[SCSI] qla4xxx: added new function qla4xxx_relogin_all_devices
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
blob3a58221f4c224d43464f69f6eaf133a9e71e9974
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
57 #include <asm/tlbflush.h>
58 #include <asm/div64.h>
59 #include "internal.h"
61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62 DEFINE_PER_CPU(int, numa_node);
63 EXPORT_PER_CPU_SYMBOL(numa_node);
64 #endif
66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
73 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
74 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75 #endif
78 * Array of node states.
80 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 [N_POSSIBLE] = NODE_MASK_ALL,
82 [N_ONLINE] = { { [0] = 1UL } },
83 #ifndef CONFIG_NUMA
84 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
85 #ifdef CONFIG_HIGHMEM
86 [N_HIGH_MEMORY] = { { [0] = 1UL } },
87 #endif
88 [N_CPU] = { { [0] = 1UL } },
89 #endif /* NUMA */
91 EXPORT_SYMBOL(node_states);
93 unsigned long totalram_pages __read_mostly;
94 unsigned long totalreserve_pages __read_mostly;
95 int percpu_pagelist_fraction;
96 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
98 #ifdef CONFIG_PM_SLEEP
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
108 static gfp_t saved_gfp_mask;
110 void pm_restore_gfp_mask(void)
112 WARN_ON(!mutex_is_locked(&pm_mutex));
113 if (saved_gfp_mask) {
114 gfp_allowed_mask = saved_gfp_mask;
115 saved_gfp_mask = 0;
119 void pm_restrict_gfp_mask(void)
121 WARN_ON(!mutex_is_locked(&pm_mutex));
122 WARN_ON(saved_gfp_mask);
123 saved_gfp_mask = gfp_allowed_mask;
124 gfp_allowed_mask &= ~GFP_IOFS;
126 #endif /* CONFIG_PM_SLEEP */
128 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129 int pageblock_order __read_mostly;
130 #endif
132 static void __free_pages_ok(struct page *page, unsigned int order);
135 * results with 256, 32 in the lowmem_reserve sysctl:
136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137 * 1G machine -> (16M dma, 784M normal, 224M high)
138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
142 * TBD: should special case ZONE_DMA32 machines here - in those we normally
143 * don't need any ZONE_NORMAL reservation
145 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
146 #ifdef CONFIG_ZONE_DMA
147 256,
148 #endif
149 #ifdef CONFIG_ZONE_DMA32
150 256,
151 #endif
152 #ifdef CONFIG_HIGHMEM
154 #endif
158 EXPORT_SYMBOL(totalram_pages);
160 static char * const zone_names[MAX_NR_ZONES] = {
161 #ifdef CONFIG_ZONE_DMA
162 "DMA",
163 #endif
164 #ifdef CONFIG_ZONE_DMA32
165 "DMA32",
166 #endif
167 "Normal",
168 #ifdef CONFIG_HIGHMEM
169 "HighMem",
170 #endif
171 "Movable",
174 int min_free_kbytes = 1024;
176 static unsigned long __meminitdata nr_kernel_pages;
177 static unsigned long __meminitdata nr_all_pages;
178 static unsigned long __meminitdata dma_reserve;
180 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
183 * ranges of memory (RAM) that may be registered with add_active_range().
184 * Ranges passed to add_active_range() will be merged if possible
185 * so the number of times add_active_range() can be called is
186 * related to the number of nodes and the number of holes
188 #ifdef CONFIG_MAX_ACTIVE_REGIONS
189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
191 #else
192 #if MAX_NUMNODES >= 32
193 /* If there can be many nodes, allow up to 50 holes per node */
194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
195 #else
196 /* By default, allow up to 256 distinct regions */
197 #define MAX_ACTIVE_REGIONS 256
198 #endif
199 #endif
201 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
202 static int __meminitdata nr_nodemap_entries;
203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
205 static unsigned long __initdata required_kernelcore;
206 static unsigned long __initdata required_movablecore;
207 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210 int movable_zone;
211 EXPORT_SYMBOL(movable_zone);
212 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
214 #if MAX_NUMNODES > 1
215 int nr_node_ids __read_mostly = MAX_NUMNODES;
216 int nr_online_nodes __read_mostly = 1;
217 EXPORT_SYMBOL(nr_node_ids);
218 EXPORT_SYMBOL(nr_online_nodes);
219 #endif
221 int page_group_by_mobility_disabled __read_mostly;
223 static void set_pageblock_migratetype(struct page *page, int migratetype)
226 if (unlikely(page_group_by_mobility_disabled))
227 migratetype = MIGRATE_UNMOVABLE;
229 set_pageblock_flags_group(page, (unsigned long)migratetype,
230 PB_migrate, PB_migrate_end);
233 bool oom_killer_disabled __read_mostly;
235 #ifdef CONFIG_DEBUG_VM
236 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
238 int ret = 0;
239 unsigned seq;
240 unsigned long pfn = page_to_pfn(page);
242 do {
243 seq = zone_span_seqbegin(zone);
244 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
245 ret = 1;
246 else if (pfn < zone->zone_start_pfn)
247 ret = 1;
248 } while (zone_span_seqretry(zone, seq));
250 return ret;
253 static int page_is_consistent(struct zone *zone, struct page *page)
255 if (!pfn_valid_within(page_to_pfn(page)))
256 return 0;
257 if (zone != page_zone(page))
258 return 0;
260 return 1;
263 * Temporary debugging check for pages not lying within a given zone.
265 static int bad_range(struct zone *zone, struct page *page)
267 if (page_outside_zone_boundaries(zone, page))
268 return 1;
269 if (!page_is_consistent(zone, page))
270 return 1;
272 return 0;
274 #else
275 static inline int bad_range(struct zone *zone, struct page *page)
277 return 0;
279 #endif
281 static void bad_page(struct page *page)
283 static unsigned long resume;
284 static unsigned long nr_shown;
285 static unsigned long nr_unshown;
287 /* Don't complain about poisoned pages */
288 if (PageHWPoison(page)) {
289 reset_page_mapcount(page); /* remove PageBuddy */
290 return;
294 * Allow a burst of 60 reports, then keep quiet for that minute;
295 * or allow a steady drip of one report per second.
297 if (nr_shown == 60) {
298 if (time_before(jiffies, resume)) {
299 nr_unshown++;
300 goto out;
302 if (nr_unshown) {
303 printk(KERN_ALERT
304 "BUG: Bad page state: %lu messages suppressed\n",
305 nr_unshown);
306 nr_unshown = 0;
308 nr_shown = 0;
310 if (nr_shown++ == 0)
311 resume = jiffies + 60 * HZ;
313 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
314 current->comm, page_to_pfn(page));
315 dump_page(page);
317 dump_stack();
318 out:
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 reset_page_mapcount(page); /* remove PageBuddy */
321 add_taint(TAINT_BAD_PAGE);
325 * Higher-order pages are called "compound pages". They are structured thusly:
327 * The first PAGE_SIZE page is called the "head page".
329 * The remaining PAGE_SIZE pages are called "tail pages".
331 * All pages have PG_compound set. All pages have their ->private pointing at
332 * the head page (even the head page has this).
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
339 static void free_compound_page(struct page *page)
341 __free_pages_ok(page, compound_order(page));
344 void prep_compound_page(struct page *page, unsigned long order)
346 int i;
347 int nr_pages = 1 << order;
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
355 __SetPageTail(p);
356 p->first_page = page;
360 /* update __split_huge_page_refcount if you change this function */
361 static int destroy_compound_page(struct page *page, unsigned long order)
363 int i;
364 int nr_pages = 1 << order;
365 int bad = 0;
367 if (unlikely(compound_order(page) != order) ||
368 unlikely(!PageHead(page))) {
369 bad_page(page);
370 bad++;
373 __ClearPageHead(page);
375 for (i = 1; i < nr_pages; i++) {
376 struct page *p = page + i;
378 if (unlikely(!PageTail(p) || (p->first_page != page))) {
379 bad_page(page);
380 bad++;
382 __ClearPageTail(p);
385 return bad;
388 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
390 int i;
393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 * and __GFP_HIGHMEM from hard or soft interrupt context.
396 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
397 for (i = 0; i < (1 << order); i++)
398 clear_highpage(page + i);
401 static inline void set_page_order(struct page *page, int order)
403 set_page_private(page, order);
404 __SetPageBuddy(page);
407 static inline void rmv_page_order(struct page *page)
409 __ClearPageBuddy(page);
410 set_page_private(page, 0);
414 * Locate the struct page for both the matching buddy in our
415 * pair (buddy1) and the combined O(n+1) page they form (page).
417 * 1) Any buddy B1 will have an order O twin B2 which satisfies
418 * the following equation:
419 * B2 = B1 ^ (1 << O)
420 * For example, if the starting buddy (buddy2) is #8 its order
421 * 1 buddy is #10:
422 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
424 * 2) Any buddy B will have an order O+1 parent P which
425 * satisfies the following equation:
426 * P = B & ~(1 << O)
428 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
430 static inline unsigned long
431 __find_buddy_index(unsigned long page_idx, unsigned int order)
433 return page_idx ^ (1 << order);
437 * This function checks whether a page is free && is the buddy
438 * we can do coalesce a page and its buddy if
439 * (a) the buddy is not in a hole &&
440 * (b) the buddy is in the buddy system &&
441 * (c) a page and its buddy have the same order &&
442 * (d) a page and its buddy are in the same zone.
444 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
445 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
447 * For recording page's order, we use page_private(page).
449 static inline int page_is_buddy(struct page *page, struct page *buddy,
450 int order)
452 if (!pfn_valid_within(page_to_pfn(buddy)))
453 return 0;
455 if (page_zone_id(page) != page_zone_id(buddy))
456 return 0;
458 if (PageBuddy(buddy) && page_order(buddy) == order) {
459 VM_BUG_ON(page_count(buddy) != 0);
460 return 1;
462 return 0;
466 * Freeing function for a buddy system allocator.
468 * The concept of a buddy system is to maintain direct-mapped table
469 * (containing bit values) for memory blocks of various "orders".
470 * The bottom level table contains the map for the smallest allocatable
471 * units of memory (here, pages), and each level above it describes
472 * pairs of units from the levels below, hence, "buddies".
473 * At a high level, all that happens here is marking the table entry
474 * at the bottom level available, and propagating the changes upward
475 * as necessary, plus some accounting needed to play nicely with other
476 * parts of the VM system.
477 * At each level, we keep a list of pages, which are heads of continuous
478 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
479 * order is recorded in page_private(page) field.
480 * So when we are allocating or freeing one, we can derive the state of the
481 * other. That is, if we allocate a small block, and both were
482 * free, the remainder of the region must be split into blocks.
483 * If a block is freed, and its buddy is also free, then this
484 * triggers coalescing into a block of larger size.
486 * -- wli
489 static inline void __free_one_page(struct page *page,
490 struct zone *zone, unsigned int order,
491 int migratetype)
493 unsigned long page_idx;
494 unsigned long combined_idx;
495 unsigned long uninitialized_var(buddy_idx);
496 struct page *buddy;
498 if (unlikely(PageCompound(page)))
499 if (unlikely(destroy_compound_page(page, order)))
500 return;
502 VM_BUG_ON(migratetype == -1);
504 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
506 VM_BUG_ON(page_idx & ((1 << order) - 1));
507 VM_BUG_ON(bad_range(zone, page));
509 while (order < MAX_ORDER-1) {
510 buddy_idx = __find_buddy_index(page_idx, order);
511 buddy = page + (buddy_idx - page_idx);
512 if (!page_is_buddy(page, buddy, order))
513 break;
515 /* Our buddy is free, merge with it and move up one order. */
516 list_del(&buddy->lru);
517 zone->free_area[order].nr_free--;
518 rmv_page_order(buddy);
519 combined_idx = buddy_idx & page_idx;
520 page = page + (combined_idx - page_idx);
521 page_idx = combined_idx;
522 order++;
524 set_page_order(page, order);
527 * If this is not the largest possible page, check if the buddy
528 * of the next-highest order is free. If it is, it's possible
529 * that pages are being freed that will coalesce soon. In case,
530 * that is happening, add the free page to the tail of the list
531 * so it's less likely to be used soon and more likely to be merged
532 * as a higher order page
534 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
535 struct page *higher_page, *higher_buddy;
536 combined_idx = buddy_idx & page_idx;
537 higher_page = page + (combined_idx - page_idx);
538 buddy_idx = __find_buddy_index(combined_idx, order + 1);
539 higher_buddy = page + (buddy_idx - combined_idx);
540 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
541 list_add_tail(&page->lru,
542 &zone->free_area[order].free_list[migratetype]);
543 goto out;
547 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
548 out:
549 zone->free_area[order].nr_free++;
553 * free_page_mlock() -- clean up attempts to free and mlocked() page.
554 * Page should not be on lru, so no need to fix that up.
555 * free_pages_check() will verify...
557 static inline void free_page_mlock(struct page *page)
559 __dec_zone_page_state(page, NR_MLOCK);
560 __count_vm_event(UNEVICTABLE_MLOCKFREED);
563 static inline int free_pages_check(struct page *page)
565 if (unlikely(page_mapcount(page) |
566 (page->mapping != NULL) |
567 (atomic_read(&page->_count) != 0) |
568 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
569 bad_page(page);
570 return 1;
572 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
573 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
574 return 0;
578 * Frees a number of pages from the PCP lists
579 * Assumes all pages on list are in same zone, and of same order.
580 * count is the number of pages to free.
582 * If the zone was previously in an "all pages pinned" state then look to
583 * see if this freeing clears that state.
585 * And clear the zone's pages_scanned counter, to hold off the "all pages are
586 * pinned" detection logic.
588 static void free_pcppages_bulk(struct zone *zone, int count,
589 struct per_cpu_pages *pcp)
591 int migratetype = 0;
592 int batch_free = 0;
593 int to_free = count;
595 spin_lock(&zone->lock);
596 zone->all_unreclaimable = 0;
597 zone->pages_scanned = 0;
599 while (to_free) {
600 struct page *page;
601 struct list_head *list;
604 * Remove pages from lists in a round-robin fashion. A
605 * batch_free count is maintained that is incremented when an
606 * empty list is encountered. This is so more pages are freed
607 * off fuller lists instead of spinning excessively around empty
608 * lists
610 do {
611 batch_free++;
612 if (++migratetype == MIGRATE_PCPTYPES)
613 migratetype = 0;
614 list = &pcp->lists[migratetype];
615 } while (list_empty(list));
617 /* This is the only non-empty list. Free them all. */
618 if (batch_free == MIGRATE_PCPTYPES)
619 batch_free = to_free;
621 do {
622 page = list_entry(list->prev, struct page, lru);
623 /* must delete as __free_one_page list manipulates */
624 list_del(&page->lru);
625 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
626 __free_one_page(page, zone, 0, page_private(page));
627 trace_mm_page_pcpu_drain(page, 0, page_private(page));
628 } while (--to_free && --batch_free && !list_empty(list));
630 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
631 spin_unlock(&zone->lock);
634 static void free_one_page(struct zone *zone, struct page *page, int order,
635 int migratetype)
637 spin_lock(&zone->lock);
638 zone->all_unreclaimable = 0;
639 zone->pages_scanned = 0;
641 __free_one_page(page, zone, order, migratetype);
642 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
643 spin_unlock(&zone->lock);
646 static bool free_pages_prepare(struct page *page, unsigned int order)
648 int i;
649 int bad = 0;
651 trace_mm_page_free_direct(page, order);
652 kmemcheck_free_shadow(page, order);
654 if (PageAnon(page))
655 page->mapping = NULL;
656 for (i = 0; i < (1 << order); i++)
657 bad += free_pages_check(page + i);
658 if (bad)
659 return false;
661 if (!PageHighMem(page)) {
662 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
663 debug_check_no_obj_freed(page_address(page),
664 PAGE_SIZE << order);
666 arch_free_page(page, order);
667 kernel_map_pages(page, 1 << order, 0);
669 return true;
672 static void __free_pages_ok(struct page *page, unsigned int order)
674 unsigned long flags;
675 int wasMlocked = __TestClearPageMlocked(page);
677 if (!free_pages_prepare(page, order))
678 return;
680 local_irq_save(flags);
681 if (unlikely(wasMlocked))
682 free_page_mlock(page);
683 __count_vm_events(PGFREE, 1 << order);
684 free_one_page(page_zone(page), page, order,
685 get_pageblock_migratetype(page));
686 local_irq_restore(flags);
690 * permit the bootmem allocator to evade page validation on high-order frees
692 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
694 if (order == 0) {
695 __ClearPageReserved(page);
696 set_page_count(page, 0);
697 set_page_refcounted(page);
698 __free_page(page);
699 } else {
700 int loop;
702 prefetchw(page);
703 for (loop = 0; loop < BITS_PER_LONG; loop++) {
704 struct page *p = &page[loop];
706 if (loop + 1 < BITS_PER_LONG)
707 prefetchw(p + 1);
708 __ClearPageReserved(p);
709 set_page_count(p, 0);
712 set_page_refcounted(page);
713 __free_pages(page, order);
719 * The order of subdivision here is critical for the IO subsystem.
720 * Please do not alter this order without good reasons and regression
721 * testing. Specifically, as large blocks of memory are subdivided,
722 * the order in which smaller blocks are delivered depends on the order
723 * they're subdivided in this function. This is the primary factor
724 * influencing the order in which pages are delivered to the IO
725 * subsystem according to empirical testing, and this is also justified
726 * by considering the behavior of a buddy system containing a single
727 * large block of memory acted on by a series of small allocations.
728 * This behavior is a critical factor in sglist merging's success.
730 * -- wli
732 static inline void expand(struct zone *zone, struct page *page,
733 int low, int high, struct free_area *area,
734 int migratetype)
736 unsigned long size = 1 << high;
738 while (high > low) {
739 area--;
740 high--;
741 size >>= 1;
742 VM_BUG_ON(bad_range(zone, &page[size]));
743 list_add(&page[size].lru, &area->free_list[migratetype]);
744 area->nr_free++;
745 set_page_order(&page[size], high);
750 * This page is about to be returned from the page allocator
752 static inline int check_new_page(struct page *page)
754 if (unlikely(page_mapcount(page) |
755 (page->mapping != NULL) |
756 (atomic_read(&page->_count) != 0) |
757 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
758 bad_page(page);
759 return 1;
761 return 0;
764 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
766 int i;
768 for (i = 0; i < (1 << order); i++) {
769 struct page *p = page + i;
770 if (unlikely(check_new_page(p)))
771 return 1;
774 set_page_private(page, 0);
775 set_page_refcounted(page);
777 arch_alloc_page(page, order);
778 kernel_map_pages(page, 1 << order, 1);
780 if (gfp_flags & __GFP_ZERO)
781 prep_zero_page(page, order, gfp_flags);
783 if (order && (gfp_flags & __GFP_COMP))
784 prep_compound_page(page, order);
786 return 0;
790 * Go through the free lists for the given migratetype and remove
791 * the smallest available page from the freelists
793 static inline
794 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
795 int migratetype)
797 unsigned int current_order;
798 struct free_area * area;
799 struct page *page;
801 /* Find a page of the appropriate size in the preferred list */
802 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
803 area = &(zone->free_area[current_order]);
804 if (list_empty(&area->free_list[migratetype]))
805 continue;
807 page = list_entry(area->free_list[migratetype].next,
808 struct page, lru);
809 list_del(&page->lru);
810 rmv_page_order(page);
811 area->nr_free--;
812 expand(zone, page, order, current_order, area, migratetype);
813 return page;
816 return NULL;
821 * This array describes the order lists are fallen back to when
822 * the free lists for the desirable migrate type are depleted
824 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
825 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
826 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
827 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
828 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
832 * Move the free pages in a range to the free lists of the requested type.
833 * Note that start_page and end_pages are not aligned on a pageblock
834 * boundary. If alignment is required, use move_freepages_block()
836 static int move_freepages(struct zone *zone,
837 struct page *start_page, struct page *end_page,
838 int migratetype)
840 struct page *page;
841 unsigned long order;
842 int pages_moved = 0;
844 #ifndef CONFIG_HOLES_IN_ZONE
846 * page_zone is not safe to call in this context when
847 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
848 * anyway as we check zone boundaries in move_freepages_block().
849 * Remove at a later date when no bug reports exist related to
850 * grouping pages by mobility
852 BUG_ON(page_zone(start_page) != page_zone(end_page));
853 #endif
855 for (page = start_page; page <= end_page;) {
856 /* Make sure we are not inadvertently changing nodes */
857 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
859 if (!pfn_valid_within(page_to_pfn(page))) {
860 page++;
861 continue;
864 if (!PageBuddy(page)) {
865 page++;
866 continue;
869 order = page_order(page);
870 list_move(&page->lru,
871 &zone->free_area[order].free_list[migratetype]);
872 page += 1 << order;
873 pages_moved += 1 << order;
876 return pages_moved;
879 static int move_freepages_block(struct zone *zone, struct page *page,
880 int migratetype)
882 unsigned long start_pfn, end_pfn;
883 struct page *start_page, *end_page;
885 start_pfn = page_to_pfn(page);
886 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
887 start_page = pfn_to_page(start_pfn);
888 end_page = start_page + pageblock_nr_pages - 1;
889 end_pfn = start_pfn + pageblock_nr_pages - 1;
891 /* Do not cross zone boundaries */
892 if (start_pfn < zone->zone_start_pfn)
893 start_page = page;
894 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
895 return 0;
897 return move_freepages(zone, start_page, end_page, migratetype);
900 static void change_pageblock_range(struct page *pageblock_page,
901 int start_order, int migratetype)
903 int nr_pageblocks = 1 << (start_order - pageblock_order);
905 while (nr_pageblocks--) {
906 set_pageblock_migratetype(pageblock_page, migratetype);
907 pageblock_page += pageblock_nr_pages;
911 /* Remove an element from the buddy allocator from the fallback list */
912 static inline struct page *
913 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
915 struct free_area * area;
916 int current_order;
917 struct page *page;
918 int migratetype, i;
920 /* Find the largest possible block of pages in the other list */
921 for (current_order = MAX_ORDER-1; current_order >= order;
922 --current_order) {
923 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
924 migratetype = fallbacks[start_migratetype][i];
926 /* MIGRATE_RESERVE handled later if necessary */
927 if (migratetype == MIGRATE_RESERVE)
928 continue;
930 area = &(zone->free_area[current_order]);
931 if (list_empty(&area->free_list[migratetype]))
932 continue;
934 page = list_entry(area->free_list[migratetype].next,
935 struct page, lru);
936 area->nr_free--;
939 * If breaking a large block of pages, move all free
940 * pages to the preferred allocation list. If falling
941 * back for a reclaimable kernel allocation, be more
942 * agressive about taking ownership of free pages
944 if (unlikely(current_order >= (pageblock_order >> 1)) ||
945 start_migratetype == MIGRATE_RECLAIMABLE ||
946 page_group_by_mobility_disabled) {
947 unsigned long pages;
948 pages = move_freepages_block(zone, page,
949 start_migratetype);
951 /* Claim the whole block if over half of it is free */
952 if (pages >= (1 << (pageblock_order-1)) ||
953 page_group_by_mobility_disabled)
954 set_pageblock_migratetype(page,
955 start_migratetype);
957 migratetype = start_migratetype;
960 /* Remove the page from the freelists */
961 list_del(&page->lru);
962 rmv_page_order(page);
964 /* Take ownership for orders >= pageblock_order */
965 if (current_order >= pageblock_order)
966 change_pageblock_range(page, current_order,
967 start_migratetype);
969 expand(zone, page, order, current_order, area, migratetype);
971 trace_mm_page_alloc_extfrag(page, order, current_order,
972 start_migratetype, migratetype);
974 return page;
978 return NULL;
982 * Do the hard work of removing an element from the buddy allocator.
983 * Call me with the zone->lock already held.
985 static struct page *__rmqueue(struct zone *zone, unsigned int order,
986 int migratetype)
988 struct page *page;
990 retry_reserve:
991 page = __rmqueue_smallest(zone, order, migratetype);
993 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
994 page = __rmqueue_fallback(zone, order, migratetype);
997 * Use MIGRATE_RESERVE rather than fail an allocation. goto
998 * is used because __rmqueue_smallest is an inline function
999 * and we want just one call site
1001 if (!page) {
1002 migratetype = MIGRATE_RESERVE;
1003 goto retry_reserve;
1007 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1008 return page;
1012 * Obtain a specified number of elements from the buddy allocator, all under
1013 * a single hold of the lock, for efficiency. Add them to the supplied list.
1014 * Returns the number of new pages which were placed at *list.
1016 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1017 unsigned long count, struct list_head *list,
1018 int migratetype, int cold)
1020 int i;
1022 spin_lock(&zone->lock);
1023 for (i = 0; i < count; ++i) {
1024 struct page *page = __rmqueue(zone, order, migratetype);
1025 if (unlikely(page == NULL))
1026 break;
1029 * Split buddy pages returned by expand() are received here
1030 * in physical page order. The page is added to the callers and
1031 * list and the list head then moves forward. From the callers
1032 * perspective, the linked list is ordered by page number in
1033 * some conditions. This is useful for IO devices that can
1034 * merge IO requests if the physical pages are ordered
1035 * properly.
1037 if (likely(cold == 0))
1038 list_add(&page->lru, list);
1039 else
1040 list_add_tail(&page->lru, list);
1041 set_page_private(page, migratetype);
1042 list = &page->lru;
1044 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1045 spin_unlock(&zone->lock);
1046 return i;
1049 #ifdef CONFIG_NUMA
1051 * Called from the vmstat counter updater to drain pagesets of this
1052 * currently executing processor on remote nodes after they have
1053 * expired.
1055 * Note that this function must be called with the thread pinned to
1056 * a single processor.
1058 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1060 unsigned long flags;
1061 int to_drain;
1063 local_irq_save(flags);
1064 if (pcp->count >= pcp->batch)
1065 to_drain = pcp->batch;
1066 else
1067 to_drain = pcp->count;
1068 free_pcppages_bulk(zone, to_drain, pcp);
1069 pcp->count -= to_drain;
1070 local_irq_restore(flags);
1072 #endif
1075 * Drain pages of the indicated processor.
1077 * The processor must either be the current processor and the
1078 * thread pinned to the current processor or a processor that
1079 * is not online.
1081 static void drain_pages(unsigned int cpu)
1083 unsigned long flags;
1084 struct zone *zone;
1086 for_each_populated_zone(zone) {
1087 struct per_cpu_pageset *pset;
1088 struct per_cpu_pages *pcp;
1090 local_irq_save(flags);
1091 pset = per_cpu_ptr(zone->pageset, cpu);
1093 pcp = &pset->pcp;
1094 if (pcp->count) {
1095 free_pcppages_bulk(zone, pcp->count, pcp);
1096 pcp->count = 0;
1098 local_irq_restore(flags);
1103 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1105 void drain_local_pages(void *arg)
1107 drain_pages(smp_processor_id());
1111 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1113 void drain_all_pages(void)
1115 on_each_cpu(drain_local_pages, NULL, 1);
1118 #ifdef CONFIG_HIBERNATION
1120 void mark_free_pages(struct zone *zone)
1122 unsigned long pfn, max_zone_pfn;
1123 unsigned long flags;
1124 int order, t;
1125 struct list_head *curr;
1127 if (!zone->spanned_pages)
1128 return;
1130 spin_lock_irqsave(&zone->lock, flags);
1132 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1133 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1134 if (pfn_valid(pfn)) {
1135 struct page *page = pfn_to_page(pfn);
1137 if (!swsusp_page_is_forbidden(page))
1138 swsusp_unset_page_free(page);
1141 for_each_migratetype_order(order, t) {
1142 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1143 unsigned long i;
1145 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1146 for (i = 0; i < (1UL << order); i++)
1147 swsusp_set_page_free(pfn_to_page(pfn + i));
1150 spin_unlock_irqrestore(&zone->lock, flags);
1152 #endif /* CONFIG_PM */
1155 * Free a 0-order page
1156 * cold == 1 ? free a cold page : free a hot page
1158 void free_hot_cold_page(struct page *page, int cold)
1160 struct zone *zone = page_zone(page);
1161 struct per_cpu_pages *pcp;
1162 unsigned long flags;
1163 int migratetype;
1164 int wasMlocked = __TestClearPageMlocked(page);
1166 if (!free_pages_prepare(page, 0))
1167 return;
1169 migratetype = get_pageblock_migratetype(page);
1170 set_page_private(page, migratetype);
1171 local_irq_save(flags);
1172 if (unlikely(wasMlocked))
1173 free_page_mlock(page);
1174 __count_vm_event(PGFREE);
1177 * We only track unmovable, reclaimable and movable on pcp lists.
1178 * Free ISOLATE pages back to the allocator because they are being
1179 * offlined but treat RESERVE as movable pages so we can get those
1180 * areas back if necessary. Otherwise, we may have to free
1181 * excessively into the page allocator
1183 if (migratetype >= MIGRATE_PCPTYPES) {
1184 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1185 free_one_page(zone, page, 0, migratetype);
1186 goto out;
1188 migratetype = MIGRATE_MOVABLE;
1191 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1192 if (cold)
1193 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1194 else
1195 list_add(&page->lru, &pcp->lists[migratetype]);
1196 pcp->count++;
1197 if (pcp->count >= pcp->high) {
1198 free_pcppages_bulk(zone, pcp->batch, pcp);
1199 pcp->count -= pcp->batch;
1202 out:
1203 local_irq_restore(flags);
1207 * split_page takes a non-compound higher-order page, and splits it into
1208 * n (1<<order) sub-pages: page[0..n]
1209 * Each sub-page must be freed individually.
1211 * Note: this is probably too low level an operation for use in drivers.
1212 * Please consult with lkml before using this in your driver.
1214 void split_page(struct page *page, unsigned int order)
1216 int i;
1218 VM_BUG_ON(PageCompound(page));
1219 VM_BUG_ON(!page_count(page));
1221 #ifdef CONFIG_KMEMCHECK
1223 * Split shadow pages too, because free(page[0]) would
1224 * otherwise free the whole shadow.
1226 if (kmemcheck_page_is_tracked(page))
1227 split_page(virt_to_page(page[0].shadow), order);
1228 #endif
1230 for (i = 1; i < (1 << order); i++)
1231 set_page_refcounted(page + i);
1235 * Similar to split_page except the page is already free. As this is only
1236 * being used for migration, the migratetype of the block also changes.
1237 * As this is called with interrupts disabled, the caller is responsible
1238 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1239 * are enabled.
1241 * Note: this is probably too low level an operation for use in drivers.
1242 * Please consult with lkml before using this in your driver.
1244 int split_free_page(struct page *page)
1246 unsigned int order;
1247 unsigned long watermark;
1248 struct zone *zone;
1250 BUG_ON(!PageBuddy(page));
1252 zone = page_zone(page);
1253 order = page_order(page);
1255 /* Obey watermarks as if the page was being allocated */
1256 watermark = low_wmark_pages(zone) + (1 << order);
1257 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1258 return 0;
1260 /* Remove page from free list */
1261 list_del(&page->lru);
1262 zone->free_area[order].nr_free--;
1263 rmv_page_order(page);
1264 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1266 /* Split into individual pages */
1267 set_page_refcounted(page);
1268 split_page(page, order);
1270 if (order >= pageblock_order - 1) {
1271 struct page *endpage = page + (1 << order) - 1;
1272 for (; page < endpage; page += pageblock_nr_pages)
1273 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1276 return 1 << order;
1280 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1281 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1282 * or two.
1284 static inline
1285 struct page *buffered_rmqueue(struct zone *preferred_zone,
1286 struct zone *zone, int order, gfp_t gfp_flags,
1287 int migratetype)
1289 unsigned long flags;
1290 struct page *page;
1291 int cold = !!(gfp_flags & __GFP_COLD);
1293 again:
1294 if (likely(order == 0)) {
1295 struct per_cpu_pages *pcp;
1296 struct list_head *list;
1298 local_irq_save(flags);
1299 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1300 list = &pcp->lists[migratetype];
1301 if (list_empty(list)) {
1302 pcp->count += rmqueue_bulk(zone, 0,
1303 pcp->batch, list,
1304 migratetype, cold);
1305 if (unlikely(list_empty(list)))
1306 goto failed;
1309 if (cold)
1310 page = list_entry(list->prev, struct page, lru);
1311 else
1312 page = list_entry(list->next, struct page, lru);
1314 list_del(&page->lru);
1315 pcp->count--;
1316 } else {
1317 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1319 * __GFP_NOFAIL is not to be used in new code.
1321 * All __GFP_NOFAIL callers should be fixed so that they
1322 * properly detect and handle allocation failures.
1324 * We most definitely don't want callers attempting to
1325 * allocate greater than order-1 page units with
1326 * __GFP_NOFAIL.
1328 WARN_ON_ONCE(order > 1);
1330 spin_lock_irqsave(&zone->lock, flags);
1331 page = __rmqueue(zone, order, migratetype);
1332 spin_unlock(&zone->lock);
1333 if (!page)
1334 goto failed;
1335 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1338 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1339 zone_statistics(preferred_zone, zone, gfp_flags);
1340 local_irq_restore(flags);
1342 VM_BUG_ON(bad_range(zone, page));
1343 if (prep_new_page(page, order, gfp_flags))
1344 goto again;
1345 return page;
1347 failed:
1348 local_irq_restore(flags);
1349 return NULL;
1352 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1353 #define ALLOC_WMARK_MIN WMARK_MIN
1354 #define ALLOC_WMARK_LOW WMARK_LOW
1355 #define ALLOC_WMARK_HIGH WMARK_HIGH
1356 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1358 /* Mask to get the watermark bits */
1359 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1361 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1362 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1363 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1365 #ifdef CONFIG_FAIL_PAGE_ALLOC
1367 static struct fail_page_alloc_attr {
1368 struct fault_attr attr;
1370 u32 ignore_gfp_highmem;
1371 u32 ignore_gfp_wait;
1372 u32 min_order;
1374 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1376 struct dentry *ignore_gfp_highmem_file;
1377 struct dentry *ignore_gfp_wait_file;
1378 struct dentry *min_order_file;
1380 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1382 } fail_page_alloc = {
1383 .attr = FAULT_ATTR_INITIALIZER,
1384 .ignore_gfp_wait = 1,
1385 .ignore_gfp_highmem = 1,
1386 .min_order = 1,
1389 static int __init setup_fail_page_alloc(char *str)
1391 return setup_fault_attr(&fail_page_alloc.attr, str);
1393 __setup("fail_page_alloc=", setup_fail_page_alloc);
1395 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1397 if (order < fail_page_alloc.min_order)
1398 return 0;
1399 if (gfp_mask & __GFP_NOFAIL)
1400 return 0;
1401 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1402 return 0;
1403 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1404 return 0;
1406 return should_fail(&fail_page_alloc.attr, 1 << order);
1409 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1411 static int __init fail_page_alloc_debugfs(void)
1413 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1414 struct dentry *dir;
1415 int err;
1417 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1418 "fail_page_alloc");
1419 if (err)
1420 return err;
1421 dir = fail_page_alloc.attr.dentries.dir;
1423 fail_page_alloc.ignore_gfp_wait_file =
1424 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1425 &fail_page_alloc.ignore_gfp_wait);
1427 fail_page_alloc.ignore_gfp_highmem_file =
1428 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1429 &fail_page_alloc.ignore_gfp_highmem);
1430 fail_page_alloc.min_order_file =
1431 debugfs_create_u32("min-order", mode, dir,
1432 &fail_page_alloc.min_order);
1434 if (!fail_page_alloc.ignore_gfp_wait_file ||
1435 !fail_page_alloc.ignore_gfp_highmem_file ||
1436 !fail_page_alloc.min_order_file) {
1437 err = -ENOMEM;
1438 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1439 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1440 debugfs_remove(fail_page_alloc.min_order_file);
1441 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1444 return err;
1447 late_initcall(fail_page_alloc_debugfs);
1449 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1451 #else /* CONFIG_FAIL_PAGE_ALLOC */
1453 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1455 return 0;
1458 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1461 * Return true if free pages are above 'mark'. This takes into account the order
1462 * of the allocation.
1464 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1465 int classzone_idx, int alloc_flags, long free_pages)
1467 /* free_pages my go negative - that's OK */
1468 long min = mark;
1469 int o;
1471 free_pages -= (1 << order) + 1;
1472 if (alloc_flags & ALLOC_HIGH)
1473 min -= min / 2;
1474 if (alloc_flags & ALLOC_HARDER)
1475 min -= min / 4;
1477 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1478 return false;
1479 for (o = 0; o < order; o++) {
1480 /* At the next order, this order's pages become unavailable */
1481 free_pages -= z->free_area[o].nr_free << o;
1483 /* Require fewer higher order pages to be free */
1484 min >>= 1;
1486 if (free_pages <= min)
1487 return false;
1489 return true;
1492 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1493 int classzone_idx, int alloc_flags)
1495 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1496 zone_page_state(z, NR_FREE_PAGES));
1499 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1500 int classzone_idx, int alloc_flags)
1502 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1504 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1505 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1507 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1508 free_pages);
1511 #ifdef CONFIG_NUMA
1513 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1514 * skip over zones that are not allowed by the cpuset, or that have
1515 * been recently (in last second) found to be nearly full. See further
1516 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1517 * that have to skip over a lot of full or unallowed zones.
1519 * If the zonelist cache is present in the passed in zonelist, then
1520 * returns a pointer to the allowed node mask (either the current
1521 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1523 * If the zonelist cache is not available for this zonelist, does
1524 * nothing and returns NULL.
1526 * If the fullzones BITMAP in the zonelist cache is stale (more than
1527 * a second since last zap'd) then we zap it out (clear its bits.)
1529 * We hold off even calling zlc_setup, until after we've checked the
1530 * first zone in the zonelist, on the theory that most allocations will
1531 * be satisfied from that first zone, so best to examine that zone as
1532 * quickly as we can.
1534 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1536 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1537 nodemask_t *allowednodes; /* zonelist_cache approximation */
1539 zlc = zonelist->zlcache_ptr;
1540 if (!zlc)
1541 return NULL;
1543 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1544 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1545 zlc->last_full_zap = jiffies;
1548 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1549 &cpuset_current_mems_allowed :
1550 &node_states[N_HIGH_MEMORY];
1551 return allowednodes;
1555 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1556 * if it is worth looking at further for free memory:
1557 * 1) Check that the zone isn't thought to be full (doesn't have its
1558 * bit set in the zonelist_cache fullzones BITMAP).
1559 * 2) Check that the zones node (obtained from the zonelist_cache
1560 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1561 * Return true (non-zero) if zone is worth looking at further, or
1562 * else return false (zero) if it is not.
1564 * This check -ignores- the distinction between various watermarks,
1565 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1566 * found to be full for any variation of these watermarks, it will
1567 * be considered full for up to one second by all requests, unless
1568 * we are so low on memory on all allowed nodes that we are forced
1569 * into the second scan of the zonelist.
1571 * In the second scan we ignore this zonelist cache and exactly
1572 * apply the watermarks to all zones, even it is slower to do so.
1573 * We are low on memory in the second scan, and should leave no stone
1574 * unturned looking for a free page.
1576 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1577 nodemask_t *allowednodes)
1579 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1580 int i; /* index of *z in zonelist zones */
1581 int n; /* node that zone *z is on */
1583 zlc = zonelist->zlcache_ptr;
1584 if (!zlc)
1585 return 1;
1587 i = z - zonelist->_zonerefs;
1588 n = zlc->z_to_n[i];
1590 /* This zone is worth trying if it is allowed but not full */
1591 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1595 * Given 'z' scanning a zonelist, set the corresponding bit in
1596 * zlc->fullzones, so that subsequent attempts to allocate a page
1597 * from that zone don't waste time re-examining it.
1599 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1601 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1602 int i; /* index of *z in zonelist zones */
1604 zlc = zonelist->zlcache_ptr;
1605 if (!zlc)
1606 return;
1608 i = z - zonelist->_zonerefs;
1610 set_bit(i, zlc->fullzones);
1613 #else /* CONFIG_NUMA */
1615 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1617 return NULL;
1620 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1621 nodemask_t *allowednodes)
1623 return 1;
1626 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1629 #endif /* CONFIG_NUMA */
1632 * get_page_from_freelist goes through the zonelist trying to allocate
1633 * a page.
1635 static struct page *
1636 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1637 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1638 struct zone *preferred_zone, int migratetype)
1640 struct zoneref *z;
1641 struct page *page = NULL;
1642 int classzone_idx;
1643 struct zone *zone;
1644 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1645 int zlc_active = 0; /* set if using zonelist_cache */
1646 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1648 classzone_idx = zone_idx(preferred_zone);
1649 zonelist_scan:
1651 * Scan zonelist, looking for a zone with enough free.
1652 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1654 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1655 high_zoneidx, nodemask) {
1656 if (NUMA_BUILD && zlc_active &&
1657 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1658 continue;
1659 if ((alloc_flags & ALLOC_CPUSET) &&
1660 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1661 goto try_next_zone;
1663 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1664 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1665 unsigned long mark;
1666 int ret;
1668 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1669 if (zone_watermark_ok(zone, order, mark,
1670 classzone_idx, alloc_flags))
1671 goto try_this_zone;
1673 if (zone_reclaim_mode == 0)
1674 goto this_zone_full;
1676 ret = zone_reclaim(zone, gfp_mask, order);
1677 switch (ret) {
1678 case ZONE_RECLAIM_NOSCAN:
1679 /* did not scan */
1680 goto try_next_zone;
1681 case ZONE_RECLAIM_FULL:
1682 /* scanned but unreclaimable */
1683 goto this_zone_full;
1684 default:
1685 /* did we reclaim enough */
1686 if (!zone_watermark_ok(zone, order, mark,
1687 classzone_idx, alloc_flags))
1688 goto this_zone_full;
1692 try_this_zone:
1693 page = buffered_rmqueue(preferred_zone, zone, order,
1694 gfp_mask, migratetype);
1695 if (page)
1696 break;
1697 this_zone_full:
1698 if (NUMA_BUILD)
1699 zlc_mark_zone_full(zonelist, z);
1700 try_next_zone:
1701 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1703 * we do zlc_setup after the first zone is tried but only
1704 * if there are multiple nodes make it worthwhile
1706 allowednodes = zlc_setup(zonelist, alloc_flags);
1707 zlc_active = 1;
1708 did_zlc_setup = 1;
1712 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1713 /* Disable zlc cache for second zonelist scan */
1714 zlc_active = 0;
1715 goto zonelist_scan;
1717 return page;
1721 * Large machines with many possible nodes should not always dump per-node
1722 * meminfo in irq context.
1724 static inline bool should_suppress_show_mem(void)
1726 bool ret = false;
1728 #if NODES_SHIFT > 8
1729 ret = in_interrupt();
1730 #endif
1731 return ret;
1734 static inline int
1735 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1736 unsigned long pages_reclaimed)
1738 /* Do not loop if specifically requested */
1739 if (gfp_mask & __GFP_NORETRY)
1740 return 0;
1743 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1744 * means __GFP_NOFAIL, but that may not be true in other
1745 * implementations.
1747 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1748 return 1;
1751 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1752 * specified, then we retry until we no longer reclaim any pages
1753 * (above), or we've reclaimed an order of pages at least as
1754 * large as the allocation's order. In both cases, if the
1755 * allocation still fails, we stop retrying.
1757 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1758 return 1;
1761 * Don't let big-order allocations loop unless the caller
1762 * explicitly requests that.
1764 if (gfp_mask & __GFP_NOFAIL)
1765 return 1;
1767 return 0;
1770 static inline struct page *
1771 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1772 struct zonelist *zonelist, enum zone_type high_zoneidx,
1773 nodemask_t *nodemask, struct zone *preferred_zone,
1774 int migratetype)
1776 struct page *page;
1778 /* Acquire the OOM killer lock for the zones in zonelist */
1779 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1780 schedule_timeout_uninterruptible(1);
1781 return NULL;
1785 * Go through the zonelist yet one more time, keep very high watermark
1786 * here, this is only to catch a parallel oom killing, we must fail if
1787 * we're still under heavy pressure.
1789 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1790 order, zonelist, high_zoneidx,
1791 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1792 preferred_zone, migratetype);
1793 if (page)
1794 goto out;
1796 if (!(gfp_mask & __GFP_NOFAIL)) {
1797 /* The OOM killer will not help higher order allocs */
1798 if (order > PAGE_ALLOC_COSTLY_ORDER)
1799 goto out;
1800 /* The OOM killer does not needlessly kill tasks for lowmem */
1801 if (high_zoneidx < ZONE_NORMAL)
1802 goto out;
1804 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1805 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1806 * The caller should handle page allocation failure by itself if
1807 * it specifies __GFP_THISNODE.
1808 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1810 if (gfp_mask & __GFP_THISNODE)
1811 goto out;
1813 /* Exhausted what can be done so it's blamo time */
1814 out_of_memory(zonelist, gfp_mask, order, nodemask);
1816 out:
1817 clear_zonelist_oom(zonelist, gfp_mask);
1818 return page;
1821 #ifdef CONFIG_COMPACTION
1822 /* Try memory compaction for high-order allocations before reclaim */
1823 static struct page *
1824 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1825 struct zonelist *zonelist, enum zone_type high_zoneidx,
1826 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1827 int migratetype, unsigned long *did_some_progress,
1828 bool sync_migration)
1830 struct page *page;
1832 if (!order || compaction_deferred(preferred_zone))
1833 return NULL;
1835 current->flags |= PF_MEMALLOC;
1836 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1837 nodemask, sync_migration);
1838 current->flags &= ~PF_MEMALLOC;
1839 if (*did_some_progress != COMPACT_SKIPPED) {
1841 /* Page migration frees to the PCP lists but we want merging */
1842 drain_pages(get_cpu());
1843 put_cpu();
1845 page = get_page_from_freelist(gfp_mask, nodemask,
1846 order, zonelist, high_zoneidx,
1847 alloc_flags, preferred_zone,
1848 migratetype);
1849 if (page) {
1850 preferred_zone->compact_considered = 0;
1851 preferred_zone->compact_defer_shift = 0;
1852 count_vm_event(COMPACTSUCCESS);
1853 return page;
1857 * It's bad if compaction run occurs and fails.
1858 * The most likely reason is that pages exist,
1859 * but not enough to satisfy watermarks.
1861 count_vm_event(COMPACTFAIL);
1862 defer_compaction(preferred_zone);
1864 cond_resched();
1867 return NULL;
1869 #else
1870 static inline struct page *
1871 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1872 struct zonelist *zonelist, enum zone_type high_zoneidx,
1873 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1874 int migratetype, unsigned long *did_some_progress,
1875 bool sync_migration)
1877 return NULL;
1879 #endif /* CONFIG_COMPACTION */
1881 /* The really slow allocator path where we enter direct reclaim */
1882 static inline struct page *
1883 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1884 struct zonelist *zonelist, enum zone_type high_zoneidx,
1885 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1886 int migratetype, unsigned long *did_some_progress)
1888 struct page *page = NULL;
1889 struct reclaim_state reclaim_state;
1890 bool drained = false;
1892 cond_resched();
1894 /* We now go into synchronous reclaim */
1895 cpuset_memory_pressure_bump();
1896 current->flags |= PF_MEMALLOC;
1897 lockdep_set_current_reclaim_state(gfp_mask);
1898 reclaim_state.reclaimed_slab = 0;
1899 current->reclaim_state = &reclaim_state;
1901 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1903 current->reclaim_state = NULL;
1904 lockdep_clear_current_reclaim_state();
1905 current->flags &= ~PF_MEMALLOC;
1907 cond_resched();
1909 if (unlikely(!(*did_some_progress)))
1910 return NULL;
1912 retry:
1913 page = get_page_from_freelist(gfp_mask, nodemask, order,
1914 zonelist, high_zoneidx,
1915 alloc_flags, preferred_zone,
1916 migratetype);
1919 * If an allocation failed after direct reclaim, it could be because
1920 * pages are pinned on the per-cpu lists. Drain them and try again
1922 if (!page && !drained) {
1923 drain_all_pages();
1924 drained = true;
1925 goto retry;
1928 return page;
1932 * This is called in the allocator slow-path if the allocation request is of
1933 * sufficient urgency to ignore watermarks and take other desperate measures
1935 static inline struct page *
1936 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1937 struct zonelist *zonelist, enum zone_type high_zoneidx,
1938 nodemask_t *nodemask, struct zone *preferred_zone,
1939 int migratetype)
1941 struct page *page;
1943 do {
1944 page = get_page_from_freelist(gfp_mask, nodemask, order,
1945 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1946 preferred_zone, migratetype);
1948 if (!page && gfp_mask & __GFP_NOFAIL)
1949 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1950 } while (!page && (gfp_mask & __GFP_NOFAIL));
1952 return page;
1955 static inline
1956 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1957 enum zone_type high_zoneidx,
1958 enum zone_type classzone_idx)
1960 struct zoneref *z;
1961 struct zone *zone;
1963 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1964 wakeup_kswapd(zone, order, classzone_idx);
1967 static inline int
1968 gfp_to_alloc_flags(gfp_t gfp_mask)
1970 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1971 const gfp_t wait = gfp_mask & __GFP_WAIT;
1973 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1974 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
1977 * The caller may dip into page reserves a bit more if the caller
1978 * cannot run direct reclaim, or if the caller has realtime scheduling
1979 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1980 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1982 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1984 if (!wait) {
1986 * Not worth trying to allocate harder for
1987 * __GFP_NOMEMALLOC even if it can't schedule.
1989 if (!(gfp_mask & __GFP_NOMEMALLOC))
1990 alloc_flags |= ALLOC_HARDER;
1992 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1993 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1995 alloc_flags &= ~ALLOC_CPUSET;
1996 } else if (unlikely(rt_task(current)) && !in_interrupt())
1997 alloc_flags |= ALLOC_HARDER;
1999 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2000 if (!in_interrupt() &&
2001 ((current->flags & PF_MEMALLOC) ||
2002 unlikely(test_thread_flag(TIF_MEMDIE))))
2003 alloc_flags |= ALLOC_NO_WATERMARKS;
2006 return alloc_flags;
2009 static inline struct page *
2010 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2011 struct zonelist *zonelist, enum zone_type high_zoneidx,
2012 nodemask_t *nodemask, struct zone *preferred_zone,
2013 int migratetype)
2015 const gfp_t wait = gfp_mask & __GFP_WAIT;
2016 struct page *page = NULL;
2017 int alloc_flags;
2018 unsigned long pages_reclaimed = 0;
2019 unsigned long did_some_progress;
2020 bool sync_migration = false;
2023 * In the slowpath, we sanity check order to avoid ever trying to
2024 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2025 * be using allocators in order of preference for an area that is
2026 * too large.
2028 if (order >= MAX_ORDER) {
2029 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2030 return NULL;
2034 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2035 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2036 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2037 * using a larger set of nodes after it has established that the
2038 * allowed per node queues are empty and that nodes are
2039 * over allocated.
2041 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2042 goto nopage;
2044 restart:
2045 if (!(gfp_mask & __GFP_NO_KSWAPD))
2046 wake_all_kswapd(order, zonelist, high_zoneidx,
2047 zone_idx(preferred_zone));
2050 * OK, we're below the kswapd watermark and have kicked background
2051 * reclaim. Now things get more complex, so set up alloc_flags according
2052 * to how we want to proceed.
2054 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2057 * Find the true preferred zone if the allocation is unconstrained by
2058 * cpusets.
2060 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2061 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2062 &preferred_zone);
2064 /* This is the last chance, in general, before the goto nopage. */
2065 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2066 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2067 preferred_zone, migratetype);
2068 if (page)
2069 goto got_pg;
2071 rebalance:
2072 /* Allocate without watermarks if the context allows */
2073 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2074 page = __alloc_pages_high_priority(gfp_mask, order,
2075 zonelist, high_zoneidx, nodemask,
2076 preferred_zone, migratetype);
2077 if (page)
2078 goto got_pg;
2081 /* Atomic allocations - we can't balance anything */
2082 if (!wait)
2083 goto nopage;
2085 /* Avoid recursion of direct reclaim */
2086 if (current->flags & PF_MEMALLOC)
2087 goto nopage;
2089 /* Avoid allocations with no watermarks from looping endlessly */
2090 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2091 goto nopage;
2094 * Try direct compaction. The first pass is asynchronous. Subsequent
2095 * attempts after direct reclaim are synchronous
2097 page = __alloc_pages_direct_compact(gfp_mask, order,
2098 zonelist, high_zoneidx,
2099 nodemask,
2100 alloc_flags, preferred_zone,
2101 migratetype, &did_some_progress,
2102 sync_migration);
2103 if (page)
2104 goto got_pg;
2105 sync_migration = !(gfp_mask & __GFP_NO_KSWAPD);
2107 /* Try direct reclaim and then allocating */
2108 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2109 zonelist, high_zoneidx,
2110 nodemask,
2111 alloc_flags, preferred_zone,
2112 migratetype, &did_some_progress);
2113 if (page)
2114 goto got_pg;
2117 * If we failed to make any progress reclaiming, then we are
2118 * running out of options and have to consider going OOM
2120 if (!did_some_progress) {
2121 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2122 if (oom_killer_disabled)
2123 goto nopage;
2124 page = __alloc_pages_may_oom(gfp_mask, order,
2125 zonelist, high_zoneidx,
2126 nodemask, preferred_zone,
2127 migratetype);
2128 if (page)
2129 goto got_pg;
2131 if (!(gfp_mask & __GFP_NOFAIL)) {
2133 * The oom killer is not called for high-order
2134 * allocations that may fail, so if no progress
2135 * is being made, there are no other options and
2136 * retrying is unlikely to help.
2138 if (order > PAGE_ALLOC_COSTLY_ORDER)
2139 goto nopage;
2141 * The oom killer is not called for lowmem
2142 * allocations to prevent needlessly killing
2143 * innocent tasks.
2145 if (high_zoneidx < ZONE_NORMAL)
2146 goto nopage;
2149 goto restart;
2153 /* Check if we should retry the allocation */
2154 pages_reclaimed += did_some_progress;
2155 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2156 /* Wait for some write requests to complete then retry */
2157 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2158 goto rebalance;
2159 } else {
2161 * High-order allocations do not necessarily loop after
2162 * direct reclaim and reclaim/compaction depends on compaction
2163 * being called after reclaim so call directly if necessary
2165 page = __alloc_pages_direct_compact(gfp_mask, order,
2166 zonelist, high_zoneidx,
2167 nodemask,
2168 alloc_flags, preferred_zone,
2169 migratetype, &did_some_progress,
2170 sync_migration);
2171 if (page)
2172 goto got_pg;
2175 nopage:
2176 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2177 unsigned int filter = SHOW_MEM_FILTER_NODES;
2180 * This documents exceptions given to allocations in certain
2181 * contexts that are allowed to allocate outside current's set
2182 * of allowed nodes.
2184 if (!(gfp_mask & __GFP_NOMEMALLOC))
2185 if (test_thread_flag(TIF_MEMDIE) ||
2186 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2187 filter &= ~SHOW_MEM_FILTER_NODES;
2188 if (in_interrupt() || !wait)
2189 filter &= ~SHOW_MEM_FILTER_NODES;
2191 pr_warning("%s: page allocation failure. order:%d, mode:0x%x\n",
2192 current->comm, order, gfp_mask);
2193 dump_stack();
2194 if (!should_suppress_show_mem())
2195 __show_mem(filter);
2197 return page;
2198 got_pg:
2199 if (kmemcheck_enabled)
2200 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2201 return page;
2206 * This is the 'heart' of the zoned buddy allocator.
2208 struct page *
2209 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2210 struct zonelist *zonelist, nodemask_t *nodemask)
2212 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2213 struct zone *preferred_zone;
2214 struct page *page;
2215 int migratetype = allocflags_to_migratetype(gfp_mask);
2217 gfp_mask &= gfp_allowed_mask;
2219 lockdep_trace_alloc(gfp_mask);
2221 might_sleep_if(gfp_mask & __GFP_WAIT);
2223 if (should_fail_alloc_page(gfp_mask, order))
2224 return NULL;
2227 * Check the zones suitable for the gfp_mask contain at least one
2228 * valid zone. It's possible to have an empty zonelist as a result
2229 * of GFP_THISNODE and a memoryless node
2231 if (unlikely(!zonelist->_zonerefs->zone))
2232 return NULL;
2234 get_mems_allowed();
2235 /* The preferred zone is used for statistics later */
2236 first_zones_zonelist(zonelist, high_zoneidx,
2237 nodemask ? : &cpuset_current_mems_allowed,
2238 &preferred_zone);
2239 if (!preferred_zone) {
2240 put_mems_allowed();
2241 return NULL;
2244 /* First allocation attempt */
2245 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2246 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2247 preferred_zone, migratetype);
2248 if (unlikely(!page))
2249 page = __alloc_pages_slowpath(gfp_mask, order,
2250 zonelist, high_zoneidx, nodemask,
2251 preferred_zone, migratetype);
2252 put_mems_allowed();
2254 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2255 return page;
2257 EXPORT_SYMBOL(__alloc_pages_nodemask);
2260 * Common helper functions.
2262 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2264 struct page *page;
2267 * __get_free_pages() returns a 32-bit address, which cannot represent
2268 * a highmem page
2270 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2272 page = alloc_pages(gfp_mask, order);
2273 if (!page)
2274 return 0;
2275 return (unsigned long) page_address(page);
2277 EXPORT_SYMBOL(__get_free_pages);
2279 unsigned long get_zeroed_page(gfp_t gfp_mask)
2281 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2283 EXPORT_SYMBOL(get_zeroed_page);
2285 void __pagevec_free(struct pagevec *pvec)
2287 int i = pagevec_count(pvec);
2289 while (--i >= 0) {
2290 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2291 free_hot_cold_page(pvec->pages[i], pvec->cold);
2295 void __free_pages(struct page *page, unsigned int order)
2297 if (put_page_testzero(page)) {
2298 if (order == 0)
2299 free_hot_cold_page(page, 0);
2300 else
2301 __free_pages_ok(page, order);
2305 EXPORT_SYMBOL(__free_pages);
2307 void free_pages(unsigned long addr, unsigned int order)
2309 if (addr != 0) {
2310 VM_BUG_ON(!virt_addr_valid((void *)addr));
2311 __free_pages(virt_to_page((void *)addr), order);
2315 EXPORT_SYMBOL(free_pages);
2318 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2319 * @size: the number of bytes to allocate
2320 * @gfp_mask: GFP flags for the allocation
2322 * This function is similar to alloc_pages(), except that it allocates the
2323 * minimum number of pages to satisfy the request. alloc_pages() can only
2324 * allocate memory in power-of-two pages.
2326 * This function is also limited by MAX_ORDER.
2328 * Memory allocated by this function must be released by free_pages_exact().
2330 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2332 unsigned int order = get_order(size);
2333 unsigned long addr;
2335 addr = __get_free_pages(gfp_mask, order);
2336 if (addr) {
2337 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2338 unsigned long used = addr + PAGE_ALIGN(size);
2340 split_page(virt_to_page((void *)addr), order);
2341 while (used < alloc_end) {
2342 free_page(used);
2343 used += PAGE_SIZE;
2347 return (void *)addr;
2349 EXPORT_SYMBOL(alloc_pages_exact);
2352 * free_pages_exact - release memory allocated via alloc_pages_exact()
2353 * @virt: the value returned by alloc_pages_exact.
2354 * @size: size of allocation, same value as passed to alloc_pages_exact().
2356 * Release the memory allocated by a previous call to alloc_pages_exact.
2358 void free_pages_exact(void *virt, size_t size)
2360 unsigned long addr = (unsigned long)virt;
2361 unsigned long end = addr + PAGE_ALIGN(size);
2363 while (addr < end) {
2364 free_page(addr);
2365 addr += PAGE_SIZE;
2368 EXPORT_SYMBOL(free_pages_exact);
2370 static unsigned int nr_free_zone_pages(int offset)
2372 struct zoneref *z;
2373 struct zone *zone;
2375 /* Just pick one node, since fallback list is circular */
2376 unsigned int sum = 0;
2378 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2380 for_each_zone_zonelist(zone, z, zonelist, offset) {
2381 unsigned long size = zone->present_pages;
2382 unsigned long high = high_wmark_pages(zone);
2383 if (size > high)
2384 sum += size - high;
2387 return sum;
2391 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2393 unsigned int nr_free_buffer_pages(void)
2395 return nr_free_zone_pages(gfp_zone(GFP_USER));
2397 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2400 * Amount of free RAM allocatable within all zones
2402 unsigned int nr_free_pagecache_pages(void)
2404 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2407 static inline void show_node(struct zone *zone)
2409 if (NUMA_BUILD)
2410 printk("Node %d ", zone_to_nid(zone));
2413 void si_meminfo(struct sysinfo *val)
2415 val->totalram = totalram_pages;
2416 val->sharedram = 0;
2417 val->freeram = global_page_state(NR_FREE_PAGES);
2418 val->bufferram = nr_blockdev_pages();
2419 val->totalhigh = totalhigh_pages;
2420 val->freehigh = nr_free_highpages();
2421 val->mem_unit = PAGE_SIZE;
2424 EXPORT_SYMBOL(si_meminfo);
2426 #ifdef CONFIG_NUMA
2427 void si_meminfo_node(struct sysinfo *val, int nid)
2429 pg_data_t *pgdat = NODE_DATA(nid);
2431 val->totalram = pgdat->node_present_pages;
2432 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2433 #ifdef CONFIG_HIGHMEM
2434 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2435 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2436 NR_FREE_PAGES);
2437 #else
2438 val->totalhigh = 0;
2439 val->freehigh = 0;
2440 #endif
2441 val->mem_unit = PAGE_SIZE;
2443 #endif
2446 * Determine whether the zone's node should be displayed or not, depending on
2447 * whether SHOW_MEM_FILTER_NODES was passed to __show_free_areas().
2449 static bool skip_free_areas_zone(unsigned int flags, const struct zone *zone)
2451 bool ret = false;
2453 if (!(flags & SHOW_MEM_FILTER_NODES))
2454 goto out;
2456 get_mems_allowed();
2457 ret = !node_isset(zone->zone_pgdat->node_id,
2458 cpuset_current_mems_allowed);
2459 put_mems_allowed();
2460 out:
2461 return ret;
2464 #define K(x) ((x) << (PAGE_SHIFT-10))
2467 * Show free area list (used inside shift_scroll-lock stuff)
2468 * We also calculate the percentage fragmentation. We do this by counting the
2469 * memory on each free list with the exception of the first item on the list.
2470 * Suppresses nodes that are not allowed by current's cpuset if
2471 * SHOW_MEM_FILTER_NODES is passed.
2473 void __show_free_areas(unsigned int filter)
2475 int cpu;
2476 struct zone *zone;
2478 for_each_populated_zone(zone) {
2479 if (skip_free_areas_zone(filter, zone))
2480 continue;
2481 show_node(zone);
2482 printk("%s per-cpu:\n", zone->name);
2484 for_each_online_cpu(cpu) {
2485 struct per_cpu_pageset *pageset;
2487 pageset = per_cpu_ptr(zone->pageset, cpu);
2489 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2490 cpu, pageset->pcp.high,
2491 pageset->pcp.batch, pageset->pcp.count);
2495 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2496 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2497 " unevictable:%lu"
2498 " dirty:%lu writeback:%lu unstable:%lu\n"
2499 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2500 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2501 global_page_state(NR_ACTIVE_ANON),
2502 global_page_state(NR_INACTIVE_ANON),
2503 global_page_state(NR_ISOLATED_ANON),
2504 global_page_state(NR_ACTIVE_FILE),
2505 global_page_state(NR_INACTIVE_FILE),
2506 global_page_state(NR_ISOLATED_FILE),
2507 global_page_state(NR_UNEVICTABLE),
2508 global_page_state(NR_FILE_DIRTY),
2509 global_page_state(NR_WRITEBACK),
2510 global_page_state(NR_UNSTABLE_NFS),
2511 global_page_state(NR_FREE_PAGES),
2512 global_page_state(NR_SLAB_RECLAIMABLE),
2513 global_page_state(NR_SLAB_UNRECLAIMABLE),
2514 global_page_state(NR_FILE_MAPPED),
2515 global_page_state(NR_SHMEM),
2516 global_page_state(NR_PAGETABLE),
2517 global_page_state(NR_BOUNCE));
2519 for_each_populated_zone(zone) {
2520 int i;
2522 if (skip_free_areas_zone(filter, zone))
2523 continue;
2524 show_node(zone);
2525 printk("%s"
2526 " free:%lukB"
2527 " min:%lukB"
2528 " low:%lukB"
2529 " high:%lukB"
2530 " active_anon:%lukB"
2531 " inactive_anon:%lukB"
2532 " active_file:%lukB"
2533 " inactive_file:%lukB"
2534 " unevictable:%lukB"
2535 " isolated(anon):%lukB"
2536 " isolated(file):%lukB"
2537 " present:%lukB"
2538 " mlocked:%lukB"
2539 " dirty:%lukB"
2540 " writeback:%lukB"
2541 " mapped:%lukB"
2542 " shmem:%lukB"
2543 " slab_reclaimable:%lukB"
2544 " slab_unreclaimable:%lukB"
2545 " kernel_stack:%lukB"
2546 " pagetables:%lukB"
2547 " unstable:%lukB"
2548 " bounce:%lukB"
2549 " writeback_tmp:%lukB"
2550 " pages_scanned:%lu"
2551 " all_unreclaimable? %s"
2552 "\n",
2553 zone->name,
2554 K(zone_page_state(zone, NR_FREE_PAGES)),
2555 K(min_wmark_pages(zone)),
2556 K(low_wmark_pages(zone)),
2557 K(high_wmark_pages(zone)),
2558 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2559 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2560 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2561 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2562 K(zone_page_state(zone, NR_UNEVICTABLE)),
2563 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2564 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2565 K(zone->present_pages),
2566 K(zone_page_state(zone, NR_MLOCK)),
2567 K(zone_page_state(zone, NR_FILE_DIRTY)),
2568 K(zone_page_state(zone, NR_WRITEBACK)),
2569 K(zone_page_state(zone, NR_FILE_MAPPED)),
2570 K(zone_page_state(zone, NR_SHMEM)),
2571 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2572 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2573 zone_page_state(zone, NR_KERNEL_STACK) *
2574 THREAD_SIZE / 1024,
2575 K(zone_page_state(zone, NR_PAGETABLE)),
2576 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2577 K(zone_page_state(zone, NR_BOUNCE)),
2578 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2579 zone->pages_scanned,
2580 (zone->all_unreclaimable ? "yes" : "no")
2582 printk("lowmem_reserve[]:");
2583 for (i = 0; i < MAX_NR_ZONES; i++)
2584 printk(" %lu", zone->lowmem_reserve[i]);
2585 printk("\n");
2588 for_each_populated_zone(zone) {
2589 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2591 if (skip_free_areas_zone(filter, zone))
2592 continue;
2593 show_node(zone);
2594 printk("%s: ", zone->name);
2596 spin_lock_irqsave(&zone->lock, flags);
2597 for (order = 0; order < MAX_ORDER; order++) {
2598 nr[order] = zone->free_area[order].nr_free;
2599 total += nr[order] << order;
2601 spin_unlock_irqrestore(&zone->lock, flags);
2602 for (order = 0; order < MAX_ORDER; order++)
2603 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2604 printk("= %lukB\n", K(total));
2607 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2609 show_swap_cache_info();
2612 void show_free_areas(void)
2614 __show_free_areas(0);
2617 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2619 zoneref->zone = zone;
2620 zoneref->zone_idx = zone_idx(zone);
2624 * Builds allocation fallback zone lists.
2626 * Add all populated zones of a node to the zonelist.
2628 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2629 int nr_zones, enum zone_type zone_type)
2631 struct zone *zone;
2633 BUG_ON(zone_type >= MAX_NR_ZONES);
2634 zone_type++;
2636 do {
2637 zone_type--;
2638 zone = pgdat->node_zones + zone_type;
2639 if (populated_zone(zone)) {
2640 zoneref_set_zone(zone,
2641 &zonelist->_zonerefs[nr_zones++]);
2642 check_highest_zone(zone_type);
2645 } while (zone_type);
2646 return nr_zones;
2651 * zonelist_order:
2652 * 0 = automatic detection of better ordering.
2653 * 1 = order by ([node] distance, -zonetype)
2654 * 2 = order by (-zonetype, [node] distance)
2656 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2657 * the same zonelist. So only NUMA can configure this param.
2659 #define ZONELIST_ORDER_DEFAULT 0
2660 #define ZONELIST_ORDER_NODE 1
2661 #define ZONELIST_ORDER_ZONE 2
2663 /* zonelist order in the kernel.
2664 * set_zonelist_order() will set this to NODE or ZONE.
2666 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2667 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2670 #ifdef CONFIG_NUMA
2671 /* The value user specified ....changed by config */
2672 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2673 /* string for sysctl */
2674 #define NUMA_ZONELIST_ORDER_LEN 16
2675 char numa_zonelist_order[16] = "default";
2678 * interface for configure zonelist ordering.
2679 * command line option "numa_zonelist_order"
2680 * = "[dD]efault - default, automatic configuration.
2681 * = "[nN]ode - order by node locality, then by zone within node
2682 * = "[zZ]one - order by zone, then by locality within zone
2685 static int __parse_numa_zonelist_order(char *s)
2687 if (*s == 'd' || *s == 'D') {
2688 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2689 } else if (*s == 'n' || *s == 'N') {
2690 user_zonelist_order = ZONELIST_ORDER_NODE;
2691 } else if (*s == 'z' || *s == 'Z') {
2692 user_zonelist_order = ZONELIST_ORDER_ZONE;
2693 } else {
2694 printk(KERN_WARNING
2695 "Ignoring invalid numa_zonelist_order value: "
2696 "%s\n", s);
2697 return -EINVAL;
2699 return 0;
2702 static __init int setup_numa_zonelist_order(char *s)
2704 int ret;
2706 if (!s)
2707 return 0;
2709 ret = __parse_numa_zonelist_order(s);
2710 if (ret == 0)
2711 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2713 return ret;
2715 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2718 * sysctl handler for numa_zonelist_order
2720 int numa_zonelist_order_handler(ctl_table *table, int write,
2721 void __user *buffer, size_t *length,
2722 loff_t *ppos)
2724 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2725 int ret;
2726 static DEFINE_MUTEX(zl_order_mutex);
2728 mutex_lock(&zl_order_mutex);
2729 if (write)
2730 strcpy(saved_string, (char*)table->data);
2731 ret = proc_dostring(table, write, buffer, length, ppos);
2732 if (ret)
2733 goto out;
2734 if (write) {
2735 int oldval = user_zonelist_order;
2736 if (__parse_numa_zonelist_order((char*)table->data)) {
2738 * bogus value. restore saved string
2740 strncpy((char*)table->data, saved_string,
2741 NUMA_ZONELIST_ORDER_LEN);
2742 user_zonelist_order = oldval;
2743 } else if (oldval != user_zonelist_order) {
2744 mutex_lock(&zonelists_mutex);
2745 build_all_zonelists(NULL);
2746 mutex_unlock(&zonelists_mutex);
2749 out:
2750 mutex_unlock(&zl_order_mutex);
2751 return ret;
2755 #define MAX_NODE_LOAD (nr_online_nodes)
2756 static int node_load[MAX_NUMNODES];
2759 * find_next_best_node - find the next node that should appear in a given node's fallback list
2760 * @node: node whose fallback list we're appending
2761 * @used_node_mask: nodemask_t of already used nodes
2763 * We use a number of factors to determine which is the next node that should
2764 * appear on a given node's fallback list. The node should not have appeared
2765 * already in @node's fallback list, and it should be the next closest node
2766 * according to the distance array (which contains arbitrary distance values
2767 * from each node to each node in the system), and should also prefer nodes
2768 * with no CPUs, since presumably they'll have very little allocation pressure
2769 * on them otherwise.
2770 * It returns -1 if no node is found.
2772 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2774 int n, val;
2775 int min_val = INT_MAX;
2776 int best_node = -1;
2777 const struct cpumask *tmp = cpumask_of_node(0);
2779 /* Use the local node if we haven't already */
2780 if (!node_isset(node, *used_node_mask)) {
2781 node_set(node, *used_node_mask);
2782 return node;
2785 for_each_node_state(n, N_HIGH_MEMORY) {
2787 /* Don't want a node to appear more than once */
2788 if (node_isset(n, *used_node_mask))
2789 continue;
2791 /* Use the distance array to find the distance */
2792 val = node_distance(node, n);
2794 /* Penalize nodes under us ("prefer the next node") */
2795 val += (n < node);
2797 /* Give preference to headless and unused nodes */
2798 tmp = cpumask_of_node(n);
2799 if (!cpumask_empty(tmp))
2800 val += PENALTY_FOR_NODE_WITH_CPUS;
2802 /* Slight preference for less loaded node */
2803 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2804 val += node_load[n];
2806 if (val < min_val) {
2807 min_val = val;
2808 best_node = n;
2812 if (best_node >= 0)
2813 node_set(best_node, *used_node_mask);
2815 return best_node;
2820 * Build zonelists ordered by node and zones within node.
2821 * This results in maximum locality--normal zone overflows into local
2822 * DMA zone, if any--but risks exhausting DMA zone.
2824 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2826 int j;
2827 struct zonelist *zonelist;
2829 zonelist = &pgdat->node_zonelists[0];
2830 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2832 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2833 MAX_NR_ZONES - 1);
2834 zonelist->_zonerefs[j].zone = NULL;
2835 zonelist->_zonerefs[j].zone_idx = 0;
2839 * Build gfp_thisnode zonelists
2841 static void build_thisnode_zonelists(pg_data_t *pgdat)
2843 int j;
2844 struct zonelist *zonelist;
2846 zonelist = &pgdat->node_zonelists[1];
2847 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2848 zonelist->_zonerefs[j].zone = NULL;
2849 zonelist->_zonerefs[j].zone_idx = 0;
2853 * Build zonelists ordered by zone and nodes within zones.
2854 * This results in conserving DMA zone[s] until all Normal memory is
2855 * exhausted, but results in overflowing to remote node while memory
2856 * may still exist in local DMA zone.
2858 static int node_order[MAX_NUMNODES];
2860 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2862 int pos, j, node;
2863 int zone_type; /* needs to be signed */
2864 struct zone *z;
2865 struct zonelist *zonelist;
2867 zonelist = &pgdat->node_zonelists[0];
2868 pos = 0;
2869 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2870 for (j = 0; j < nr_nodes; j++) {
2871 node = node_order[j];
2872 z = &NODE_DATA(node)->node_zones[zone_type];
2873 if (populated_zone(z)) {
2874 zoneref_set_zone(z,
2875 &zonelist->_zonerefs[pos++]);
2876 check_highest_zone(zone_type);
2880 zonelist->_zonerefs[pos].zone = NULL;
2881 zonelist->_zonerefs[pos].zone_idx = 0;
2884 static int default_zonelist_order(void)
2886 int nid, zone_type;
2887 unsigned long low_kmem_size,total_size;
2888 struct zone *z;
2889 int average_size;
2891 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2892 * If they are really small and used heavily, the system can fall
2893 * into OOM very easily.
2894 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2896 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2897 low_kmem_size = 0;
2898 total_size = 0;
2899 for_each_online_node(nid) {
2900 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2901 z = &NODE_DATA(nid)->node_zones[zone_type];
2902 if (populated_zone(z)) {
2903 if (zone_type < ZONE_NORMAL)
2904 low_kmem_size += z->present_pages;
2905 total_size += z->present_pages;
2906 } else if (zone_type == ZONE_NORMAL) {
2908 * If any node has only lowmem, then node order
2909 * is preferred to allow kernel allocations
2910 * locally; otherwise, they can easily infringe
2911 * on other nodes when there is an abundance of
2912 * lowmem available to allocate from.
2914 return ZONELIST_ORDER_NODE;
2918 if (!low_kmem_size || /* there are no DMA area. */
2919 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2920 return ZONELIST_ORDER_NODE;
2922 * look into each node's config.
2923 * If there is a node whose DMA/DMA32 memory is very big area on
2924 * local memory, NODE_ORDER may be suitable.
2926 average_size = total_size /
2927 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2928 for_each_online_node(nid) {
2929 low_kmem_size = 0;
2930 total_size = 0;
2931 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2932 z = &NODE_DATA(nid)->node_zones[zone_type];
2933 if (populated_zone(z)) {
2934 if (zone_type < ZONE_NORMAL)
2935 low_kmem_size += z->present_pages;
2936 total_size += z->present_pages;
2939 if (low_kmem_size &&
2940 total_size > average_size && /* ignore small node */
2941 low_kmem_size > total_size * 70/100)
2942 return ZONELIST_ORDER_NODE;
2944 return ZONELIST_ORDER_ZONE;
2947 static void set_zonelist_order(void)
2949 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2950 current_zonelist_order = default_zonelist_order();
2951 else
2952 current_zonelist_order = user_zonelist_order;
2955 static void build_zonelists(pg_data_t *pgdat)
2957 int j, node, load;
2958 enum zone_type i;
2959 nodemask_t used_mask;
2960 int local_node, prev_node;
2961 struct zonelist *zonelist;
2962 int order = current_zonelist_order;
2964 /* initialize zonelists */
2965 for (i = 0; i < MAX_ZONELISTS; i++) {
2966 zonelist = pgdat->node_zonelists + i;
2967 zonelist->_zonerefs[0].zone = NULL;
2968 zonelist->_zonerefs[0].zone_idx = 0;
2971 /* NUMA-aware ordering of nodes */
2972 local_node = pgdat->node_id;
2973 load = nr_online_nodes;
2974 prev_node = local_node;
2975 nodes_clear(used_mask);
2977 memset(node_order, 0, sizeof(node_order));
2978 j = 0;
2980 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2981 int distance = node_distance(local_node, node);
2984 * If another node is sufficiently far away then it is better
2985 * to reclaim pages in a zone before going off node.
2987 if (distance > RECLAIM_DISTANCE)
2988 zone_reclaim_mode = 1;
2991 * We don't want to pressure a particular node.
2992 * So adding penalty to the first node in same
2993 * distance group to make it round-robin.
2995 if (distance != node_distance(local_node, prev_node))
2996 node_load[node] = load;
2998 prev_node = node;
2999 load--;
3000 if (order == ZONELIST_ORDER_NODE)
3001 build_zonelists_in_node_order(pgdat, node);
3002 else
3003 node_order[j++] = node; /* remember order */
3006 if (order == ZONELIST_ORDER_ZONE) {
3007 /* calculate node order -- i.e., DMA last! */
3008 build_zonelists_in_zone_order(pgdat, j);
3011 build_thisnode_zonelists(pgdat);
3014 /* Construct the zonelist performance cache - see further mmzone.h */
3015 static void build_zonelist_cache(pg_data_t *pgdat)
3017 struct zonelist *zonelist;
3018 struct zonelist_cache *zlc;
3019 struct zoneref *z;
3021 zonelist = &pgdat->node_zonelists[0];
3022 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3023 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3024 for (z = zonelist->_zonerefs; z->zone; z++)
3025 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3028 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3030 * Return node id of node used for "local" allocations.
3031 * I.e., first node id of first zone in arg node's generic zonelist.
3032 * Used for initializing percpu 'numa_mem', which is used primarily
3033 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3035 int local_memory_node(int node)
3037 struct zone *zone;
3039 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3040 gfp_zone(GFP_KERNEL),
3041 NULL,
3042 &zone);
3043 return zone->node;
3045 #endif
3047 #else /* CONFIG_NUMA */
3049 static void set_zonelist_order(void)
3051 current_zonelist_order = ZONELIST_ORDER_ZONE;
3054 static void build_zonelists(pg_data_t *pgdat)
3056 int node, local_node;
3057 enum zone_type j;
3058 struct zonelist *zonelist;
3060 local_node = pgdat->node_id;
3062 zonelist = &pgdat->node_zonelists[0];
3063 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3066 * Now we build the zonelist so that it contains the zones
3067 * of all the other nodes.
3068 * We don't want to pressure a particular node, so when
3069 * building the zones for node N, we make sure that the
3070 * zones coming right after the local ones are those from
3071 * node N+1 (modulo N)
3073 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3074 if (!node_online(node))
3075 continue;
3076 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3077 MAX_NR_ZONES - 1);
3079 for (node = 0; node < local_node; node++) {
3080 if (!node_online(node))
3081 continue;
3082 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3083 MAX_NR_ZONES - 1);
3086 zonelist->_zonerefs[j].zone = NULL;
3087 zonelist->_zonerefs[j].zone_idx = 0;
3090 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3091 static void build_zonelist_cache(pg_data_t *pgdat)
3093 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3096 #endif /* CONFIG_NUMA */
3099 * Boot pageset table. One per cpu which is going to be used for all
3100 * zones and all nodes. The parameters will be set in such a way
3101 * that an item put on a list will immediately be handed over to
3102 * the buddy list. This is safe since pageset manipulation is done
3103 * with interrupts disabled.
3105 * The boot_pagesets must be kept even after bootup is complete for
3106 * unused processors and/or zones. They do play a role for bootstrapping
3107 * hotplugged processors.
3109 * zoneinfo_show() and maybe other functions do
3110 * not check if the processor is online before following the pageset pointer.
3111 * Other parts of the kernel may not check if the zone is available.
3113 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3114 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3115 static void setup_zone_pageset(struct zone *zone);
3118 * Global mutex to protect against size modification of zonelists
3119 * as well as to serialize pageset setup for the new populated zone.
3121 DEFINE_MUTEX(zonelists_mutex);
3123 /* return values int ....just for stop_machine() */
3124 static __init_refok int __build_all_zonelists(void *data)
3126 int nid;
3127 int cpu;
3129 #ifdef CONFIG_NUMA
3130 memset(node_load, 0, sizeof(node_load));
3131 #endif
3132 for_each_online_node(nid) {
3133 pg_data_t *pgdat = NODE_DATA(nid);
3135 build_zonelists(pgdat);
3136 build_zonelist_cache(pgdat);
3140 * Initialize the boot_pagesets that are going to be used
3141 * for bootstrapping processors. The real pagesets for
3142 * each zone will be allocated later when the per cpu
3143 * allocator is available.
3145 * boot_pagesets are used also for bootstrapping offline
3146 * cpus if the system is already booted because the pagesets
3147 * are needed to initialize allocators on a specific cpu too.
3148 * F.e. the percpu allocator needs the page allocator which
3149 * needs the percpu allocator in order to allocate its pagesets
3150 * (a chicken-egg dilemma).
3152 for_each_possible_cpu(cpu) {
3153 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3155 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3157 * We now know the "local memory node" for each node--
3158 * i.e., the node of the first zone in the generic zonelist.
3159 * Set up numa_mem percpu variable for on-line cpus. During
3160 * boot, only the boot cpu should be on-line; we'll init the
3161 * secondary cpus' numa_mem as they come on-line. During
3162 * node/memory hotplug, we'll fixup all on-line cpus.
3164 if (cpu_online(cpu))
3165 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3166 #endif
3169 return 0;
3173 * Called with zonelists_mutex held always
3174 * unless system_state == SYSTEM_BOOTING.
3176 void build_all_zonelists(void *data)
3178 set_zonelist_order();
3180 if (system_state == SYSTEM_BOOTING) {
3181 __build_all_zonelists(NULL);
3182 mminit_verify_zonelist();
3183 cpuset_init_current_mems_allowed();
3184 } else {
3185 /* we have to stop all cpus to guarantee there is no user
3186 of zonelist */
3187 #ifdef CONFIG_MEMORY_HOTPLUG
3188 if (data)
3189 setup_zone_pageset((struct zone *)data);
3190 #endif
3191 stop_machine(__build_all_zonelists, NULL, NULL);
3192 /* cpuset refresh routine should be here */
3194 vm_total_pages = nr_free_pagecache_pages();
3196 * Disable grouping by mobility if the number of pages in the
3197 * system is too low to allow the mechanism to work. It would be
3198 * more accurate, but expensive to check per-zone. This check is
3199 * made on memory-hotadd so a system can start with mobility
3200 * disabled and enable it later
3202 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3203 page_group_by_mobility_disabled = 1;
3204 else
3205 page_group_by_mobility_disabled = 0;
3207 printk("Built %i zonelists in %s order, mobility grouping %s. "
3208 "Total pages: %ld\n",
3209 nr_online_nodes,
3210 zonelist_order_name[current_zonelist_order],
3211 page_group_by_mobility_disabled ? "off" : "on",
3212 vm_total_pages);
3213 #ifdef CONFIG_NUMA
3214 printk("Policy zone: %s\n", zone_names[policy_zone]);
3215 #endif
3219 * Helper functions to size the waitqueue hash table.
3220 * Essentially these want to choose hash table sizes sufficiently
3221 * large so that collisions trying to wait on pages are rare.
3222 * But in fact, the number of active page waitqueues on typical
3223 * systems is ridiculously low, less than 200. So this is even
3224 * conservative, even though it seems large.
3226 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3227 * waitqueues, i.e. the size of the waitq table given the number of pages.
3229 #define PAGES_PER_WAITQUEUE 256
3231 #ifndef CONFIG_MEMORY_HOTPLUG
3232 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3234 unsigned long size = 1;
3236 pages /= PAGES_PER_WAITQUEUE;
3238 while (size < pages)
3239 size <<= 1;
3242 * Once we have dozens or even hundreds of threads sleeping
3243 * on IO we've got bigger problems than wait queue collision.
3244 * Limit the size of the wait table to a reasonable size.
3246 size = min(size, 4096UL);
3248 return max(size, 4UL);
3250 #else
3252 * A zone's size might be changed by hot-add, so it is not possible to determine
3253 * a suitable size for its wait_table. So we use the maximum size now.
3255 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3257 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3258 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3259 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3261 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3262 * or more by the traditional way. (See above). It equals:
3264 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3265 * ia64(16K page size) : = ( 8G + 4M)byte.
3266 * powerpc (64K page size) : = (32G +16M)byte.
3268 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3270 return 4096UL;
3272 #endif
3275 * This is an integer logarithm so that shifts can be used later
3276 * to extract the more random high bits from the multiplicative
3277 * hash function before the remainder is taken.
3279 static inline unsigned long wait_table_bits(unsigned long size)
3281 return ffz(~size);
3284 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3287 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3288 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3289 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3290 * higher will lead to a bigger reserve which will get freed as contiguous
3291 * blocks as reclaim kicks in
3293 static void setup_zone_migrate_reserve(struct zone *zone)
3295 unsigned long start_pfn, pfn, end_pfn;
3296 struct page *page;
3297 unsigned long block_migratetype;
3298 int reserve;
3300 /* Get the start pfn, end pfn and the number of blocks to reserve */
3301 start_pfn = zone->zone_start_pfn;
3302 end_pfn = start_pfn + zone->spanned_pages;
3303 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3304 pageblock_order;
3307 * Reserve blocks are generally in place to help high-order atomic
3308 * allocations that are short-lived. A min_free_kbytes value that
3309 * would result in more than 2 reserve blocks for atomic allocations
3310 * is assumed to be in place to help anti-fragmentation for the
3311 * future allocation of hugepages at runtime.
3313 reserve = min(2, reserve);
3315 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3316 if (!pfn_valid(pfn))
3317 continue;
3318 page = pfn_to_page(pfn);
3320 /* Watch out for overlapping nodes */
3321 if (page_to_nid(page) != zone_to_nid(zone))
3322 continue;
3324 /* Blocks with reserved pages will never free, skip them. */
3325 if (PageReserved(page))
3326 continue;
3328 block_migratetype = get_pageblock_migratetype(page);
3330 /* If this block is reserved, account for it */
3331 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3332 reserve--;
3333 continue;
3336 /* Suitable for reserving if this block is movable */
3337 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3338 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3339 move_freepages_block(zone, page, MIGRATE_RESERVE);
3340 reserve--;
3341 continue;
3345 * If the reserve is met and this is a previous reserved block,
3346 * take it back
3348 if (block_migratetype == MIGRATE_RESERVE) {
3349 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3350 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3356 * Initially all pages are reserved - free ones are freed
3357 * up by free_all_bootmem() once the early boot process is
3358 * done. Non-atomic initialization, single-pass.
3360 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3361 unsigned long start_pfn, enum memmap_context context)
3363 struct page *page;
3364 unsigned long end_pfn = start_pfn + size;
3365 unsigned long pfn;
3366 struct zone *z;
3368 if (highest_memmap_pfn < end_pfn - 1)
3369 highest_memmap_pfn = end_pfn - 1;
3371 z = &NODE_DATA(nid)->node_zones[zone];
3372 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3374 * There can be holes in boot-time mem_map[]s
3375 * handed to this function. They do not
3376 * exist on hotplugged memory.
3378 if (context == MEMMAP_EARLY) {
3379 if (!early_pfn_valid(pfn))
3380 continue;
3381 if (!early_pfn_in_nid(pfn, nid))
3382 continue;
3384 page = pfn_to_page(pfn);
3385 set_page_links(page, zone, nid, pfn);
3386 mminit_verify_page_links(page, zone, nid, pfn);
3387 init_page_count(page);
3388 reset_page_mapcount(page);
3389 SetPageReserved(page);
3391 * Mark the block movable so that blocks are reserved for
3392 * movable at startup. This will force kernel allocations
3393 * to reserve their blocks rather than leaking throughout
3394 * the address space during boot when many long-lived
3395 * kernel allocations are made. Later some blocks near
3396 * the start are marked MIGRATE_RESERVE by
3397 * setup_zone_migrate_reserve()
3399 * bitmap is created for zone's valid pfn range. but memmap
3400 * can be created for invalid pages (for alignment)
3401 * check here not to call set_pageblock_migratetype() against
3402 * pfn out of zone.
3404 if ((z->zone_start_pfn <= pfn)
3405 && (pfn < z->zone_start_pfn + z->spanned_pages)
3406 && !(pfn & (pageblock_nr_pages - 1)))
3407 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3409 INIT_LIST_HEAD(&page->lru);
3410 #ifdef WANT_PAGE_VIRTUAL
3411 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3412 if (!is_highmem_idx(zone))
3413 set_page_address(page, __va(pfn << PAGE_SHIFT));
3414 #endif
3418 static void __meminit zone_init_free_lists(struct zone *zone)
3420 int order, t;
3421 for_each_migratetype_order(order, t) {
3422 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3423 zone->free_area[order].nr_free = 0;
3427 #ifndef __HAVE_ARCH_MEMMAP_INIT
3428 #define memmap_init(size, nid, zone, start_pfn) \
3429 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3430 #endif
3432 static int zone_batchsize(struct zone *zone)
3434 #ifdef CONFIG_MMU
3435 int batch;
3438 * The per-cpu-pages pools are set to around 1000th of the
3439 * size of the zone. But no more than 1/2 of a meg.
3441 * OK, so we don't know how big the cache is. So guess.
3443 batch = zone->present_pages / 1024;
3444 if (batch * PAGE_SIZE > 512 * 1024)
3445 batch = (512 * 1024) / PAGE_SIZE;
3446 batch /= 4; /* We effectively *= 4 below */
3447 if (batch < 1)
3448 batch = 1;
3451 * Clamp the batch to a 2^n - 1 value. Having a power
3452 * of 2 value was found to be more likely to have
3453 * suboptimal cache aliasing properties in some cases.
3455 * For example if 2 tasks are alternately allocating
3456 * batches of pages, one task can end up with a lot
3457 * of pages of one half of the possible page colors
3458 * and the other with pages of the other colors.
3460 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3462 return batch;
3464 #else
3465 /* The deferral and batching of frees should be suppressed under NOMMU
3466 * conditions.
3468 * The problem is that NOMMU needs to be able to allocate large chunks
3469 * of contiguous memory as there's no hardware page translation to
3470 * assemble apparent contiguous memory from discontiguous pages.
3472 * Queueing large contiguous runs of pages for batching, however,
3473 * causes the pages to actually be freed in smaller chunks. As there
3474 * can be a significant delay between the individual batches being
3475 * recycled, this leads to the once large chunks of space being
3476 * fragmented and becoming unavailable for high-order allocations.
3478 return 0;
3479 #endif
3482 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3484 struct per_cpu_pages *pcp;
3485 int migratetype;
3487 memset(p, 0, sizeof(*p));
3489 pcp = &p->pcp;
3490 pcp->count = 0;
3491 pcp->high = 6 * batch;
3492 pcp->batch = max(1UL, 1 * batch);
3493 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3494 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3498 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3499 * to the value high for the pageset p.
3502 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3503 unsigned long high)
3505 struct per_cpu_pages *pcp;
3507 pcp = &p->pcp;
3508 pcp->high = high;
3509 pcp->batch = max(1UL, high/4);
3510 if ((high/4) > (PAGE_SHIFT * 8))
3511 pcp->batch = PAGE_SHIFT * 8;
3514 static __meminit void setup_zone_pageset(struct zone *zone)
3516 int cpu;
3518 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3520 for_each_possible_cpu(cpu) {
3521 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3523 setup_pageset(pcp, zone_batchsize(zone));
3525 if (percpu_pagelist_fraction)
3526 setup_pagelist_highmark(pcp,
3527 (zone->present_pages /
3528 percpu_pagelist_fraction));
3533 * Allocate per cpu pagesets and initialize them.
3534 * Before this call only boot pagesets were available.
3536 void __init setup_per_cpu_pageset(void)
3538 struct zone *zone;
3540 for_each_populated_zone(zone)
3541 setup_zone_pageset(zone);
3544 static noinline __init_refok
3545 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3547 int i;
3548 struct pglist_data *pgdat = zone->zone_pgdat;
3549 size_t alloc_size;
3552 * The per-page waitqueue mechanism uses hashed waitqueues
3553 * per zone.
3555 zone->wait_table_hash_nr_entries =
3556 wait_table_hash_nr_entries(zone_size_pages);
3557 zone->wait_table_bits =
3558 wait_table_bits(zone->wait_table_hash_nr_entries);
3559 alloc_size = zone->wait_table_hash_nr_entries
3560 * sizeof(wait_queue_head_t);
3562 if (!slab_is_available()) {
3563 zone->wait_table = (wait_queue_head_t *)
3564 alloc_bootmem_node(pgdat, alloc_size);
3565 } else {
3567 * This case means that a zone whose size was 0 gets new memory
3568 * via memory hot-add.
3569 * But it may be the case that a new node was hot-added. In
3570 * this case vmalloc() will not be able to use this new node's
3571 * memory - this wait_table must be initialized to use this new
3572 * node itself as well.
3573 * To use this new node's memory, further consideration will be
3574 * necessary.
3576 zone->wait_table = vmalloc(alloc_size);
3578 if (!zone->wait_table)
3579 return -ENOMEM;
3581 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3582 init_waitqueue_head(zone->wait_table + i);
3584 return 0;
3587 static int __zone_pcp_update(void *data)
3589 struct zone *zone = data;
3590 int cpu;
3591 unsigned long batch = zone_batchsize(zone), flags;
3593 for_each_possible_cpu(cpu) {
3594 struct per_cpu_pageset *pset;
3595 struct per_cpu_pages *pcp;
3597 pset = per_cpu_ptr(zone->pageset, cpu);
3598 pcp = &pset->pcp;
3600 local_irq_save(flags);
3601 free_pcppages_bulk(zone, pcp->count, pcp);
3602 setup_pageset(pset, batch);
3603 local_irq_restore(flags);
3605 return 0;
3608 void zone_pcp_update(struct zone *zone)
3610 stop_machine(__zone_pcp_update, zone, NULL);
3613 static __meminit void zone_pcp_init(struct zone *zone)
3616 * per cpu subsystem is not up at this point. The following code
3617 * relies on the ability of the linker to provide the
3618 * offset of a (static) per cpu variable into the per cpu area.
3620 zone->pageset = &boot_pageset;
3622 if (zone->present_pages)
3623 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3624 zone->name, zone->present_pages,
3625 zone_batchsize(zone));
3628 __meminit int init_currently_empty_zone(struct zone *zone,
3629 unsigned long zone_start_pfn,
3630 unsigned long size,
3631 enum memmap_context context)
3633 struct pglist_data *pgdat = zone->zone_pgdat;
3634 int ret;
3635 ret = zone_wait_table_init(zone, size);
3636 if (ret)
3637 return ret;
3638 pgdat->nr_zones = zone_idx(zone) + 1;
3640 zone->zone_start_pfn = zone_start_pfn;
3642 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3643 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3644 pgdat->node_id,
3645 (unsigned long)zone_idx(zone),
3646 zone_start_pfn, (zone_start_pfn + size));
3648 zone_init_free_lists(zone);
3650 return 0;
3653 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3655 * Basic iterator support. Return the first range of PFNs for a node
3656 * Note: nid == MAX_NUMNODES returns first region regardless of node
3658 static int __meminit first_active_region_index_in_nid(int nid)
3660 int i;
3662 for (i = 0; i < nr_nodemap_entries; i++)
3663 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3664 return i;
3666 return -1;
3670 * Basic iterator support. Return the next active range of PFNs for a node
3671 * Note: nid == MAX_NUMNODES returns next region regardless of node
3673 static int __meminit next_active_region_index_in_nid(int index, int nid)
3675 for (index = index + 1; index < nr_nodemap_entries; index++)
3676 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3677 return index;
3679 return -1;
3682 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3684 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3685 * Architectures may implement their own version but if add_active_range()
3686 * was used and there are no special requirements, this is a convenient
3687 * alternative
3689 int __meminit __early_pfn_to_nid(unsigned long pfn)
3691 int i;
3693 for (i = 0; i < nr_nodemap_entries; i++) {
3694 unsigned long start_pfn = early_node_map[i].start_pfn;
3695 unsigned long end_pfn = early_node_map[i].end_pfn;
3697 if (start_pfn <= pfn && pfn < end_pfn)
3698 return early_node_map[i].nid;
3700 /* This is a memory hole */
3701 return -1;
3703 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3705 int __meminit early_pfn_to_nid(unsigned long pfn)
3707 int nid;
3709 nid = __early_pfn_to_nid(pfn);
3710 if (nid >= 0)
3711 return nid;
3712 /* just returns 0 */
3713 return 0;
3716 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3717 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3719 int nid;
3721 nid = __early_pfn_to_nid(pfn);
3722 if (nid >= 0 && nid != node)
3723 return false;
3724 return true;
3726 #endif
3728 /* Basic iterator support to walk early_node_map[] */
3729 #define for_each_active_range_index_in_nid(i, nid) \
3730 for (i = first_active_region_index_in_nid(nid); i != -1; \
3731 i = next_active_region_index_in_nid(i, nid))
3734 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3735 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3736 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3738 * If an architecture guarantees that all ranges registered with
3739 * add_active_ranges() contain no holes and may be freed, this
3740 * this function may be used instead of calling free_bootmem() manually.
3742 void __init free_bootmem_with_active_regions(int nid,
3743 unsigned long max_low_pfn)
3745 int i;
3747 for_each_active_range_index_in_nid(i, nid) {
3748 unsigned long size_pages = 0;
3749 unsigned long end_pfn = early_node_map[i].end_pfn;
3751 if (early_node_map[i].start_pfn >= max_low_pfn)
3752 continue;
3754 if (end_pfn > max_low_pfn)
3755 end_pfn = max_low_pfn;
3757 size_pages = end_pfn - early_node_map[i].start_pfn;
3758 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3759 PFN_PHYS(early_node_map[i].start_pfn),
3760 size_pages << PAGE_SHIFT);
3764 #ifdef CONFIG_HAVE_MEMBLOCK
3766 * Basic iterator support. Return the last range of PFNs for a node
3767 * Note: nid == MAX_NUMNODES returns last region regardless of node
3769 static int __meminit last_active_region_index_in_nid(int nid)
3771 int i;
3773 for (i = nr_nodemap_entries - 1; i >= 0; i--)
3774 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3775 return i;
3777 return -1;
3781 * Basic iterator support. Return the previous active range of PFNs for a node
3782 * Note: nid == MAX_NUMNODES returns next region regardless of node
3784 static int __meminit previous_active_region_index_in_nid(int index, int nid)
3786 for (index = index - 1; index >= 0; index--)
3787 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3788 return index;
3790 return -1;
3793 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3794 for (i = last_active_region_index_in_nid(nid); i != -1; \
3795 i = previous_active_region_index_in_nid(i, nid))
3797 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3798 u64 goal, u64 limit)
3800 int i;
3802 /* Need to go over early_node_map to find out good range for node */
3803 for_each_active_range_index_in_nid_reverse(i, nid) {
3804 u64 addr;
3805 u64 ei_start, ei_last;
3806 u64 final_start, final_end;
3808 ei_last = early_node_map[i].end_pfn;
3809 ei_last <<= PAGE_SHIFT;
3810 ei_start = early_node_map[i].start_pfn;
3811 ei_start <<= PAGE_SHIFT;
3813 final_start = max(ei_start, goal);
3814 final_end = min(ei_last, limit);
3816 if (final_start >= final_end)
3817 continue;
3819 addr = memblock_find_in_range(final_start, final_end, size, align);
3821 if (addr == MEMBLOCK_ERROR)
3822 continue;
3824 return addr;
3827 return MEMBLOCK_ERROR;
3829 #endif
3831 int __init add_from_early_node_map(struct range *range, int az,
3832 int nr_range, int nid)
3834 int i;
3835 u64 start, end;
3837 /* need to go over early_node_map to find out good range for node */
3838 for_each_active_range_index_in_nid(i, nid) {
3839 start = early_node_map[i].start_pfn;
3840 end = early_node_map[i].end_pfn;
3841 nr_range = add_range(range, az, nr_range, start, end);
3843 return nr_range;
3846 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3848 int i;
3849 int ret;
3851 for_each_active_range_index_in_nid(i, nid) {
3852 ret = work_fn(early_node_map[i].start_pfn,
3853 early_node_map[i].end_pfn, data);
3854 if (ret)
3855 break;
3859 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3860 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3862 * If an architecture guarantees that all ranges registered with
3863 * add_active_ranges() contain no holes and may be freed, this
3864 * function may be used instead of calling memory_present() manually.
3866 void __init sparse_memory_present_with_active_regions(int nid)
3868 int i;
3870 for_each_active_range_index_in_nid(i, nid)
3871 memory_present(early_node_map[i].nid,
3872 early_node_map[i].start_pfn,
3873 early_node_map[i].end_pfn);
3877 * get_pfn_range_for_nid - Return the start and end page frames for a node
3878 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3879 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3880 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3882 * It returns the start and end page frame of a node based on information
3883 * provided by an arch calling add_active_range(). If called for a node
3884 * with no available memory, a warning is printed and the start and end
3885 * PFNs will be 0.
3887 void __meminit get_pfn_range_for_nid(unsigned int nid,
3888 unsigned long *start_pfn, unsigned long *end_pfn)
3890 int i;
3891 *start_pfn = -1UL;
3892 *end_pfn = 0;
3894 for_each_active_range_index_in_nid(i, nid) {
3895 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3896 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3899 if (*start_pfn == -1UL)
3900 *start_pfn = 0;
3904 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3905 * assumption is made that zones within a node are ordered in monotonic
3906 * increasing memory addresses so that the "highest" populated zone is used
3908 static void __init find_usable_zone_for_movable(void)
3910 int zone_index;
3911 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3912 if (zone_index == ZONE_MOVABLE)
3913 continue;
3915 if (arch_zone_highest_possible_pfn[zone_index] >
3916 arch_zone_lowest_possible_pfn[zone_index])
3917 break;
3920 VM_BUG_ON(zone_index == -1);
3921 movable_zone = zone_index;
3925 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3926 * because it is sized independant of architecture. Unlike the other zones,
3927 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3928 * in each node depending on the size of each node and how evenly kernelcore
3929 * is distributed. This helper function adjusts the zone ranges
3930 * provided by the architecture for a given node by using the end of the
3931 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3932 * zones within a node are in order of monotonic increases memory addresses
3934 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3935 unsigned long zone_type,
3936 unsigned long node_start_pfn,
3937 unsigned long node_end_pfn,
3938 unsigned long *zone_start_pfn,
3939 unsigned long *zone_end_pfn)
3941 /* Only adjust if ZONE_MOVABLE is on this node */
3942 if (zone_movable_pfn[nid]) {
3943 /* Size ZONE_MOVABLE */
3944 if (zone_type == ZONE_MOVABLE) {
3945 *zone_start_pfn = zone_movable_pfn[nid];
3946 *zone_end_pfn = min(node_end_pfn,
3947 arch_zone_highest_possible_pfn[movable_zone]);
3949 /* Adjust for ZONE_MOVABLE starting within this range */
3950 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3951 *zone_end_pfn > zone_movable_pfn[nid]) {
3952 *zone_end_pfn = zone_movable_pfn[nid];
3954 /* Check if this whole range is within ZONE_MOVABLE */
3955 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3956 *zone_start_pfn = *zone_end_pfn;
3961 * Return the number of pages a zone spans in a node, including holes
3962 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3964 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3965 unsigned long zone_type,
3966 unsigned long *ignored)
3968 unsigned long node_start_pfn, node_end_pfn;
3969 unsigned long zone_start_pfn, zone_end_pfn;
3971 /* Get the start and end of the node and zone */
3972 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3973 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3974 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3975 adjust_zone_range_for_zone_movable(nid, zone_type,
3976 node_start_pfn, node_end_pfn,
3977 &zone_start_pfn, &zone_end_pfn);
3979 /* Check that this node has pages within the zone's required range */
3980 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3981 return 0;
3983 /* Move the zone boundaries inside the node if necessary */
3984 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3985 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3987 /* Return the spanned pages */
3988 return zone_end_pfn - zone_start_pfn;
3992 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3993 * then all holes in the requested range will be accounted for.
3995 unsigned long __meminit __absent_pages_in_range(int nid,
3996 unsigned long range_start_pfn,
3997 unsigned long range_end_pfn)
3999 int i = 0;
4000 unsigned long prev_end_pfn = 0, hole_pages = 0;
4001 unsigned long start_pfn;
4003 /* Find the end_pfn of the first active range of pfns in the node */
4004 i = first_active_region_index_in_nid(nid);
4005 if (i == -1)
4006 return 0;
4008 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4010 /* Account for ranges before physical memory on this node */
4011 if (early_node_map[i].start_pfn > range_start_pfn)
4012 hole_pages = prev_end_pfn - range_start_pfn;
4014 /* Find all holes for the zone within the node */
4015 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4017 /* No need to continue if prev_end_pfn is outside the zone */
4018 if (prev_end_pfn >= range_end_pfn)
4019 break;
4021 /* Make sure the end of the zone is not within the hole */
4022 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4023 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4025 /* Update the hole size cound and move on */
4026 if (start_pfn > range_start_pfn) {
4027 BUG_ON(prev_end_pfn > start_pfn);
4028 hole_pages += start_pfn - prev_end_pfn;
4030 prev_end_pfn = early_node_map[i].end_pfn;
4033 /* Account for ranges past physical memory on this node */
4034 if (range_end_pfn > prev_end_pfn)
4035 hole_pages += range_end_pfn -
4036 max(range_start_pfn, prev_end_pfn);
4038 return hole_pages;
4042 * absent_pages_in_range - Return number of page frames in holes within a range
4043 * @start_pfn: The start PFN to start searching for holes
4044 * @end_pfn: The end PFN to stop searching for holes
4046 * It returns the number of pages frames in memory holes within a range.
4048 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4049 unsigned long end_pfn)
4051 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4054 /* Return the number of page frames in holes in a zone on a node */
4055 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4056 unsigned long zone_type,
4057 unsigned long *ignored)
4059 unsigned long node_start_pfn, node_end_pfn;
4060 unsigned long zone_start_pfn, zone_end_pfn;
4062 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4063 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4064 node_start_pfn);
4065 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4066 node_end_pfn);
4068 adjust_zone_range_for_zone_movable(nid, zone_type,
4069 node_start_pfn, node_end_pfn,
4070 &zone_start_pfn, &zone_end_pfn);
4071 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4074 #else
4075 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4076 unsigned long zone_type,
4077 unsigned long *zones_size)
4079 return zones_size[zone_type];
4082 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4083 unsigned long zone_type,
4084 unsigned long *zholes_size)
4086 if (!zholes_size)
4087 return 0;
4089 return zholes_size[zone_type];
4092 #endif
4094 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4095 unsigned long *zones_size, unsigned long *zholes_size)
4097 unsigned long realtotalpages, totalpages = 0;
4098 enum zone_type i;
4100 for (i = 0; i < MAX_NR_ZONES; i++)
4101 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4102 zones_size);
4103 pgdat->node_spanned_pages = totalpages;
4105 realtotalpages = totalpages;
4106 for (i = 0; i < MAX_NR_ZONES; i++)
4107 realtotalpages -=
4108 zone_absent_pages_in_node(pgdat->node_id, i,
4109 zholes_size);
4110 pgdat->node_present_pages = realtotalpages;
4111 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4112 realtotalpages);
4115 #ifndef CONFIG_SPARSEMEM
4117 * Calculate the size of the zone->blockflags rounded to an unsigned long
4118 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4119 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4120 * round what is now in bits to nearest long in bits, then return it in
4121 * bytes.
4123 static unsigned long __init usemap_size(unsigned long zonesize)
4125 unsigned long usemapsize;
4127 usemapsize = roundup(zonesize, pageblock_nr_pages);
4128 usemapsize = usemapsize >> pageblock_order;
4129 usemapsize *= NR_PAGEBLOCK_BITS;
4130 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4132 return usemapsize / 8;
4135 static void __init setup_usemap(struct pglist_data *pgdat,
4136 struct zone *zone, unsigned long zonesize)
4138 unsigned long usemapsize = usemap_size(zonesize);
4139 zone->pageblock_flags = NULL;
4140 if (usemapsize)
4141 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
4143 #else
4144 static inline void setup_usemap(struct pglist_data *pgdat,
4145 struct zone *zone, unsigned long zonesize) {}
4146 #endif /* CONFIG_SPARSEMEM */
4148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4150 /* Return a sensible default order for the pageblock size. */
4151 static inline int pageblock_default_order(void)
4153 if (HPAGE_SHIFT > PAGE_SHIFT)
4154 return HUGETLB_PAGE_ORDER;
4156 return MAX_ORDER-1;
4159 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4160 static inline void __init set_pageblock_order(unsigned int order)
4162 /* Check that pageblock_nr_pages has not already been setup */
4163 if (pageblock_order)
4164 return;
4167 * Assume the largest contiguous order of interest is a huge page.
4168 * This value may be variable depending on boot parameters on IA64
4170 pageblock_order = order;
4172 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4175 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4176 * and pageblock_default_order() are unused as pageblock_order is set
4177 * at compile-time. See include/linux/pageblock-flags.h for the values of
4178 * pageblock_order based on the kernel config
4180 static inline int pageblock_default_order(unsigned int order)
4182 return MAX_ORDER-1;
4184 #define set_pageblock_order(x) do {} while (0)
4186 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4189 * Set up the zone data structures:
4190 * - mark all pages reserved
4191 * - mark all memory queues empty
4192 * - clear the memory bitmaps
4194 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4195 unsigned long *zones_size, unsigned long *zholes_size)
4197 enum zone_type j;
4198 int nid = pgdat->node_id;
4199 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4200 int ret;
4202 pgdat_resize_init(pgdat);
4203 pgdat->nr_zones = 0;
4204 init_waitqueue_head(&pgdat->kswapd_wait);
4205 pgdat->kswapd_max_order = 0;
4206 pgdat_page_cgroup_init(pgdat);
4208 for (j = 0; j < MAX_NR_ZONES; j++) {
4209 struct zone *zone = pgdat->node_zones + j;
4210 unsigned long size, realsize, memmap_pages;
4211 enum lru_list l;
4213 size = zone_spanned_pages_in_node(nid, j, zones_size);
4214 realsize = size - zone_absent_pages_in_node(nid, j,
4215 zholes_size);
4218 * Adjust realsize so that it accounts for how much memory
4219 * is used by this zone for memmap. This affects the watermark
4220 * and per-cpu initialisations
4222 memmap_pages =
4223 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4224 if (realsize >= memmap_pages) {
4225 realsize -= memmap_pages;
4226 if (memmap_pages)
4227 printk(KERN_DEBUG
4228 " %s zone: %lu pages used for memmap\n",
4229 zone_names[j], memmap_pages);
4230 } else
4231 printk(KERN_WARNING
4232 " %s zone: %lu pages exceeds realsize %lu\n",
4233 zone_names[j], memmap_pages, realsize);
4235 /* Account for reserved pages */
4236 if (j == 0 && realsize > dma_reserve) {
4237 realsize -= dma_reserve;
4238 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4239 zone_names[0], dma_reserve);
4242 if (!is_highmem_idx(j))
4243 nr_kernel_pages += realsize;
4244 nr_all_pages += realsize;
4246 zone->spanned_pages = size;
4247 zone->present_pages = realsize;
4248 #ifdef CONFIG_NUMA
4249 zone->node = nid;
4250 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4251 / 100;
4252 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4253 #endif
4254 zone->name = zone_names[j];
4255 spin_lock_init(&zone->lock);
4256 spin_lock_init(&zone->lru_lock);
4257 zone_seqlock_init(zone);
4258 zone->zone_pgdat = pgdat;
4260 zone_pcp_init(zone);
4261 for_each_lru(l) {
4262 INIT_LIST_HEAD(&zone->lru[l].list);
4263 zone->reclaim_stat.nr_saved_scan[l] = 0;
4265 zone->reclaim_stat.recent_rotated[0] = 0;
4266 zone->reclaim_stat.recent_rotated[1] = 0;
4267 zone->reclaim_stat.recent_scanned[0] = 0;
4268 zone->reclaim_stat.recent_scanned[1] = 0;
4269 zap_zone_vm_stats(zone);
4270 zone->flags = 0;
4271 if (!size)
4272 continue;
4274 set_pageblock_order(pageblock_default_order());
4275 setup_usemap(pgdat, zone, size);
4276 ret = init_currently_empty_zone(zone, zone_start_pfn,
4277 size, MEMMAP_EARLY);
4278 BUG_ON(ret);
4279 memmap_init(size, nid, j, zone_start_pfn);
4280 zone_start_pfn += size;
4284 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4286 /* Skip empty nodes */
4287 if (!pgdat->node_spanned_pages)
4288 return;
4290 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4291 /* ia64 gets its own node_mem_map, before this, without bootmem */
4292 if (!pgdat->node_mem_map) {
4293 unsigned long size, start, end;
4294 struct page *map;
4297 * The zone's endpoints aren't required to be MAX_ORDER
4298 * aligned but the node_mem_map endpoints must be in order
4299 * for the buddy allocator to function correctly.
4301 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4302 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4303 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4304 size = (end - start) * sizeof(struct page);
4305 map = alloc_remap(pgdat->node_id, size);
4306 if (!map)
4307 map = alloc_bootmem_node(pgdat, size);
4308 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4310 #ifndef CONFIG_NEED_MULTIPLE_NODES
4312 * With no DISCONTIG, the global mem_map is just set as node 0's
4314 if (pgdat == NODE_DATA(0)) {
4315 mem_map = NODE_DATA(0)->node_mem_map;
4316 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4317 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4318 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4319 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4321 #endif
4322 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4325 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4326 unsigned long node_start_pfn, unsigned long *zholes_size)
4328 pg_data_t *pgdat = NODE_DATA(nid);
4330 pgdat->node_id = nid;
4331 pgdat->node_start_pfn = node_start_pfn;
4332 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4334 alloc_node_mem_map(pgdat);
4335 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4336 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4337 nid, (unsigned long)pgdat,
4338 (unsigned long)pgdat->node_mem_map);
4339 #endif
4341 free_area_init_core(pgdat, zones_size, zholes_size);
4344 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4346 #if MAX_NUMNODES > 1
4348 * Figure out the number of possible node ids.
4350 static void __init setup_nr_node_ids(void)
4352 unsigned int node;
4353 unsigned int highest = 0;
4355 for_each_node_mask(node, node_possible_map)
4356 highest = node;
4357 nr_node_ids = highest + 1;
4359 #else
4360 static inline void setup_nr_node_ids(void)
4363 #endif
4366 * add_active_range - Register a range of PFNs backed by physical memory
4367 * @nid: The node ID the range resides on
4368 * @start_pfn: The start PFN of the available physical memory
4369 * @end_pfn: The end PFN of the available physical memory
4371 * These ranges are stored in an early_node_map[] and later used by
4372 * free_area_init_nodes() to calculate zone sizes and holes. If the
4373 * range spans a memory hole, it is up to the architecture to ensure
4374 * the memory is not freed by the bootmem allocator. If possible
4375 * the range being registered will be merged with existing ranges.
4377 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4378 unsigned long end_pfn)
4380 int i;
4382 mminit_dprintk(MMINIT_TRACE, "memory_register",
4383 "Entering add_active_range(%d, %#lx, %#lx) "
4384 "%d entries of %d used\n",
4385 nid, start_pfn, end_pfn,
4386 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4388 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4390 /* Merge with existing active regions if possible */
4391 for (i = 0; i < nr_nodemap_entries; i++) {
4392 if (early_node_map[i].nid != nid)
4393 continue;
4395 /* Skip if an existing region covers this new one */
4396 if (start_pfn >= early_node_map[i].start_pfn &&
4397 end_pfn <= early_node_map[i].end_pfn)
4398 return;
4400 /* Merge forward if suitable */
4401 if (start_pfn <= early_node_map[i].end_pfn &&
4402 end_pfn > early_node_map[i].end_pfn) {
4403 early_node_map[i].end_pfn = end_pfn;
4404 return;
4407 /* Merge backward if suitable */
4408 if (start_pfn < early_node_map[i].start_pfn &&
4409 end_pfn >= early_node_map[i].start_pfn) {
4410 early_node_map[i].start_pfn = start_pfn;
4411 return;
4415 /* Check that early_node_map is large enough */
4416 if (i >= MAX_ACTIVE_REGIONS) {
4417 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4418 MAX_ACTIVE_REGIONS);
4419 return;
4422 early_node_map[i].nid = nid;
4423 early_node_map[i].start_pfn = start_pfn;
4424 early_node_map[i].end_pfn = end_pfn;
4425 nr_nodemap_entries = i + 1;
4429 * remove_active_range - Shrink an existing registered range of PFNs
4430 * @nid: The node id the range is on that should be shrunk
4431 * @start_pfn: The new PFN of the range
4432 * @end_pfn: The new PFN of the range
4434 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4435 * The map is kept near the end physical page range that has already been
4436 * registered. This function allows an arch to shrink an existing registered
4437 * range.
4439 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4440 unsigned long end_pfn)
4442 int i, j;
4443 int removed = 0;
4445 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4446 nid, start_pfn, end_pfn);
4448 /* Find the old active region end and shrink */
4449 for_each_active_range_index_in_nid(i, nid) {
4450 if (early_node_map[i].start_pfn >= start_pfn &&
4451 early_node_map[i].end_pfn <= end_pfn) {
4452 /* clear it */
4453 early_node_map[i].start_pfn = 0;
4454 early_node_map[i].end_pfn = 0;
4455 removed = 1;
4456 continue;
4458 if (early_node_map[i].start_pfn < start_pfn &&
4459 early_node_map[i].end_pfn > start_pfn) {
4460 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4461 early_node_map[i].end_pfn = start_pfn;
4462 if (temp_end_pfn > end_pfn)
4463 add_active_range(nid, end_pfn, temp_end_pfn);
4464 continue;
4466 if (early_node_map[i].start_pfn >= start_pfn &&
4467 early_node_map[i].end_pfn > end_pfn &&
4468 early_node_map[i].start_pfn < end_pfn) {
4469 early_node_map[i].start_pfn = end_pfn;
4470 continue;
4474 if (!removed)
4475 return;
4477 /* remove the blank ones */
4478 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4479 if (early_node_map[i].nid != nid)
4480 continue;
4481 if (early_node_map[i].end_pfn)
4482 continue;
4483 /* we found it, get rid of it */
4484 for (j = i; j < nr_nodemap_entries - 1; j++)
4485 memcpy(&early_node_map[j], &early_node_map[j+1],
4486 sizeof(early_node_map[j]));
4487 j = nr_nodemap_entries - 1;
4488 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4489 nr_nodemap_entries--;
4494 * remove_all_active_ranges - Remove all currently registered regions
4496 * During discovery, it may be found that a table like SRAT is invalid
4497 * and an alternative discovery method must be used. This function removes
4498 * all currently registered regions.
4500 void __init remove_all_active_ranges(void)
4502 memset(early_node_map, 0, sizeof(early_node_map));
4503 nr_nodemap_entries = 0;
4506 /* Compare two active node_active_regions */
4507 static int __init cmp_node_active_region(const void *a, const void *b)
4509 struct node_active_region *arange = (struct node_active_region *)a;
4510 struct node_active_region *brange = (struct node_active_region *)b;
4512 /* Done this way to avoid overflows */
4513 if (arange->start_pfn > brange->start_pfn)
4514 return 1;
4515 if (arange->start_pfn < brange->start_pfn)
4516 return -1;
4518 return 0;
4521 /* sort the node_map by start_pfn */
4522 void __init sort_node_map(void)
4524 sort(early_node_map, (size_t)nr_nodemap_entries,
4525 sizeof(struct node_active_region),
4526 cmp_node_active_region, NULL);
4529 /* Find the lowest pfn for a node */
4530 static unsigned long __init find_min_pfn_for_node(int nid)
4532 int i;
4533 unsigned long min_pfn = ULONG_MAX;
4535 /* Assuming a sorted map, the first range found has the starting pfn */
4536 for_each_active_range_index_in_nid(i, nid)
4537 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4539 if (min_pfn == ULONG_MAX) {
4540 printk(KERN_WARNING
4541 "Could not find start_pfn for node %d\n", nid);
4542 return 0;
4545 return min_pfn;
4549 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4551 * It returns the minimum PFN based on information provided via
4552 * add_active_range().
4554 unsigned long __init find_min_pfn_with_active_regions(void)
4556 return find_min_pfn_for_node(MAX_NUMNODES);
4560 * early_calculate_totalpages()
4561 * Sum pages in active regions for movable zone.
4562 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4564 static unsigned long __init early_calculate_totalpages(void)
4566 int i;
4567 unsigned long totalpages = 0;
4569 for (i = 0; i < nr_nodemap_entries; i++) {
4570 unsigned long pages = early_node_map[i].end_pfn -
4571 early_node_map[i].start_pfn;
4572 totalpages += pages;
4573 if (pages)
4574 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4576 return totalpages;
4580 * Find the PFN the Movable zone begins in each node. Kernel memory
4581 * is spread evenly between nodes as long as the nodes have enough
4582 * memory. When they don't, some nodes will have more kernelcore than
4583 * others
4585 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4587 int i, nid;
4588 unsigned long usable_startpfn;
4589 unsigned long kernelcore_node, kernelcore_remaining;
4590 /* save the state before borrow the nodemask */
4591 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4592 unsigned long totalpages = early_calculate_totalpages();
4593 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4596 * If movablecore was specified, calculate what size of
4597 * kernelcore that corresponds so that memory usable for
4598 * any allocation type is evenly spread. If both kernelcore
4599 * and movablecore are specified, then the value of kernelcore
4600 * will be used for required_kernelcore if it's greater than
4601 * what movablecore would have allowed.
4603 if (required_movablecore) {
4604 unsigned long corepages;
4607 * Round-up so that ZONE_MOVABLE is at least as large as what
4608 * was requested by the user
4610 required_movablecore =
4611 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4612 corepages = totalpages - required_movablecore;
4614 required_kernelcore = max(required_kernelcore, corepages);
4617 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4618 if (!required_kernelcore)
4619 goto out;
4621 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4622 find_usable_zone_for_movable();
4623 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4625 restart:
4626 /* Spread kernelcore memory as evenly as possible throughout nodes */
4627 kernelcore_node = required_kernelcore / usable_nodes;
4628 for_each_node_state(nid, N_HIGH_MEMORY) {
4630 * Recalculate kernelcore_node if the division per node
4631 * now exceeds what is necessary to satisfy the requested
4632 * amount of memory for the kernel
4634 if (required_kernelcore < kernelcore_node)
4635 kernelcore_node = required_kernelcore / usable_nodes;
4638 * As the map is walked, we track how much memory is usable
4639 * by the kernel using kernelcore_remaining. When it is
4640 * 0, the rest of the node is usable by ZONE_MOVABLE
4642 kernelcore_remaining = kernelcore_node;
4644 /* Go through each range of PFNs within this node */
4645 for_each_active_range_index_in_nid(i, nid) {
4646 unsigned long start_pfn, end_pfn;
4647 unsigned long size_pages;
4649 start_pfn = max(early_node_map[i].start_pfn,
4650 zone_movable_pfn[nid]);
4651 end_pfn = early_node_map[i].end_pfn;
4652 if (start_pfn >= end_pfn)
4653 continue;
4655 /* Account for what is only usable for kernelcore */
4656 if (start_pfn < usable_startpfn) {
4657 unsigned long kernel_pages;
4658 kernel_pages = min(end_pfn, usable_startpfn)
4659 - start_pfn;
4661 kernelcore_remaining -= min(kernel_pages,
4662 kernelcore_remaining);
4663 required_kernelcore -= min(kernel_pages,
4664 required_kernelcore);
4666 /* Continue if range is now fully accounted */
4667 if (end_pfn <= usable_startpfn) {
4670 * Push zone_movable_pfn to the end so
4671 * that if we have to rebalance
4672 * kernelcore across nodes, we will
4673 * not double account here
4675 zone_movable_pfn[nid] = end_pfn;
4676 continue;
4678 start_pfn = usable_startpfn;
4682 * The usable PFN range for ZONE_MOVABLE is from
4683 * start_pfn->end_pfn. Calculate size_pages as the
4684 * number of pages used as kernelcore
4686 size_pages = end_pfn - start_pfn;
4687 if (size_pages > kernelcore_remaining)
4688 size_pages = kernelcore_remaining;
4689 zone_movable_pfn[nid] = start_pfn + size_pages;
4692 * Some kernelcore has been met, update counts and
4693 * break if the kernelcore for this node has been
4694 * satisified
4696 required_kernelcore -= min(required_kernelcore,
4697 size_pages);
4698 kernelcore_remaining -= size_pages;
4699 if (!kernelcore_remaining)
4700 break;
4705 * If there is still required_kernelcore, we do another pass with one
4706 * less node in the count. This will push zone_movable_pfn[nid] further
4707 * along on the nodes that still have memory until kernelcore is
4708 * satisified
4710 usable_nodes--;
4711 if (usable_nodes && required_kernelcore > usable_nodes)
4712 goto restart;
4714 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4715 for (nid = 0; nid < MAX_NUMNODES; nid++)
4716 zone_movable_pfn[nid] =
4717 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4719 out:
4720 /* restore the node_state */
4721 node_states[N_HIGH_MEMORY] = saved_node_state;
4724 /* Any regular memory on that node ? */
4725 static void check_for_regular_memory(pg_data_t *pgdat)
4727 #ifdef CONFIG_HIGHMEM
4728 enum zone_type zone_type;
4730 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4731 struct zone *zone = &pgdat->node_zones[zone_type];
4732 if (zone->present_pages)
4733 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4735 #endif
4739 * free_area_init_nodes - Initialise all pg_data_t and zone data
4740 * @max_zone_pfn: an array of max PFNs for each zone
4742 * This will call free_area_init_node() for each active node in the system.
4743 * Using the page ranges provided by add_active_range(), the size of each
4744 * zone in each node and their holes is calculated. If the maximum PFN
4745 * between two adjacent zones match, it is assumed that the zone is empty.
4746 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4747 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4748 * starts where the previous one ended. For example, ZONE_DMA32 starts
4749 * at arch_max_dma_pfn.
4751 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4753 unsigned long nid;
4754 int i;
4756 /* Sort early_node_map as initialisation assumes it is sorted */
4757 sort_node_map();
4759 /* Record where the zone boundaries are */
4760 memset(arch_zone_lowest_possible_pfn, 0,
4761 sizeof(arch_zone_lowest_possible_pfn));
4762 memset(arch_zone_highest_possible_pfn, 0,
4763 sizeof(arch_zone_highest_possible_pfn));
4764 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4765 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4766 for (i = 1; i < MAX_NR_ZONES; i++) {
4767 if (i == ZONE_MOVABLE)
4768 continue;
4769 arch_zone_lowest_possible_pfn[i] =
4770 arch_zone_highest_possible_pfn[i-1];
4771 arch_zone_highest_possible_pfn[i] =
4772 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4774 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4775 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4777 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4778 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4779 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4781 /* Print out the zone ranges */
4782 printk("Zone PFN ranges:\n");
4783 for (i = 0; i < MAX_NR_ZONES; i++) {
4784 if (i == ZONE_MOVABLE)
4785 continue;
4786 printk(" %-8s ", zone_names[i]);
4787 if (arch_zone_lowest_possible_pfn[i] ==
4788 arch_zone_highest_possible_pfn[i])
4789 printk("empty\n");
4790 else
4791 printk("%0#10lx -> %0#10lx\n",
4792 arch_zone_lowest_possible_pfn[i],
4793 arch_zone_highest_possible_pfn[i]);
4796 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4797 printk("Movable zone start PFN for each node\n");
4798 for (i = 0; i < MAX_NUMNODES; i++) {
4799 if (zone_movable_pfn[i])
4800 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4803 /* Print out the early_node_map[] */
4804 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4805 for (i = 0; i < nr_nodemap_entries; i++)
4806 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4807 early_node_map[i].start_pfn,
4808 early_node_map[i].end_pfn);
4810 /* Initialise every node */
4811 mminit_verify_pageflags_layout();
4812 setup_nr_node_ids();
4813 for_each_online_node(nid) {
4814 pg_data_t *pgdat = NODE_DATA(nid);
4815 free_area_init_node(nid, NULL,
4816 find_min_pfn_for_node(nid), NULL);
4818 /* Any memory on that node */
4819 if (pgdat->node_present_pages)
4820 node_set_state(nid, N_HIGH_MEMORY);
4821 check_for_regular_memory(pgdat);
4825 static int __init cmdline_parse_core(char *p, unsigned long *core)
4827 unsigned long long coremem;
4828 if (!p)
4829 return -EINVAL;
4831 coremem = memparse(p, &p);
4832 *core = coremem >> PAGE_SHIFT;
4834 /* Paranoid check that UL is enough for the coremem value */
4835 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4837 return 0;
4841 * kernelcore=size sets the amount of memory for use for allocations that
4842 * cannot be reclaimed or migrated.
4844 static int __init cmdline_parse_kernelcore(char *p)
4846 return cmdline_parse_core(p, &required_kernelcore);
4850 * movablecore=size sets the amount of memory for use for allocations that
4851 * can be reclaimed or migrated.
4853 static int __init cmdline_parse_movablecore(char *p)
4855 return cmdline_parse_core(p, &required_movablecore);
4858 early_param("kernelcore", cmdline_parse_kernelcore);
4859 early_param("movablecore", cmdline_parse_movablecore);
4861 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4864 * set_dma_reserve - set the specified number of pages reserved in the first zone
4865 * @new_dma_reserve: The number of pages to mark reserved
4867 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4868 * In the DMA zone, a significant percentage may be consumed by kernel image
4869 * and other unfreeable allocations which can skew the watermarks badly. This
4870 * function may optionally be used to account for unfreeable pages in the
4871 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4872 * smaller per-cpu batchsize.
4874 void __init set_dma_reserve(unsigned long new_dma_reserve)
4876 dma_reserve = new_dma_reserve;
4879 void __init free_area_init(unsigned long *zones_size)
4881 free_area_init_node(0, zones_size,
4882 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4885 static int page_alloc_cpu_notify(struct notifier_block *self,
4886 unsigned long action, void *hcpu)
4888 int cpu = (unsigned long)hcpu;
4890 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4891 drain_pages(cpu);
4894 * Spill the event counters of the dead processor
4895 * into the current processors event counters.
4896 * This artificially elevates the count of the current
4897 * processor.
4899 vm_events_fold_cpu(cpu);
4902 * Zero the differential counters of the dead processor
4903 * so that the vm statistics are consistent.
4905 * This is only okay since the processor is dead and cannot
4906 * race with what we are doing.
4908 refresh_cpu_vm_stats(cpu);
4910 return NOTIFY_OK;
4913 void __init page_alloc_init(void)
4915 hotcpu_notifier(page_alloc_cpu_notify, 0);
4919 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4920 * or min_free_kbytes changes.
4922 static void calculate_totalreserve_pages(void)
4924 struct pglist_data *pgdat;
4925 unsigned long reserve_pages = 0;
4926 enum zone_type i, j;
4928 for_each_online_pgdat(pgdat) {
4929 for (i = 0; i < MAX_NR_ZONES; i++) {
4930 struct zone *zone = pgdat->node_zones + i;
4931 unsigned long max = 0;
4933 /* Find valid and maximum lowmem_reserve in the zone */
4934 for (j = i; j < MAX_NR_ZONES; j++) {
4935 if (zone->lowmem_reserve[j] > max)
4936 max = zone->lowmem_reserve[j];
4939 /* we treat the high watermark as reserved pages. */
4940 max += high_wmark_pages(zone);
4942 if (max > zone->present_pages)
4943 max = zone->present_pages;
4944 reserve_pages += max;
4947 totalreserve_pages = reserve_pages;
4951 * setup_per_zone_lowmem_reserve - called whenever
4952 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4953 * has a correct pages reserved value, so an adequate number of
4954 * pages are left in the zone after a successful __alloc_pages().
4956 static void setup_per_zone_lowmem_reserve(void)
4958 struct pglist_data *pgdat;
4959 enum zone_type j, idx;
4961 for_each_online_pgdat(pgdat) {
4962 for (j = 0; j < MAX_NR_ZONES; j++) {
4963 struct zone *zone = pgdat->node_zones + j;
4964 unsigned long present_pages = zone->present_pages;
4966 zone->lowmem_reserve[j] = 0;
4968 idx = j;
4969 while (idx) {
4970 struct zone *lower_zone;
4972 idx--;
4974 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4975 sysctl_lowmem_reserve_ratio[idx] = 1;
4977 lower_zone = pgdat->node_zones + idx;
4978 lower_zone->lowmem_reserve[j] = present_pages /
4979 sysctl_lowmem_reserve_ratio[idx];
4980 present_pages += lower_zone->present_pages;
4985 /* update totalreserve_pages */
4986 calculate_totalreserve_pages();
4990 * setup_per_zone_wmarks - called when min_free_kbytes changes
4991 * or when memory is hot-{added|removed}
4993 * Ensures that the watermark[min,low,high] values for each zone are set
4994 * correctly with respect to min_free_kbytes.
4996 void setup_per_zone_wmarks(void)
4998 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4999 unsigned long lowmem_pages = 0;
5000 struct zone *zone;
5001 unsigned long flags;
5003 /* Calculate total number of !ZONE_HIGHMEM pages */
5004 for_each_zone(zone) {
5005 if (!is_highmem(zone))
5006 lowmem_pages += zone->present_pages;
5009 for_each_zone(zone) {
5010 u64 tmp;
5012 spin_lock_irqsave(&zone->lock, flags);
5013 tmp = (u64)pages_min * zone->present_pages;
5014 do_div(tmp, lowmem_pages);
5015 if (is_highmem(zone)) {
5017 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5018 * need highmem pages, so cap pages_min to a small
5019 * value here.
5021 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5022 * deltas controls asynch page reclaim, and so should
5023 * not be capped for highmem.
5025 int min_pages;
5027 min_pages = zone->present_pages / 1024;
5028 if (min_pages < SWAP_CLUSTER_MAX)
5029 min_pages = SWAP_CLUSTER_MAX;
5030 if (min_pages > 128)
5031 min_pages = 128;
5032 zone->watermark[WMARK_MIN] = min_pages;
5033 } else {
5035 * If it's a lowmem zone, reserve a number of pages
5036 * proportionate to the zone's size.
5038 zone->watermark[WMARK_MIN] = tmp;
5041 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5042 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5043 setup_zone_migrate_reserve(zone);
5044 spin_unlock_irqrestore(&zone->lock, flags);
5047 /* update totalreserve_pages */
5048 calculate_totalreserve_pages();
5052 * The inactive anon list should be small enough that the VM never has to
5053 * do too much work, but large enough that each inactive page has a chance
5054 * to be referenced again before it is swapped out.
5056 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5057 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5058 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5059 * the anonymous pages are kept on the inactive list.
5061 * total target max
5062 * memory ratio inactive anon
5063 * -------------------------------------
5064 * 10MB 1 5MB
5065 * 100MB 1 50MB
5066 * 1GB 3 250MB
5067 * 10GB 10 0.9GB
5068 * 100GB 31 3GB
5069 * 1TB 101 10GB
5070 * 10TB 320 32GB
5072 void calculate_zone_inactive_ratio(struct zone *zone)
5074 unsigned int gb, ratio;
5076 /* Zone size in gigabytes */
5077 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5078 if (gb)
5079 ratio = int_sqrt(10 * gb);
5080 else
5081 ratio = 1;
5083 zone->inactive_ratio = ratio;
5086 static void __init setup_per_zone_inactive_ratio(void)
5088 struct zone *zone;
5090 for_each_zone(zone)
5091 calculate_zone_inactive_ratio(zone);
5095 * Initialise min_free_kbytes.
5097 * For small machines we want it small (128k min). For large machines
5098 * we want it large (64MB max). But it is not linear, because network
5099 * bandwidth does not increase linearly with machine size. We use
5101 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5102 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5104 * which yields
5106 * 16MB: 512k
5107 * 32MB: 724k
5108 * 64MB: 1024k
5109 * 128MB: 1448k
5110 * 256MB: 2048k
5111 * 512MB: 2896k
5112 * 1024MB: 4096k
5113 * 2048MB: 5792k
5114 * 4096MB: 8192k
5115 * 8192MB: 11584k
5116 * 16384MB: 16384k
5118 static int __init init_per_zone_wmark_min(void)
5120 unsigned long lowmem_kbytes;
5122 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5124 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5125 if (min_free_kbytes < 128)
5126 min_free_kbytes = 128;
5127 if (min_free_kbytes > 65536)
5128 min_free_kbytes = 65536;
5129 setup_per_zone_wmarks();
5130 setup_per_zone_lowmem_reserve();
5131 setup_per_zone_inactive_ratio();
5132 return 0;
5134 module_init(init_per_zone_wmark_min)
5137 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5138 * that we can call two helper functions whenever min_free_kbytes
5139 * changes.
5141 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5142 void __user *buffer, size_t *length, loff_t *ppos)
5144 proc_dointvec(table, write, buffer, length, ppos);
5145 if (write)
5146 setup_per_zone_wmarks();
5147 return 0;
5150 #ifdef CONFIG_NUMA
5151 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5152 void __user *buffer, size_t *length, loff_t *ppos)
5154 struct zone *zone;
5155 int rc;
5157 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5158 if (rc)
5159 return rc;
5161 for_each_zone(zone)
5162 zone->min_unmapped_pages = (zone->present_pages *
5163 sysctl_min_unmapped_ratio) / 100;
5164 return 0;
5167 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5168 void __user *buffer, size_t *length, loff_t *ppos)
5170 struct zone *zone;
5171 int rc;
5173 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5174 if (rc)
5175 return rc;
5177 for_each_zone(zone)
5178 zone->min_slab_pages = (zone->present_pages *
5179 sysctl_min_slab_ratio) / 100;
5180 return 0;
5182 #endif
5185 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5186 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5187 * whenever sysctl_lowmem_reserve_ratio changes.
5189 * The reserve ratio obviously has absolutely no relation with the
5190 * minimum watermarks. The lowmem reserve ratio can only make sense
5191 * if in function of the boot time zone sizes.
5193 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5194 void __user *buffer, size_t *length, loff_t *ppos)
5196 proc_dointvec_minmax(table, write, buffer, length, ppos);
5197 setup_per_zone_lowmem_reserve();
5198 return 0;
5202 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5203 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5204 * can have before it gets flushed back to buddy allocator.
5207 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5208 void __user *buffer, size_t *length, loff_t *ppos)
5210 struct zone *zone;
5211 unsigned int cpu;
5212 int ret;
5214 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5215 if (!write || (ret == -EINVAL))
5216 return ret;
5217 for_each_populated_zone(zone) {
5218 for_each_possible_cpu(cpu) {
5219 unsigned long high;
5220 high = zone->present_pages / percpu_pagelist_fraction;
5221 setup_pagelist_highmark(
5222 per_cpu_ptr(zone->pageset, cpu), high);
5225 return 0;
5228 int hashdist = HASHDIST_DEFAULT;
5230 #ifdef CONFIG_NUMA
5231 static int __init set_hashdist(char *str)
5233 if (!str)
5234 return 0;
5235 hashdist = simple_strtoul(str, &str, 0);
5236 return 1;
5238 __setup("hashdist=", set_hashdist);
5239 #endif
5242 * allocate a large system hash table from bootmem
5243 * - it is assumed that the hash table must contain an exact power-of-2
5244 * quantity of entries
5245 * - limit is the number of hash buckets, not the total allocation size
5247 void *__init alloc_large_system_hash(const char *tablename,
5248 unsigned long bucketsize,
5249 unsigned long numentries,
5250 int scale,
5251 int flags,
5252 unsigned int *_hash_shift,
5253 unsigned int *_hash_mask,
5254 unsigned long limit)
5256 unsigned long long max = limit;
5257 unsigned long log2qty, size;
5258 void *table = NULL;
5260 /* allow the kernel cmdline to have a say */
5261 if (!numentries) {
5262 /* round applicable memory size up to nearest megabyte */
5263 numentries = nr_kernel_pages;
5264 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5265 numentries >>= 20 - PAGE_SHIFT;
5266 numentries <<= 20 - PAGE_SHIFT;
5268 /* limit to 1 bucket per 2^scale bytes of low memory */
5269 if (scale > PAGE_SHIFT)
5270 numentries >>= (scale - PAGE_SHIFT);
5271 else
5272 numentries <<= (PAGE_SHIFT - scale);
5274 /* Make sure we've got at least a 0-order allocation.. */
5275 if (unlikely(flags & HASH_SMALL)) {
5276 /* Makes no sense without HASH_EARLY */
5277 WARN_ON(!(flags & HASH_EARLY));
5278 if (!(numentries >> *_hash_shift)) {
5279 numentries = 1UL << *_hash_shift;
5280 BUG_ON(!numentries);
5282 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5283 numentries = PAGE_SIZE / bucketsize;
5285 numentries = roundup_pow_of_two(numentries);
5287 /* limit allocation size to 1/16 total memory by default */
5288 if (max == 0) {
5289 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5290 do_div(max, bucketsize);
5293 if (numentries > max)
5294 numentries = max;
5296 log2qty = ilog2(numentries);
5298 do {
5299 size = bucketsize << log2qty;
5300 if (flags & HASH_EARLY)
5301 table = alloc_bootmem_nopanic(size);
5302 else if (hashdist)
5303 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5304 else {
5306 * If bucketsize is not a power-of-two, we may free
5307 * some pages at the end of hash table which
5308 * alloc_pages_exact() automatically does
5310 if (get_order(size) < MAX_ORDER) {
5311 table = alloc_pages_exact(size, GFP_ATOMIC);
5312 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5315 } while (!table && size > PAGE_SIZE && --log2qty);
5317 if (!table)
5318 panic("Failed to allocate %s hash table\n", tablename);
5320 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5321 tablename,
5322 (1UL << log2qty),
5323 ilog2(size) - PAGE_SHIFT,
5324 size);
5326 if (_hash_shift)
5327 *_hash_shift = log2qty;
5328 if (_hash_mask)
5329 *_hash_mask = (1 << log2qty) - 1;
5331 return table;
5334 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5335 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5336 unsigned long pfn)
5338 #ifdef CONFIG_SPARSEMEM
5339 return __pfn_to_section(pfn)->pageblock_flags;
5340 #else
5341 return zone->pageblock_flags;
5342 #endif /* CONFIG_SPARSEMEM */
5345 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5347 #ifdef CONFIG_SPARSEMEM
5348 pfn &= (PAGES_PER_SECTION-1);
5349 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5350 #else
5351 pfn = pfn - zone->zone_start_pfn;
5352 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5353 #endif /* CONFIG_SPARSEMEM */
5357 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5358 * @page: The page within the block of interest
5359 * @start_bitidx: The first bit of interest to retrieve
5360 * @end_bitidx: The last bit of interest
5361 * returns pageblock_bits flags
5363 unsigned long get_pageblock_flags_group(struct page *page,
5364 int start_bitidx, int end_bitidx)
5366 struct zone *zone;
5367 unsigned long *bitmap;
5368 unsigned long pfn, bitidx;
5369 unsigned long flags = 0;
5370 unsigned long value = 1;
5372 zone = page_zone(page);
5373 pfn = page_to_pfn(page);
5374 bitmap = get_pageblock_bitmap(zone, pfn);
5375 bitidx = pfn_to_bitidx(zone, pfn);
5377 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5378 if (test_bit(bitidx + start_bitidx, bitmap))
5379 flags |= value;
5381 return flags;
5385 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5386 * @page: The page within the block of interest
5387 * @start_bitidx: The first bit of interest
5388 * @end_bitidx: The last bit of interest
5389 * @flags: The flags to set
5391 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5392 int start_bitidx, int end_bitidx)
5394 struct zone *zone;
5395 unsigned long *bitmap;
5396 unsigned long pfn, bitidx;
5397 unsigned long value = 1;
5399 zone = page_zone(page);
5400 pfn = page_to_pfn(page);
5401 bitmap = get_pageblock_bitmap(zone, pfn);
5402 bitidx = pfn_to_bitidx(zone, pfn);
5403 VM_BUG_ON(pfn < zone->zone_start_pfn);
5404 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5406 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5407 if (flags & value)
5408 __set_bit(bitidx + start_bitidx, bitmap);
5409 else
5410 __clear_bit(bitidx + start_bitidx, bitmap);
5414 * This is designed as sub function...plz see page_isolation.c also.
5415 * set/clear page block's type to be ISOLATE.
5416 * page allocater never alloc memory from ISOLATE block.
5419 static int
5420 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5422 unsigned long pfn, iter, found;
5424 * For avoiding noise data, lru_add_drain_all() should be called
5425 * If ZONE_MOVABLE, the zone never contains immobile pages
5427 if (zone_idx(zone) == ZONE_MOVABLE)
5428 return true;
5430 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5431 return true;
5433 pfn = page_to_pfn(page);
5434 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5435 unsigned long check = pfn + iter;
5437 if (!pfn_valid_within(check))
5438 continue;
5440 page = pfn_to_page(check);
5441 if (!page_count(page)) {
5442 if (PageBuddy(page))
5443 iter += (1 << page_order(page)) - 1;
5444 continue;
5446 if (!PageLRU(page))
5447 found++;
5449 * If there are RECLAIMABLE pages, we need to check it.
5450 * But now, memory offline itself doesn't call shrink_slab()
5451 * and it still to be fixed.
5454 * If the page is not RAM, page_count()should be 0.
5455 * we don't need more check. This is an _used_ not-movable page.
5457 * The problematic thing here is PG_reserved pages. PG_reserved
5458 * is set to both of a memory hole page and a _used_ kernel
5459 * page at boot.
5461 if (found > count)
5462 return false;
5464 return true;
5467 bool is_pageblock_removable_nolock(struct page *page)
5469 struct zone *zone = page_zone(page);
5470 return __count_immobile_pages(zone, page, 0);
5473 int set_migratetype_isolate(struct page *page)
5475 struct zone *zone;
5476 unsigned long flags, pfn;
5477 struct memory_isolate_notify arg;
5478 int notifier_ret;
5479 int ret = -EBUSY;
5480 int zone_idx;
5482 zone = page_zone(page);
5483 zone_idx = zone_idx(zone);
5485 spin_lock_irqsave(&zone->lock, flags);
5487 pfn = page_to_pfn(page);
5488 arg.start_pfn = pfn;
5489 arg.nr_pages = pageblock_nr_pages;
5490 arg.pages_found = 0;
5493 * It may be possible to isolate a pageblock even if the
5494 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5495 * notifier chain is used by balloon drivers to return the
5496 * number of pages in a range that are held by the balloon
5497 * driver to shrink memory. If all the pages are accounted for
5498 * by balloons, are free, or on the LRU, isolation can continue.
5499 * Later, for example, when memory hotplug notifier runs, these
5500 * pages reported as "can be isolated" should be isolated(freed)
5501 * by the balloon driver through the memory notifier chain.
5503 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5504 notifier_ret = notifier_to_errno(notifier_ret);
5505 if (notifier_ret)
5506 goto out;
5508 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5509 * We just check MOVABLE pages.
5511 if (__count_immobile_pages(zone, page, arg.pages_found))
5512 ret = 0;
5515 * immobile means "not-on-lru" paes. If immobile is larger than
5516 * removable-by-driver pages reported by notifier, we'll fail.
5519 out:
5520 if (!ret) {
5521 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5522 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5525 spin_unlock_irqrestore(&zone->lock, flags);
5526 if (!ret)
5527 drain_all_pages();
5528 return ret;
5531 void unset_migratetype_isolate(struct page *page)
5533 struct zone *zone;
5534 unsigned long flags;
5535 zone = page_zone(page);
5536 spin_lock_irqsave(&zone->lock, flags);
5537 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5538 goto out;
5539 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5540 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5541 out:
5542 spin_unlock_irqrestore(&zone->lock, flags);
5545 #ifdef CONFIG_MEMORY_HOTREMOVE
5547 * All pages in the range must be isolated before calling this.
5549 void
5550 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5552 struct page *page;
5553 struct zone *zone;
5554 int order, i;
5555 unsigned long pfn;
5556 unsigned long flags;
5557 /* find the first valid pfn */
5558 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5559 if (pfn_valid(pfn))
5560 break;
5561 if (pfn == end_pfn)
5562 return;
5563 zone = page_zone(pfn_to_page(pfn));
5564 spin_lock_irqsave(&zone->lock, flags);
5565 pfn = start_pfn;
5566 while (pfn < end_pfn) {
5567 if (!pfn_valid(pfn)) {
5568 pfn++;
5569 continue;
5571 page = pfn_to_page(pfn);
5572 BUG_ON(page_count(page));
5573 BUG_ON(!PageBuddy(page));
5574 order = page_order(page);
5575 #ifdef CONFIG_DEBUG_VM
5576 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5577 pfn, 1 << order, end_pfn);
5578 #endif
5579 list_del(&page->lru);
5580 rmv_page_order(page);
5581 zone->free_area[order].nr_free--;
5582 __mod_zone_page_state(zone, NR_FREE_PAGES,
5583 - (1UL << order));
5584 for (i = 0; i < (1 << order); i++)
5585 SetPageReserved((page+i));
5586 pfn += (1 << order);
5588 spin_unlock_irqrestore(&zone->lock, flags);
5590 #endif
5592 #ifdef CONFIG_MEMORY_FAILURE
5593 bool is_free_buddy_page(struct page *page)
5595 struct zone *zone = page_zone(page);
5596 unsigned long pfn = page_to_pfn(page);
5597 unsigned long flags;
5598 int order;
5600 spin_lock_irqsave(&zone->lock, flags);
5601 for (order = 0; order < MAX_ORDER; order++) {
5602 struct page *page_head = page - (pfn & ((1 << order) - 1));
5604 if (PageBuddy(page_head) && page_order(page_head) >= order)
5605 break;
5607 spin_unlock_irqrestore(&zone->lock, flags);
5609 return order < MAX_ORDER;
5611 #endif
5613 static struct trace_print_flags pageflag_names[] = {
5614 {1UL << PG_locked, "locked" },
5615 {1UL << PG_error, "error" },
5616 {1UL << PG_referenced, "referenced" },
5617 {1UL << PG_uptodate, "uptodate" },
5618 {1UL << PG_dirty, "dirty" },
5619 {1UL << PG_lru, "lru" },
5620 {1UL << PG_active, "active" },
5621 {1UL << PG_slab, "slab" },
5622 {1UL << PG_owner_priv_1, "owner_priv_1" },
5623 {1UL << PG_arch_1, "arch_1" },
5624 {1UL << PG_reserved, "reserved" },
5625 {1UL << PG_private, "private" },
5626 {1UL << PG_private_2, "private_2" },
5627 {1UL << PG_writeback, "writeback" },
5628 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5629 {1UL << PG_head, "head" },
5630 {1UL << PG_tail, "tail" },
5631 #else
5632 {1UL << PG_compound, "compound" },
5633 #endif
5634 {1UL << PG_swapcache, "swapcache" },
5635 {1UL << PG_mappedtodisk, "mappedtodisk" },
5636 {1UL << PG_reclaim, "reclaim" },
5637 {1UL << PG_swapbacked, "swapbacked" },
5638 {1UL << PG_unevictable, "unevictable" },
5639 #ifdef CONFIG_MMU
5640 {1UL << PG_mlocked, "mlocked" },
5641 #endif
5642 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5643 {1UL << PG_uncached, "uncached" },
5644 #endif
5645 #ifdef CONFIG_MEMORY_FAILURE
5646 {1UL << PG_hwpoison, "hwpoison" },
5647 #endif
5648 {-1UL, NULL },
5651 static void dump_page_flags(unsigned long flags)
5653 const char *delim = "";
5654 unsigned long mask;
5655 int i;
5657 printk(KERN_ALERT "page flags: %#lx(", flags);
5659 /* remove zone id */
5660 flags &= (1UL << NR_PAGEFLAGS) - 1;
5662 for (i = 0; pageflag_names[i].name && flags; i++) {
5664 mask = pageflag_names[i].mask;
5665 if ((flags & mask) != mask)
5666 continue;
5668 flags &= ~mask;
5669 printk("%s%s", delim, pageflag_names[i].name);
5670 delim = "|";
5673 /* check for left over flags */
5674 if (flags)
5675 printk("%s%#lx", delim, flags);
5677 printk(")\n");
5680 void dump_page(struct page *page)
5682 printk(KERN_ALERT
5683 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5684 page, atomic_read(&page->_count), page_mapcount(page),
5685 page->mapping, page->index);
5686 dump_page_flags(page->flags);