drm/i915: Propagate error from i915_gem_object_flush_gpu_write_domain()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blobb1069dc09611294d106a3132fab3d3628f762485
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
38 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
41 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42 int write);
43 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49 unsigned alignment);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
52 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
53 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file_priv);
57 static LIST_HEAD(shrink_list);
58 static DEFINE_SPINLOCK(shrink_list_lock);
60 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
61 unsigned long end)
63 drm_i915_private_t *dev_priv = dev->dev_private;
65 if (start >= end ||
66 (start & (PAGE_SIZE - 1)) != 0 ||
67 (end & (PAGE_SIZE - 1)) != 0) {
68 return -EINVAL;
71 drm_mm_init(&dev_priv->mm.gtt_space, start,
72 end - start);
74 dev->gtt_total = (uint32_t) (end - start);
76 return 0;
79 int
80 i915_gem_init_ioctl(struct drm_device *dev, void *data,
81 struct drm_file *file_priv)
83 struct drm_i915_gem_init *args = data;
84 int ret;
86 mutex_lock(&dev->struct_mutex);
87 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
88 mutex_unlock(&dev->struct_mutex);
90 return ret;
93 int
94 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
95 struct drm_file *file_priv)
97 struct drm_i915_gem_get_aperture *args = data;
99 if (!(dev->driver->driver_features & DRIVER_GEM))
100 return -ENODEV;
102 args->aper_size = dev->gtt_total;
103 args->aper_available_size = (args->aper_size -
104 atomic_read(&dev->pin_memory));
106 return 0;
111 * Creates a new mm object and returns a handle to it.
114 i915_gem_create_ioctl(struct drm_device *dev, void *data,
115 struct drm_file *file_priv)
117 struct drm_i915_gem_create *args = data;
118 struct drm_gem_object *obj;
119 int ret;
120 u32 handle;
122 args->size = roundup(args->size, PAGE_SIZE);
124 /* Allocate the new object */
125 obj = i915_gem_alloc_object(dev, args->size);
126 if (obj == NULL)
127 return -ENOMEM;
129 ret = drm_gem_handle_create(file_priv, obj, &handle);
130 drm_gem_object_handle_unreference_unlocked(obj);
132 if (ret)
133 return ret;
135 args->handle = handle;
137 return 0;
140 static inline int
141 fast_shmem_read(struct page **pages,
142 loff_t page_base, int page_offset,
143 char __user *data,
144 int length)
146 char __iomem *vaddr;
147 int unwritten;
149 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
150 if (vaddr == NULL)
151 return -ENOMEM;
152 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
153 kunmap_atomic(vaddr, KM_USER0);
155 if (unwritten)
156 return -EFAULT;
158 return 0;
161 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
163 drm_i915_private_t *dev_priv = obj->dev->dev_private;
164 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
166 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
167 obj_priv->tiling_mode != I915_TILING_NONE;
170 static inline void
171 slow_shmem_copy(struct page *dst_page,
172 int dst_offset,
173 struct page *src_page,
174 int src_offset,
175 int length)
177 char *dst_vaddr, *src_vaddr;
179 dst_vaddr = kmap(dst_page);
180 src_vaddr = kmap(src_page);
182 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
184 kunmap(src_page);
185 kunmap(dst_page);
188 static inline void
189 slow_shmem_bit17_copy(struct page *gpu_page,
190 int gpu_offset,
191 struct page *cpu_page,
192 int cpu_offset,
193 int length,
194 int is_read)
196 char *gpu_vaddr, *cpu_vaddr;
198 /* Use the unswizzled path if this page isn't affected. */
199 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
200 if (is_read)
201 return slow_shmem_copy(cpu_page, cpu_offset,
202 gpu_page, gpu_offset, length);
203 else
204 return slow_shmem_copy(gpu_page, gpu_offset,
205 cpu_page, cpu_offset, length);
208 gpu_vaddr = kmap(gpu_page);
209 cpu_vaddr = kmap(cpu_page);
211 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
212 * XORing with the other bits (A9 for Y, A9 and A10 for X)
214 while (length > 0) {
215 int cacheline_end = ALIGN(gpu_offset + 1, 64);
216 int this_length = min(cacheline_end - gpu_offset, length);
217 int swizzled_gpu_offset = gpu_offset ^ 64;
219 if (is_read) {
220 memcpy(cpu_vaddr + cpu_offset,
221 gpu_vaddr + swizzled_gpu_offset,
222 this_length);
223 } else {
224 memcpy(gpu_vaddr + swizzled_gpu_offset,
225 cpu_vaddr + cpu_offset,
226 this_length);
228 cpu_offset += this_length;
229 gpu_offset += this_length;
230 length -= this_length;
233 kunmap(cpu_page);
234 kunmap(gpu_page);
238 * This is the fast shmem pread path, which attempts to copy_from_user directly
239 * from the backing pages of the object to the user's address space. On a
240 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
242 static int
243 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
244 struct drm_i915_gem_pread *args,
245 struct drm_file *file_priv)
247 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
248 ssize_t remain;
249 loff_t offset, page_base;
250 char __user *user_data;
251 int page_offset, page_length;
252 int ret;
254 user_data = (char __user *) (uintptr_t) args->data_ptr;
255 remain = args->size;
257 mutex_lock(&dev->struct_mutex);
259 ret = i915_gem_object_get_pages(obj, 0);
260 if (ret != 0)
261 goto fail_unlock;
263 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
264 args->size);
265 if (ret != 0)
266 goto fail_put_pages;
268 obj_priv = to_intel_bo(obj);
269 offset = args->offset;
271 while (remain > 0) {
272 /* Operation in this page
274 * page_base = page offset within aperture
275 * page_offset = offset within page
276 * page_length = bytes to copy for this page
278 page_base = (offset & ~(PAGE_SIZE-1));
279 page_offset = offset & (PAGE_SIZE-1);
280 page_length = remain;
281 if ((page_offset + remain) > PAGE_SIZE)
282 page_length = PAGE_SIZE - page_offset;
284 ret = fast_shmem_read(obj_priv->pages,
285 page_base, page_offset,
286 user_data, page_length);
287 if (ret)
288 goto fail_put_pages;
290 remain -= page_length;
291 user_data += page_length;
292 offset += page_length;
295 fail_put_pages:
296 i915_gem_object_put_pages(obj);
297 fail_unlock:
298 mutex_unlock(&dev->struct_mutex);
300 return ret;
303 static int
304 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
306 int ret;
308 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
310 /* If we've insufficient memory to map in the pages, attempt
311 * to make some space by throwing out some old buffers.
313 if (ret == -ENOMEM) {
314 struct drm_device *dev = obj->dev;
316 ret = i915_gem_evict_something(dev, obj->size);
317 if (ret)
318 return ret;
320 ret = i915_gem_object_get_pages(obj, 0);
323 return ret;
327 * This is the fallback shmem pread path, which allocates temporary storage
328 * in kernel space to copy_to_user into outside of the struct_mutex, so we
329 * can copy out of the object's backing pages while holding the struct mutex
330 * and not take page faults.
332 static int
333 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
334 struct drm_i915_gem_pread *args,
335 struct drm_file *file_priv)
337 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
338 struct mm_struct *mm = current->mm;
339 struct page **user_pages;
340 ssize_t remain;
341 loff_t offset, pinned_pages, i;
342 loff_t first_data_page, last_data_page, num_pages;
343 int shmem_page_index, shmem_page_offset;
344 int data_page_index, data_page_offset;
345 int page_length;
346 int ret;
347 uint64_t data_ptr = args->data_ptr;
348 int do_bit17_swizzling;
350 remain = args->size;
352 /* Pin the user pages containing the data. We can't fault while
353 * holding the struct mutex, yet we want to hold it while
354 * dereferencing the user data.
356 first_data_page = data_ptr / PAGE_SIZE;
357 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
358 num_pages = last_data_page - first_data_page + 1;
360 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
361 if (user_pages == NULL)
362 return -ENOMEM;
364 down_read(&mm->mmap_sem);
365 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
366 num_pages, 1, 0, user_pages, NULL);
367 up_read(&mm->mmap_sem);
368 if (pinned_pages < num_pages) {
369 ret = -EFAULT;
370 goto fail_put_user_pages;
373 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
375 mutex_lock(&dev->struct_mutex);
377 ret = i915_gem_object_get_pages_or_evict(obj);
378 if (ret)
379 goto fail_unlock;
381 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
382 args->size);
383 if (ret != 0)
384 goto fail_put_pages;
386 obj_priv = to_intel_bo(obj);
387 offset = args->offset;
389 while (remain > 0) {
390 /* Operation in this page
392 * shmem_page_index = page number within shmem file
393 * shmem_page_offset = offset within page in shmem file
394 * data_page_index = page number in get_user_pages return
395 * data_page_offset = offset with data_page_index page.
396 * page_length = bytes to copy for this page
398 shmem_page_index = offset / PAGE_SIZE;
399 shmem_page_offset = offset & ~PAGE_MASK;
400 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
401 data_page_offset = data_ptr & ~PAGE_MASK;
403 page_length = remain;
404 if ((shmem_page_offset + page_length) > PAGE_SIZE)
405 page_length = PAGE_SIZE - shmem_page_offset;
406 if ((data_page_offset + page_length) > PAGE_SIZE)
407 page_length = PAGE_SIZE - data_page_offset;
409 if (do_bit17_swizzling) {
410 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
411 shmem_page_offset,
412 user_pages[data_page_index],
413 data_page_offset,
414 page_length,
416 } else {
417 slow_shmem_copy(user_pages[data_page_index],
418 data_page_offset,
419 obj_priv->pages[shmem_page_index],
420 shmem_page_offset,
421 page_length);
424 remain -= page_length;
425 data_ptr += page_length;
426 offset += page_length;
429 fail_put_pages:
430 i915_gem_object_put_pages(obj);
431 fail_unlock:
432 mutex_unlock(&dev->struct_mutex);
433 fail_put_user_pages:
434 for (i = 0; i < pinned_pages; i++) {
435 SetPageDirty(user_pages[i]);
436 page_cache_release(user_pages[i]);
438 drm_free_large(user_pages);
440 return ret;
444 * Reads data from the object referenced by handle.
446 * On error, the contents of *data are undefined.
449 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
450 struct drm_file *file_priv)
452 struct drm_i915_gem_pread *args = data;
453 struct drm_gem_object *obj;
454 struct drm_i915_gem_object *obj_priv;
455 int ret;
457 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
458 if (obj == NULL)
459 return -EBADF;
460 obj_priv = to_intel_bo(obj);
462 /* Bounds check source.
464 * XXX: This could use review for overflow issues...
466 if (args->offset > obj->size || args->size > obj->size ||
467 args->offset + args->size > obj->size) {
468 drm_gem_object_unreference_unlocked(obj);
469 return -EINVAL;
472 if (i915_gem_object_needs_bit17_swizzle(obj)) {
473 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
474 } else {
475 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
476 if (ret != 0)
477 ret = i915_gem_shmem_pread_slow(dev, obj, args,
478 file_priv);
481 drm_gem_object_unreference_unlocked(obj);
483 return ret;
486 /* This is the fast write path which cannot handle
487 * page faults in the source data
490 static inline int
491 fast_user_write(struct io_mapping *mapping,
492 loff_t page_base, int page_offset,
493 char __user *user_data,
494 int length)
496 char *vaddr_atomic;
497 unsigned long unwritten;
499 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
500 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
501 user_data, length);
502 io_mapping_unmap_atomic(vaddr_atomic);
503 if (unwritten)
504 return -EFAULT;
505 return 0;
508 /* Here's the write path which can sleep for
509 * page faults
512 static inline void
513 slow_kernel_write(struct io_mapping *mapping,
514 loff_t gtt_base, int gtt_offset,
515 struct page *user_page, int user_offset,
516 int length)
518 char __iomem *dst_vaddr;
519 char *src_vaddr;
521 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
522 src_vaddr = kmap(user_page);
524 memcpy_toio(dst_vaddr + gtt_offset,
525 src_vaddr + user_offset,
526 length);
528 kunmap(user_page);
529 io_mapping_unmap(dst_vaddr);
532 static inline int
533 fast_shmem_write(struct page **pages,
534 loff_t page_base, int page_offset,
535 char __user *data,
536 int length)
538 char __iomem *vaddr;
539 unsigned long unwritten;
541 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
542 if (vaddr == NULL)
543 return -ENOMEM;
544 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
545 kunmap_atomic(vaddr, KM_USER0);
547 if (unwritten)
548 return -EFAULT;
549 return 0;
553 * This is the fast pwrite path, where we copy the data directly from the
554 * user into the GTT, uncached.
556 static int
557 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
558 struct drm_i915_gem_pwrite *args,
559 struct drm_file *file_priv)
561 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
562 drm_i915_private_t *dev_priv = dev->dev_private;
563 ssize_t remain;
564 loff_t offset, page_base;
565 char __user *user_data;
566 int page_offset, page_length;
567 int ret;
569 user_data = (char __user *) (uintptr_t) args->data_ptr;
570 remain = args->size;
571 if (!access_ok(VERIFY_READ, user_data, remain))
572 return -EFAULT;
575 mutex_lock(&dev->struct_mutex);
576 ret = i915_gem_object_pin(obj, 0);
577 if (ret) {
578 mutex_unlock(&dev->struct_mutex);
579 return ret;
581 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
582 if (ret)
583 goto fail;
585 obj_priv = to_intel_bo(obj);
586 offset = obj_priv->gtt_offset + args->offset;
588 while (remain > 0) {
589 /* Operation in this page
591 * page_base = page offset within aperture
592 * page_offset = offset within page
593 * page_length = bytes to copy for this page
595 page_base = (offset & ~(PAGE_SIZE-1));
596 page_offset = offset & (PAGE_SIZE-1);
597 page_length = remain;
598 if ((page_offset + remain) > PAGE_SIZE)
599 page_length = PAGE_SIZE - page_offset;
601 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
602 page_offset, user_data, page_length);
604 /* If we get a fault while copying data, then (presumably) our
605 * source page isn't available. Return the error and we'll
606 * retry in the slow path.
608 if (ret)
609 goto fail;
611 remain -= page_length;
612 user_data += page_length;
613 offset += page_length;
616 fail:
617 i915_gem_object_unpin(obj);
618 mutex_unlock(&dev->struct_mutex);
620 return ret;
624 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
625 * the memory and maps it using kmap_atomic for copying.
627 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
628 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
630 static int
631 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
632 struct drm_i915_gem_pwrite *args,
633 struct drm_file *file_priv)
635 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
636 drm_i915_private_t *dev_priv = dev->dev_private;
637 ssize_t remain;
638 loff_t gtt_page_base, offset;
639 loff_t first_data_page, last_data_page, num_pages;
640 loff_t pinned_pages, i;
641 struct page **user_pages;
642 struct mm_struct *mm = current->mm;
643 int gtt_page_offset, data_page_offset, data_page_index, page_length;
644 int ret;
645 uint64_t data_ptr = args->data_ptr;
647 remain = args->size;
649 /* Pin the user pages containing the data. We can't fault while
650 * holding the struct mutex, and all of the pwrite implementations
651 * want to hold it while dereferencing the user data.
653 first_data_page = data_ptr / PAGE_SIZE;
654 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
655 num_pages = last_data_page - first_data_page + 1;
657 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
658 if (user_pages == NULL)
659 return -ENOMEM;
661 down_read(&mm->mmap_sem);
662 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
663 num_pages, 0, 0, user_pages, NULL);
664 up_read(&mm->mmap_sem);
665 if (pinned_pages < num_pages) {
666 ret = -EFAULT;
667 goto out_unpin_pages;
670 mutex_lock(&dev->struct_mutex);
671 ret = i915_gem_object_pin(obj, 0);
672 if (ret)
673 goto out_unlock;
675 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
676 if (ret)
677 goto out_unpin_object;
679 obj_priv = to_intel_bo(obj);
680 offset = obj_priv->gtt_offset + args->offset;
682 while (remain > 0) {
683 /* Operation in this page
685 * gtt_page_base = page offset within aperture
686 * gtt_page_offset = offset within page in aperture
687 * data_page_index = page number in get_user_pages return
688 * data_page_offset = offset with data_page_index page.
689 * page_length = bytes to copy for this page
691 gtt_page_base = offset & PAGE_MASK;
692 gtt_page_offset = offset & ~PAGE_MASK;
693 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
694 data_page_offset = data_ptr & ~PAGE_MASK;
696 page_length = remain;
697 if ((gtt_page_offset + page_length) > PAGE_SIZE)
698 page_length = PAGE_SIZE - gtt_page_offset;
699 if ((data_page_offset + page_length) > PAGE_SIZE)
700 page_length = PAGE_SIZE - data_page_offset;
702 slow_kernel_write(dev_priv->mm.gtt_mapping,
703 gtt_page_base, gtt_page_offset,
704 user_pages[data_page_index],
705 data_page_offset,
706 page_length);
708 remain -= page_length;
709 offset += page_length;
710 data_ptr += page_length;
713 out_unpin_object:
714 i915_gem_object_unpin(obj);
715 out_unlock:
716 mutex_unlock(&dev->struct_mutex);
717 out_unpin_pages:
718 for (i = 0; i < pinned_pages; i++)
719 page_cache_release(user_pages[i]);
720 drm_free_large(user_pages);
722 return ret;
726 * This is the fast shmem pwrite path, which attempts to directly
727 * copy_from_user into the kmapped pages backing the object.
729 static int
730 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
731 struct drm_i915_gem_pwrite *args,
732 struct drm_file *file_priv)
734 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
735 ssize_t remain;
736 loff_t offset, page_base;
737 char __user *user_data;
738 int page_offset, page_length;
739 int ret;
741 user_data = (char __user *) (uintptr_t) args->data_ptr;
742 remain = args->size;
744 mutex_lock(&dev->struct_mutex);
746 ret = i915_gem_object_get_pages(obj, 0);
747 if (ret != 0)
748 goto fail_unlock;
750 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
751 if (ret != 0)
752 goto fail_put_pages;
754 obj_priv = to_intel_bo(obj);
755 offset = args->offset;
756 obj_priv->dirty = 1;
758 while (remain > 0) {
759 /* Operation in this page
761 * page_base = page offset within aperture
762 * page_offset = offset within page
763 * page_length = bytes to copy for this page
765 page_base = (offset & ~(PAGE_SIZE-1));
766 page_offset = offset & (PAGE_SIZE-1);
767 page_length = remain;
768 if ((page_offset + remain) > PAGE_SIZE)
769 page_length = PAGE_SIZE - page_offset;
771 ret = fast_shmem_write(obj_priv->pages,
772 page_base, page_offset,
773 user_data, page_length);
774 if (ret)
775 goto fail_put_pages;
777 remain -= page_length;
778 user_data += page_length;
779 offset += page_length;
782 fail_put_pages:
783 i915_gem_object_put_pages(obj);
784 fail_unlock:
785 mutex_unlock(&dev->struct_mutex);
787 return ret;
791 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
792 * the memory and maps it using kmap_atomic for copying.
794 * This avoids taking mmap_sem for faulting on the user's address while the
795 * struct_mutex is held.
797 static int
798 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
799 struct drm_i915_gem_pwrite *args,
800 struct drm_file *file_priv)
802 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
803 struct mm_struct *mm = current->mm;
804 struct page **user_pages;
805 ssize_t remain;
806 loff_t offset, pinned_pages, i;
807 loff_t first_data_page, last_data_page, num_pages;
808 int shmem_page_index, shmem_page_offset;
809 int data_page_index, data_page_offset;
810 int page_length;
811 int ret;
812 uint64_t data_ptr = args->data_ptr;
813 int do_bit17_swizzling;
815 remain = args->size;
817 /* Pin the user pages containing the data. We can't fault while
818 * holding the struct mutex, and all of the pwrite implementations
819 * want to hold it while dereferencing the user data.
821 first_data_page = data_ptr / PAGE_SIZE;
822 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
823 num_pages = last_data_page - first_data_page + 1;
825 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
826 if (user_pages == NULL)
827 return -ENOMEM;
829 down_read(&mm->mmap_sem);
830 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
831 num_pages, 0, 0, user_pages, NULL);
832 up_read(&mm->mmap_sem);
833 if (pinned_pages < num_pages) {
834 ret = -EFAULT;
835 goto fail_put_user_pages;
838 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
840 mutex_lock(&dev->struct_mutex);
842 ret = i915_gem_object_get_pages_or_evict(obj);
843 if (ret)
844 goto fail_unlock;
846 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
847 if (ret != 0)
848 goto fail_put_pages;
850 obj_priv = to_intel_bo(obj);
851 offset = args->offset;
852 obj_priv->dirty = 1;
854 while (remain > 0) {
855 /* Operation in this page
857 * shmem_page_index = page number within shmem file
858 * shmem_page_offset = offset within page in shmem file
859 * data_page_index = page number in get_user_pages return
860 * data_page_offset = offset with data_page_index page.
861 * page_length = bytes to copy for this page
863 shmem_page_index = offset / PAGE_SIZE;
864 shmem_page_offset = offset & ~PAGE_MASK;
865 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
866 data_page_offset = data_ptr & ~PAGE_MASK;
868 page_length = remain;
869 if ((shmem_page_offset + page_length) > PAGE_SIZE)
870 page_length = PAGE_SIZE - shmem_page_offset;
871 if ((data_page_offset + page_length) > PAGE_SIZE)
872 page_length = PAGE_SIZE - data_page_offset;
874 if (do_bit17_swizzling) {
875 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
876 shmem_page_offset,
877 user_pages[data_page_index],
878 data_page_offset,
879 page_length,
881 } else {
882 slow_shmem_copy(obj_priv->pages[shmem_page_index],
883 shmem_page_offset,
884 user_pages[data_page_index],
885 data_page_offset,
886 page_length);
889 remain -= page_length;
890 data_ptr += page_length;
891 offset += page_length;
894 fail_put_pages:
895 i915_gem_object_put_pages(obj);
896 fail_unlock:
897 mutex_unlock(&dev->struct_mutex);
898 fail_put_user_pages:
899 for (i = 0; i < pinned_pages; i++)
900 page_cache_release(user_pages[i]);
901 drm_free_large(user_pages);
903 return ret;
907 * Writes data to the object referenced by handle.
909 * On error, the contents of the buffer that were to be modified are undefined.
912 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
913 struct drm_file *file_priv)
915 struct drm_i915_gem_pwrite *args = data;
916 struct drm_gem_object *obj;
917 struct drm_i915_gem_object *obj_priv;
918 int ret = 0;
920 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
921 if (obj == NULL)
922 return -EBADF;
923 obj_priv = to_intel_bo(obj);
925 /* Bounds check destination.
927 * XXX: This could use review for overflow issues...
929 if (args->offset > obj->size || args->size > obj->size ||
930 args->offset + args->size > obj->size) {
931 drm_gem_object_unreference_unlocked(obj);
932 return -EINVAL;
935 /* We can only do the GTT pwrite on untiled buffers, as otherwise
936 * it would end up going through the fenced access, and we'll get
937 * different detiling behavior between reading and writing.
938 * pread/pwrite currently are reading and writing from the CPU
939 * perspective, requiring manual detiling by the client.
941 if (obj_priv->phys_obj)
942 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
943 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
944 dev->gtt_total != 0 &&
945 obj->write_domain != I915_GEM_DOMAIN_CPU) {
946 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
947 if (ret == -EFAULT) {
948 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
949 file_priv);
951 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
952 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
953 } else {
954 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
955 if (ret == -EFAULT) {
956 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
957 file_priv);
961 #if WATCH_PWRITE
962 if (ret)
963 DRM_INFO("pwrite failed %d\n", ret);
964 #endif
966 drm_gem_object_unreference_unlocked(obj);
968 return ret;
972 * Called when user space prepares to use an object with the CPU, either
973 * through the mmap ioctl's mapping or a GTT mapping.
976 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
977 struct drm_file *file_priv)
979 struct drm_i915_private *dev_priv = dev->dev_private;
980 struct drm_i915_gem_set_domain *args = data;
981 struct drm_gem_object *obj;
982 struct drm_i915_gem_object *obj_priv;
983 uint32_t read_domains = args->read_domains;
984 uint32_t write_domain = args->write_domain;
985 int ret;
987 if (!(dev->driver->driver_features & DRIVER_GEM))
988 return -ENODEV;
990 /* Only handle setting domains to types used by the CPU. */
991 if (write_domain & I915_GEM_GPU_DOMAINS)
992 return -EINVAL;
994 if (read_domains & I915_GEM_GPU_DOMAINS)
995 return -EINVAL;
997 /* Having something in the write domain implies it's in the read
998 * domain, and only that read domain. Enforce that in the request.
1000 if (write_domain != 0 && read_domains != write_domain)
1001 return -EINVAL;
1003 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1004 if (obj == NULL)
1005 return -EBADF;
1006 obj_priv = to_intel_bo(obj);
1008 mutex_lock(&dev->struct_mutex);
1010 intel_mark_busy(dev, obj);
1012 #if WATCH_BUF
1013 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1014 obj, obj->size, read_domains, write_domain);
1015 #endif
1016 if (read_domains & I915_GEM_DOMAIN_GTT) {
1017 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1019 /* Update the LRU on the fence for the CPU access that's
1020 * about to occur.
1022 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1023 struct drm_i915_fence_reg *reg =
1024 &dev_priv->fence_regs[obj_priv->fence_reg];
1025 list_move_tail(&reg->lru_list,
1026 &dev_priv->mm.fence_list);
1029 /* Silently promote "you're not bound, there was nothing to do"
1030 * to success, since the client was just asking us to
1031 * make sure everything was done.
1033 if (ret == -EINVAL)
1034 ret = 0;
1035 } else {
1036 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1039 drm_gem_object_unreference(obj);
1040 mutex_unlock(&dev->struct_mutex);
1041 return ret;
1045 * Called when user space has done writes to this buffer
1048 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1049 struct drm_file *file_priv)
1051 struct drm_i915_gem_sw_finish *args = data;
1052 struct drm_gem_object *obj;
1053 struct drm_i915_gem_object *obj_priv;
1054 int ret = 0;
1056 if (!(dev->driver->driver_features & DRIVER_GEM))
1057 return -ENODEV;
1059 mutex_lock(&dev->struct_mutex);
1060 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1061 if (obj == NULL) {
1062 mutex_unlock(&dev->struct_mutex);
1063 return -EBADF;
1066 #if WATCH_BUF
1067 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1068 __func__, args->handle, obj, obj->size);
1069 #endif
1070 obj_priv = to_intel_bo(obj);
1072 /* Pinned buffers may be scanout, so flush the cache */
1073 if (obj_priv->pin_count)
1074 i915_gem_object_flush_cpu_write_domain(obj);
1076 drm_gem_object_unreference(obj);
1077 mutex_unlock(&dev->struct_mutex);
1078 return ret;
1082 * Maps the contents of an object, returning the address it is mapped
1083 * into.
1085 * While the mapping holds a reference on the contents of the object, it doesn't
1086 * imply a ref on the object itself.
1089 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1090 struct drm_file *file_priv)
1092 struct drm_i915_gem_mmap *args = data;
1093 struct drm_gem_object *obj;
1094 loff_t offset;
1095 unsigned long addr;
1097 if (!(dev->driver->driver_features & DRIVER_GEM))
1098 return -ENODEV;
1100 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1101 if (obj == NULL)
1102 return -EBADF;
1104 offset = args->offset;
1106 down_write(&current->mm->mmap_sem);
1107 addr = do_mmap(obj->filp, 0, args->size,
1108 PROT_READ | PROT_WRITE, MAP_SHARED,
1109 args->offset);
1110 up_write(&current->mm->mmap_sem);
1111 drm_gem_object_unreference_unlocked(obj);
1112 if (IS_ERR((void *)addr))
1113 return addr;
1115 args->addr_ptr = (uint64_t) addr;
1117 return 0;
1121 * i915_gem_fault - fault a page into the GTT
1122 * vma: VMA in question
1123 * vmf: fault info
1125 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1126 * from userspace. The fault handler takes care of binding the object to
1127 * the GTT (if needed), allocating and programming a fence register (again,
1128 * only if needed based on whether the old reg is still valid or the object
1129 * is tiled) and inserting a new PTE into the faulting process.
1131 * Note that the faulting process may involve evicting existing objects
1132 * from the GTT and/or fence registers to make room. So performance may
1133 * suffer if the GTT working set is large or there are few fence registers
1134 * left.
1136 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1138 struct drm_gem_object *obj = vma->vm_private_data;
1139 struct drm_device *dev = obj->dev;
1140 struct drm_i915_private *dev_priv = dev->dev_private;
1141 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1142 pgoff_t page_offset;
1143 unsigned long pfn;
1144 int ret = 0;
1145 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1147 /* We don't use vmf->pgoff since that has the fake offset */
1148 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1149 PAGE_SHIFT;
1151 /* Now bind it into the GTT if needed */
1152 mutex_lock(&dev->struct_mutex);
1153 if (!obj_priv->gtt_space) {
1154 ret = i915_gem_object_bind_to_gtt(obj, 0);
1155 if (ret)
1156 goto unlock;
1158 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1160 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1161 if (ret)
1162 goto unlock;
1165 /* Need a new fence register? */
1166 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1167 ret = i915_gem_object_get_fence_reg(obj);
1168 if (ret)
1169 goto unlock;
1172 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1173 page_offset;
1175 /* Finally, remap it using the new GTT offset */
1176 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1177 unlock:
1178 mutex_unlock(&dev->struct_mutex);
1180 switch (ret) {
1181 case 0:
1182 case -ERESTARTSYS:
1183 return VM_FAULT_NOPAGE;
1184 case -ENOMEM:
1185 case -EAGAIN:
1186 return VM_FAULT_OOM;
1187 default:
1188 return VM_FAULT_SIGBUS;
1193 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1194 * @obj: obj in question
1196 * GEM memory mapping works by handing back to userspace a fake mmap offset
1197 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1198 * up the object based on the offset and sets up the various memory mapping
1199 * structures.
1201 * This routine allocates and attaches a fake offset for @obj.
1203 static int
1204 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1206 struct drm_device *dev = obj->dev;
1207 struct drm_gem_mm *mm = dev->mm_private;
1208 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1209 struct drm_map_list *list;
1210 struct drm_local_map *map;
1211 int ret = 0;
1213 /* Set the object up for mmap'ing */
1214 list = &obj->map_list;
1215 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1216 if (!list->map)
1217 return -ENOMEM;
1219 map = list->map;
1220 map->type = _DRM_GEM;
1221 map->size = obj->size;
1222 map->handle = obj;
1224 /* Get a DRM GEM mmap offset allocated... */
1225 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1226 obj->size / PAGE_SIZE, 0, 0);
1227 if (!list->file_offset_node) {
1228 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1229 ret = -ENOMEM;
1230 goto out_free_list;
1233 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1234 obj->size / PAGE_SIZE, 0);
1235 if (!list->file_offset_node) {
1236 ret = -ENOMEM;
1237 goto out_free_list;
1240 list->hash.key = list->file_offset_node->start;
1241 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1242 DRM_ERROR("failed to add to map hash\n");
1243 ret = -ENOMEM;
1244 goto out_free_mm;
1247 /* By now we should be all set, any drm_mmap request on the offset
1248 * below will get to our mmap & fault handler */
1249 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1251 return 0;
1253 out_free_mm:
1254 drm_mm_put_block(list->file_offset_node);
1255 out_free_list:
1256 kfree(list->map);
1258 return ret;
1262 * i915_gem_release_mmap - remove physical page mappings
1263 * @obj: obj in question
1265 * Preserve the reservation of the mmapping with the DRM core code, but
1266 * relinquish ownership of the pages back to the system.
1268 * It is vital that we remove the page mapping if we have mapped a tiled
1269 * object through the GTT and then lose the fence register due to
1270 * resource pressure. Similarly if the object has been moved out of the
1271 * aperture, than pages mapped into userspace must be revoked. Removing the
1272 * mapping will then trigger a page fault on the next user access, allowing
1273 * fixup by i915_gem_fault().
1275 void
1276 i915_gem_release_mmap(struct drm_gem_object *obj)
1278 struct drm_device *dev = obj->dev;
1279 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1281 if (dev->dev_mapping)
1282 unmap_mapping_range(dev->dev_mapping,
1283 obj_priv->mmap_offset, obj->size, 1);
1286 static void
1287 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1289 struct drm_device *dev = obj->dev;
1290 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1291 struct drm_gem_mm *mm = dev->mm_private;
1292 struct drm_map_list *list;
1294 list = &obj->map_list;
1295 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1297 if (list->file_offset_node) {
1298 drm_mm_put_block(list->file_offset_node);
1299 list->file_offset_node = NULL;
1302 if (list->map) {
1303 kfree(list->map);
1304 list->map = NULL;
1307 obj_priv->mmap_offset = 0;
1311 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1312 * @obj: object to check
1314 * Return the required GTT alignment for an object, taking into account
1315 * potential fence register mapping if needed.
1317 static uint32_t
1318 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1320 struct drm_device *dev = obj->dev;
1321 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1322 int start, i;
1325 * Minimum alignment is 4k (GTT page size), but might be greater
1326 * if a fence register is needed for the object.
1328 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1329 return 4096;
1332 * Previous chips need to be aligned to the size of the smallest
1333 * fence register that can contain the object.
1335 if (IS_I9XX(dev))
1336 start = 1024*1024;
1337 else
1338 start = 512*1024;
1340 for (i = start; i < obj->size; i <<= 1)
1343 return i;
1347 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1348 * @dev: DRM device
1349 * @data: GTT mapping ioctl data
1350 * @file_priv: GEM object info
1352 * Simply returns the fake offset to userspace so it can mmap it.
1353 * The mmap call will end up in drm_gem_mmap(), which will set things
1354 * up so we can get faults in the handler above.
1356 * The fault handler will take care of binding the object into the GTT
1357 * (since it may have been evicted to make room for something), allocating
1358 * a fence register, and mapping the appropriate aperture address into
1359 * userspace.
1362 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1363 struct drm_file *file_priv)
1365 struct drm_i915_gem_mmap_gtt *args = data;
1366 struct drm_i915_private *dev_priv = dev->dev_private;
1367 struct drm_gem_object *obj;
1368 struct drm_i915_gem_object *obj_priv;
1369 int ret;
1371 if (!(dev->driver->driver_features & DRIVER_GEM))
1372 return -ENODEV;
1374 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1375 if (obj == NULL)
1376 return -EBADF;
1378 mutex_lock(&dev->struct_mutex);
1380 obj_priv = to_intel_bo(obj);
1382 if (obj_priv->madv != I915_MADV_WILLNEED) {
1383 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1384 drm_gem_object_unreference(obj);
1385 mutex_unlock(&dev->struct_mutex);
1386 return -EINVAL;
1390 if (!obj_priv->mmap_offset) {
1391 ret = i915_gem_create_mmap_offset(obj);
1392 if (ret) {
1393 drm_gem_object_unreference(obj);
1394 mutex_unlock(&dev->struct_mutex);
1395 return ret;
1399 args->offset = obj_priv->mmap_offset;
1402 * Pull it into the GTT so that we have a page list (makes the
1403 * initial fault faster and any subsequent flushing possible).
1405 if (!obj_priv->agp_mem) {
1406 ret = i915_gem_object_bind_to_gtt(obj, 0);
1407 if (ret) {
1408 drm_gem_object_unreference(obj);
1409 mutex_unlock(&dev->struct_mutex);
1410 return ret;
1412 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1415 drm_gem_object_unreference(obj);
1416 mutex_unlock(&dev->struct_mutex);
1418 return 0;
1421 void
1422 i915_gem_object_put_pages(struct drm_gem_object *obj)
1424 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1425 int page_count = obj->size / PAGE_SIZE;
1426 int i;
1428 BUG_ON(obj_priv->pages_refcount == 0);
1429 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1431 if (--obj_priv->pages_refcount != 0)
1432 return;
1434 if (obj_priv->tiling_mode != I915_TILING_NONE)
1435 i915_gem_object_save_bit_17_swizzle(obj);
1437 if (obj_priv->madv == I915_MADV_DONTNEED)
1438 obj_priv->dirty = 0;
1440 for (i = 0; i < page_count; i++) {
1441 if (obj_priv->dirty)
1442 set_page_dirty(obj_priv->pages[i]);
1444 if (obj_priv->madv == I915_MADV_WILLNEED)
1445 mark_page_accessed(obj_priv->pages[i]);
1447 page_cache_release(obj_priv->pages[i]);
1449 obj_priv->dirty = 0;
1451 drm_free_large(obj_priv->pages);
1452 obj_priv->pages = NULL;
1455 static void
1456 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1457 struct intel_ring_buffer *ring)
1459 struct drm_device *dev = obj->dev;
1460 drm_i915_private_t *dev_priv = dev->dev_private;
1461 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1462 BUG_ON(ring == NULL);
1463 obj_priv->ring = ring;
1465 /* Add a reference if we're newly entering the active list. */
1466 if (!obj_priv->active) {
1467 drm_gem_object_reference(obj);
1468 obj_priv->active = 1;
1470 /* Move from whatever list we were on to the tail of execution. */
1471 spin_lock(&dev_priv->mm.active_list_lock);
1472 list_move_tail(&obj_priv->list, &ring->active_list);
1473 spin_unlock(&dev_priv->mm.active_list_lock);
1474 obj_priv->last_rendering_seqno = seqno;
1477 static void
1478 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1480 struct drm_device *dev = obj->dev;
1481 drm_i915_private_t *dev_priv = dev->dev_private;
1482 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1484 BUG_ON(!obj_priv->active);
1485 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1486 obj_priv->last_rendering_seqno = 0;
1489 /* Immediately discard the backing storage */
1490 static void
1491 i915_gem_object_truncate(struct drm_gem_object *obj)
1493 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1494 struct inode *inode;
1496 inode = obj->filp->f_path.dentry->d_inode;
1497 if (inode->i_op->truncate)
1498 inode->i_op->truncate (inode);
1500 obj_priv->madv = __I915_MADV_PURGED;
1503 static inline int
1504 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1506 return obj_priv->madv == I915_MADV_DONTNEED;
1509 static void
1510 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1512 struct drm_device *dev = obj->dev;
1513 drm_i915_private_t *dev_priv = dev->dev_private;
1514 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1516 i915_verify_inactive(dev, __FILE__, __LINE__);
1517 if (obj_priv->pin_count != 0)
1518 list_del_init(&obj_priv->list);
1519 else
1520 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1522 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1524 obj_priv->last_rendering_seqno = 0;
1525 obj_priv->ring = NULL;
1526 if (obj_priv->active) {
1527 obj_priv->active = 0;
1528 drm_gem_object_unreference(obj);
1530 i915_verify_inactive(dev, __FILE__, __LINE__);
1533 static void
1534 i915_gem_process_flushing_list(struct drm_device *dev,
1535 uint32_t flush_domains, uint32_t seqno,
1536 struct intel_ring_buffer *ring)
1538 drm_i915_private_t *dev_priv = dev->dev_private;
1539 struct drm_i915_gem_object *obj_priv, *next;
1541 list_for_each_entry_safe(obj_priv, next,
1542 &dev_priv->mm.gpu_write_list,
1543 gpu_write_list) {
1544 struct drm_gem_object *obj = &obj_priv->base;
1546 if ((obj->write_domain & flush_domains) ==
1547 obj->write_domain &&
1548 obj_priv->ring->ring_flag == ring->ring_flag) {
1549 uint32_t old_write_domain = obj->write_domain;
1551 obj->write_domain = 0;
1552 list_del_init(&obj_priv->gpu_write_list);
1553 i915_gem_object_move_to_active(obj, seqno, ring);
1555 /* update the fence lru list */
1556 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1557 struct drm_i915_fence_reg *reg =
1558 &dev_priv->fence_regs[obj_priv->fence_reg];
1559 list_move_tail(&reg->lru_list,
1560 &dev_priv->mm.fence_list);
1563 trace_i915_gem_object_change_domain(obj,
1564 obj->read_domains,
1565 old_write_domain);
1570 uint32_t
1571 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1572 uint32_t flush_domains, struct intel_ring_buffer *ring)
1574 drm_i915_private_t *dev_priv = dev->dev_private;
1575 struct drm_i915_file_private *i915_file_priv = NULL;
1576 struct drm_i915_gem_request *request;
1577 uint32_t seqno;
1578 int was_empty;
1580 if (file_priv != NULL)
1581 i915_file_priv = file_priv->driver_priv;
1583 request = kzalloc(sizeof(*request), GFP_KERNEL);
1584 if (request == NULL)
1585 return 0;
1587 seqno = ring->add_request(dev, ring, file_priv, flush_domains);
1589 request->seqno = seqno;
1590 request->ring = ring;
1591 request->emitted_jiffies = jiffies;
1592 was_empty = list_empty(&ring->request_list);
1593 list_add_tail(&request->list, &ring->request_list);
1595 if (i915_file_priv) {
1596 list_add_tail(&request->client_list,
1597 &i915_file_priv->mm.request_list);
1598 } else {
1599 INIT_LIST_HEAD(&request->client_list);
1602 /* Associate any objects on the flushing list matching the write
1603 * domain we're flushing with our flush.
1605 if (flush_domains != 0)
1606 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
1608 if (!dev_priv->mm.suspended) {
1609 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1610 if (was_empty)
1611 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1613 return seqno;
1617 * Command execution barrier
1619 * Ensures that all commands in the ring are finished
1620 * before signalling the CPU
1622 static uint32_t
1623 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1625 uint32_t flush_domains = 0;
1627 /* The sampler always gets flushed on i965 (sigh) */
1628 if (IS_I965G(dev))
1629 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1631 ring->flush(dev, ring,
1632 I915_GEM_DOMAIN_COMMAND, flush_domains);
1633 return flush_domains;
1637 * Moves buffers associated only with the given active seqno from the active
1638 * to inactive list, potentially freeing them.
1640 static void
1641 i915_gem_retire_request(struct drm_device *dev,
1642 struct drm_i915_gem_request *request)
1644 drm_i915_private_t *dev_priv = dev->dev_private;
1646 trace_i915_gem_request_retire(dev, request->seqno);
1648 /* Move any buffers on the active list that are no longer referenced
1649 * by the ringbuffer to the flushing/inactive lists as appropriate.
1651 spin_lock(&dev_priv->mm.active_list_lock);
1652 while (!list_empty(&request->ring->active_list)) {
1653 struct drm_gem_object *obj;
1654 struct drm_i915_gem_object *obj_priv;
1656 obj_priv = list_first_entry(&request->ring->active_list,
1657 struct drm_i915_gem_object,
1658 list);
1659 obj = &obj_priv->base;
1661 /* If the seqno being retired doesn't match the oldest in the
1662 * list, then the oldest in the list must still be newer than
1663 * this seqno.
1665 if (obj_priv->last_rendering_seqno != request->seqno)
1666 goto out;
1668 #if WATCH_LRU
1669 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1670 __func__, request->seqno, obj);
1671 #endif
1673 if (obj->write_domain != 0)
1674 i915_gem_object_move_to_flushing(obj);
1675 else {
1676 /* Take a reference on the object so it won't be
1677 * freed while the spinlock is held. The list
1678 * protection for this spinlock is safe when breaking
1679 * the lock like this since the next thing we do
1680 * is just get the head of the list again.
1682 drm_gem_object_reference(obj);
1683 i915_gem_object_move_to_inactive(obj);
1684 spin_unlock(&dev_priv->mm.active_list_lock);
1685 drm_gem_object_unreference(obj);
1686 spin_lock(&dev_priv->mm.active_list_lock);
1689 out:
1690 spin_unlock(&dev_priv->mm.active_list_lock);
1694 * Returns true if seq1 is later than seq2.
1696 bool
1697 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1699 return (int32_t)(seq1 - seq2) >= 0;
1702 uint32_t
1703 i915_get_gem_seqno(struct drm_device *dev,
1704 struct intel_ring_buffer *ring)
1706 return ring->get_gem_seqno(dev, ring);
1710 * This function clears the request list as sequence numbers are passed.
1712 void
1713 i915_gem_retire_requests(struct drm_device *dev,
1714 struct intel_ring_buffer *ring)
1716 drm_i915_private_t *dev_priv = dev->dev_private;
1717 uint32_t seqno;
1719 if (!ring->status_page.page_addr
1720 || list_empty(&ring->request_list))
1721 return;
1723 seqno = i915_get_gem_seqno(dev, ring);
1725 while (!list_empty(&ring->request_list)) {
1726 struct drm_i915_gem_request *request;
1727 uint32_t retiring_seqno;
1729 request = list_first_entry(&ring->request_list,
1730 struct drm_i915_gem_request,
1731 list);
1732 retiring_seqno = request->seqno;
1734 if (i915_seqno_passed(seqno, retiring_seqno) ||
1735 atomic_read(&dev_priv->mm.wedged)) {
1736 i915_gem_retire_request(dev, request);
1738 list_del(&request->list);
1739 list_del(&request->client_list);
1740 kfree(request);
1741 } else
1742 break;
1745 if (unlikely (dev_priv->trace_irq_seqno &&
1746 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1748 ring->user_irq_put(dev, ring);
1749 dev_priv->trace_irq_seqno = 0;
1753 void
1754 i915_gem_retire_work_handler(struct work_struct *work)
1756 drm_i915_private_t *dev_priv;
1757 struct drm_device *dev;
1759 dev_priv = container_of(work, drm_i915_private_t,
1760 mm.retire_work.work);
1761 dev = dev_priv->dev;
1763 mutex_lock(&dev->struct_mutex);
1764 i915_gem_retire_requests(dev, &dev_priv->render_ring);
1766 if (HAS_BSD(dev))
1767 i915_gem_retire_requests(dev, &dev_priv->bsd_ring);
1769 if (!dev_priv->mm.suspended &&
1770 (!list_empty(&dev_priv->render_ring.request_list) ||
1771 (HAS_BSD(dev) &&
1772 !list_empty(&dev_priv->bsd_ring.request_list))))
1773 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1774 mutex_unlock(&dev->struct_mutex);
1778 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1779 int interruptible, struct intel_ring_buffer *ring)
1781 drm_i915_private_t *dev_priv = dev->dev_private;
1782 u32 ier;
1783 int ret = 0;
1785 BUG_ON(seqno == 0);
1787 if (atomic_read(&dev_priv->mm.wedged))
1788 return -EIO;
1790 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1791 if (HAS_PCH_SPLIT(dev))
1792 ier = I915_READ(DEIER) | I915_READ(GTIER);
1793 else
1794 ier = I915_READ(IER);
1795 if (!ier) {
1796 DRM_ERROR("something (likely vbetool) disabled "
1797 "interrupts, re-enabling\n");
1798 i915_driver_irq_preinstall(dev);
1799 i915_driver_irq_postinstall(dev);
1802 trace_i915_gem_request_wait_begin(dev, seqno);
1804 ring->waiting_gem_seqno = seqno;
1805 ring->user_irq_get(dev, ring);
1806 if (interruptible)
1807 ret = wait_event_interruptible(ring->irq_queue,
1808 i915_seqno_passed(
1809 ring->get_gem_seqno(dev, ring), seqno)
1810 || atomic_read(&dev_priv->mm.wedged));
1811 else
1812 wait_event(ring->irq_queue,
1813 i915_seqno_passed(
1814 ring->get_gem_seqno(dev, ring), seqno)
1815 || atomic_read(&dev_priv->mm.wedged));
1817 ring->user_irq_put(dev, ring);
1818 ring->waiting_gem_seqno = 0;
1820 trace_i915_gem_request_wait_end(dev, seqno);
1822 if (atomic_read(&dev_priv->mm.wedged))
1823 ret = -EIO;
1825 if (ret && ret != -ERESTARTSYS)
1826 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1827 __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
1829 /* Directly dispatch request retiring. While we have the work queue
1830 * to handle this, the waiter on a request often wants an associated
1831 * buffer to have made it to the inactive list, and we would need
1832 * a separate wait queue to handle that.
1834 if (ret == 0)
1835 i915_gem_retire_requests(dev, ring);
1837 return ret;
1841 * Waits for a sequence number to be signaled, and cleans up the
1842 * request and object lists appropriately for that event.
1844 static int
1845 i915_wait_request(struct drm_device *dev, uint32_t seqno,
1846 struct intel_ring_buffer *ring)
1848 return i915_do_wait_request(dev, seqno, 1, ring);
1851 static void
1852 i915_gem_flush(struct drm_device *dev,
1853 uint32_t invalidate_domains,
1854 uint32_t flush_domains)
1856 drm_i915_private_t *dev_priv = dev->dev_private;
1857 if (flush_domains & I915_GEM_DOMAIN_CPU)
1858 drm_agp_chipset_flush(dev);
1859 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1860 invalidate_domains,
1861 flush_domains);
1863 if (HAS_BSD(dev))
1864 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1865 invalidate_domains,
1866 flush_domains);
1869 static void
1870 i915_gem_flush_ring(struct drm_device *dev,
1871 uint32_t invalidate_domains,
1872 uint32_t flush_domains,
1873 struct intel_ring_buffer *ring)
1875 if (flush_domains & I915_GEM_DOMAIN_CPU)
1876 drm_agp_chipset_flush(dev);
1877 ring->flush(dev, ring,
1878 invalidate_domains,
1879 flush_domains);
1883 * Ensures that all rendering to the object has completed and the object is
1884 * safe to unbind from the GTT or access from the CPU.
1886 static int
1887 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1889 struct drm_device *dev = obj->dev;
1890 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1891 int ret;
1893 /* This function only exists to support waiting for existing rendering,
1894 * not for emitting required flushes.
1896 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1898 /* If there is rendering queued on the buffer being evicted, wait for
1899 * it.
1901 if (obj_priv->active) {
1902 #if WATCH_BUF
1903 DRM_INFO("%s: object %p wait for seqno %08x\n",
1904 __func__, obj, obj_priv->last_rendering_seqno);
1905 #endif
1906 ret = i915_wait_request(dev,
1907 obj_priv->last_rendering_seqno, obj_priv->ring);
1908 if (ret != 0)
1909 return ret;
1912 return 0;
1916 * Unbinds an object from the GTT aperture.
1919 i915_gem_object_unbind(struct drm_gem_object *obj)
1921 struct drm_device *dev = obj->dev;
1922 drm_i915_private_t *dev_priv = dev->dev_private;
1923 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1924 int ret = 0;
1926 #if WATCH_BUF
1927 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1928 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1929 #endif
1930 if (obj_priv->gtt_space == NULL)
1931 return 0;
1933 if (obj_priv->pin_count != 0) {
1934 DRM_ERROR("Attempting to unbind pinned buffer\n");
1935 return -EINVAL;
1938 /* blow away mappings if mapped through GTT */
1939 i915_gem_release_mmap(obj);
1941 /* Move the object to the CPU domain to ensure that
1942 * any possible CPU writes while it's not in the GTT
1943 * are flushed when we go to remap it. This will
1944 * also ensure that all pending GPU writes are finished
1945 * before we unbind.
1947 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1948 if (ret) {
1949 if (ret != -ERESTARTSYS)
1950 DRM_ERROR("set_domain failed: %d\n", ret);
1951 return ret;
1954 BUG_ON(obj_priv->active);
1956 /* release the fence reg _after_ flushing */
1957 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1958 i915_gem_clear_fence_reg(obj);
1960 if (obj_priv->agp_mem != NULL) {
1961 drm_unbind_agp(obj_priv->agp_mem);
1962 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1963 obj_priv->agp_mem = NULL;
1966 i915_gem_object_put_pages(obj);
1967 BUG_ON(obj_priv->pages_refcount);
1969 if (obj_priv->gtt_space) {
1970 atomic_dec(&dev->gtt_count);
1971 atomic_sub(obj->size, &dev->gtt_memory);
1973 drm_mm_put_block(obj_priv->gtt_space);
1974 obj_priv->gtt_space = NULL;
1977 /* Remove ourselves from the LRU list if present. */
1978 spin_lock(&dev_priv->mm.active_list_lock);
1979 if (!list_empty(&obj_priv->list))
1980 list_del_init(&obj_priv->list);
1981 spin_unlock(&dev_priv->mm.active_list_lock);
1983 if (i915_gem_object_is_purgeable(obj_priv))
1984 i915_gem_object_truncate(obj);
1986 trace_i915_gem_object_unbind(obj);
1988 return 0;
1991 static struct drm_gem_object *
1992 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
1994 drm_i915_private_t *dev_priv = dev->dev_private;
1995 struct drm_i915_gem_object *obj_priv;
1996 struct drm_gem_object *best = NULL;
1997 struct drm_gem_object *first = NULL;
1999 /* Try to find the smallest clean object */
2000 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2001 struct drm_gem_object *obj = &obj_priv->base;
2002 if (obj->size >= min_size) {
2003 if ((!obj_priv->dirty ||
2004 i915_gem_object_is_purgeable(obj_priv)) &&
2005 (!best || obj->size < best->size)) {
2006 best = obj;
2007 if (best->size == min_size)
2008 return best;
2010 if (!first)
2011 first = obj;
2015 return best ? best : first;
2018 static int
2019 i915_gpu_idle(struct drm_device *dev)
2021 drm_i915_private_t *dev_priv = dev->dev_private;
2022 bool lists_empty;
2023 uint32_t seqno1, seqno2;
2024 int ret;
2026 spin_lock(&dev_priv->mm.active_list_lock);
2027 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2028 list_empty(&dev_priv->render_ring.active_list) &&
2029 (!HAS_BSD(dev) ||
2030 list_empty(&dev_priv->bsd_ring.active_list)));
2031 spin_unlock(&dev_priv->mm.active_list_lock);
2033 if (lists_empty)
2034 return 0;
2036 /* Flush everything onto the inactive list. */
2037 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2038 seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2039 &dev_priv->render_ring);
2040 if (seqno1 == 0)
2041 return -ENOMEM;
2042 ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2044 if (HAS_BSD(dev)) {
2045 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2046 &dev_priv->bsd_ring);
2047 if (seqno2 == 0)
2048 return -ENOMEM;
2050 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2051 if (ret)
2052 return ret;
2056 return ret;
2059 static int
2060 i915_gem_evict_everything(struct drm_device *dev)
2062 drm_i915_private_t *dev_priv = dev->dev_private;
2063 int ret;
2064 bool lists_empty;
2066 spin_lock(&dev_priv->mm.active_list_lock);
2067 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2068 list_empty(&dev_priv->mm.flushing_list) &&
2069 list_empty(&dev_priv->render_ring.active_list) &&
2070 (!HAS_BSD(dev)
2071 || list_empty(&dev_priv->bsd_ring.active_list)));
2072 spin_unlock(&dev_priv->mm.active_list_lock);
2074 if (lists_empty)
2075 return -ENOSPC;
2077 /* Flush everything (on to the inactive lists) and evict */
2078 ret = i915_gpu_idle(dev);
2079 if (ret)
2080 return ret;
2082 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2084 ret = i915_gem_evict_from_inactive_list(dev);
2085 if (ret)
2086 return ret;
2088 spin_lock(&dev_priv->mm.active_list_lock);
2089 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2090 list_empty(&dev_priv->mm.flushing_list) &&
2091 list_empty(&dev_priv->render_ring.active_list) &&
2092 (!HAS_BSD(dev)
2093 || list_empty(&dev_priv->bsd_ring.active_list)));
2094 spin_unlock(&dev_priv->mm.active_list_lock);
2095 BUG_ON(!lists_empty);
2097 return 0;
2100 static int
2101 i915_gem_evict_something(struct drm_device *dev, int min_size)
2103 drm_i915_private_t *dev_priv = dev->dev_private;
2104 struct drm_gem_object *obj;
2105 int ret;
2107 struct intel_ring_buffer *render_ring = &dev_priv->render_ring;
2108 struct intel_ring_buffer *bsd_ring = &dev_priv->bsd_ring;
2109 for (;;) {
2110 i915_gem_retire_requests(dev, render_ring);
2112 if (HAS_BSD(dev))
2113 i915_gem_retire_requests(dev, bsd_ring);
2115 /* If there's an inactive buffer available now, grab it
2116 * and be done.
2118 obj = i915_gem_find_inactive_object(dev, min_size);
2119 if (obj) {
2120 struct drm_i915_gem_object *obj_priv;
2122 #if WATCH_LRU
2123 DRM_INFO("%s: evicting %p\n", __func__, obj);
2124 #endif
2125 obj_priv = to_intel_bo(obj);
2126 BUG_ON(obj_priv->pin_count != 0);
2127 BUG_ON(obj_priv->active);
2129 /* Wait on the rendering and unbind the buffer. */
2130 return i915_gem_object_unbind(obj);
2133 /* If we didn't get anything, but the ring is still processing
2134 * things, wait for the next to finish and hopefully leave us
2135 * a buffer to evict.
2137 if (!list_empty(&render_ring->request_list)) {
2138 struct drm_i915_gem_request *request;
2140 request = list_first_entry(&render_ring->request_list,
2141 struct drm_i915_gem_request,
2142 list);
2144 ret = i915_wait_request(dev,
2145 request->seqno, request->ring);
2146 if (ret)
2147 return ret;
2149 continue;
2152 if (HAS_BSD(dev) && !list_empty(&bsd_ring->request_list)) {
2153 struct drm_i915_gem_request *request;
2155 request = list_first_entry(&bsd_ring->request_list,
2156 struct drm_i915_gem_request,
2157 list);
2159 ret = i915_wait_request(dev,
2160 request->seqno, request->ring);
2161 if (ret)
2162 return ret;
2164 continue;
2167 /* If we didn't have anything on the request list but there
2168 * are buffers awaiting a flush, emit one and try again.
2169 * When we wait on it, those buffers waiting for that flush
2170 * will get moved to inactive.
2172 if (!list_empty(&dev_priv->mm.flushing_list)) {
2173 struct drm_i915_gem_object *obj_priv;
2175 /* Find an object that we can immediately reuse */
2176 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2177 obj = &obj_priv->base;
2178 if (obj->size >= min_size)
2179 break;
2181 obj = NULL;
2184 if (obj != NULL) {
2185 uint32_t seqno;
2187 i915_gem_flush_ring(dev,
2188 obj->write_domain,
2189 obj->write_domain,
2190 obj_priv->ring);
2191 seqno = i915_add_request(dev, NULL,
2192 obj->write_domain,
2193 obj_priv->ring);
2194 if (seqno == 0)
2195 return -ENOMEM;
2196 continue;
2200 /* If we didn't do any of the above, there's no single buffer
2201 * large enough to swap out for the new one, so just evict
2202 * everything and start again. (This should be rare.)
2204 if (!list_empty (&dev_priv->mm.inactive_list))
2205 return i915_gem_evict_from_inactive_list(dev);
2206 else
2207 return i915_gem_evict_everything(dev);
2212 i915_gem_object_get_pages(struct drm_gem_object *obj,
2213 gfp_t gfpmask)
2215 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2216 int page_count, i;
2217 struct address_space *mapping;
2218 struct inode *inode;
2219 struct page *page;
2221 BUG_ON(obj_priv->pages_refcount
2222 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2224 if (obj_priv->pages_refcount++ != 0)
2225 return 0;
2227 /* Get the list of pages out of our struct file. They'll be pinned
2228 * at this point until we release them.
2230 page_count = obj->size / PAGE_SIZE;
2231 BUG_ON(obj_priv->pages != NULL);
2232 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2233 if (obj_priv->pages == NULL) {
2234 obj_priv->pages_refcount--;
2235 return -ENOMEM;
2238 inode = obj->filp->f_path.dentry->d_inode;
2239 mapping = inode->i_mapping;
2240 for (i = 0; i < page_count; i++) {
2241 page = read_cache_page_gfp(mapping, i,
2242 GFP_HIGHUSER |
2243 __GFP_COLD |
2244 __GFP_RECLAIMABLE |
2245 gfpmask);
2246 if (IS_ERR(page))
2247 goto err_pages;
2249 obj_priv->pages[i] = page;
2252 if (obj_priv->tiling_mode != I915_TILING_NONE)
2253 i915_gem_object_do_bit_17_swizzle(obj);
2255 return 0;
2257 err_pages:
2258 while (i--)
2259 page_cache_release(obj_priv->pages[i]);
2261 drm_free_large(obj_priv->pages);
2262 obj_priv->pages = NULL;
2263 obj_priv->pages_refcount--;
2264 return PTR_ERR(page);
2267 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2269 struct drm_gem_object *obj = reg->obj;
2270 struct drm_device *dev = obj->dev;
2271 drm_i915_private_t *dev_priv = dev->dev_private;
2272 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2273 int regnum = obj_priv->fence_reg;
2274 uint64_t val;
2276 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2277 0xfffff000) << 32;
2278 val |= obj_priv->gtt_offset & 0xfffff000;
2279 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2280 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2282 if (obj_priv->tiling_mode == I915_TILING_Y)
2283 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2284 val |= I965_FENCE_REG_VALID;
2286 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2289 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2291 struct drm_gem_object *obj = reg->obj;
2292 struct drm_device *dev = obj->dev;
2293 drm_i915_private_t *dev_priv = dev->dev_private;
2294 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2295 int regnum = obj_priv->fence_reg;
2296 uint64_t val;
2298 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2299 0xfffff000) << 32;
2300 val |= obj_priv->gtt_offset & 0xfffff000;
2301 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2302 if (obj_priv->tiling_mode == I915_TILING_Y)
2303 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2304 val |= I965_FENCE_REG_VALID;
2306 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2309 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2311 struct drm_gem_object *obj = reg->obj;
2312 struct drm_device *dev = obj->dev;
2313 drm_i915_private_t *dev_priv = dev->dev_private;
2314 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2315 int regnum = obj_priv->fence_reg;
2316 int tile_width;
2317 uint32_t fence_reg, val;
2318 uint32_t pitch_val;
2320 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2321 (obj_priv->gtt_offset & (obj->size - 1))) {
2322 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2323 __func__, obj_priv->gtt_offset, obj->size);
2324 return;
2327 if (obj_priv->tiling_mode == I915_TILING_Y &&
2328 HAS_128_BYTE_Y_TILING(dev))
2329 tile_width = 128;
2330 else
2331 tile_width = 512;
2333 /* Note: pitch better be a power of two tile widths */
2334 pitch_val = obj_priv->stride / tile_width;
2335 pitch_val = ffs(pitch_val) - 1;
2337 if (obj_priv->tiling_mode == I915_TILING_Y &&
2338 HAS_128_BYTE_Y_TILING(dev))
2339 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2340 else
2341 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2343 val = obj_priv->gtt_offset;
2344 if (obj_priv->tiling_mode == I915_TILING_Y)
2345 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2346 val |= I915_FENCE_SIZE_BITS(obj->size);
2347 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2348 val |= I830_FENCE_REG_VALID;
2350 if (regnum < 8)
2351 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2352 else
2353 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2354 I915_WRITE(fence_reg, val);
2357 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2359 struct drm_gem_object *obj = reg->obj;
2360 struct drm_device *dev = obj->dev;
2361 drm_i915_private_t *dev_priv = dev->dev_private;
2362 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2363 int regnum = obj_priv->fence_reg;
2364 uint32_t val;
2365 uint32_t pitch_val;
2366 uint32_t fence_size_bits;
2368 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2369 (obj_priv->gtt_offset & (obj->size - 1))) {
2370 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2371 __func__, obj_priv->gtt_offset);
2372 return;
2375 pitch_val = obj_priv->stride / 128;
2376 pitch_val = ffs(pitch_val) - 1;
2377 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2379 val = obj_priv->gtt_offset;
2380 if (obj_priv->tiling_mode == I915_TILING_Y)
2381 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2382 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2383 WARN_ON(fence_size_bits & ~0x00000f00);
2384 val |= fence_size_bits;
2385 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2386 val |= I830_FENCE_REG_VALID;
2388 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2391 static int i915_find_fence_reg(struct drm_device *dev)
2393 struct drm_i915_fence_reg *reg = NULL;
2394 struct drm_i915_gem_object *obj_priv = NULL;
2395 struct drm_i915_private *dev_priv = dev->dev_private;
2396 struct drm_gem_object *obj = NULL;
2397 int i, avail, ret;
2399 /* First try to find a free reg */
2400 avail = 0;
2401 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2402 reg = &dev_priv->fence_regs[i];
2403 if (!reg->obj)
2404 return i;
2406 obj_priv = to_intel_bo(reg->obj);
2407 if (!obj_priv->pin_count)
2408 avail++;
2411 if (avail == 0)
2412 return -ENOSPC;
2414 /* None available, try to steal one or wait for a user to finish */
2415 i = I915_FENCE_REG_NONE;
2416 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2417 lru_list) {
2418 obj = reg->obj;
2419 obj_priv = to_intel_bo(obj);
2421 if (obj_priv->pin_count)
2422 continue;
2424 /* found one! */
2425 i = obj_priv->fence_reg;
2426 break;
2429 BUG_ON(i == I915_FENCE_REG_NONE);
2431 /* We only have a reference on obj from the active list. put_fence_reg
2432 * might drop that one, causing a use-after-free in it. So hold a
2433 * private reference to obj like the other callers of put_fence_reg
2434 * (set_tiling ioctl) do. */
2435 drm_gem_object_reference(obj);
2436 ret = i915_gem_object_put_fence_reg(obj);
2437 drm_gem_object_unreference(obj);
2438 if (ret != 0)
2439 return ret;
2441 return i;
2445 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2446 * @obj: object to map through a fence reg
2448 * When mapping objects through the GTT, userspace wants to be able to write
2449 * to them without having to worry about swizzling if the object is tiled.
2451 * This function walks the fence regs looking for a free one for @obj,
2452 * stealing one if it can't find any.
2454 * It then sets up the reg based on the object's properties: address, pitch
2455 * and tiling format.
2458 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2460 struct drm_device *dev = obj->dev;
2461 struct drm_i915_private *dev_priv = dev->dev_private;
2462 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2463 struct drm_i915_fence_reg *reg = NULL;
2464 int ret;
2466 /* Just update our place in the LRU if our fence is getting used. */
2467 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2468 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2469 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2470 return 0;
2473 switch (obj_priv->tiling_mode) {
2474 case I915_TILING_NONE:
2475 WARN(1, "allocating a fence for non-tiled object?\n");
2476 break;
2477 case I915_TILING_X:
2478 if (!obj_priv->stride)
2479 return -EINVAL;
2480 WARN((obj_priv->stride & (512 - 1)),
2481 "object 0x%08x is X tiled but has non-512B pitch\n",
2482 obj_priv->gtt_offset);
2483 break;
2484 case I915_TILING_Y:
2485 if (!obj_priv->stride)
2486 return -EINVAL;
2487 WARN((obj_priv->stride & (128 - 1)),
2488 "object 0x%08x is Y tiled but has non-128B pitch\n",
2489 obj_priv->gtt_offset);
2490 break;
2493 ret = i915_find_fence_reg(dev);
2494 if (ret < 0)
2495 return ret;
2497 obj_priv->fence_reg = ret;
2498 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2499 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2501 reg->obj = obj;
2503 if (IS_GEN6(dev))
2504 sandybridge_write_fence_reg(reg);
2505 else if (IS_I965G(dev))
2506 i965_write_fence_reg(reg);
2507 else if (IS_I9XX(dev))
2508 i915_write_fence_reg(reg);
2509 else
2510 i830_write_fence_reg(reg);
2512 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2513 obj_priv->tiling_mode);
2515 return 0;
2519 * i915_gem_clear_fence_reg - clear out fence register info
2520 * @obj: object to clear
2522 * Zeroes out the fence register itself and clears out the associated
2523 * data structures in dev_priv and obj_priv.
2525 static void
2526 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2528 struct drm_device *dev = obj->dev;
2529 drm_i915_private_t *dev_priv = dev->dev_private;
2530 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2531 struct drm_i915_fence_reg *reg =
2532 &dev_priv->fence_regs[obj_priv->fence_reg];
2534 if (IS_GEN6(dev)) {
2535 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2536 (obj_priv->fence_reg * 8), 0);
2537 } else if (IS_I965G(dev)) {
2538 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2539 } else {
2540 uint32_t fence_reg;
2542 if (obj_priv->fence_reg < 8)
2543 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2544 else
2545 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2546 8) * 4;
2548 I915_WRITE(fence_reg, 0);
2551 reg->obj = NULL;
2552 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2553 list_del_init(&reg->lru_list);
2557 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2558 * to the buffer to finish, and then resets the fence register.
2559 * @obj: tiled object holding a fence register.
2561 * Zeroes out the fence register itself and clears out the associated
2562 * data structures in dev_priv and obj_priv.
2565 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2567 struct drm_device *dev = obj->dev;
2568 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2570 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2571 return 0;
2573 /* If we've changed tiling, GTT-mappings of the object
2574 * need to re-fault to ensure that the correct fence register
2575 * setup is in place.
2577 i915_gem_release_mmap(obj);
2579 /* On the i915, GPU access to tiled buffers is via a fence,
2580 * therefore we must wait for any outstanding access to complete
2581 * before clearing the fence.
2583 if (!IS_I965G(dev)) {
2584 int ret;
2586 ret = i915_gem_object_flush_gpu_write_domain(obj);
2587 if (ret != 0)
2588 return ret;
2590 ret = i915_gem_object_wait_rendering(obj);
2591 if (ret != 0)
2592 return ret;
2595 i915_gem_object_flush_gtt_write_domain(obj);
2596 i915_gem_clear_fence_reg (obj);
2598 return 0;
2602 * Finds free space in the GTT aperture and binds the object there.
2604 static int
2605 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2607 struct drm_device *dev = obj->dev;
2608 drm_i915_private_t *dev_priv = dev->dev_private;
2609 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2610 struct drm_mm_node *free_space;
2611 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2612 int ret;
2614 if (obj_priv->madv != I915_MADV_WILLNEED) {
2615 DRM_ERROR("Attempting to bind a purgeable object\n");
2616 return -EINVAL;
2619 if (alignment == 0)
2620 alignment = i915_gem_get_gtt_alignment(obj);
2621 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2622 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2623 return -EINVAL;
2626 /* If the object is bigger than the entire aperture, reject it early
2627 * before evicting everything in a vain attempt to find space.
2629 if (obj->size > dev->gtt_total) {
2630 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2631 return -E2BIG;
2634 search_free:
2635 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2636 obj->size, alignment, 0);
2637 if (free_space != NULL) {
2638 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2639 alignment);
2640 if (obj_priv->gtt_space != NULL)
2641 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2643 if (obj_priv->gtt_space == NULL) {
2644 /* If the gtt is empty and we're still having trouble
2645 * fitting our object in, we're out of memory.
2647 #if WATCH_LRU
2648 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2649 #endif
2650 ret = i915_gem_evict_something(dev, obj->size);
2651 if (ret)
2652 return ret;
2654 goto search_free;
2657 #if WATCH_BUF
2658 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2659 obj->size, obj_priv->gtt_offset);
2660 #endif
2661 ret = i915_gem_object_get_pages(obj, gfpmask);
2662 if (ret) {
2663 drm_mm_put_block(obj_priv->gtt_space);
2664 obj_priv->gtt_space = NULL;
2666 if (ret == -ENOMEM) {
2667 /* first try to clear up some space from the GTT */
2668 ret = i915_gem_evict_something(dev, obj->size);
2669 if (ret) {
2670 /* now try to shrink everyone else */
2671 if (gfpmask) {
2672 gfpmask = 0;
2673 goto search_free;
2676 return ret;
2679 goto search_free;
2682 return ret;
2685 /* Create an AGP memory structure pointing at our pages, and bind it
2686 * into the GTT.
2688 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2689 obj_priv->pages,
2690 obj->size >> PAGE_SHIFT,
2691 obj_priv->gtt_offset,
2692 obj_priv->agp_type);
2693 if (obj_priv->agp_mem == NULL) {
2694 i915_gem_object_put_pages(obj);
2695 drm_mm_put_block(obj_priv->gtt_space);
2696 obj_priv->gtt_space = NULL;
2698 ret = i915_gem_evict_something(dev, obj->size);
2699 if (ret)
2700 return ret;
2702 goto search_free;
2704 atomic_inc(&dev->gtt_count);
2705 atomic_add(obj->size, &dev->gtt_memory);
2707 /* Assert that the object is not currently in any GPU domain. As it
2708 * wasn't in the GTT, there shouldn't be any way it could have been in
2709 * a GPU cache
2711 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2712 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2714 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2716 return 0;
2719 void
2720 i915_gem_clflush_object(struct drm_gem_object *obj)
2722 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2724 /* If we don't have a page list set up, then we're not pinned
2725 * to GPU, and we can ignore the cache flush because it'll happen
2726 * again at bind time.
2728 if (obj_priv->pages == NULL)
2729 return;
2731 trace_i915_gem_object_clflush(obj);
2733 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2736 /** Flushes any GPU write domain for the object if it's dirty. */
2737 static int
2738 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2740 struct drm_device *dev = obj->dev;
2741 uint32_t old_write_domain;
2742 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2744 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2745 return 0;
2747 /* Queue the GPU write cache flushing we need. */
2748 old_write_domain = obj->write_domain;
2749 i915_gem_flush(dev, 0, obj->write_domain);
2750 if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
2751 return -ENOMEM;
2753 trace_i915_gem_object_change_domain(obj,
2754 obj->read_domains,
2755 old_write_domain);
2756 return 0;
2759 /** Flushes the GTT write domain for the object if it's dirty. */
2760 static void
2761 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2763 uint32_t old_write_domain;
2765 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2766 return;
2768 /* No actual flushing is required for the GTT write domain. Writes
2769 * to it immediately go to main memory as far as we know, so there's
2770 * no chipset flush. It also doesn't land in render cache.
2772 old_write_domain = obj->write_domain;
2773 obj->write_domain = 0;
2775 trace_i915_gem_object_change_domain(obj,
2776 obj->read_domains,
2777 old_write_domain);
2780 /** Flushes the CPU write domain for the object if it's dirty. */
2781 static void
2782 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2784 struct drm_device *dev = obj->dev;
2785 uint32_t old_write_domain;
2787 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2788 return;
2790 i915_gem_clflush_object(obj);
2791 drm_agp_chipset_flush(dev);
2792 old_write_domain = obj->write_domain;
2793 obj->write_domain = 0;
2795 trace_i915_gem_object_change_domain(obj,
2796 obj->read_domains,
2797 old_write_domain);
2801 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2803 int ret = 0;
2805 switch (obj->write_domain) {
2806 case I915_GEM_DOMAIN_GTT:
2807 i915_gem_object_flush_gtt_write_domain(obj);
2808 break;
2809 case I915_GEM_DOMAIN_CPU:
2810 i915_gem_object_flush_cpu_write_domain(obj);
2811 break;
2812 default:
2813 ret = i915_gem_object_flush_gpu_write_domain(obj);
2814 break;
2817 return ret;
2821 * Moves a single object to the GTT read, and possibly write domain.
2823 * This function returns when the move is complete, including waiting on
2824 * flushes to occur.
2827 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2829 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2830 uint32_t old_write_domain, old_read_domains;
2831 int ret;
2833 /* Not valid to be called on unbound objects. */
2834 if (obj_priv->gtt_space == NULL)
2835 return -EINVAL;
2837 ret = i915_gem_object_flush_gpu_write_domain(obj);
2838 if (ret != 0)
2839 return ret;
2841 /* Wait on any GPU rendering and flushing to occur. */
2842 ret = i915_gem_object_wait_rendering(obj);
2843 if (ret != 0)
2844 return ret;
2846 old_write_domain = obj->write_domain;
2847 old_read_domains = obj->read_domains;
2849 /* If we're writing through the GTT domain, then CPU and GPU caches
2850 * will need to be invalidated at next use.
2852 if (write)
2853 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2855 i915_gem_object_flush_cpu_write_domain(obj);
2857 /* It should now be out of any other write domains, and we can update
2858 * the domain values for our changes.
2860 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2861 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2862 if (write) {
2863 obj->write_domain = I915_GEM_DOMAIN_GTT;
2864 obj_priv->dirty = 1;
2867 trace_i915_gem_object_change_domain(obj,
2868 old_read_domains,
2869 old_write_domain);
2871 return 0;
2875 * Prepare buffer for display plane. Use uninterruptible for possible flush
2876 * wait, as in modesetting process we're not supposed to be interrupted.
2879 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2881 struct drm_device *dev = obj->dev;
2882 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2883 uint32_t old_write_domain, old_read_domains;
2884 int ret;
2886 /* Not valid to be called on unbound objects. */
2887 if (obj_priv->gtt_space == NULL)
2888 return -EINVAL;
2890 ret = i915_gem_object_flush_gpu_write_domain(obj);
2891 if (ret)
2892 return ret;
2894 /* Wait on any GPU rendering and flushing to occur. */
2895 if (obj_priv->active) {
2896 #if WATCH_BUF
2897 DRM_INFO("%s: object %p wait for seqno %08x\n",
2898 __func__, obj, obj_priv->last_rendering_seqno);
2899 #endif
2900 ret = i915_do_wait_request(dev,
2901 obj_priv->last_rendering_seqno,
2903 obj_priv->ring);
2904 if (ret != 0)
2905 return ret;
2908 i915_gem_object_flush_cpu_write_domain(obj);
2910 old_write_domain = obj->write_domain;
2911 old_read_domains = obj->read_domains;
2913 /* It should now be out of any other write domains, and we can update
2914 * the domain values for our changes.
2916 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2917 obj->read_domains = I915_GEM_DOMAIN_GTT;
2918 obj->write_domain = I915_GEM_DOMAIN_GTT;
2919 obj_priv->dirty = 1;
2921 trace_i915_gem_object_change_domain(obj,
2922 old_read_domains,
2923 old_write_domain);
2925 return 0;
2929 * Moves a single object to the CPU read, and possibly write domain.
2931 * This function returns when the move is complete, including waiting on
2932 * flushes to occur.
2934 static int
2935 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2937 uint32_t old_write_domain, old_read_domains;
2938 int ret;
2940 ret = i915_gem_object_flush_gpu_write_domain(obj);
2941 if (ret)
2942 return ret;
2944 /* Wait on any GPU rendering and flushing to occur. */
2945 ret = i915_gem_object_wait_rendering(obj);
2946 if (ret != 0)
2947 return ret;
2949 i915_gem_object_flush_gtt_write_domain(obj);
2951 /* If we have a partially-valid cache of the object in the CPU,
2952 * finish invalidating it and free the per-page flags.
2954 i915_gem_object_set_to_full_cpu_read_domain(obj);
2956 old_write_domain = obj->write_domain;
2957 old_read_domains = obj->read_domains;
2959 /* Flush the CPU cache if it's still invalid. */
2960 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2961 i915_gem_clflush_object(obj);
2963 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2966 /* It should now be out of any other write domains, and we can update
2967 * the domain values for our changes.
2969 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2971 /* If we're writing through the CPU, then the GPU read domains will
2972 * need to be invalidated at next use.
2974 if (write) {
2975 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2976 obj->write_domain = I915_GEM_DOMAIN_CPU;
2979 trace_i915_gem_object_change_domain(obj,
2980 old_read_domains,
2981 old_write_domain);
2983 return 0;
2987 * Set the next domain for the specified object. This
2988 * may not actually perform the necessary flushing/invaliding though,
2989 * as that may want to be batched with other set_domain operations
2991 * This is (we hope) the only really tricky part of gem. The goal
2992 * is fairly simple -- track which caches hold bits of the object
2993 * and make sure they remain coherent. A few concrete examples may
2994 * help to explain how it works. For shorthand, we use the notation
2995 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2996 * a pair of read and write domain masks.
2998 * Case 1: the batch buffer
3000 * 1. Allocated
3001 * 2. Written by CPU
3002 * 3. Mapped to GTT
3003 * 4. Read by GPU
3004 * 5. Unmapped from GTT
3005 * 6. Freed
3007 * Let's take these a step at a time
3009 * 1. Allocated
3010 * Pages allocated from the kernel may still have
3011 * cache contents, so we set them to (CPU, CPU) always.
3012 * 2. Written by CPU (using pwrite)
3013 * The pwrite function calls set_domain (CPU, CPU) and
3014 * this function does nothing (as nothing changes)
3015 * 3. Mapped by GTT
3016 * This function asserts that the object is not
3017 * currently in any GPU-based read or write domains
3018 * 4. Read by GPU
3019 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3020 * As write_domain is zero, this function adds in the
3021 * current read domains (CPU+COMMAND, 0).
3022 * flush_domains is set to CPU.
3023 * invalidate_domains is set to COMMAND
3024 * clflush is run to get data out of the CPU caches
3025 * then i915_dev_set_domain calls i915_gem_flush to
3026 * emit an MI_FLUSH and drm_agp_chipset_flush
3027 * 5. Unmapped from GTT
3028 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3029 * flush_domains and invalidate_domains end up both zero
3030 * so no flushing/invalidating happens
3031 * 6. Freed
3032 * yay, done
3034 * Case 2: The shared render buffer
3036 * 1. Allocated
3037 * 2. Mapped to GTT
3038 * 3. Read/written by GPU
3039 * 4. set_domain to (CPU,CPU)
3040 * 5. Read/written by CPU
3041 * 6. Read/written by GPU
3043 * 1. Allocated
3044 * Same as last example, (CPU, CPU)
3045 * 2. Mapped to GTT
3046 * Nothing changes (assertions find that it is not in the GPU)
3047 * 3. Read/written by GPU
3048 * execbuffer calls set_domain (RENDER, RENDER)
3049 * flush_domains gets CPU
3050 * invalidate_domains gets GPU
3051 * clflush (obj)
3052 * MI_FLUSH and drm_agp_chipset_flush
3053 * 4. set_domain (CPU, CPU)
3054 * flush_domains gets GPU
3055 * invalidate_domains gets CPU
3056 * wait_rendering (obj) to make sure all drawing is complete.
3057 * This will include an MI_FLUSH to get the data from GPU
3058 * to memory
3059 * clflush (obj) to invalidate the CPU cache
3060 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3061 * 5. Read/written by CPU
3062 * cache lines are loaded and dirtied
3063 * 6. Read written by GPU
3064 * Same as last GPU access
3066 * Case 3: The constant buffer
3068 * 1. Allocated
3069 * 2. Written by CPU
3070 * 3. Read by GPU
3071 * 4. Updated (written) by CPU again
3072 * 5. Read by GPU
3074 * 1. Allocated
3075 * (CPU, CPU)
3076 * 2. Written by CPU
3077 * (CPU, CPU)
3078 * 3. Read by GPU
3079 * (CPU+RENDER, 0)
3080 * flush_domains = CPU
3081 * invalidate_domains = RENDER
3082 * clflush (obj)
3083 * MI_FLUSH
3084 * drm_agp_chipset_flush
3085 * 4. Updated (written) by CPU again
3086 * (CPU, CPU)
3087 * flush_domains = 0 (no previous write domain)
3088 * invalidate_domains = 0 (no new read domains)
3089 * 5. Read by GPU
3090 * (CPU+RENDER, 0)
3091 * flush_domains = CPU
3092 * invalidate_domains = RENDER
3093 * clflush (obj)
3094 * MI_FLUSH
3095 * drm_agp_chipset_flush
3097 static void
3098 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3100 struct drm_device *dev = obj->dev;
3101 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3102 uint32_t invalidate_domains = 0;
3103 uint32_t flush_domains = 0;
3104 uint32_t old_read_domains;
3106 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3107 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3109 intel_mark_busy(dev, obj);
3111 #if WATCH_BUF
3112 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3113 __func__, obj,
3114 obj->read_domains, obj->pending_read_domains,
3115 obj->write_domain, obj->pending_write_domain);
3116 #endif
3118 * If the object isn't moving to a new write domain,
3119 * let the object stay in multiple read domains
3121 if (obj->pending_write_domain == 0)
3122 obj->pending_read_domains |= obj->read_domains;
3123 else
3124 obj_priv->dirty = 1;
3127 * Flush the current write domain if
3128 * the new read domains don't match. Invalidate
3129 * any read domains which differ from the old
3130 * write domain
3132 if (obj->write_domain &&
3133 obj->write_domain != obj->pending_read_domains) {
3134 flush_domains |= obj->write_domain;
3135 invalidate_domains |=
3136 obj->pending_read_domains & ~obj->write_domain;
3139 * Invalidate any read caches which may have
3140 * stale data. That is, any new read domains.
3142 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3143 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3144 #if WATCH_BUF
3145 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3146 __func__, flush_domains, invalidate_domains);
3147 #endif
3148 i915_gem_clflush_object(obj);
3151 old_read_domains = obj->read_domains;
3153 /* The actual obj->write_domain will be updated with
3154 * pending_write_domain after we emit the accumulated flush for all
3155 * of our domain changes in execbuffers (which clears objects'
3156 * write_domains). So if we have a current write domain that we
3157 * aren't changing, set pending_write_domain to that.
3159 if (flush_domains == 0 && obj->pending_write_domain == 0)
3160 obj->pending_write_domain = obj->write_domain;
3161 obj->read_domains = obj->pending_read_domains;
3163 dev->invalidate_domains |= invalidate_domains;
3164 dev->flush_domains |= flush_domains;
3165 #if WATCH_BUF
3166 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3167 __func__,
3168 obj->read_domains, obj->write_domain,
3169 dev->invalidate_domains, dev->flush_domains);
3170 #endif
3172 trace_i915_gem_object_change_domain(obj,
3173 old_read_domains,
3174 obj->write_domain);
3178 * Moves the object from a partially CPU read to a full one.
3180 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3181 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3183 static void
3184 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3186 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3188 if (!obj_priv->page_cpu_valid)
3189 return;
3191 /* If we're partially in the CPU read domain, finish moving it in.
3193 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3194 int i;
3196 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3197 if (obj_priv->page_cpu_valid[i])
3198 continue;
3199 drm_clflush_pages(obj_priv->pages + i, 1);
3203 /* Free the page_cpu_valid mappings which are now stale, whether
3204 * or not we've got I915_GEM_DOMAIN_CPU.
3206 kfree(obj_priv->page_cpu_valid);
3207 obj_priv->page_cpu_valid = NULL;
3211 * Set the CPU read domain on a range of the object.
3213 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3214 * not entirely valid. The page_cpu_valid member of the object flags which
3215 * pages have been flushed, and will be respected by
3216 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3217 * of the whole object.
3219 * This function returns when the move is complete, including waiting on
3220 * flushes to occur.
3222 static int
3223 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3224 uint64_t offset, uint64_t size)
3226 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3227 uint32_t old_read_domains;
3228 int i, ret;
3230 if (offset == 0 && size == obj->size)
3231 return i915_gem_object_set_to_cpu_domain(obj, 0);
3233 ret = i915_gem_object_flush_gpu_write_domain(obj);
3234 if (ret)
3235 return ret;
3237 /* Wait on any GPU rendering and flushing to occur. */
3238 ret = i915_gem_object_wait_rendering(obj);
3239 if (ret != 0)
3240 return ret;
3241 i915_gem_object_flush_gtt_write_domain(obj);
3243 /* If we're already fully in the CPU read domain, we're done. */
3244 if (obj_priv->page_cpu_valid == NULL &&
3245 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3246 return 0;
3248 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3249 * newly adding I915_GEM_DOMAIN_CPU
3251 if (obj_priv->page_cpu_valid == NULL) {
3252 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3253 GFP_KERNEL);
3254 if (obj_priv->page_cpu_valid == NULL)
3255 return -ENOMEM;
3256 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3257 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3259 /* Flush the cache on any pages that are still invalid from the CPU's
3260 * perspective.
3262 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3263 i++) {
3264 if (obj_priv->page_cpu_valid[i])
3265 continue;
3267 drm_clflush_pages(obj_priv->pages + i, 1);
3269 obj_priv->page_cpu_valid[i] = 1;
3272 /* It should now be out of any other write domains, and we can update
3273 * the domain values for our changes.
3275 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3277 old_read_domains = obj->read_domains;
3278 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3280 trace_i915_gem_object_change_domain(obj,
3281 old_read_domains,
3282 obj->write_domain);
3284 return 0;
3288 * Pin an object to the GTT and evaluate the relocations landing in it.
3290 static int
3291 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3292 struct drm_file *file_priv,
3293 struct drm_i915_gem_exec_object2 *entry,
3294 struct drm_i915_gem_relocation_entry *relocs)
3296 struct drm_device *dev = obj->dev;
3297 drm_i915_private_t *dev_priv = dev->dev_private;
3298 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3299 int i, ret;
3300 void __iomem *reloc_page;
3301 bool need_fence;
3303 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3304 obj_priv->tiling_mode != I915_TILING_NONE;
3306 /* Check fence reg constraints and rebind if necessary */
3307 if (need_fence &&
3308 !i915_gem_object_fence_offset_ok(obj,
3309 obj_priv->tiling_mode)) {
3310 ret = i915_gem_object_unbind(obj);
3311 if (ret)
3312 return ret;
3315 /* Choose the GTT offset for our buffer and put it there. */
3316 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3317 if (ret)
3318 return ret;
3321 * Pre-965 chips need a fence register set up in order to
3322 * properly handle blits to/from tiled surfaces.
3324 if (need_fence) {
3325 ret = i915_gem_object_get_fence_reg(obj);
3326 if (ret != 0) {
3327 i915_gem_object_unpin(obj);
3328 return ret;
3332 entry->offset = obj_priv->gtt_offset;
3334 /* Apply the relocations, using the GTT aperture to avoid cache
3335 * flushing requirements.
3337 for (i = 0; i < entry->relocation_count; i++) {
3338 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3339 struct drm_gem_object *target_obj;
3340 struct drm_i915_gem_object *target_obj_priv;
3341 uint32_t reloc_val, reloc_offset;
3342 uint32_t __iomem *reloc_entry;
3344 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3345 reloc->target_handle);
3346 if (target_obj == NULL) {
3347 i915_gem_object_unpin(obj);
3348 return -EBADF;
3350 target_obj_priv = to_intel_bo(target_obj);
3352 #if WATCH_RELOC
3353 DRM_INFO("%s: obj %p offset %08x target %d "
3354 "read %08x write %08x gtt %08x "
3355 "presumed %08x delta %08x\n",
3356 __func__,
3357 obj,
3358 (int) reloc->offset,
3359 (int) reloc->target_handle,
3360 (int) reloc->read_domains,
3361 (int) reloc->write_domain,
3362 (int) target_obj_priv->gtt_offset,
3363 (int) reloc->presumed_offset,
3364 reloc->delta);
3365 #endif
3367 /* The target buffer should have appeared before us in the
3368 * exec_object list, so it should have a GTT space bound by now.
3370 if (target_obj_priv->gtt_space == NULL) {
3371 DRM_ERROR("No GTT space found for object %d\n",
3372 reloc->target_handle);
3373 drm_gem_object_unreference(target_obj);
3374 i915_gem_object_unpin(obj);
3375 return -EINVAL;
3378 /* Validate that the target is in a valid r/w GPU domain */
3379 if (reloc->write_domain & (reloc->write_domain - 1)) {
3380 DRM_ERROR("reloc with multiple write domains: "
3381 "obj %p target %d offset %d "
3382 "read %08x write %08x",
3383 obj, reloc->target_handle,
3384 (int) reloc->offset,
3385 reloc->read_domains,
3386 reloc->write_domain);
3387 return -EINVAL;
3389 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3390 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3391 DRM_ERROR("reloc with read/write CPU domains: "
3392 "obj %p target %d offset %d "
3393 "read %08x write %08x",
3394 obj, reloc->target_handle,
3395 (int) reloc->offset,
3396 reloc->read_domains,
3397 reloc->write_domain);
3398 drm_gem_object_unreference(target_obj);
3399 i915_gem_object_unpin(obj);
3400 return -EINVAL;
3402 if (reloc->write_domain && target_obj->pending_write_domain &&
3403 reloc->write_domain != target_obj->pending_write_domain) {
3404 DRM_ERROR("Write domain conflict: "
3405 "obj %p target %d offset %d "
3406 "new %08x old %08x\n",
3407 obj, reloc->target_handle,
3408 (int) reloc->offset,
3409 reloc->write_domain,
3410 target_obj->pending_write_domain);
3411 drm_gem_object_unreference(target_obj);
3412 i915_gem_object_unpin(obj);
3413 return -EINVAL;
3416 target_obj->pending_read_domains |= reloc->read_domains;
3417 target_obj->pending_write_domain |= reloc->write_domain;
3419 /* If the relocation already has the right value in it, no
3420 * more work needs to be done.
3422 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3423 drm_gem_object_unreference(target_obj);
3424 continue;
3427 /* Check that the relocation address is valid... */
3428 if (reloc->offset > obj->size - 4) {
3429 DRM_ERROR("Relocation beyond object bounds: "
3430 "obj %p target %d offset %d size %d.\n",
3431 obj, reloc->target_handle,
3432 (int) reloc->offset, (int) obj->size);
3433 drm_gem_object_unreference(target_obj);
3434 i915_gem_object_unpin(obj);
3435 return -EINVAL;
3437 if (reloc->offset & 3) {
3438 DRM_ERROR("Relocation not 4-byte aligned: "
3439 "obj %p target %d offset %d.\n",
3440 obj, reloc->target_handle,
3441 (int) reloc->offset);
3442 drm_gem_object_unreference(target_obj);
3443 i915_gem_object_unpin(obj);
3444 return -EINVAL;
3447 /* and points to somewhere within the target object. */
3448 if (reloc->delta >= target_obj->size) {
3449 DRM_ERROR("Relocation beyond target object bounds: "
3450 "obj %p target %d delta %d size %d.\n",
3451 obj, reloc->target_handle,
3452 (int) reloc->delta, (int) target_obj->size);
3453 drm_gem_object_unreference(target_obj);
3454 i915_gem_object_unpin(obj);
3455 return -EINVAL;
3458 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3459 if (ret != 0) {
3460 drm_gem_object_unreference(target_obj);
3461 i915_gem_object_unpin(obj);
3462 return -EINVAL;
3465 /* Map the page containing the relocation we're going to
3466 * perform.
3468 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3469 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3470 (reloc_offset &
3471 ~(PAGE_SIZE - 1)));
3472 reloc_entry = (uint32_t __iomem *)(reloc_page +
3473 (reloc_offset & (PAGE_SIZE - 1)));
3474 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3476 #if WATCH_BUF
3477 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3478 obj, (unsigned int) reloc->offset,
3479 readl(reloc_entry), reloc_val);
3480 #endif
3481 writel(reloc_val, reloc_entry);
3482 io_mapping_unmap_atomic(reloc_page);
3484 /* The updated presumed offset for this entry will be
3485 * copied back out to the user.
3487 reloc->presumed_offset = target_obj_priv->gtt_offset;
3489 drm_gem_object_unreference(target_obj);
3492 #if WATCH_BUF
3493 if (0)
3494 i915_gem_dump_object(obj, 128, __func__, ~0);
3495 #endif
3496 return 0;
3499 /* Throttle our rendering by waiting until the ring has completed our requests
3500 * emitted over 20 msec ago.
3502 * Note that if we were to use the current jiffies each time around the loop,
3503 * we wouldn't escape the function with any frames outstanding if the time to
3504 * render a frame was over 20ms.
3506 * This should get us reasonable parallelism between CPU and GPU but also
3507 * relatively low latency when blocking on a particular request to finish.
3509 static int
3510 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3512 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3513 int ret = 0;
3514 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3516 mutex_lock(&dev->struct_mutex);
3517 while (!list_empty(&i915_file_priv->mm.request_list)) {
3518 struct drm_i915_gem_request *request;
3520 request = list_first_entry(&i915_file_priv->mm.request_list,
3521 struct drm_i915_gem_request,
3522 client_list);
3524 if (time_after_eq(request->emitted_jiffies, recent_enough))
3525 break;
3527 ret = i915_wait_request(dev, request->seqno, request->ring);
3528 if (ret != 0)
3529 break;
3531 mutex_unlock(&dev->struct_mutex);
3533 return ret;
3536 static int
3537 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3538 uint32_t buffer_count,
3539 struct drm_i915_gem_relocation_entry **relocs)
3541 uint32_t reloc_count = 0, reloc_index = 0, i;
3542 int ret;
3544 *relocs = NULL;
3545 for (i = 0; i < buffer_count; i++) {
3546 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3547 return -EINVAL;
3548 reloc_count += exec_list[i].relocation_count;
3551 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3552 if (*relocs == NULL) {
3553 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3554 return -ENOMEM;
3557 for (i = 0; i < buffer_count; i++) {
3558 struct drm_i915_gem_relocation_entry __user *user_relocs;
3560 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3562 ret = copy_from_user(&(*relocs)[reloc_index],
3563 user_relocs,
3564 exec_list[i].relocation_count *
3565 sizeof(**relocs));
3566 if (ret != 0) {
3567 drm_free_large(*relocs);
3568 *relocs = NULL;
3569 return -EFAULT;
3572 reloc_index += exec_list[i].relocation_count;
3575 return 0;
3578 static int
3579 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3580 uint32_t buffer_count,
3581 struct drm_i915_gem_relocation_entry *relocs)
3583 uint32_t reloc_count = 0, i;
3584 int ret = 0;
3586 if (relocs == NULL)
3587 return 0;
3589 for (i = 0; i < buffer_count; i++) {
3590 struct drm_i915_gem_relocation_entry __user *user_relocs;
3591 int unwritten;
3593 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3595 unwritten = copy_to_user(user_relocs,
3596 &relocs[reloc_count],
3597 exec_list[i].relocation_count *
3598 sizeof(*relocs));
3600 if (unwritten) {
3601 ret = -EFAULT;
3602 goto err;
3605 reloc_count += exec_list[i].relocation_count;
3608 err:
3609 drm_free_large(relocs);
3611 return ret;
3614 static int
3615 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3616 uint64_t exec_offset)
3618 uint32_t exec_start, exec_len;
3620 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3621 exec_len = (uint32_t) exec->batch_len;
3623 if ((exec_start | exec_len) & 0x7)
3624 return -EINVAL;
3626 if (!exec_start)
3627 return -EINVAL;
3629 return 0;
3632 static int
3633 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3634 struct drm_gem_object **object_list,
3635 int count)
3637 drm_i915_private_t *dev_priv = dev->dev_private;
3638 struct drm_i915_gem_object *obj_priv;
3639 DEFINE_WAIT(wait);
3640 int i, ret = 0;
3642 for (;;) {
3643 prepare_to_wait(&dev_priv->pending_flip_queue,
3644 &wait, TASK_INTERRUPTIBLE);
3645 for (i = 0; i < count; i++) {
3646 obj_priv = to_intel_bo(object_list[i]);
3647 if (atomic_read(&obj_priv->pending_flip) > 0)
3648 break;
3650 if (i == count)
3651 break;
3653 if (!signal_pending(current)) {
3654 mutex_unlock(&dev->struct_mutex);
3655 schedule();
3656 mutex_lock(&dev->struct_mutex);
3657 continue;
3659 ret = -ERESTARTSYS;
3660 break;
3662 finish_wait(&dev_priv->pending_flip_queue, &wait);
3664 return ret;
3669 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3670 struct drm_file *file_priv,
3671 struct drm_i915_gem_execbuffer2 *args,
3672 struct drm_i915_gem_exec_object2 *exec_list)
3674 drm_i915_private_t *dev_priv = dev->dev_private;
3675 struct drm_gem_object **object_list = NULL;
3676 struct drm_gem_object *batch_obj;
3677 struct drm_i915_gem_object *obj_priv;
3678 struct drm_clip_rect *cliprects = NULL;
3679 struct drm_i915_gem_relocation_entry *relocs = NULL;
3680 int ret = 0, ret2, i, pinned = 0;
3681 uint64_t exec_offset;
3682 uint32_t seqno, flush_domains, reloc_index;
3683 int pin_tries, flips;
3685 struct intel_ring_buffer *ring = NULL;
3687 #if WATCH_EXEC
3688 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3689 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3690 #endif
3691 if (args->flags & I915_EXEC_BSD) {
3692 if (!HAS_BSD(dev)) {
3693 DRM_ERROR("execbuf with wrong flag\n");
3694 return -EINVAL;
3696 ring = &dev_priv->bsd_ring;
3697 } else {
3698 ring = &dev_priv->render_ring;
3702 if (args->buffer_count < 1) {
3703 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3704 return -EINVAL;
3706 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3707 if (object_list == NULL) {
3708 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3709 args->buffer_count);
3710 ret = -ENOMEM;
3711 goto pre_mutex_err;
3714 if (args->num_cliprects != 0) {
3715 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3716 GFP_KERNEL);
3717 if (cliprects == NULL) {
3718 ret = -ENOMEM;
3719 goto pre_mutex_err;
3722 ret = copy_from_user(cliprects,
3723 (struct drm_clip_rect __user *)
3724 (uintptr_t) args->cliprects_ptr,
3725 sizeof(*cliprects) * args->num_cliprects);
3726 if (ret != 0) {
3727 DRM_ERROR("copy %d cliprects failed: %d\n",
3728 args->num_cliprects, ret);
3729 goto pre_mutex_err;
3733 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3734 &relocs);
3735 if (ret != 0)
3736 goto pre_mutex_err;
3738 mutex_lock(&dev->struct_mutex);
3740 i915_verify_inactive(dev, __FILE__, __LINE__);
3742 if (atomic_read(&dev_priv->mm.wedged)) {
3743 mutex_unlock(&dev->struct_mutex);
3744 ret = -EIO;
3745 goto pre_mutex_err;
3748 if (dev_priv->mm.suspended) {
3749 mutex_unlock(&dev->struct_mutex);
3750 ret = -EBUSY;
3751 goto pre_mutex_err;
3754 /* Look up object handles */
3755 flips = 0;
3756 for (i = 0; i < args->buffer_count; i++) {
3757 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3758 exec_list[i].handle);
3759 if (object_list[i] == NULL) {
3760 DRM_ERROR("Invalid object handle %d at index %d\n",
3761 exec_list[i].handle, i);
3762 /* prevent error path from reading uninitialized data */
3763 args->buffer_count = i + 1;
3764 ret = -EBADF;
3765 goto err;
3768 obj_priv = to_intel_bo(object_list[i]);
3769 if (obj_priv->in_execbuffer) {
3770 DRM_ERROR("Object %p appears more than once in object list\n",
3771 object_list[i]);
3772 /* prevent error path from reading uninitialized data */
3773 args->buffer_count = i + 1;
3774 ret = -EBADF;
3775 goto err;
3777 obj_priv->in_execbuffer = true;
3778 flips += atomic_read(&obj_priv->pending_flip);
3781 if (flips > 0) {
3782 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3783 args->buffer_count);
3784 if (ret)
3785 goto err;
3788 /* Pin and relocate */
3789 for (pin_tries = 0; ; pin_tries++) {
3790 ret = 0;
3791 reloc_index = 0;
3793 for (i = 0; i < args->buffer_count; i++) {
3794 object_list[i]->pending_read_domains = 0;
3795 object_list[i]->pending_write_domain = 0;
3796 ret = i915_gem_object_pin_and_relocate(object_list[i],
3797 file_priv,
3798 &exec_list[i],
3799 &relocs[reloc_index]);
3800 if (ret)
3801 break;
3802 pinned = i + 1;
3803 reloc_index += exec_list[i].relocation_count;
3805 /* success */
3806 if (ret == 0)
3807 break;
3809 /* error other than GTT full, or we've already tried again */
3810 if (ret != -ENOSPC || pin_tries >= 1) {
3811 if (ret != -ERESTARTSYS) {
3812 unsigned long long total_size = 0;
3813 int num_fences = 0;
3814 for (i = 0; i < args->buffer_count; i++) {
3815 obj_priv = to_intel_bo(object_list[i]);
3817 total_size += object_list[i]->size;
3818 num_fences +=
3819 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3820 obj_priv->tiling_mode != I915_TILING_NONE;
3822 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3823 pinned+1, args->buffer_count,
3824 total_size, num_fences,
3825 ret);
3826 DRM_ERROR("%d objects [%d pinned], "
3827 "%d object bytes [%d pinned], "
3828 "%d/%d gtt bytes\n",
3829 atomic_read(&dev->object_count),
3830 atomic_read(&dev->pin_count),
3831 atomic_read(&dev->object_memory),
3832 atomic_read(&dev->pin_memory),
3833 atomic_read(&dev->gtt_memory),
3834 dev->gtt_total);
3836 goto err;
3839 /* unpin all of our buffers */
3840 for (i = 0; i < pinned; i++)
3841 i915_gem_object_unpin(object_list[i]);
3842 pinned = 0;
3844 /* evict everyone we can from the aperture */
3845 ret = i915_gem_evict_everything(dev);
3846 if (ret && ret != -ENOSPC)
3847 goto err;
3850 /* Set the pending read domains for the batch buffer to COMMAND */
3851 batch_obj = object_list[args->buffer_count-1];
3852 if (batch_obj->pending_write_domain) {
3853 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3854 ret = -EINVAL;
3855 goto err;
3857 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3859 /* Sanity check the batch buffer, prior to moving objects */
3860 exec_offset = exec_list[args->buffer_count - 1].offset;
3861 ret = i915_gem_check_execbuffer (args, exec_offset);
3862 if (ret != 0) {
3863 DRM_ERROR("execbuf with invalid offset/length\n");
3864 goto err;
3867 i915_verify_inactive(dev, __FILE__, __LINE__);
3869 /* Zero the global flush/invalidate flags. These
3870 * will be modified as new domains are computed
3871 * for each object
3873 dev->invalidate_domains = 0;
3874 dev->flush_domains = 0;
3876 for (i = 0; i < args->buffer_count; i++) {
3877 struct drm_gem_object *obj = object_list[i];
3879 /* Compute new gpu domains and update invalidate/flush */
3880 i915_gem_object_set_to_gpu_domain(obj);
3883 i915_verify_inactive(dev, __FILE__, __LINE__);
3885 if (dev->invalidate_domains | dev->flush_domains) {
3886 #if WATCH_EXEC
3887 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3888 __func__,
3889 dev->invalidate_domains,
3890 dev->flush_domains);
3891 #endif
3892 i915_gem_flush(dev,
3893 dev->invalidate_domains,
3894 dev->flush_domains);
3895 if (dev->flush_domains & I915_GEM_GPU_DOMAINS) {
3896 (void)i915_add_request(dev, file_priv,
3897 dev->flush_domains,
3898 &dev_priv->render_ring);
3900 if (HAS_BSD(dev))
3901 (void)i915_add_request(dev, file_priv,
3902 dev->flush_domains,
3903 &dev_priv->bsd_ring);
3907 for (i = 0; i < args->buffer_count; i++) {
3908 struct drm_gem_object *obj = object_list[i];
3909 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3910 uint32_t old_write_domain = obj->write_domain;
3912 obj->write_domain = obj->pending_write_domain;
3913 if (obj->write_domain)
3914 list_move_tail(&obj_priv->gpu_write_list,
3915 &dev_priv->mm.gpu_write_list);
3916 else
3917 list_del_init(&obj_priv->gpu_write_list);
3919 trace_i915_gem_object_change_domain(obj,
3920 obj->read_domains,
3921 old_write_domain);
3924 i915_verify_inactive(dev, __FILE__, __LINE__);
3926 #if WATCH_COHERENCY
3927 for (i = 0; i < args->buffer_count; i++) {
3928 i915_gem_object_check_coherency(object_list[i],
3929 exec_list[i].handle);
3931 #endif
3933 #if WATCH_EXEC
3934 i915_gem_dump_object(batch_obj,
3935 args->batch_len,
3936 __func__,
3937 ~0);
3938 #endif
3940 /* Exec the batchbuffer */
3941 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3942 cliprects, exec_offset);
3943 if (ret) {
3944 DRM_ERROR("dispatch failed %d\n", ret);
3945 goto err;
3949 * Ensure that the commands in the batch buffer are
3950 * finished before the interrupt fires
3952 flush_domains = i915_retire_commands(dev, ring);
3954 i915_verify_inactive(dev, __FILE__, __LINE__);
3957 * Get a seqno representing the execution of the current buffer,
3958 * which we can wait on. We would like to mitigate these interrupts,
3959 * likely by only creating seqnos occasionally (so that we have
3960 * *some* interrupts representing completion of buffers that we can
3961 * wait on when trying to clear up gtt space).
3963 seqno = i915_add_request(dev, file_priv, flush_domains, ring);
3964 BUG_ON(seqno == 0);
3965 for (i = 0; i < args->buffer_count; i++) {
3966 struct drm_gem_object *obj = object_list[i];
3967 obj_priv = to_intel_bo(obj);
3969 i915_gem_object_move_to_active(obj, seqno, ring);
3970 #if WATCH_LRU
3971 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3972 #endif
3974 #if WATCH_LRU
3975 i915_dump_lru(dev, __func__);
3976 #endif
3978 i915_verify_inactive(dev, __FILE__, __LINE__);
3980 err:
3981 for (i = 0; i < pinned; i++)
3982 i915_gem_object_unpin(object_list[i]);
3984 for (i = 0; i < args->buffer_count; i++) {
3985 if (object_list[i]) {
3986 obj_priv = to_intel_bo(object_list[i]);
3987 obj_priv->in_execbuffer = false;
3989 drm_gem_object_unreference(object_list[i]);
3992 mutex_unlock(&dev->struct_mutex);
3994 pre_mutex_err:
3995 /* Copy the updated relocations out regardless of current error
3996 * state. Failure to update the relocs would mean that the next
3997 * time userland calls execbuf, it would do so with presumed offset
3998 * state that didn't match the actual object state.
4000 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
4001 relocs);
4002 if (ret2 != 0) {
4003 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
4005 if (ret == 0)
4006 ret = ret2;
4009 drm_free_large(object_list);
4010 kfree(cliprects);
4012 return ret;
4016 * Legacy execbuffer just creates an exec2 list from the original exec object
4017 * list array and passes it to the real function.
4020 i915_gem_execbuffer(struct drm_device *dev, void *data,
4021 struct drm_file *file_priv)
4023 struct drm_i915_gem_execbuffer *args = data;
4024 struct drm_i915_gem_execbuffer2 exec2;
4025 struct drm_i915_gem_exec_object *exec_list = NULL;
4026 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4027 int ret, i;
4029 #if WATCH_EXEC
4030 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4031 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4032 #endif
4034 if (args->buffer_count < 1) {
4035 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4036 return -EINVAL;
4039 /* Copy in the exec list from userland */
4040 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4041 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4042 if (exec_list == NULL || exec2_list == NULL) {
4043 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4044 args->buffer_count);
4045 drm_free_large(exec_list);
4046 drm_free_large(exec2_list);
4047 return -ENOMEM;
4049 ret = copy_from_user(exec_list,
4050 (struct drm_i915_relocation_entry __user *)
4051 (uintptr_t) args->buffers_ptr,
4052 sizeof(*exec_list) * args->buffer_count);
4053 if (ret != 0) {
4054 DRM_ERROR("copy %d exec entries failed %d\n",
4055 args->buffer_count, ret);
4056 drm_free_large(exec_list);
4057 drm_free_large(exec2_list);
4058 return -EFAULT;
4061 for (i = 0; i < args->buffer_count; i++) {
4062 exec2_list[i].handle = exec_list[i].handle;
4063 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4064 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4065 exec2_list[i].alignment = exec_list[i].alignment;
4066 exec2_list[i].offset = exec_list[i].offset;
4067 if (!IS_I965G(dev))
4068 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4069 else
4070 exec2_list[i].flags = 0;
4073 exec2.buffers_ptr = args->buffers_ptr;
4074 exec2.buffer_count = args->buffer_count;
4075 exec2.batch_start_offset = args->batch_start_offset;
4076 exec2.batch_len = args->batch_len;
4077 exec2.DR1 = args->DR1;
4078 exec2.DR4 = args->DR4;
4079 exec2.num_cliprects = args->num_cliprects;
4080 exec2.cliprects_ptr = args->cliprects_ptr;
4081 exec2.flags = I915_EXEC_RENDER;
4083 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4084 if (!ret) {
4085 /* Copy the new buffer offsets back to the user's exec list. */
4086 for (i = 0; i < args->buffer_count; i++)
4087 exec_list[i].offset = exec2_list[i].offset;
4088 /* ... and back out to userspace */
4089 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4090 (uintptr_t) args->buffers_ptr,
4091 exec_list,
4092 sizeof(*exec_list) * args->buffer_count);
4093 if (ret) {
4094 ret = -EFAULT;
4095 DRM_ERROR("failed to copy %d exec entries "
4096 "back to user (%d)\n",
4097 args->buffer_count, ret);
4101 drm_free_large(exec_list);
4102 drm_free_large(exec2_list);
4103 return ret;
4107 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4108 struct drm_file *file_priv)
4110 struct drm_i915_gem_execbuffer2 *args = data;
4111 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4112 int ret;
4114 #if WATCH_EXEC
4115 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4116 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4117 #endif
4119 if (args->buffer_count < 1) {
4120 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4121 return -EINVAL;
4124 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4125 if (exec2_list == NULL) {
4126 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4127 args->buffer_count);
4128 return -ENOMEM;
4130 ret = copy_from_user(exec2_list,
4131 (struct drm_i915_relocation_entry __user *)
4132 (uintptr_t) args->buffers_ptr,
4133 sizeof(*exec2_list) * args->buffer_count);
4134 if (ret != 0) {
4135 DRM_ERROR("copy %d exec entries failed %d\n",
4136 args->buffer_count, ret);
4137 drm_free_large(exec2_list);
4138 return -EFAULT;
4141 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4142 if (!ret) {
4143 /* Copy the new buffer offsets back to the user's exec list. */
4144 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4145 (uintptr_t) args->buffers_ptr,
4146 exec2_list,
4147 sizeof(*exec2_list) * args->buffer_count);
4148 if (ret) {
4149 ret = -EFAULT;
4150 DRM_ERROR("failed to copy %d exec entries "
4151 "back to user (%d)\n",
4152 args->buffer_count, ret);
4156 drm_free_large(exec2_list);
4157 return ret;
4161 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4163 struct drm_device *dev = obj->dev;
4164 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4165 int ret;
4167 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4169 i915_verify_inactive(dev, __FILE__, __LINE__);
4171 if (obj_priv->gtt_space != NULL) {
4172 if (alignment == 0)
4173 alignment = i915_gem_get_gtt_alignment(obj);
4174 if (obj_priv->gtt_offset & (alignment - 1)) {
4175 ret = i915_gem_object_unbind(obj);
4176 if (ret)
4177 return ret;
4181 if (obj_priv->gtt_space == NULL) {
4182 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4183 if (ret)
4184 return ret;
4187 obj_priv->pin_count++;
4189 /* If the object is not active and not pending a flush,
4190 * remove it from the inactive list
4192 if (obj_priv->pin_count == 1) {
4193 atomic_inc(&dev->pin_count);
4194 atomic_add(obj->size, &dev->pin_memory);
4195 if (!obj_priv->active &&
4196 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4197 !list_empty(&obj_priv->list))
4198 list_del_init(&obj_priv->list);
4200 i915_verify_inactive(dev, __FILE__, __LINE__);
4202 return 0;
4205 void
4206 i915_gem_object_unpin(struct drm_gem_object *obj)
4208 struct drm_device *dev = obj->dev;
4209 drm_i915_private_t *dev_priv = dev->dev_private;
4210 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4212 i915_verify_inactive(dev, __FILE__, __LINE__);
4213 obj_priv->pin_count--;
4214 BUG_ON(obj_priv->pin_count < 0);
4215 BUG_ON(obj_priv->gtt_space == NULL);
4217 /* If the object is no longer pinned, and is
4218 * neither active nor being flushed, then stick it on
4219 * the inactive list
4221 if (obj_priv->pin_count == 0) {
4222 if (!obj_priv->active &&
4223 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4224 list_move_tail(&obj_priv->list,
4225 &dev_priv->mm.inactive_list);
4226 atomic_dec(&dev->pin_count);
4227 atomic_sub(obj->size, &dev->pin_memory);
4229 i915_verify_inactive(dev, __FILE__, __LINE__);
4233 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4234 struct drm_file *file_priv)
4236 struct drm_i915_gem_pin *args = data;
4237 struct drm_gem_object *obj;
4238 struct drm_i915_gem_object *obj_priv;
4239 int ret;
4241 mutex_lock(&dev->struct_mutex);
4243 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4244 if (obj == NULL) {
4245 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4246 args->handle);
4247 mutex_unlock(&dev->struct_mutex);
4248 return -EBADF;
4250 obj_priv = to_intel_bo(obj);
4252 if (obj_priv->madv != I915_MADV_WILLNEED) {
4253 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4254 drm_gem_object_unreference(obj);
4255 mutex_unlock(&dev->struct_mutex);
4256 return -EINVAL;
4259 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4260 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4261 args->handle);
4262 drm_gem_object_unreference(obj);
4263 mutex_unlock(&dev->struct_mutex);
4264 return -EINVAL;
4267 obj_priv->user_pin_count++;
4268 obj_priv->pin_filp = file_priv;
4269 if (obj_priv->user_pin_count == 1) {
4270 ret = i915_gem_object_pin(obj, args->alignment);
4271 if (ret != 0) {
4272 drm_gem_object_unreference(obj);
4273 mutex_unlock(&dev->struct_mutex);
4274 return ret;
4278 /* XXX - flush the CPU caches for pinned objects
4279 * as the X server doesn't manage domains yet
4281 i915_gem_object_flush_cpu_write_domain(obj);
4282 args->offset = obj_priv->gtt_offset;
4283 drm_gem_object_unreference(obj);
4284 mutex_unlock(&dev->struct_mutex);
4286 return 0;
4290 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4291 struct drm_file *file_priv)
4293 struct drm_i915_gem_pin *args = data;
4294 struct drm_gem_object *obj;
4295 struct drm_i915_gem_object *obj_priv;
4297 mutex_lock(&dev->struct_mutex);
4299 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4300 if (obj == NULL) {
4301 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4302 args->handle);
4303 mutex_unlock(&dev->struct_mutex);
4304 return -EBADF;
4307 obj_priv = to_intel_bo(obj);
4308 if (obj_priv->pin_filp != file_priv) {
4309 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4310 args->handle);
4311 drm_gem_object_unreference(obj);
4312 mutex_unlock(&dev->struct_mutex);
4313 return -EINVAL;
4315 obj_priv->user_pin_count--;
4316 if (obj_priv->user_pin_count == 0) {
4317 obj_priv->pin_filp = NULL;
4318 i915_gem_object_unpin(obj);
4321 drm_gem_object_unreference(obj);
4322 mutex_unlock(&dev->struct_mutex);
4323 return 0;
4327 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4328 struct drm_file *file_priv)
4330 struct drm_i915_gem_busy *args = data;
4331 struct drm_gem_object *obj;
4332 struct drm_i915_gem_object *obj_priv;
4333 drm_i915_private_t *dev_priv = dev->dev_private;
4335 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4336 if (obj == NULL) {
4337 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4338 args->handle);
4339 return -EBADF;
4342 mutex_lock(&dev->struct_mutex);
4343 /* Update the active list for the hardware's current position.
4344 * Otherwise this only updates on a delayed timer or when irqs are
4345 * actually unmasked, and our working set ends up being larger than
4346 * required.
4348 i915_gem_retire_requests(dev, &dev_priv->render_ring);
4350 if (HAS_BSD(dev))
4351 i915_gem_retire_requests(dev, &dev_priv->bsd_ring);
4353 obj_priv = to_intel_bo(obj);
4354 /* Don't count being on the flushing list against the object being
4355 * done. Otherwise, a buffer left on the flushing list but not getting
4356 * flushed (because nobody's flushing that domain) won't ever return
4357 * unbusy and get reused by libdrm's bo cache. The other expected
4358 * consumer of this interface, OpenGL's occlusion queries, also specs
4359 * that the objects get unbusy "eventually" without any interference.
4361 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4363 drm_gem_object_unreference(obj);
4364 mutex_unlock(&dev->struct_mutex);
4365 return 0;
4369 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4370 struct drm_file *file_priv)
4372 return i915_gem_ring_throttle(dev, file_priv);
4376 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4377 struct drm_file *file_priv)
4379 struct drm_i915_gem_madvise *args = data;
4380 struct drm_gem_object *obj;
4381 struct drm_i915_gem_object *obj_priv;
4383 switch (args->madv) {
4384 case I915_MADV_DONTNEED:
4385 case I915_MADV_WILLNEED:
4386 break;
4387 default:
4388 return -EINVAL;
4391 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4392 if (obj == NULL) {
4393 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4394 args->handle);
4395 return -EBADF;
4398 mutex_lock(&dev->struct_mutex);
4399 obj_priv = to_intel_bo(obj);
4401 if (obj_priv->pin_count) {
4402 drm_gem_object_unreference(obj);
4403 mutex_unlock(&dev->struct_mutex);
4405 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4406 return -EINVAL;
4409 if (obj_priv->madv != __I915_MADV_PURGED)
4410 obj_priv->madv = args->madv;
4412 /* if the object is no longer bound, discard its backing storage */
4413 if (i915_gem_object_is_purgeable(obj_priv) &&
4414 obj_priv->gtt_space == NULL)
4415 i915_gem_object_truncate(obj);
4417 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4419 drm_gem_object_unreference(obj);
4420 mutex_unlock(&dev->struct_mutex);
4422 return 0;
4425 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4426 size_t size)
4428 struct drm_i915_gem_object *obj;
4430 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4431 if (obj == NULL)
4432 return NULL;
4434 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4435 kfree(obj);
4436 return NULL;
4439 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4440 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4442 obj->agp_type = AGP_USER_MEMORY;
4443 obj->base.driver_private = NULL;
4444 obj->fence_reg = I915_FENCE_REG_NONE;
4445 INIT_LIST_HEAD(&obj->list);
4446 INIT_LIST_HEAD(&obj->gpu_write_list);
4447 obj->madv = I915_MADV_WILLNEED;
4449 trace_i915_gem_object_create(&obj->base);
4451 return &obj->base;
4454 int i915_gem_init_object(struct drm_gem_object *obj)
4456 BUG();
4458 return 0;
4461 void i915_gem_free_object(struct drm_gem_object *obj)
4463 struct drm_device *dev = obj->dev;
4464 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4466 trace_i915_gem_object_destroy(obj);
4468 while (obj_priv->pin_count > 0)
4469 i915_gem_object_unpin(obj);
4471 if (obj_priv->phys_obj)
4472 i915_gem_detach_phys_object(dev, obj);
4474 i915_gem_object_unbind(obj);
4476 if (obj_priv->mmap_offset)
4477 i915_gem_free_mmap_offset(obj);
4479 drm_gem_object_release(obj);
4481 kfree(obj_priv->page_cpu_valid);
4482 kfree(obj_priv->bit_17);
4483 kfree(obj_priv);
4486 /** Unbinds all inactive objects. */
4487 static int
4488 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4490 drm_i915_private_t *dev_priv = dev->dev_private;
4492 while (!list_empty(&dev_priv->mm.inactive_list)) {
4493 struct drm_gem_object *obj;
4494 int ret;
4496 obj = &list_first_entry(&dev_priv->mm.inactive_list,
4497 struct drm_i915_gem_object,
4498 list)->base;
4500 ret = i915_gem_object_unbind(obj);
4501 if (ret != 0) {
4502 DRM_ERROR("Error unbinding object: %d\n", ret);
4503 return ret;
4507 return 0;
4511 i915_gem_idle(struct drm_device *dev)
4513 drm_i915_private_t *dev_priv = dev->dev_private;
4514 int ret;
4516 mutex_lock(&dev->struct_mutex);
4518 if (dev_priv->mm.suspended ||
4519 (dev_priv->render_ring.gem_object == NULL) ||
4520 (HAS_BSD(dev) &&
4521 dev_priv->bsd_ring.gem_object == NULL)) {
4522 mutex_unlock(&dev->struct_mutex);
4523 return 0;
4526 ret = i915_gpu_idle(dev);
4527 if (ret) {
4528 mutex_unlock(&dev->struct_mutex);
4529 return ret;
4532 /* Under UMS, be paranoid and evict. */
4533 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4534 ret = i915_gem_evict_from_inactive_list(dev);
4535 if (ret) {
4536 mutex_unlock(&dev->struct_mutex);
4537 return ret;
4541 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4542 * We need to replace this with a semaphore, or something.
4543 * And not confound mm.suspended!
4545 dev_priv->mm.suspended = 1;
4546 del_timer(&dev_priv->hangcheck_timer);
4548 i915_kernel_lost_context(dev);
4549 i915_gem_cleanup_ringbuffer(dev);
4551 mutex_unlock(&dev->struct_mutex);
4553 /* Cancel the retire work handler, which should be idle now. */
4554 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4556 return 0;
4560 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4561 * over cache flushing.
4563 static int
4564 i915_gem_init_pipe_control(struct drm_device *dev)
4566 drm_i915_private_t *dev_priv = dev->dev_private;
4567 struct drm_gem_object *obj;
4568 struct drm_i915_gem_object *obj_priv;
4569 int ret;
4571 obj = i915_gem_alloc_object(dev, 4096);
4572 if (obj == NULL) {
4573 DRM_ERROR("Failed to allocate seqno page\n");
4574 ret = -ENOMEM;
4575 goto err;
4577 obj_priv = to_intel_bo(obj);
4578 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4580 ret = i915_gem_object_pin(obj, 4096);
4581 if (ret)
4582 goto err_unref;
4584 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4585 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4586 if (dev_priv->seqno_page == NULL)
4587 goto err_unpin;
4589 dev_priv->seqno_obj = obj;
4590 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4592 return 0;
4594 err_unpin:
4595 i915_gem_object_unpin(obj);
4596 err_unref:
4597 drm_gem_object_unreference(obj);
4598 err:
4599 return ret;
4603 static void
4604 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4606 drm_i915_private_t *dev_priv = dev->dev_private;
4607 struct drm_gem_object *obj;
4608 struct drm_i915_gem_object *obj_priv;
4610 obj = dev_priv->seqno_obj;
4611 obj_priv = to_intel_bo(obj);
4612 kunmap(obj_priv->pages[0]);
4613 i915_gem_object_unpin(obj);
4614 drm_gem_object_unreference(obj);
4615 dev_priv->seqno_obj = NULL;
4617 dev_priv->seqno_page = NULL;
4621 i915_gem_init_ringbuffer(struct drm_device *dev)
4623 drm_i915_private_t *dev_priv = dev->dev_private;
4624 int ret;
4626 dev_priv->render_ring = render_ring;
4628 if (!I915_NEED_GFX_HWS(dev)) {
4629 dev_priv->render_ring.status_page.page_addr
4630 = dev_priv->status_page_dmah->vaddr;
4631 memset(dev_priv->render_ring.status_page.page_addr,
4632 0, PAGE_SIZE);
4635 if (HAS_PIPE_CONTROL(dev)) {
4636 ret = i915_gem_init_pipe_control(dev);
4637 if (ret)
4638 return ret;
4641 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4642 if (ret)
4643 goto cleanup_pipe_control;
4645 if (HAS_BSD(dev)) {
4646 dev_priv->bsd_ring = bsd_ring;
4647 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4648 if (ret)
4649 goto cleanup_render_ring;
4652 return 0;
4654 cleanup_render_ring:
4655 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4656 cleanup_pipe_control:
4657 if (HAS_PIPE_CONTROL(dev))
4658 i915_gem_cleanup_pipe_control(dev);
4659 return ret;
4662 void
4663 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4665 drm_i915_private_t *dev_priv = dev->dev_private;
4667 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4668 if (HAS_BSD(dev))
4669 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4670 if (HAS_PIPE_CONTROL(dev))
4671 i915_gem_cleanup_pipe_control(dev);
4675 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4676 struct drm_file *file_priv)
4678 drm_i915_private_t *dev_priv = dev->dev_private;
4679 int ret;
4681 if (drm_core_check_feature(dev, DRIVER_MODESET))
4682 return 0;
4684 if (atomic_read(&dev_priv->mm.wedged)) {
4685 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4686 atomic_set(&dev_priv->mm.wedged, 0);
4689 mutex_lock(&dev->struct_mutex);
4690 dev_priv->mm.suspended = 0;
4692 ret = i915_gem_init_ringbuffer(dev);
4693 if (ret != 0) {
4694 mutex_unlock(&dev->struct_mutex);
4695 return ret;
4698 spin_lock(&dev_priv->mm.active_list_lock);
4699 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4700 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4701 spin_unlock(&dev_priv->mm.active_list_lock);
4703 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4704 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4705 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4706 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4707 mutex_unlock(&dev->struct_mutex);
4709 ret = drm_irq_install(dev);
4710 if (ret)
4711 goto cleanup_ringbuffer;
4713 return 0;
4715 cleanup_ringbuffer:
4716 mutex_lock(&dev->struct_mutex);
4717 i915_gem_cleanup_ringbuffer(dev);
4718 dev_priv->mm.suspended = 1;
4719 mutex_unlock(&dev->struct_mutex);
4721 return ret;
4725 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4726 struct drm_file *file_priv)
4728 if (drm_core_check_feature(dev, DRIVER_MODESET))
4729 return 0;
4731 drm_irq_uninstall(dev);
4732 return i915_gem_idle(dev);
4735 void
4736 i915_gem_lastclose(struct drm_device *dev)
4738 int ret;
4740 if (drm_core_check_feature(dev, DRIVER_MODESET))
4741 return;
4743 ret = i915_gem_idle(dev);
4744 if (ret)
4745 DRM_ERROR("failed to idle hardware: %d\n", ret);
4748 void
4749 i915_gem_load(struct drm_device *dev)
4751 int i;
4752 drm_i915_private_t *dev_priv = dev->dev_private;
4754 spin_lock_init(&dev_priv->mm.active_list_lock);
4755 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4756 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4757 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4758 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4759 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4760 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4761 if (HAS_BSD(dev)) {
4762 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4763 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4765 for (i = 0; i < 16; i++)
4766 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4767 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4768 i915_gem_retire_work_handler);
4769 spin_lock(&shrink_list_lock);
4770 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4771 spin_unlock(&shrink_list_lock);
4773 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4774 if (IS_GEN3(dev)) {
4775 u32 tmp = I915_READ(MI_ARB_STATE);
4776 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4777 /* arb state is a masked write, so set bit + bit in mask */
4778 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4779 I915_WRITE(MI_ARB_STATE, tmp);
4783 /* Old X drivers will take 0-2 for front, back, depth buffers */
4784 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4785 dev_priv->fence_reg_start = 3;
4787 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4788 dev_priv->num_fence_regs = 16;
4789 else
4790 dev_priv->num_fence_regs = 8;
4792 /* Initialize fence registers to zero */
4793 if (IS_I965G(dev)) {
4794 for (i = 0; i < 16; i++)
4795 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4796 } else {
4797 for (i = 0; i < 8; i++)
4798 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4799 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4800 for (i = 0; i < 8; i++)
4801 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4803 i915_gem_detect_bit_6_swizzle(dev);
4804 init_waitqueue_head(&dev_priv->pending_flip_queue);
4808 * Create a physically contiguous memory object for this object
4809 * e.g. for cursor + overlay regs
4811 int i915_gem_init_phys_object(struct drm_device *dev,
4812 int id, int size)
4814 drm_i915_private_t *dev_priv = dev->dev_private;
4815 struct drm_i915_gem_phys_object *phys_obj;
4816 int ret;
4818 if (dev_priv->mm.phys_objs[id - 1] || !size)
4819 return 0;
4821 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4822 if (!phys_obj)
4823 return -ENOMEM;
4825 phys_obj->id = id;
4827 phys_obj->handle = drm_pci_alloc(dev, size, 0);
4828 if (!phys_obj->handle) {
4829 ret = -ENOMEM;
4830 goto kfree_obj;
4832 #ifdef CONFIG_X86
4833 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4834 #endif
4836 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4838 return 0;
4839 kfree_obj:
4840 kfree(phys_obj);
4841 return ret;
4844 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4846 drm_i915_private_t *dev_priv = dev->dev_private;
4847 struct drm_i915_gem_phys_object *phys_obj;
4849 if (!dev_priv->mm.phys_objs[id - 1])
4850 return;
4852 phys_obj = dev_priv->mm.phys_objs[id - 1];
4853 if (phys_obj->cur_obj) {
4854 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4857 #ifdef CONFIG_X86
4858 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4859 #endif
4860 drm_pci_free(dev, phys_obj->handle);
4861 kfree(phys_obj);
4862 dev_priv->mm.phys_objs[id - 1] = NULL;
4865 void i915_gem_free_all_phys_object(struct drm_device *dev)
4867 int i;
4869 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4870 i915_gem_free_phys_object(dev, i);
4873 void i915_gem_detach_phys_object(struct drm_device *dev,
4874 struct drm_gem_object *obj)
4876 struct drm_i915_gem_object *obj_priv;
4877 int i;
4878 int ret;
4879 int page_count;
4881 obj_priv = to_intel_bo(obj);
4882 if (!obj_priv->phys_obj)
4883 return;
4885 ret = i915_gem_object_get_pages(obj, 0);
4886 if (ret)
4887 goto out;
4889 page_count = obj->size / PAGE_SIZE;
4891 for (i = 0; i < page_count; i++) {
4892 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4893 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4895 memcpy(dst, src, PAGE_SIZE);
4896 kunmap_atomic(dst, KM_USER0);
4898 drm_clflush_pages(obj_priv->pages, page_count);
4899 drm_agp_chipset_flush(dev);
4901 i915_gem_object_put_pages(obj);
4902 out:
4903 obj_priv->phys_obj->cur_obj = NULL;
4904 obj_priv->phys_obj = NULL;
4908 i915_gem_attach_phys_object(struct drm_device *dev,
4909 struct drm_gem_object *obj, int id)
4911 drm_i915_private_t *dev_priv = dev->dev_private;
4912 struct drm_i915_gem_object *obj_priv;
4913 int ret = 0;
4914 int page_count;
4915 int i;
4917 if (id > I915_MAX_PHYS_OBJECT)
4918 return -EINVAL;
4920 obj_priv = to_intel_bo(obj);
4922 if (obj_priv->phys_obj) {
4923 if (obj_priv->phys_obj->id == id)
4924 return 0;
4925 i915_gem_detach_phys_object(dev, obj);
4929 /* create a new object */
4930 if (!dev_priv->mm.phys_objs[id - 1]) {
4931 ret = i915_gem_init_phys_object(dev, id,
4932 obj->size);
4933 if (ret) {
4934 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4935 goto out;
4939 /* bind to the object */
4940 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4941 obj_priv->phys_obj->cur_obj = obj;
4943 ret = i915_gem_object_get_pages(obj, 0);
4944 if (ret) {
4945 DRM_ERROR("failed to get page list\n");
4946 goto out;
4949 page_count = obj->size / PAGE_SIZE;
4951 for (i = 0; i < page_count; i++) {
4952 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4953 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4955 memcpy(dst, src, PAGE_SIZE);
4956 kunmap_atomic(src, KM_USER0);
4959 i915_gem_object_put_pages(obj);
4961 return 0;
4962 out:
4963 return ret;
4966 static int
4967 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4968 struct drm_i915_gem_pwrite *args,
4969 struct drm_file *file_priv)
4971 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4972 void *obj_addr;
4973 int ret;
4974 char __user *user_data;
4976 user_data = (char __user *) (uintptr_t) args->data_ptr;
4977 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4979 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4980 ret = copy_from_user(obj_addr, user_data, args->size);
4981 if (ret)
4982 return -EFAULT;
4984 drm_agp_chipset_flush(dev);
4985 return 0;
4988 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4990 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4992 /* Clean up our request list when the client is going away, so that
4993 * later retire_requests won't dereference our soon-to-be-gone
4994 * file_priv.
4996 mutex_lock(&dev->struct_mutex);
4997 while (!list_empty(&i915_file_priv->mm.request_list))
4998 list_del_init(i915_file_priv->mm.request_list.next);
4999 mutex_unlock(&dev->struct_mutex);
5002 static int
5003 i915_gpu_is_active(struct drm_device *dev)
5005 drm_i915_private_t *dev_priv = dev->dev_private;
5006 int lists_empty;
5008 spin_lock(&dev_priv->mm.active_list_lock);
5009 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
5010 list_empty(&dev_priv->render_ring.active_list);
5011 if (HAS_BSD(dev))
5012 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
5013 spin_unlock(&dev_priv->mm.active_list_lock);
5015 return !lists_empty;
5018 static int
5019 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
5021 drm_i915_private_t *dev_priv, *next_dev;
5022 struct drm_i915_gem_object *obj_priv, *next_obj;
5023 int cnt = 0;
5024 int would_deadlock = 1;
5026 /* "fast-path" to count number of available objects */
5027 if (nr_to_scan == 0) {
5028 spin_lock(&shrink_list_lock);
5029 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5030 struct drm_device *dev = dev_priv->dev;
5032 if (mutex_trylock(&dev->struct_mutex)) {
5033 list_for_each_entry(obj_priv,
5034 &dev_priv->mm.inactive_list,
5035 list)
5036 cnt++;
5037 mutex_unlock(&dev->struct_mutex);
5040 spin_unlock(&shrink_list_lock);
5042 return (cnt / 100) * sysctl_vfs_cache_pressure;
5045 spin_lock(&shrink_list_lock);
5047 rescan:
5048 /* first scan for clean buffers */
5049 list_for_each_entry_safe(dev_priv, next_dev,
5050 &shrink_list, mm.shrink_list) {
5051 struct drm_device *dev = dev_priv->dev;
5053 if (! mutex_trylock(&dev->struct_mutex))
5054 continue;
5056 spin_unlock(&shrink_list_lock);
5057 i915_gem_retire_requests(dev, &dev_priv->render_ring);
5059 if (HAS_BSD(dev))
5060 i915_gem_retire_requests(dev, &dev_priv->bsd_ring);
5062 list_for_each_entry_safe(obj_priv, next_obj,
5063 &dev_priv->mm.inactive_list,
5064 list) {
5065 if (i915_gem_object_is_purgeable(obj_priv)) {
5066 i915_gem_object_unbind(&obj_priv->base);
5067 if (--nr_to_scan <= 0)
5068 break;
5072 spin_lock(&shrink_list_lock);
5073 mutex_unlock(&dev->struct_mutex);
5075 would_deadlock = 0;
5077 if (nr_to_scan <= 0)
5078 break;
5081 /* second pass, evict/count anything still on the inactive list */
5082 list_for_each_entry_safe(dev_priv, next_dev,
5083 &shrink_list, mm.shrink_list) {
5084 struct drm_device *dev = dev_priv->dev;
5086 if (! mutex_trylock(&dev->struct_mutex))
5087 continue;
5089 spin_unlock(&shrink_list_lock);
5091 list_for_each_entry_safe(obj_priv, next_obj,
5092 &dev_priv->mm.inactive_list,
5093 list) {
5094 if (nr_to_scan > 0) {
5095 i915_gem_object_unbind(&obj_priv->base);
5096 nr_to_scan--;
5097 } else
5098 cnt++;
5101 spin_lock(&shrink_list_lock);
5102 mutex_unlock(&dev->struct_mutex);
5104 would_deadlock = 0;
5107 if (nr_to_scan) {
5108 int active = 0;
5111 * We are desperate for pages, so as a last resort, wait
5112 * for the GPU to finish and discard whatever we can.
5113 * This has a dramatic impact to reduce the number of
5114 * OOM-killer events whilst running the GPU aggressively.
5116 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5117 struct drm_device *dev = dev_priv->dev;
5119 if (!mutex_trylock(&dev->struct_mutex))
5120 continue;
5122 spin_unlock(&shrink_list_lock);
5124 if (i915_gpu_is_active(dev)) {
5125 i915_gpu_idle(dev);
5126 active++;
5129 spin_lock(&shrink_list_lock);
5130 mutex_unlock(&dev->struct_mutex);
5133 if (active)
5134 goto rescan;
5137 spin_unlock(&shrink_list_lock);
5139 if (would_deadlock)
5140 return -1;
5141 else if (cnt > 0)
5142 return (cnt / 100) * sysctl_vfs_cache_pressure;
5143 else
5144 return 0;
5147 static struct shrinker shrinker = {
5148 .shrink = i915_gem_shrink,
5149 .seeks = DEFAULT_SEEKS,
5152 __init void
5153 i915_gem_shrinker_init(void)
5155 register_shrinker(&shrinker);
5158 __exit void
5159 i915_gem_shrinker_exit(void)
5161 unregister_shrinker(&shrinker);