x86_64: move ia32
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86_64 / kernel / setup_64.c
blobaf838f6b0b7fc9b7e3ed4de0ab12992e48cf9f18
1 /*
2 * linux/arch/x86-64/kernel/setup.c
4 * Copyright (C) 1995 Linus Torvalds
6 * Nov 2001 Dave Jones <davej@suse.de>
7 * Forked from i386 setup code.
8 */
11 * This file handles the architecture-dependent parts of initialization
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/stddef.h>
19 #include <linux/unistd.h>
20 #include <linux/ptrace.h>
21 #include <linux/slab.h>
22 #include <linux/user.h>
23 #include <linux/a.out.h>
24 #include <linux/screen_info.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/initrd.h>
29 #include <linux/highmem.h>
30 #include <linux/bootmem.h>
31 #include <linux/module.h>
32 #include <asm/processor.h>
33 #include <linux/console.h>
34 #include <linux/seq_file.h>
35 #include <linux/crash_dump.h>
36 #include <linux/root_dev.h>
37 #include <linux/pci.h>
38 #include <linux/acpi.h>
39 #include <linux/kallsyms.h>
40 #include <linux/edd.h>
41 #include <linux/mmzone.h>
42 #include <linux/kexec.h>
43 #include <linux/cpufreq.h>
44 #include <linux/dmi.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/ctype.h>
48 #include <asm/mtrr.h>
49 #include <asm/uaccess.h>
50 #include <asm/system.h>
51 #include <asm/io.h>
52 #include <asm/smp.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <video/edid.h>
56 #include <asm/e820.h>
57 #include <asm/dma.h>
58 #include <asm/mpspec.h>
59 #include <asm/mmu_context.h>
60 #include <asm/bootsetup.h>
61 #include <asm/proto.h>
62 #include <asm/setup.h>
63 #include <asm/mach_apic.h>
64 #include <asm/numa.h>
65 #include <asm/sections.h>
66 #include <asm/dmi.h>
69 * Machine setup..
72 struct cpuinfo_x86 boot_cpu_data __read_mostly;
73 EXPORT_SYMBOL(boot_cpu_data);
75 unsigned long mmu_cr4_features;
77 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
78 int bootloader_type;
80 unsigned long saved_video_mode;
82 int force_mwait __cpuinitdata;
84 /*
85 * Early DMI memory
87 int dmi_alloc_index;
88 char dmi_alloc_data[DMI_MAX_DATA];
91 * Setup options
93 struct screen_info screen_info;
94 EXPORT_SYMBOL(screen_info);
95 struct sys_desc_table_struct {
96 unsigned short length;
97 unsigned char table[0];
100 struct edid_info edid_info;
101 EXPORT_SYMBOL_GPL(edid_info);
103 extern int root_mountflags;
105 char __initdata command_line[COMMAND_LINE_SIZE];
107 struct resource standard_io_resources[] = {
108 { .name = "dma1", .start = 0x00, .end = 0x1f,
109 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
110 { .name = "pic1", .start = 0x20, .end = 0x21,
111 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
112 { .name = "timer0", .start = 0x40, .end = 0x43,
113 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
114 { .name = "timer1", .start = 0x50, .end = 0x53,
115 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
116 { .name = "keyboard", .start = 0x60, .end = 0x6f,
117 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
118 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
119 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
120 { .name = "pic2", .start = 0xa0, .end = 0xa1,
121 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
122 { .name = "dma2", .start = 0xc0, .end = 0xdf,
123 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
124 { .name = "fpu", .start = 0xf0, .end = 0xff,
125 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
128 #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
130 struct resource data_resource = {
131 .name = "Kernel data",
132 .start = 0,
133 .end = 0,
134 .flags = IORESOURCE_RAM,
136 struct resource code_resource = {
137 .name = "Kernel code",
138 .start = 0,
139 .end = 0,
140 .flags = IORESOURCE_RAM,
143 #ifdef CONFIG_PROC_VMCORE
144 /* elfcorehdr= specifies the location of elf core header
145 * stored by the crashed kernel. This option will be passed
146 * by kexec loader to the capture kernel.
148 static int __init setup_elfcorehdr(char *arg)
150 char *end;
151 if (!arg)
152 return -EINVAL;
153 elfcorehdr_addr = memparse(arg, &end);
154 return end > arg ? 0 : -EINVAL;
156 early_param("elfcorehdr", setup_elfcorehdr);
157 #endif
159 #ifndef CONFIG_NUMA
160 static void __init
161 contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
163 unsigned long bootmap_size, bootmap;
165 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
166 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
167 if (bootmap == -1L)
168 panic("Cannot find bootmem map of size %ld\n",bootmap_size);
169 bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
170 e820_register_active_regions(0, start_pfn, end_pfn);
171 free_bootmem_with_active_regions(0, end_pfn);
172 reserve_bootmem(bootmap, bootmap_size);
174 #endif
176 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
177 struct edd edd;
178 #ifdef CONFIG_EDD_MODULE
179 EXPORT_SYMBOL(edd);
180 #endif
182 * copy_edd() - Copy the BIOS EDD information
183 * from boot_params into a safe place.
186 static inline void copy_edd(void)
188 memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
189 memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
190 edd.mbr_signature_nr = EDD_MBR_SIG_NR;
191 edd.edd_info_nr = EDD_NR;
193 #else
194 static inline void copy_edd(void)
197 #endif
199 #define EBDA_ADDR_POINTER 0x40E
201 unsigned __initdata ebda_addr;
202 unsigned __initdata ebda_size;
204 static void discover_ebda(void)
207 * there is a real-mode segmented pointer pointing to the
208 * 4K EBDA area at 0x40E
210 ebda_addr = *(unsigned short *)__va(EBDA_ADDR_POINTER);
211 ebda_addr <<= 4;
213 ebda_size = *(unsigned short *)__va(ebda_addr);
215 /* Round EBDA up to pages */
216 if (ebda_size == 0)
217 ebda_size = 1;
218 ebda_size <<= 10;
219 ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
220 if (ebda_size > 64*1024)
221 ebda_size = 64*1024;
224 void __init setup_arch(char **cmdline_p)
226 printk(KERN_INFO "Command line: %s\n", boot_command_line);
228 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
229 screen_info = SCREEN_INFO;
230 edid_info = EDID_INFO;
231 saved_video_mode = SAVED_VIDEO_MODE;
232 bootloader_type = LOADER_TYPE;
234 #ifdef CONFIG_BLK_DEV_RAM
235 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
236 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
237 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
238 #endif
239 setup_memory_region();
240 copy_edd();
242 if (!MOUNT_ROOT_RDONLY)
243 root_mountflags &= ~MS_RDONLY;
244 init_mm.start_code = (unsigned long) &_text;
245 init_mm.end_code = (unsigned long) &_etext;
246 init_mm.end_data = (unsigned long) &_edata;
247 init_mm.brk = (unsigned long) &_end;
249 code_resource.start = virt_to_phys(&_text);
250 code_resource.end = virt_to_phys(&_etext)-1;
251 data_resource.start = virt_to_phys(&_etext);
252 data_resource.end = virt_to_phys(&_edata)-1;
254 early_identify_cpu(&boot_cpu_data);
256 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
257 *cmdline_p = command_line;
259 parse_early_param();
261 finish_e820_parsing();
263 e820_register_active_regions(0, 0, -1UL);
265 * partially used pages are not usable - thus
266 * we are rounding upwards:
268 end_pfn = e820_end_of_ram();
269 num_physpages = end_pfn;
271 check_efer();
273 discover_ebda();
275 init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
277 dmi_scan_machine();
279 #ifdef CONFIG_ACPI
281 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
282 * Call this early for SRAT node setup.
284 acpi_boot_table_init();
285 #endif
287 /* How many end-of-memory variables you have, grandma! */
288 max_low_pfn = end_pfn;
289 max_pfn = end_pfn;
290 high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
292 /* Remove active ranges so rediscovery with NUMA-awareness happens */
293 remove_all_active_ranges();
295 #ifdef CONFIG_ACPI_NUMA
297 * Parse SRAT to discover nodes.
299 acpi_numa_init();
300 #endif
302 #ifdef CONFIG_NUMA
303 numa_initmem_init(0, end_pfn);
304 #else
305 contig_initmem_init(0, end_pfn);
306 #endif
308 /* Reserve direct mapping */
309 reserve_bootmem_generic(table_start << PAGE_SHIFT,
310 (table_end - table_start) << PAGE_SHIFT);
312 /* reserve kernel */
313 reserve_bootmem_generic(__pa_symbol(&_text),
314 __pa_symbol(&_end) - __pa_symbol(&_text));
317 * reserve physical page 0 - it's a special BIOS page on many boxes,
318 * enabling clean reboots, SMP operation, laptop functions.
320 reserve_bootmem_generic(0, PAGE_SIZE);
322 /* reserve ebda region */
323 if (ebda_addr)
324 reserve_bootmem_generic(ebda_addr, ebda_size);
325 #ifdef CONFIG_NUMA
326 /* reserve nodemap region */
327 if (nodemap_addr)
328 reserve_bootmem_generic(nodemap_addr, nodemap_size);
329 #endif
331 #ifdef CONFIG_SMP
332 /* Reserve SMP trampoline */
333 reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, 2*PAGE_SIZE);
334 #endif
336 #ifdef CONFIG_ACPI_SLEEP
338 * Reserve low memory region for sleep support.
340 acpi_reserve_bootmem();
341 #endif
343 * Find and reserve possible boot-time SMP configuration:
345 find_smp_config();
346 #ifdef CONFIG_BLK_DEV_INITRD
347 if (LOADER_TYPE && INITRD_START) {
348 if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
349 reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
350 initrd_start = INITRD_START + PAGE_OFFSET;
351 initrd_end = initrd_start+INITRD_SIZE;
353 else {
354 printk(KERN_ERR "initrd extends beyond end of memory "
355 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
356 (unsigned long)(INITRD_START + INITRD_SIZE),
357 (unsigned long)(end_pfn << PAGE_SHIFT));
358 initrd_start = 0;
361 #endif
362 #ifdef CONFIG_KEXEC
363 if (crashk_res.start != crashk_res.end) {
364 reserve_bootmem_generic(crashk_res.start,
365 crashk_res.end - crashk_res.start + 1);
367 #endif
369 paging_init();
371 #ifdef CONFIG_PCI
372 early_quirks();
373 #endif
376 * set this early, so we dont allocate cpu0
377 * if MADT list doesnt list BSP first
378 * mpparse.c/MP_processor_info() allocates logical cpu numbers.
380 cpu_set(0, cpu_present_map);
381 #ifdef CONFIG_ACPI
383 * Read APIC and some other early information from ACPI tables.
385 acpi_boot_init();
386 #endif
388 init_cpu_to_node();
391 * get boot-time SMP configuration:
393 if (smp_found_config)
394 get_smp_config();
395 init_apic_mappings();
398 * We trust e820 completely. No explicit ROM probing in memory.
400 e820_reserve_resources();
401 e820_mark_nosave_regions();
404 unsigned i;
405 /* request I/O space for devices used on all i[345]86 PCs */
406 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
407 request_resource(&ioport_resource, &standard_io_resources[i]);
410 e820_setup_gap();
412 #ifdef CONFIG_VT
413 #if defined(CONFIG_VGA_CONSOLE)
414 conswitchp = &vga_con;
415 #elif defined(CONFIG_DUMMY_CONSOLE)
416 conswitchp = &dummy_con;
417 #endif
418 #endif
421 static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
423 unsigned int *v;
425 if (c->extended_cpuid_level < 0x80000004)
426 return 0;
428 v = (unsigned int *) c->x86_model_id;
429 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
430 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
431 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
432 c->x86_model_id[48] = 0;
433 return 1;
437 static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
439 unsigned int n, dummy, eax, ebx, ecx, edx;
441 n = c->extended_cpuid_level;
443 if (n >= 0x80000005) {
444 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
445 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
446 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
447 c->x86_cache_size=(ecx>>24)+(edx>>24);
448 /* On K8 L1 TLB is inclusive, so don't count it */
449 c->x86_tlbsize = 0;
452 if (n >= 0x80000006) {
453 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
454 ecx = cpuid_ecx(0x80000006);
455 c->x86_cache_size = ecx >> 16;
456 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
458 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
459 c->x86_cache_size, ecx & 0xFF);
462 if (n >= 0x80000007)
463 cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
464 if (n >= 0x80000008) {
465 cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
466 c->x86_virt_bits = (eax >> 8) & 0xff;
467 c->x86_phys_bits = eax & 0xff;
471 #ifdef CONFIG_NUMA
472 static int nearby_node(int apicid)
474 int i;
475 for (i = apicid - 1; i >= 0; i--) {
476 int node = apicid_to_node[i];
477 if (node != NUMA_NO_NODE && node_online(node))
478 return node;
480 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
481 int node = apicid_to_node[i];
482 if (node != NUMA_NO_NODE && node_online(node))
483 return node;
485 return first_node(node_online_map); /* Shouldn't happen */
487 #endif
490 * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
491 * Assumes number of cores is a power of two.
493 static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
495 #ifdef CONFIG_SMP
496 unsigned bits;
497 #ifdef CONFIG_NUMA
498 int cpu = smp_processor_id();
499 int node = 0;
500 unsigned apicid = hard_smp_processor_id();
501 #endif
502 unsigned ecx = cpuid_ecx(0x80000008);
504 c->x86_max_cores = (ecx & 0xff) + 1;
506 /* CPU telling us the core id bits shift? */
507 bits = (ecx >> 12) & 0xF;
509 /* Otherwise recompute */
510 if (bits == 0) {
511 while ((1 << bits) < c->x86_max_cores)
512 bits++;
515 /* Low order bits define the core id (index of core in socket) */
516 c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
517 /* Convert the APIC ID into the socket ID */
518 c->phys_proc_id = phys_pkg_id(bits);
520 #ifdef CONFIG_NUMA
521 node = c->phys_proc_id;
522 if (apicid_to_node[apicid] != NUMA_NO_NODE)
523 node = apicid_to_node[apicid];
524 if (!node_online(node)) {
525 /* Two possibilities here:
526 - The CPU is missing memory and no node was created.
527 In that case try picking one from a nearby CPU
528 - The APIC IDs differ from the HyperTransport node IDs
529 which the K8 northbridge parsing fills in.
530 Assume they are all increased by a constant offset,
531 but in the same order as the HT nodeids.
532 If that doesn't result in a usable node fall back to the
533 path for the previous case. */
534 int ht_nodeid = apicid - (cpu_data[0].phys_proc_id << bits);
535 if (ht_nodeid >= 0 &&
536 apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
537 node = apicid_to_node[ht_nodeid];
538 /* Pick a nearby node */
539 if (!node_online(node))
540 node = nearby_node(apicid);
542 numa_set_node(cpu, node);
544 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
545 #endif
546 #endif
549 static void __cpuinit init_amd(struct cpuinfo_x86 *c)
551 unsigned level;
553 #ifdef CONFIG_SMP
554 unsigned long value;
557 * Disable TLB flush filter by setting HWCR.FFDIS on K8
558 * bit 6 of msr C001_0015
560 * Errata 63 for SH-B3 steppings
561 * Errata 122 for all steppings (F+ have it disabled by default)
563 if (c->x86 == 15) {
564 rdmsrl(MSR_K8_HWCR, value);
565 value |= 1 << 6;
566 wrmsrl(MSR_K8_HWCR, value);
568 #endif
570 /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
571 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
572 clear_bit(0*32+31, &c->x86_capability);
574 /* On C+ stepping K8 rep microcode works well for copy/memset */
575 level = cpuid_eax(1);
576 if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
577 set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
578 if (c->x86 == 0x10)
579 set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
581 /* Enable workaround for FXSAVE leak */
582 if (c->x86 >= 6)
583 set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
585 level = get_model_name(c);
586 if (!level) {
587 switch (c->x86) {
588 case 15:
589 /* Should distinguish Models here, but this is only
590 a fallback anyways. */
591 strcpy(c->x86_model_id, "Hammer");
592 break;
595 display_cacheinfo(c);
597 /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
598 if (c->x86_power & (1<<8))
599 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
601 /* Multi core CPU? */
602 if (c->extended_cpuid_level >= 0x80000008)
603 amd_detect_cmp(c);
605 if (c->extended_cpuid_level >= 0x80000006 &&
606 (cpuid_edx(0x80000006) & 0xf000))
607 num_cache_leaves = 4;
608 else
609 num_cache_leaves = 3;
611 if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
612 set_bit(X86_FEATURE_K8, &c->x86_capability);
614 /* RDTSC can be speculated around */
615 clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
617 /* Family 10 doesn't support C states in MWAIT so don't use it */
618 if (c->x86 == 0x10 && !force_mwait)
619 clear_bit(X86_FEATURE_MWAIT, &c->x86_capability);
622 static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
624 #ifdef CONFIG_SMP
625 u32 eax, ebx, ecx, edx;
626 int index_msb, core_bits;
628 cpuid(1, &eax, &ebx, &ecx, &edx);
631 if (!cpu_has(c, X86_FEATURE_HT))
632 return;
633 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
634 goto out;
636 smp_num_siblings = (ebx & 0xff0000) >> 16;
638 if (smp_num_siblings == 1) {
639 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
640 } else if (smp_num_siblings > 1 ) {
642 if (smp_num_siblings > NR_CPUS) {
643 printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
644 smp_num_siblings = 1;
645 return;
648 index_msb = get_count_order(smp_num_siblings);
649 c->phys_proc_id = phys_pkg_id(index_msb);
651 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
653 index_msb = get_count_order(smp_num_siblings) ;
655 core_bits = get_count_order(c->x86_max_cores);
657 c->cpu_core_id = phys_pkg_id(index_msb) &
658 ((1 << core_bits) - 1);
660 out:
661 if ((c->x86_max_cores * smp_num_siblings) > 1) {
662 printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id);
663 printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id);
666 #endif
670 * find out the number of processor cores on the die
672 static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
674 unsigned int eax, t;
676 if (c->cpuid_level < 4)
677 return 1;
679 cpuid_count(4, 0, &eax, &t, &t, &t);
681 if (eax & 0x1f)
682 return ((eax >> 26) + 1);
683 else
684 return 1;
687 static void srat_detect_node(void)
689 #ifdef CONFIG_NUMA
690 unsigned node;
691 int cpu = smp_processor_id();
692 int apicid = hard_smp_processor_id();
694 /* Don't do the funky fallback heuristics the AMD version employs
695 for now. */
696 node = apicid_to_node[apicid];
697 if (node == NUMA_NO_NODE)
698 node = first_node(node_online_map);
699 numa_set_node(cpu, node);
701 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
702 #endif
705 static void __cpuinit init_intel(struct cpuinfo_x86 *c)
707 /* Cache sizes */
708 unsigned n;
710 init_intel_cacheinfo(c);
711 if (c->cpuid_level > 9 ) {
712 unsigned eax = cpuid_eax(10);
713 /* Check for version and the number of counters */
714 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
715 set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability);
718 if (cpu_has_ds) {
719 unsigned int l1, l2;
720 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
721 if (!(l1 & (1<<11)))
722 set_bit(X86_FEATURE_BTS, c->x86_capability);
723 if (!(l1 & (1<<12)))
724 set_bit(X86_FEATURE_PEBS, c->x86_capability);
727 n = c->extended_cpuid_level;
728 if (n >= 0x80000008) {
729 unsigned eax = cpuid_eax(0x80000008);
730 c->x86_virt_bits = (eax >> 8) & 0xff;
731 c->x86_phys_bits = eax & 0xff;
732 /* CPUID workaround for Intel 0F34 CPU */
733 if (c->x86_vendor == X86_VENDOR_INTEL &&
734 c->x86 == 0xF && c->x86_model == 0x3 &&
735 c->x86_mask == 0x4)
736 c->x86_phys_bits = 36;
739 if (c->x86 == 15)
740 c->x86_cache_alignment = c->x86_clflush_size * 2;
741 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
742 (c->x86 == 0x6 && c->x86_model >= 0x0e))
743 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
744 if (c->x86 == 6)
745 set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
746 if (c->x86 == 15)
747 set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
748 else
749 clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
750 c->x86_max_cores = intel_num_cpu_cores(c);
752 srat_detect_node();
755 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
757 char *v = c->x86_vendor_id;
759 if (!strcmp(v, "AuthenticAMD"))
760 c->x86_vendor = X86_VENDOR_AMD;
761 else if (!strcmp(v, "GenuineIntel"))
762 c->x86_vendor = X86_VENDOR_INTEL;
763 else
764 c->x86_vendor = X86_VENDOR_UNKNOWN;
767 struct cpu_model_info {
768 int vendor;
769 int family;
770 char *model_names[16];
773 /* Do some early cpuid on the boot CPU to get some parameter that are
774 needed before check_bugs. Everything advanced is in identify_cpu
775 below. */
776 void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
778 u32 tfms;
780 c->loops_per_jiffy = loops_per_jiffy;
781 c->x86_cache_size = -1;
782 c->x86_vendor = X86_VENDOR_UNKNOWN;
783 c->x86_model = c->x86_mask = 0; /* So far unknown... */
784 c->x86_vendor_id[0] = '\0'; /* Unset */
785 c->x86_model_id[0] = '\0'; /* Unset */
786 c->x86_clflush_size = 64;
787 c->x86_cache_alignment = c->x86_clflush_size;
788 c->x86_max_cores = 1;
789 c->extended_cpuid_level = 0;
790 memset(&c->x86_capability, 0, sizeof c->x86_capability);
792 /* Get vendor name */
793 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
794 (unsigned int *)&c->x86_vendor_id[0],
795 (unsigned int *)&c->x86_vendor_id[8],
796 (unsigned int *)&c->x86_vendor_id[4]);
798 get_cpu_vendor(c);
800 /* Initialize the standard set of capabilities */
801 /* Note that the vendor-specific code below might override */
803 /* Intel-defined flags: level 0x00000001 */
804 if (c->cpuid_level >= 0x00000001) {
805 __u32 misc;
806 cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
807 &c->x86_capability[0]);
808 c->x86 = (tfms >> 8) & 0xf;
809 c->x86_model = (tfms >> 4) & 0xf;
810 c->x86_mask = tfms & 0xf;
811 if (c->x86 == 0xf)
812 c->x86 += (tfms >> 20) & 0xff;
813 if (c->x86 >= 0x6)
814 c->x86_model += ((tfms >> 16) & 0xF) << 4;
815 if (c->x86_capability[0] & (1<<19))
816 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
817 } else {
818 /* Have CPUID level 0 only - unheard of */
819 c->x86 = 4;
822 #ifdef CONFIG_SMP
823 c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
824 #endif
828 * This does the hard work of actually picking apart the CPU stuff...
830 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
832 int i;
833 u32 xlvl;
835 early_identify_cpu(c);
837 /* AMD-defined flags: level 0x80000001 */
838 xlvl = cpuid_eax(0x80000000);
839 c->extended_cpuid_level = xlvl;
840 if ((xlvl & 0xffff0000) == 0x80000000) {
841 if (xlvl >= 0x80000001) {
842 c->x86_capability[1] = cpuid_edx(0x80000001);
843 c->x86_capability[6] = cpuid_ecx(0x80000001);
845 if (xlvl >= 0x80000004)
846 get_model_name(c); /* Default name */
849 /* Transmeta-defined flags: level 0x80860001 */
850 xlvl = cpuid_eax(0x80860000);
851 if ((xlvl & 0xffff0000) == 0x80860000) {
852 /* Don't set x86_cpuid_level here for now to not confuse. */
853 if (xlvl >= 0x80860001)
854 c->x86_capability[2] = cpuid_edx(0x80860001);
857 init_scattered_cpuid_features(c);
859 c->apicid = phys_pkg_id(0);
862 * Vendor-specific initialization. In this section we
863 * canonicalize the feature flags, meaning if there are
864 * features a certain CPU supports which CPUID doesn't
865 * tell us, CPUID claiming incorrect flags, or other bugs,
866 * we handle them here.
868 * At the end of this section, c->x86_capability better
869 * indicate the features this CPU genuinely supports!
871 switch (c->x86_vendor) {
872 case X86_VENDOR_AMD:
873 init_amd(c);
874 break;
876 case X86_VENDOR_INTEL:
877 init_intel(c);
878 break;
880 case X86_VENDOR_UNKNOWN:
881 default:
882 display_cacheinfo(c);
883 break;
886 select_idle_routine(c);
887 detect_ht(c);
890 * On SMP, boot_cpu_data holds the common feature set between
891 * all CPUs; so make sure that we indicate which features are
892 * common between the CPUs. The first time this routine gets
893 * executed, c == &boot_cpu_data.
895 if (c != &boot_cpu_data) {
896 /* AND the already accumulated flags with these */
897 for (i = 0 ; i < NCAPINTS ; i++)
898 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
901 #ifdef CONFIG_X86_MCE
902 mcheck_init(c);
903 #endif
904 if (c != &boot_cpu_data)
905 mtrr_ap_init();
906 #ifdef CONFIG_NUMA
907 numa_add_cpu(smp_processor_id());
908 #endif
912 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
914 if (c->x86_model_id[0])
915 printk("%s", c->x86_model_id);
917 if (c->x86_mask || c->cpuid_level >= 0)
918 printk(" stepping %02x\n", c->x86_mask);
919 else
920 printk("\n");
924 * Get CPU information for use by the procfs.
927 static int show_cpuinfo(struct seq_file *m, void *v)
929 struct cpuinfo_x86 *c = v;
932 * These flag bits must match the definitions in <asm/cpufeature.h>.
933 * NULL means this bit is undefined or reserved; either way it doesn't
934 * have meaning as far as Linux is concerned. Note that it's important
935 * to realize there is a difference between this table and CPUID -- if
936 * applications want to get the raw CPUID data, they should access
937 * /dev/cpu/<cpu_nr>/cpuid instead.
939 static char *x86_cap_flags[] = {
940 /* Intel-defined */
941 "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
942 "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
943 "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
944 "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
946 /* AMD-defined */
947 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
948 NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
949 NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
950 NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
951 "3dnowext", "3dnow",
953 /* Transmeta-defined */
954 "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
955 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
956 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
957 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
959 /* Other (Linux-defined) */
960 "cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
961 NULL, NULL, NULL, NULL,
962 "constant_tsc", "up", NULL, "arch_perfmon",
963 "pebs", "bts", NULL, "sync_rdtsc",
964 "rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
965 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
967 /* Intel-defined (#2) */
968 "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
969 "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
970 NULL, NULL, "dca", NULL, NULL, NULL, NULL, "popcnt",
971 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
973 /* VIA/Cyrix/Centaur-defined */
974 NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
975 "ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
976 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
977 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
979 /* AMD-defined (#2) */
980 "lahf_lm", "cmp_legacy", "svm", "extapic", "cr8_legacy",
981 "altmovcr8", "abm", "sse4a",
982 "misalignsse", "3dnowprefetch",
983 "osvw", "ibs", NULL, NULL, NULL, NULL,
984 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
985 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
987 /* Auxiliary (Linux-defined) */
988 "ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
989 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
990 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
991 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
993 static char *x86_power_flags[] = {
994 "ts", /* temperature sensor */
995 "fid", /* frequency id control */
996 "vid", /* voltage id control */
997 "ttp", /* thermal trip */
998 "tm",
999 "stc",
1000 "100mhzsteps",
1001 "hwpstate",
1002 "", /* tsc invariant mapped to constant_tsc */
1003 /* nothing */
1007 #ifdef CONFIG_SMP
1008 if (!cpu_online(c-cpu_data))
1009 return 0;
1010 #endif
1012 seq_printf(m,"processor\t: %u\n"
1013 "vendor_id\t: %s\n"
1014 "cpu family\t: %d\n"
1015 "model\t\t: %d\n"
1016 "model name\t: %s\n",
1017 (unsigned)(c-cpu_data),
1018 c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
1019 c->x86,
1020 (int)c->x86_model,
1021 c->x86_model_id[0] ? c->x86_model_id : "unknown");
1023 if (c->x86_mask || c->cpuid_level >= 0)
1024 seq_printf(m, "stepping\t: %d\n", c->x86_mask);
1025 else
1026 seq_printf(m, "stepping\t: unknown\n");
1028 if (cpu_has(c,X86_FEATURE_TSC)) {
1029 unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
1030 if (!freq)
1031 freq = cpu_khz;
1032 seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
1033 freq / 1000, (freq % 1000));
1036 /* Cache size */
1037 if (c->x86_cache_size >= 0)
1038 seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
1040 #ifdef CONFIG_SMP
1041 if (smp_num_siblings * c->x86_max_cores > 1) {
1042 int cpu = c - cpu_data;
1043 seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
1044 seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
1045 seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
1046 seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
1048 #endif
1050 seq_printf(m,
1051 "fpu\t\t: yes\n"
1052 "fpu_exception\t: yes\n"
1053 "cpuid level\t: %d\n"
1054 "wp\t\t: yes\n"
1055 "flags\t\t:",
1056 c->cpuid_level);
1059 int i;
1060 for ( i = 0 ; i < 32*NCAPINTS ; i++ )
1061 if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
1062 seq_printf(m, " %s", x86_cap_flags[i]);
1065 seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
1066 c->loops_per_jiffy/(500000/HZ),
1067 (c->loops_per_jiffy/(5000/HZ)) % 100);
1069 if (c->x86_tlbsize > 0)
1070 seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
1071 seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
1072 seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
1074 seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
1075 c->x86_phys_bits, c->x86_virt_bits);
1077 seq_printf(m, "power management:");
1079 unsigned i;
1080 for (i = 0; i < 32; i++)
1081 if (c->x86_power & (1 << i)) {
1082 if (i < ARRAY_SIZE(x86_power_flags) &&
1083 x86_power_flags[i])
1084 seq_printf(m, "%s%s",
1085 x86_power_flags[i][0]?" ":"",
1086 x86_power_flags[i]);
1087 else
1088 seq_printf(m, " [%d]", i);
1092 seq_printf(m, "\n\n");
1094 return 0;
1097 static void *c_start(struct seq_file *m, loff_t *pos)
1099 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
1102 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1104 ++*pos;
1105 return c_start(m, pos);
1108 static void c_stop(struct seq_file *m, void *v)
1112 struct seq_operations cpuinfo_op = {
1113 .start =c_start,
1114 .next = c_next,
1115 .stop = c_stop,
1116 .show = show_cpuinfo,