptep
= huge_pte_alloc(mm
, address
);
595 * Serialize hugepage allocation and instantiation, so that we don't
596 * get spurious allocation failures if two CPUs race to instantiate
597 * the same page in the page cache.
599 mutex_lock(&hugetlb_instantiation_mutex
);
601 if (pte_none(entry
)) {
602 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, write_access
);
603 mutex_unlock(&hugetlb_instantiation_mutex
);
609 spin_lock(&mm
->page_table_lock
);
610 /* Check for a racing update before calling hugetlb_cow */
611 if (likely(pte_same(entry
, *ptep
)))
612 if (write_access
&& !pte_write(entry
))
613 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
);
614 spin_unlock(&mm
->page_table_lock
);
615 mutex_unlock(&hugetlb_instantiation_mutex
);
620 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
621 struct page
**pages
, struct vm_area_struct
**vmas
,
622 unsigned long *position
, int *length
, int i
)
624 unsigned long pfn_offset
;
625 unsigned long vaddr
= *position
;
626 int remainder
= *length
;
628 spin_lock(&mm
->page_table_lock
);
629 while (vaddr
< vma
->vm_end
&& remainder
) {
634 * Some archs (sparc64, sh*) have multiple pte_ts to
635 * each hugepage. We have to make * sure we get the
636 * first, for the page indexing below to work.
638 pte
= huge_pte_offset(mm
, vaddr
& HPAGE_MASK
);
640 if (!pte
|| pte_none(*pte
)) {
643 spin_unlock(&mm
->page_table_lock
);
644 ret
= hugetlb_fault(mm
, vma
, vaddr
, 0);
645 spin_lock(&mm
->page_table_lock
);
646 if (!(ret
& VM_FAULT_MAJOR
))
655 pfn_offset
= (vaddr
& ~HPAGE_MASK
) >> PAGE_SHIFT
;
656 page
= pte_page(*pte
);
660 pages
[i
] = page
+ pfn_offset
;
670 if (vaddr
< vma
->vm_end
&& remainder
&&
671 pfn_offset
< HPAGE_SIZE
/PAGE_SIZE
) {
673 * We use pfn_offset to avoid touching the pageframes
674 * of this compound page.
679 spin_unlock(&mm
->page_table_lock
);
686 void hugetlb_change_protection(struct vm_area_struct
*vma
,
687 unsigned long address
, unsigned long end
, pgprot_t newprot
)
689 struct mm_struct
*mm
= vma
->vm_mm
;
690 unsigned long start
= address
;
694 BUG_ON(address
>= end
);
695 flush_cache_range(vma
, address
, end
);
697 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
698 spin_lock(&mm
->page_table_lock
);
699 for (; address
< end
; address
+= HPAGE_SIZE
) {
700 ptep
= huge_pte_offset(mm
, address
);
703 if (huge_pmd_unshare(mm
, &address
, ptep
))
705 if (!pte_none(*ptep
)) {
706 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
707 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
708 set_huge_pte_at(mm
, address
, ptep
, pte
);
709 lazy_mmu_prot_update(pte
);
712 spin_unlock(&mm
->page_table_lock
);
713 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
715 flush_tlb_range(vma
, start
, end
);
719 struct list_head link
;
724 static long region_add(struct list_head
*head
, long f
, long t
)
726 struct file_region
*rg
, *nrg
, *trg
;
728 /* Locate the region we are either in or before. */
729 list_for_each_entry(rg
, head
, link
)
733 /* Round our left edge to the current segment if it encloses us. */
737 /* Check for and consume any regions we now overlap with. */
739 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
740 if (&rg
->link
== head
)
745 /* If this area reaches higher then extend our area to
746 * include it completely. If this is not the first area
747 * which we intend to reuse, free it. */
760 static long region_chg(struct list_head
*head
, long f
, long t
)
762 struct file_region
*rg
, *nrg
;
765 /* Locate the region we are before or in. */
766 list_for_each_entry(rg
, head
, link
)
770 /* If we are below the current region then a new region is required.
771 * Subtle, allocate a new region at the position but make it zero
772 * size such that we can guarentee to record the reservation. */
773 if (&rg
->link
== head
|| t
< rg
->from
) {
774 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
779 INIT_LIST_HEAD(&nrg
->link
);
780 list_add(&nrg
->link
, rg
->link
.prev
);
785 /* Round our left edge to the current segment if it encloses us. */
790 /* Check for and consume any regions we now overlap with. */
791 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
792 if (&rg
->link
== head
)
797 /* We overlap with this area, if it extends futher than
798 * us then we must extend ourselves. Account for its
799 * existing reservation. */
804 chg
-= rg
->to
- rg
->from
;
809 static long region_truncate(struct list_head
*head
, long end
)
811 struct file_region
*rg
, *trg
;
814 /* Locate the region we are either in or before. */
815 list_for_each_entry(rg
, head
, link
)
818 if (&rg
->link
== head
)
821 /* If we are in the middle of a region then adjust it. */
822 if (end
> rg
->from
) {
825 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
828 /* Drop any remaining regions. */
829 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
830 if (&rg
->link
== head
)
832 chg
+= rg
->to
- rg
->from
;
839 static int hugetlb_acct_memory(long delta
)
843 spin_lock(&hugetlb_lock
);
844 if ((delta
+ resv_huge_pages
) <= free_huge_pages
) {
845 resv_huge_pages
+= delta
;
848 spin_unlock(&hugetlb_lock
);
852 int hugetlb_reserve_pages(struct inode
*inode
, long from
, long to
)
856 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
860 * When cpuset is configured, it breaks the strict hugetlb page
861 * reservation as the accounting is done on a global variable. Such
862 * reservation is completely rubbish in the presence of cpuset because
863 * the reservation is not checked against page availability for the
864 * current cpuset. Application can still potentially OOM'ed by kernel
865 * with lack of free htlb page in cpuset that the task is in.
866 * Attempt to enforce strict accounting with cpuset is almost
867 * impossible (or too ugly) because cpuset is too fluid that
868 * task or memory node can be dynamically moved between cpusets.
870 * The change of semantics for shared hugetlb mapping with cpuset is
871 * undesirable. However, in order to preserve some of the semantics,
872 * we fall back to check against current free page availability as
873 * a best attempt and hopefully to minimize the impact of changing
874 * semantics that cpuset has.
876 if (chg
> cpuset_mems_nr(free_huge_pages_node
))
879 ret
= hugetlb_acct_memory(chg
);
882 region_add(&inode
->i_mapping
->private_list
, from
, to
);
886 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
888 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
889 hugetlb_acct_memory(freed
- chg
);