2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
32 * monitor mode reception
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
37 static struct sk_buff
*remove_monitor_info(struct ieee80211_local
*local
,
40 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
) {
41 if (likely(skb
->len
> FCS_LEN
))
42 __pskb_trim(skb
, skb
->len
- FCS_LEN
);
54 static inline int should_drop_frame(struct sk_buff
*skb
,
57 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
58 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
60 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
| RX_FLAG_FAILED_PLCP_CRC
))
62 if (unlikely(skb
->len
< 16 + present_fcs_len
))
64 if (ieee80211_is_ctl(hdr
->frame_control
) &&
65 !ieee80211_is_pspoll(hdr
->frame_control
) &&
66 !ieee80211_is_back_req(hdr
->frame_control
))
72 ieee80211_rx_radiotap_len(struct ieee80211_local
*local
,
73 struct ieee80211_rx_status
*status
)
77 /* always present fields */
78 len
= sizeof(struct ieee80211_radiotap_header
) + 9;
80 if (status
->flag
& RX_FLAG_TSFT
)
82 if (local
->hw
.flags
& IEEE80211_HW_SIGNAL_DBM
)
85 if (len
& 1) /* padding for RX_FLAGS if necessary */
92 * ieee80211_add_rx_radiotap_header - add radiotap header
94 * add a radiotap header containing all the fields which the hardware provided.
97 ieee80211_add_rx_radiotap_header(struct ieee80211_local
*local
,
99 struct ieee80211_rate
*rate
,
102 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
103 struct ieee80211_radiotap_header
*rthdr
;
107 rthdr
= (struct ieee80211_radiotap_header
*)skb_push(skb
, rtap_len
);
108 memset(rthdr
, 0, rtap_len
);
110 /* radiotap header, set always present flags */
112 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS
) |
113 (1 << IEEE80211_RADIOTAP_CHANNEL
) |
114 (1 << IEEE80211_RADIOTAP_ANTENNA
) |
115 (1 << IEEE80211_RADIOTAP_RX_FLAGS
));
116 rthdr
->it_len
= cpu_to_le16(rtap_len
);
118 pos
= (unsigned char *)(rthdr
+1);
120 /* the order of the following fields is important */
122 /* IEEE80211_RADIOTAP_TSFT */
123 if (status
->flag
& RX_FLAG_TSFT
) {
124 put_unaligned_le64(status
->mactime
, pos
);
126 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT
);
130 /* IEEE80211_RADIOTAP_FLAGS */
131 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
)
132 *pos
|= IEEE80211_RADIOTAP_F_FCS
;
133 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
| RX_FLAG_FAILED_PLCP_CRC
))
134 *pos
|= IEEE80211_RADIOTAP_F_BADFCS
;
135 if (status
->flag
& RX_FLAG_SHORTPRE
)
136 *pos
|= IEEE80211_RADIOTAP_F_SHORTPRE
;
139 /* IEEE80211_RADIOTAP_RATE */
140 if (status
->flag
& RX_FLAG_HT
) {
142 * TODO: add following information into radiotap header once
143 * suitable fields are defined for it:
144 * - MCS index (status->rate_idx)
145 * - HT40 (status->flag & RX_FLAG_40MHZ)
146 * - short-GI (status->flag & RX_FLAG_SHORT_GI)
150 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE
);
151 *pos
= rate
->bitrate
/ 5;
155 /* IEEE80211_RADIOTAP_CHANNEL */
156 put_unaligned_le16(status
->freq
, pos
);
158 if (status
->band
== IEEE80211_BAND_5GHZ
)
159 put_unaligned_le16(IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_5GHZ
,
161 else if (status
->flag
& RX_FLAG_HT
)
162 put_unaligned_le16(IEEE80211_CHAN_DYN
| IEEE80211_CHAN_2GHZ
,
164 else if (rate
->flags
& IEEE80211_RATE_ERP_G
)
165 put_unaligned_le16(IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_2GHZ
,
168 put_unaligned_le16(IEEE80211_CHAN_CCK
| IEEE80211_CHAN_2GHZ
,
172 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
173 if (local
->hw
.flags
& IEEE80211_HW_SIGNAL_DBM
) {
174 *pos
= status
->signal
;
176 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL
);
180 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
182 /* IEEE80211_RADIOTAP_ANTENNA */
183 *pos
= status
->antenna
;
186 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
188 /* IEEE80211_RADIOTAP_RX_FLAGS */
189 /* ensure 2 byte alignment for the 2 byte field as required */
190 if ((pos
- (u8
*)rthdr
) & 1)
192 if (status
->flag
& RX_FLAG_FAILED_PLCP_CRC
)
193 rx_flags
|= IEEE80211_RADIOTAP_F_RX_BADPLCP
;
194 put_unaligned_le16(rx_flags
, pos
);
199 * This function copies a received frame to all monitor interfaces and
200 * returns a cleaned-up SKB that no longer includes the FCS nor the
201 * radiotap header the driver might have added.
203 static struct sk_buff
*
204 ieee80211_rx_monitor(struct ieee80211_local
*local
, struct sk_buff
*origskb
,
205 struct ieee80211_rate
*rate
)
207 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(origskb
);
208 struct ieee80211_sub_if_data
*sdata
;
209 int needed_headroom
= 0;
210 struct sk_buff
*skb
, *skb2
;
211 struct net_device
*prev_dev
= NULL
;
212 int present_fcs_len
= 0;
215 * First, we may need to make a copy of the skb because
216 * (1) we need to modify it for radiotap (if not present), and
217 * (2) the other RX handlers will modify the skb we got.
219 * We don't need to, of course, if we aren't going to return
220 * the SKB because it has a bad FCS/PLCP checksum.
223 /* room for the radiotap header based on driver features */
224 needed_headroom
= ieee80211_rx_radiotap_len(local
, status
);
226 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
)
227 present_fcs_len
= FCS_LEN
;
229 /* make sure hdr->frame_control is on the linear part */
230 if (!pskb_may_pull(origskb
, 2)) {
231 dev_kfree_skb(origskb
);
235 if (!local
->monitors
) {
236 if (should_drop_frame(origskb
, present_fcs_len
)) {
237 dev_kfree_skb(origskb
);
241 return remove_monitor_info(local
, origskb
);
244 if (should_drop_frame(origskb
, present_fcs_len
)) {
245 /* only need to expand headroom if necessary */
250 * This shouldn't trigger often because most devices have an
251 * RX header they pull before we get here, and that should
252 * be big enough for our radiotap information. We should
253 * probably export the length to drivers so that we can have
254 * them allocate enough headroom to start with.
256 if (skb_headroom(skb
) < needed_headroom
&&
257 pskb_expand_head(skb
, needed_headroom
, 0, GFP_ATOMIC
)) {
263 * Need to make a copy and possibly remove radiotap header
264 * and FCS from the original.
266 skb
= skb_copy_expand(origskb
, needed_headroom
, 0, GFP_ATOMIC
);
268 origskb
= remove_monitor_info(local
, origskb
);
274 /* prepend radiotap information */
275 ieee80211_add_rx_radiotap_header(local
, skb
, rate
, needed_headroom
);
277 skb_reset_mac_header(skb
);
278 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
279 skb
->pkt_type
= PACKET_OTHERHOST
;
280 skb
->protocol
= htons(ETH_P_802_2
);
282 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
283 if (sdata
->vif
.type
!= NL80211_IFTYPE_MONITOR
)
286 if (sdata
->u
.mntr_flags
& MONITOR_FLAG_COOK_FRAMES
)
289 if (!ieee80211_sdata_running(sdata
))
293 skb2
= skb_clone(skb
, GFP_ATOMIC
);
295 skb2
->dev
= prev_dev
;
296 netif_receive_skb(skb2
);
300 prev_dev
= sdata
->dev
;
301 sdata
->dev
->stats
.rx_packets
++;
302 sdata
->dev
->stats
.rx_bytes
+= skb
->len
;
307 netif_receive_skb(skb
);
315 static void ieee80211_parse_qos(struct ieee80211_rx_data
*rx
)
317 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
318 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
321 /* does the frame have a qos control field? */
322 if (ieee80211_is_data_qos(hdr
->frame_control
)) {
323 u8
*qc
= ieee80211_get_qos_ctl(hdr
);
324 /* frame has qos control */
325 tid
= *qc
& IEEE80211_QOS_CTL_TID_MASK
;
326 if (*qc
& IEEE80211_QOS_CONTROL_A_MSDU_PRESENT
)
327 status
->rx_flags
|= IEEE80211_RX_AMSDU
;
330 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
332 * Sequence numbers for management frames, QoS data
333 * frames with a broadcast/multicast address in the
334 * Address 1 field, and all non-QoS data frames sent
335 * by QoS STAs are assigned using an additional single
336 * modulo-4096 counter, [...]
338 * We also use that counter for non-QoS STAs.
340 tid
= NUM_RX_DATA_QUEUES
- 1;
344 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
345 * For now, set skb->priority to 0 for other cases. */
346 rx
->skb
->priority
= (tid
> 7) ? 0 : tid
;
350 * DOC: Packet alignment
352 * Drivers always need to pass packets that are aligned to two-byte boundaries
355 * Additionally, should, if possible, align the payload data in a way that
356 * guarantees that the contained IP header is aligned to a four-byte
357 * boundary. In the case of regular frames, this simply means aligning the
358 * payload to a four-byte boundary (because either the IP header is directly
359 * contained, or IV/RFC1042 headers that have a length divisible by four are
360 * in front of it). If the payload data is not properly aligned and the
361 * architecture doesn't support efficient unaligned operations, mac80211
362 * will align the data.
364 * With A-MSDU frames, however, the payload data address must yield two modulo
365 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
366 * push the IP header further back to a multiple of four again. Thankfully, the
367 * specs were sane enough this time around to require padding each A-MSDU
368 * subframe to a length that is a multiple of four.
370 * Padding like Atheros hardware adds which is inbetween the 802.11 header and
371 * the payload is not supported, the driver is required to move the 802.11
372 * header to be directly in front of the payload in that case.
374 static void ieee80211_verify_alignment(struct ieee80211_rx_data
*rx
)
376 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
377 WARN_ONCE((unsigned long)rx
->skb
->data
& 1,
378 "unaligned packet at 0x%p\n", rx
->skb
->data
);
385 static ieee80211_rx_result debug_noinline
386 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data
*rx
)
388 struct ieee80211_local
*local
= rx
->local
;
389 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
390 struct sk_buff
*skb
= rx
->skb
;
392 if (likely(!(status
->rx_flags
& IEEE80211_RX_IN_SCAN
)))
395 if (test_bit(SCAN_HW_SCANNING
, &local
->scanning
))
396 return ieee80211_scan_rx(rx
->sdata
, skb
);
398 if (test_bit(SCAN_SW_SCANNING
, &local
->scanning
)) {
399 /* drop all the other packets during a software scan anyway */
400 if (ieee80211_scan_rx(rx
->sdata
, skb
) != RX_QUEUED
)
405 /* scanning finished during invoking of handlers */
406 I802_DEBUG_INC(local
->rx_handlers_drop_passive_scan
);
407 return RX_DROP_UNUSABLE
;
411 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff
*skb
)
413 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
415 if (skb
->len
< 24 || is_multicast_ether_addr(hdr
->addr1
))
418 return ieee80211_is_robust_mgmt_frame(hdr
);
422 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff
*skb
)
424 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
426 if (skb
->len
< 24 || !is_multicast_ether_addr(hdr
->addr1
))
429 return ieee80211_is_robust_mgmt_frame(hdr
);
433 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
434 static int ieee80211_get_mmie_keyidx(struct sk_buff
*skb
)
436 struct ieee80211_mgmt
*hdr
= (struct ieee80211_mgmt
*) skb
->data
;
437 struct ieee80211_mmie
*mmie
;
439 if (skb
->len
< 24 + sizeof(*mmie
) ||
440 !is_multicast_ether_addr(hdr
->da
))
443 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr
*) hdr
))
444 return -1; /* not a robust management frame */
446 mmie
= (struct ieee80211_mmie
*)
447 (skb
->data
+ skb
->len
- sizeof(*mmie
));
448 if (mmie
->element_id
!= WLAN_EID_MMIE
||
449 mmie
->length
!= sizeof(*mmie
) - 2)
452 return le16_to_cpu(mmie
->key_id
);
456 static ieee80211_rx_result
457 ieee80211_rx_mesh_check(struct ieee80211_rx_data
*rx
)
459 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
460 unsigned int hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
461 char *dev_addr
= rx
->sdata
->vif
.addr
;
463 if (ieee80211_is_data(hdr
->frame_control
)) {
464 if (is_multicast_ether_addr(hdr
->addr1
)) {
465 if (ieee80211_has_tods(hdr
->frame_control
) ||
466 !ieee80211_has_fromds(hdr
->frame_control
))
467 return RX_DROP_MONITOR
;
468 if (memcmp(hdr
->addr3
, dev_addr
, ETH_ALEN
) == 0)
469 return RX_DROP_MONITOR
;
471 if (!ieee80211_has_a4(hdr
->frame_control
))
472 return RX_DROP_MONITOR
;
473 if (memcmp(hdr
->addr4
, dev_addr
, ETH_ALEN
) == 0)
474 return RX_DROP_MONITOR
;
478 /* If there is not an established peer link and this is not a peer link
479 * establisment frame, beacon or probe, drop the frame.
482 if (!rx
->sta
|| sta_plink_state(rx
->sta
) != PLINK_ESTAB
) {
483 struct ieee80211_mgmt
*mgmt
;
485 if (!ieee80211_is_mgmt(hdr
->frame_control
))
486 return RX_DROP_MONITOR
;
488 if (ieee80211_is_action(hdr
->frame_control
)) {
489 mgmt
= (struct ieee80211_mgmt
*)hdr
;
490 if (mgmt
->u
.action
.category
!= WLAN_CATEGORY_MESH_PLINK
)
491 return RX_DROP_MONITOR
;
495 if (ieee80211_is_probe_req(hdr
->frame_control
) ||
496 ieee80211_is_probe_resp(hdr
->frame_control
) ||
497 ieee80211_is_beacon(hdr
->frame_control
))
500 return RX_DROP_MONITOR
;
504 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
506 if (ieee80211_is_data(hdr
->frame_control
) &&
507 is_multicast_ether_addr(hdr
->addr1
) &&
508 mesh_rmc_check(hdr
->addr3
, msh_h_get(hdr
, hdrlen
), rx
->sdata
))
509 return RX_DROP_MONITOR
;
515 #define SEQ_MODULO 0x1000
516 #define SEQ_MASK 0xfff
518 static inline int seq_less(u16 sq1
, u16 sq2
)
520 return ((sq1
- sq2
) & SEQ_MASK
) > (SEQ_MODULO
>> 1);
523 static inline u16
seq_inc(u16 sq
)
525 return (sq
+ 1) & SEQ_MASK
;
528 static inline u16
seq_sub(u16 sq1
, u16 sq2
)
530 return (sq1
- sq2
) & SEQ_MASK
;
534 static void ieee80211_release_reorder_frame(struct ieee80211_hw
*hw
,
535 struct tid_ampdu_rx
*tid_agg_rx
,
537 struct sk_buff_head
*frames
)
539 struct sk_buff
*skb
= tid_agg_rx
->reorder_buf
[index
];
544 /* release the frame from the reorder ring buffer */
545 tid_agg_rx
->stored_mpdu_num
--;
546 tid_agg_rx
->reorder_buf
[index
] = NULL
;
547 __skb_queue_tail(frames
, skb
);
550 tid_agg_rx
->head_seq_num
= seq_inc(tid_agg_rx
->head_seq_num
);
553 static void ieee80211_release_reorder_frames(struct ieee80211_hw
*hw
,
554 struct tid_ampdu_rx
*tid_agg_rx
,
556 struct sk_buff_head
*frames
)
560 while (seq_less(tid_agg_rx
->head_seq_num
, head_seq_num
)) {
561 index
= seq_sub(tid_agg_rx
->head_seq_num
, tid_agg_rx
->ssn
) %
562 tid_agg_rx
->buf_size
;
563 ieee80211_release_reorder_frame(hw
, tid_agg_rx
, index
, frames
);
568 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
569 * the skb was added to the buffer longer than this time ago, the earlier
570 * frames that have not yet been received are assumed to be lost and the skb
571 * can be released for processing. This may also release other skb's from the
572 * reorder buffer if there are no additional gaps between the frames.
574 * Callers must hold tid_agg_rx->reorder_lock.
576 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
578 static void ieee80211_sta_reorder_release(struct ieee80211_hw
*hw
,
579 struct tid_ampdu_rx
*tid_agg_rx
,
580 struct sk_buff_head
*frames
)
584 /* release the buffer until next missing frame */
585 index
= seq_sub(tid_agg_rx
->head_seq_num
, tid_agg_rx
->ssn
) %
586 tid_agg_rx
->buf_size
;
587 if (!tid_agg_rx
->reorder_buf
[index
] &&
588 tid_agg_rx
->stored_mpdu_num
> 1) {
590 * No buffers ready to be released, but check whether any
591 * frames in the reorder buffer have timed out.
594 for (j
= (index
+ 1) % tid_agg_rx
->buf_size
; j
!= index
;
595 j
= (j
+ 1) % tid_agg_rx
->buf_size
) {
596 if (!tid_agg_rx
->reorder_buf
[j
]) {
600 if (!time_after(jiffies
, tid_agg_rx
->reorder_time
[j
] +
601 HT_RX_REORDER_BUF_TIMEOUT
))
602 goto set_release_timer
;
604 #ifdef CONFIG_MAC80211_HT_DEBUG
606 wiphy_debug(hw
->wiphy
,
607 "release an RX reorder frame due to timeout on earlier frames\n");
609 ieee80211_release_reorder_frame(hw
, tid_agg_rx
,
613 * Increment the head seq# also for the skipped slots.
615 tid_agg_rx
->head_seq_num
=
616 (tid_agg_rx
->head_seq_num
+ skipped
) & SEQ_MASK
;
619 } else while (tid_agg_rx
->reorder_buf
[index
]) {
620 ieee80211_release_reorder_frame(hw
, tid_agg_rx
, index
, frames
);
621 index
= seq_sub(tid_agg_rx
->head_seq_num
, tid_agg_rx
->ssn
) %
622 tid_agg_rx
->buf_size
;
626 * Disable the reorder release timer for now.
628 * The current implementation lacks a proper locking scheme
629 * which would protect vital statistic and debug counters
630 * from being updated by two different but concurrent BHs.
632 * More information about the topic is available from:
633 * - thread: http://marc.info/?t=128635927000001
636 * => http://marc.info/?l=linux-wireless&m=128636170811964
637 * "Basically the thing is that until your patch, the data
638 * in the struct didn't actually need locking because it
639 * was accessed by the RX path only which is not concurrent."
641 * List of what needs to be fixed:
642 * => http://marc.info/?l=linux-wireless&m=128656352920957
645 if (tid_agg_rx->stored_mpdu_num) {
646 j = index = seq_sub(tid_agg_rx->head_seq_num,
647 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
649 for (; j != (index - 1) % tid_agg_rx->buf_size;
650 j = (j + 1) % tid_agg_rx->buf_size) {
651 if (tid_agg_rx->reorder_buf[j])
657 mod_timer(&tid_agg_rx->reorder_timer,
658 tid_agg_rx->reorder_time[j] +
659 HT_RX_REORDER_BUF_TIMEOUT);
661 del_timer(&tid_agg_rx->reorder_timer);
670 * As this function belongs to the RX path it must be under
671 * rcu_read_lock protection. It returns false if the frame
672 * can be processed immediately, true if it was consumed.
674 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw
*hw
,
675 struct tid_ampdu_rx
*tid_agg_rx
,
677 struct sk_buff_head
*frames
)
679 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
680 u16 sc
= le16_to_cpu(hdr
->seq_ctrl
);
681 u16 mpdu_seq_num
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
682 u16 head_seq_num
, buf_size
;
686 buf_size
= tid_agg_rx
->buf_size
;
687 head_seq_num
= tid_agg_rx
->head_seq_num
;
689 spin_lock(&tid_agg_rx
->reorder_lock
);
690 /* frame with out of date sequence number */
691 if (seq_less(mpdu_seq_num
, head_seq_num
)) {
697 * If frame the sequence number exceeds our buffering window
698 * size release some previous frames to make room for this one.
700 if (!seq_less(mpdu_seq_num
, head_seq_num
+ buf_size
)) {
701 head_seq_num
= seq_inc(seq_sub(mpdu_seq_num
, buf_size
));
702 /* release stored frames up to new head to stack */
703 ieee80211_release_reorder_frames(hw
, tid_agg_rx
, head_seq_num
,
707 /* Now the new frame is always in the range of the reordering buffer */
709 index
= seq_sub(mpdu_seq_num
, tid_agg_rx
->ssn
) % tid_agg_rx
->buf_size
;
711 /* check if we already stored this frame */
712 if (tid_agg_rx
->reorder_buf
[index
]) {
718 * If the current MPDU is in the right order and nothing else
719 * is stored we can process it directly, no need to buffer it.
721 if (mpdu_seq_num
== tid_agg_rx
->head_seq_num
&&
722 tid_agg_rx
->stored_mpdu_num
== 0) {
723 tid_agg_rx
->head_seq_num
= seq_inc(tid_agg_rx
->head_seq_num
);
728 /* put the frame in the reordering buffer */
729 tid_agg_rx
->reorder_buf
[index
] = skb
;
730 tid_agg_rx
->reorder_time
[index
] = jiffies
;
731 tid_agg_rx
->stored_mpdu_num
++;
732 ieee80211_sta_reorder_release(hw
, tid_agg_rx
, frames
);
735 spin_unlock(&tid_agg_rx
->reorder_lock
);
740 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
741 * true if the MPDU was buffered, false if it should be processed.
743 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data
*rx
,
744 struct sk_buff_head
*frames
)
746 struct sk_buff
*skb
= rx
->skb
;
747 struct ieee80211_local
*local
= rx
->local
;
748 struct ieee80211_hw
*hw
= &local
->hw
;
749 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
750 struct sta_info
*sta
= rx
->sta
;
751 struct tid_ampdu_rx
*tid_agg_rx
;
755 if (!ieee80211_is_data_qos(hdr
->frame_control
))
759 * filter the QoS data rx stream according to
760 * STA/TID and check if this STA/TID is on aggregation
766 tid
= *ieee80211_get_qos_ctl(hdr
) & IEEE80211_QOS_CTL_TID_MASK
;
768 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
772 /* qos null data frames are excluded */
773 if (unlikely(hdr
->frame_control
& cpu_to_le16(IEEE80211_STYPE_NULLFUNC
)))
776 /* new, potentially un-ordered, ampdu frame - process it */
778 /* reset session timer */
779 if (tid_agg_rx
->timeout
)
780 mod_timer(&tid_agg_rx
->session_timer
,
781 TU_TO_EXP_TIME(tid_agg_rx
->timeout
));
783 /* if this mpdu is fragmented - terminate rx aggregation session */
784 sc
= le16_to_cpu(hdr
->seq_ctrl
);
785 if (sc
& IEEE80211_SCTL_FRAG
) {
786 skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
787 skb_queue_tail(&rx
->sdata
->skb_queue
, skb
);
788 ieee80211_queue_work(&local
->hw
, &rx
->sdata
->work
);
793 * No locking needed -- we will only ever process one
794 * RX packet at a time, and thus own tid_agg_rx. All
795 * other code manipulating it needs to (and does) make
796 * sure that we cannot get to it any more before doing
799 if (ieee80211_sta_manage_reorder_buf(hw
, tid_agg_rx
, skb
, frames
))
803 __skb_queue_tail(frames
, skb
);
806 static ieee80211_rx_result debug_noinline
807 ieee80211_rx_h_check(struct ieee80211_rx_data
*rx
)
809 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
810 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
812 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
813 if (rx
->sta
&& !is_multicast_ether_addr(hdr
->addr1
)) {
814 if (unlikely(ieee80211_has_retry(hdr
->frame_control
) &&
815 rx
->sta
->last_seq_ctrl
[rx
->queue
] ==
817 if (status
->rx_flags
& IEEE80211_RX_RA_MATCH
) {
818 rx
->local
->dot11FrameDuplicateCount
++;
819 rx
->sta
->num_duplicates
++;
821 return RX_DROP_MONITOR
;
823 rx
->sta
->last_seq_ctrl
[rx
->queue
] = hdr
->seq_ctrl
;
826 if (unlikely(rx
->skb
->len
< 16)) {
827 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_short
);
828 return RX_DROP_MONITOR
;
831 /* Drop disallowed frame classes based on STA auth/assoc state;
832 * IEEE 802.11, Chap 5.5.
834 * mac80211 filters only based on association state, i.e. it drops
835 * Class 3 frames from not associated stations. hostapd sends
836 * deauth/disassoc frames when needed. In addition, hostapd is
837 * responsible for filtering on both auth and assoc states.
840 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
841 return ieee80211_rx_mesh_check(rx
);
843 if (unlikely((ieee80211_is_data(hdr
->frame_control
) ||
844 ieee80211_is_pspoll(hdr
->frame_control
)) &&
845 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
846 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_WDS
&&
847 (!rx
->sta
|| !test_sta_flags(rx
->sta
, WLAN_STA_ASSOC
)))) {
848 if ((!ieee80211_has_fromds(hdr
->frame_control
) &&
849 !ieee80211_has_tods(hdr
->frame_control
) &&
850 ieee80211_is_data(hdr
->frame_control
)) ||
851 !(status
->rx_flags
& IEEE80211_RX_RA_MATCH
)) {
852 /* Drop IBSS frames and frames for other hosts
854 return RX_DROP_MONITOR
;
857 return RX_DROP_MONITOR
;
864 static ieee80211_rx_result debug_noinline
865 ieee80211_rx_h_decrypt(struct ieee80211_rx_data
*rx
)
867 struct sk_buff
*skb
= rx
->skb
;
868 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
869 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
872 ieee80211_rx_result result
= RX_DROP_UNUSABLE
;
873 struct ieee80211_key
*sta_ptk
= NULL
;
874 int mmie_keyidx
= -1;
880 * There are four types of keys:
882 * - IGTK (group keys for management frames)
883 * - PTK (pairwise keys)
884 * - STK (station-to-station pairwise keys)
886 * When selecting a key, we have to distinguish between multicast
887 * (including broadcast) and unicast frames, the latter can only
888 * use PTKs and STKs while the former always use GTKs and IGTKs.
889 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
890 * unicast frames can also use key indices like GTKs. Hence, if we
891 * don't have a PTK/STK we check the key index for a WEP key.
893 * Note that in a regular BSS, multicast frames are sent by the
894 * AP only, associated stations unicast the frame to the AP first
895 * which then multicasts it on their behalf.
897 * There is also a slight problem in IBSS mode: GTKs are negotiated
898 * with each station, that is something we don't currently handle.
899 * The spec seems to expect that one negotiates the same key with
900 * every station but there's no such requirement; VLANs could be
905 * No point in finding a key and decrypting if the frame is neither
906 * addressed to us nor a multicast frame.
908 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
911 /* start without a key */
915 sta_ptk
= rcu_dereference(rx
->sta
->ptk
);
917 fc
= hdr
->frame_control
;
919 if (!ieee80211_has_protected(fc
))
920 mmie_keyidx
= ieee80211_get_mmie_keyidx(rx
->skb
);
922 if (!is_multicast_ether_addr(hdr
->addr1
) && sta_ptk
) {
924 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
925 (status
->flag
& RX_FLAG_IV_STRIPPED
))
927 /* Skip decryption if the frame is not protected. */
928 if (!ieee80211_has_protected(fc
))
930 } else if (mmie_keyidx
>= 0) {
931 /* Broadcast/multicast robust management frame / BIP */
932 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
933 (status
->flag
& RX_FLAG_IV_STRIPPED
))
936 if (mmie_keyidx
< NUM_DEFAULT_KEYS
||
937 mmie_keyidx
>= NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
)
938 return RX_DROP_MONITOR
; /* unexpected BIP keyidx */
940 rx
->key
= rcu_dereference(rx
->sta
->gtk
[mmie_keyidx
]);
942 rx
->key
= rcu_dereference(rx
->sdata
->keys
[mmie_keyidx
]);
943 } else if (!ieee80211_has_protected(fc
)) {
945 * The frame was not protected, so skip decryption. However, we
946 * need to set rx->key if there is a key that could have been
947 * used so that the frame may be dropped if encryption would
948 * have been expected.
950 struct ieee80211_key
*key
= NULL
;
951 if (ieee80211_is_mgmt(fc
) &&
952 is_multicast_ether_addr(hdr
->addr1
) &&
953 (key
= rcu_dereference(rx
->sdata
->default_mgmt_key
)))
955 else if ((key
= rcu_dereference(rx
->sdata
->default_key
)))
961 * The device doesn't give us the IV so we won't be
962 * able to look up the key. That's ok though, we
963 * don't need to decrypt the frame, we just won't
964 * be able to keep statistics accurate.
965 * Except for key threshold notifications, should
966 * we somehow allow the driver to tell us which key
967 * the hardware used if this flag is set?
969 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
970 (status
->flag
& RX_FLAG_IV_STRIPPED
))
973 hdrlen
= ieee80211_hdrlen(fc
);
975 if (rx
->skb
->len
< 8 + hdrlen
)
976 return RX_DROP_UNUSABLE
; /* TODO: count this? */
979 * no need to call ieee80211_wep_get_keyidx,
980 * it verifies a bunch of things we've done already
982 skb_copy_bits(rx
->skb
, hdrlen
+ 3, &keyid
, 1);
985 /* check per-station GTK first, if multicast packet */
986 if (is_multicast_ether_addr(hdr
->addr1
) && rx
->sta
)
987 rx
->key
= rcu_dereference(rx
->sta
->gtk
[keyidx
]);
989 /* if not found, try default key */
991 rx
->key
= rcu_dereference(rx
->sdata
->keys
[keyidx
]);
994 * RSNA-protected unicast frames should always be
995 * sent with pairwise or station-to-station keys,
996 * but for WEP we allow using a key index as well.
999 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP40
&&
1000 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP104
&&
1001 !is_multicast_ether_addr(hdr
->addr1
))
1007 rx
->key
->tx_rx_count
++;
1008 /* TODO: add threshold stuff again */
1010 return RX_DROP_MONITOR
;
1013 if (skb_linearize(rx
->skb
))
1014 return RX_DROP_UNUSABLE
;
1015 /* the hdr variable is invalid now! */
1017 switch (rx
->key
->conf
.cipher
) {
1018 case WLAN_CIPHER_SUITE_WEP40
:
1019 case WLAN_CIPHER_SUITE_WEP104
:
1020 /* Check for weak IVs if possible */
1021 if (rx
->sta
&& ieee80211_is_data(fc
) &&
1022 (!(status
->flag
& RX_FLAG_IV_STRIPPED
) ||
1023 !(status
->flag
& RX_FLAG_DECRYPTED
)) &&
1024 ieee80211_wep_is_weak_iv(rx
->skb
, rx
->key
))
1025 rx
->sta
->wep_weak_iv_count
++;
1027 result
= ieee80211_crypto_wep_decrypt(rx
);
1029 case WLAN_CIPHER_SUITE_TKIP
:
1030 result
= ieee80211_crypto_tkip_decrypt(rx
);
1032 case WLAN_CIPHER_SUITE_CCMP
:
1033 result
= ieee80211_crypto_ccmp_decrypt(rx
);
1035 case WLAN_CIPHER_SUITE_AES_CMAC
:
1036 result
= ieee80211_crypto_aes_cmac_decrypt(rx
);
1040 * We can reach here only with HW-only algorithms
1041 * but why didn't it decrypt the frame?!
1043 return RX_DROP_UNUSABLE
;
1046 /* either the frame has been decrypted or will be dropped */
1047 status
->flag
|= RX_FLAG_DECRYPTED
;
1052 static ieee80211_rx_result debug_noinline
1053 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data
*rx
)
1055 struct ieee80211_local
*local
;
1056 struct ieee80211_hdr
*hdr
;
1057 struct sk_buff
*skb
;
1061 hdr
= (struct ieee80211_hdr
*) skb
->data
;
1063 if (!local
->pspolling
)
1066 if (!ieee80211_has_fromds(hdr
->frame_control
))
1067 /* this is not from AP */
1070 if (!ieee80211_is_data(hdr
->frame_control
))
1073 if (!ieee80211_has_moredata(hdr
->frame_control
)) {
1074 /* AP has no more frames buffered for us */
1075 local
->pspolling
= false;
1079 /* more data bit is set, let's request a new frame from the AP */
1080 ieee80211_send_pspoll(local
, rx
->sdata
);
1085 static void ap_sta_ps_start(struct sta_info
*sta
)
1087 struct ieee80211_sub_if_data
*sdata
= sta
->sdata
;
1088 struct ieee80211_local
*local
= sdata
->local
;
1090 atomic_inc(&sdata
->bss
->num_sta_ps
);
1091 set_sta_flags(sta
, WLAN_STA_PS_STA
);
1092 drv_sta_notify(local
, sdata
, STA_NOTIFY_SLEEP
, &sta
->sta
);
1093 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1094 printk(KERN_DEBUG
"%s: STA %pM aid %d enters power save mode\n",
1095 sdata
->name
, sta
->sta
.addr
, sta
->sta
.aid
);
1096 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1099 static void ap_sta_ps_end(struct sta_info
*sta
)
1101 struct ieee80211_sub_if_data
*sdata
= sta
->sdata
;
1103 atomic_dec(&sdata
->bss
->num_sta_ps
);
1105 clear_sta_flags(sta
, WLAN_STA_PS_STA
);
1107 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1108 printk(KERN_DEBUG
"%s: STA %pM aid %d exits power save mode\n",
1109 sdata
->name
, sta
->sta
.addr
, sta
->sta
.aid
);
1110 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1112 if (test_sta_flags(sta
, WLAN_STA_PS_DRIVER
)) {
1113 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1114 printk(KERN_DEBUG
"%s: STA %pM aid %d driver-ps-blocked\n",
1115 sdata
->name
, sta
->sta
.addr
, sta
->sta
.aid
);
1116 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1120 ieee80211_sta_ps_deliver_wakeup(sta
);
1123 static ieee80211_rx_result debug_noinline
1124 ieee80211_rx_h_sta_process(struct ieee80211_rx_data
*rx
)
1126 struct sta_info
*sta
= rx
->sta
;
1127 struct sk_buff
*skb
= rx
->skb
;
1128 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1129 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1135 * Update last_rx only for IBSS packets which are for the current
1136 * BSSID to avoid keeping the current IBSS network alive in cases
1137 * where other STAs start using different BSSID.
1139 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_ADHOC
) {
1140 u8
*bssid
= ieee80211_get_bssid(hdr
, rx
->skb
->len
,
1141 NL80211_IFTYPE_ADHOC
);
1142 if (compare_ether_addr(bssid
, rx
->sdata
->u
.ibss
.bssid
) == 0)
1143 sta
->last_rx
= jiffies
;
1144 } else if (!is_multicast_ether_addr(hdr
->addr1
)) {
1146 * Mesh beacons will update last_rx when if they are found to
1147 * match the current local configuration when processed.
1149 sta
->last_rx
= jiffies
;
1152 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
1155 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
)
1156 ieee80211_sta_rx_notify(rx
->sdata
, hdr
);
1158 sta
->rx_fragments
++;
1159 sta
->rx_bytes
+= rx
->skb
->len
;
1160 sta
->last_signal
= status
->signal
;
1163 * Change STA power saving mode only at the end of a frame
1164 * exchange sequence.
1166 if (!ieee80211_has_morefrags(hdr
->frame_control
) &&
1167 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1168 rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)) {
1169 if (test_sta_flags(sta
, WLAN_STA_PS_STA
)) {
1171 * Ignore doze->wake transitions that are
1172 * indicated by non-data frames, the standard
1173 * is unclear here, but for example going to
1174 * PS mode and then scanning would cause a
1175 * doze->wake transition for the probe request,
1176 * and that is clearly undesirable.
1178 if (ieee80211_is_data(hdr
->frame_control
) &&
1179 !ieee80211_has_pm(hdr
->frame_control
))
1182 if (ieee80211_has_pm(hdr
->frame_control
))
1183 ap_sta_ps_start(sta
);
1188 * Drop (qos-)data::nullfunc frames silently, since they
1189 * are used only to control station power saving mode.
1191 if (ieee80211_is_nullfunc(hdr
->frame_control
) ||
1192 ieee80211_is_qos_nullfunc(hdr
->frame_control
)) {
1193 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_nullfunc
);
1196 * If we receive a 4-addr nullfunc frame from a STA
1197 * that was not moved to a 4-addr STA vlan yet, drop
1198 * the frame to the monitor interface, to make sure
1199 * that hostapd sees it
1201 if (ieee80211_has_a4(hdr
->frame_control
) &&
1202 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1203 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1204 !rx
->sdata
->u
.vlan
.sta
)))
1205 return RX_DROP_MONITOR
;
1207 * Update counter and free packet here to avoid
1208 * counting this as a dropped packed.
1211 dev_kfree_skb(rx
->skb
);
1216 } /* ieee80211_rx_h_sta_process */
1218 static inline struct ieee80211_fragment_entry
*
1219 ieee80211_reassemble_add(struct ieee80211_sub_if_data
*sdata
,
1220 unsigned int frag
, unsigned int seq
, int rx_queue
,
1221 struct sk_buff
**skb
)
1223 struct ieee80211_fragment_entry
*entry
;
1226 idx
= sdata
->fragment_next
;
1227 entry
= &sdata
->fragments
[sdata
->fragment_next
++];
1228 if (sdata
->fragment_next
>= IEEE80211_FRAGMENT_MAX
)
1229 sdata
->fragment_next
= 0;
1231 if (!skb_queue_empty(&entry
->skb_list
)) {
1232 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1233 struct ieee80211_hdr
*hdr
=
1234 (struct ieee80211_hdr
*) entry
->skb_list
.next
->data
;
1235 printk(KERN_DEBUG
"%s: RX reassembly removed oldest "
1236 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1237 "addr1=%pM addr2=%pM\n",
1239 jiffies
- entry
->first_frag_time
, entry
->seq
,
1240 entry
->last_frag
, hdr
->addr1
, hdr
->addr2
);
1242 __skb_queue_purge(&entry
->skb_list
);
1245 __skb_queue_tail(&entry
->skb_list
, *skb
); /* no need for locking */
1247 entry
->first_frag_time
= jiffies
;
1249 entry
->rx_queue
= rx_queue
;
1250 entry
->last_frag
= frag
;
1252 entry
->extra_len
= 0;
1257 static inline struct ieee80211_fragment_entry
*
1258 ieee80211_reassemble_find(struct ieee80211_sub_if_data
*sdata
,
1259 unsigned int frag
, unsigned int seq
,
1260 int rx_queue
, struct ieee80211_hdr
*hdr
)
1262 struct ieee80211_fragment_entry
*entry
;
1265 idx
= sdata
->fragment_next
;
1266 for (i
= 0; i
< IEEE80211_FRAGMENT_MAX
; i
++) {
1267 struct ieee80211_hdr
*f_hdr
;
1271 idx
= IEEE80211_FRAGMENT_MAX
- 1;
1273 entry
= &sdata
->fragments
[idx
];
1274 if (skb_queue_empty(&entry
->skb_list
) || entry
->seq
!= seq
||
1275 entry
->rx_queue
!= rx_queue
||
1276 entry
->last_frag
+ 1 != frag
)
1279 f_hdr
= (struct ieee80211_hdr
*)entry
->skb_list
.next
->data
;
1282 * Check ftype and addresses are equal, else check next fragment
1284 if (((hdr
->frame_control
^ f_hdr
->frame_control
) &
1285 cpu_to_le16(IEEE80211_FCTL_FTYPE
)) ||
1286 compare_ether_addr(hdr
->addr1
, f_hdr
->addr1
) != 0 ||
1287 compare_ether_addr(hdr
->addr2
, f_hdr
->addr2
) != 0)
1290 if (time_after(jiffies
, entry
->first_frag_time
+ 2 * HZ
)) {
1291 __skb_queue_purge(&entry
->skb_list
);
1300 static ieee80211_rx_result debug_noinline
1301 ieee80211_rx_h_defragment(struct ieee80211_rx_data
*rx
)
1303 struct ieee80211_hdr
*hdr
;
1306 unsigned int frag
, seq
;
1307 struct ieee80211_fragment_entry
*entry
;
1308 struct sk_buff
*skb
;
1309 struct ieee80211_rx_status
*status
;
1311 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1312 fc
= hdr
->frame_control
;
1313 sc
= le16_to_cpu(hdr
->seq_ctrl
);
1314 frag
= sc
& IEEE80211_SCTL_FRAG
;
1316 if (likely((!ieee80211_has_morefrags(fc
) && frag
== 0) ||
1317 (rx
->skb
)->len
< 24 ||
1318 is_multicast_ether_addr(hdr
->addr1
))) {
1319 /* not fragmented */
1322 I802_DEBUG_INC(rx
->local
->rx_handlers_fragments
);
1324 if (skb_linearize(rx
->skb
))
1325 return RX_DROP_UNUSABLE
;
1328 * skb_linearize() might change the skb->data and
1329 * previously cached variables (in this case, hdr) need to
1330 * be refreshed with the new data.
1332 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1333 seq
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
1336 /* This is the first fragment of a new frame. */
1337 entry
= ieee80211_reassemble_add(rx
->sdata
, frag
, seq
,
1338 rx
->queue
, &(rx
->skb
));
1339 if (rx
->key
&& rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_CCMP
&&
1340 ieee80211_has_protected(fc
)) {
1341 int queue
= ieee80211_is_mgmt(fc
) ?
1342 NUM_RX_DATA_QUEUES
: rx
->queue
;
1343 /* Store CCMP PN so that we can verify that the next
1344 * fragment has a sequential PN value. */
1346 memcpy(entry
->last_pn
,
1347 rx
->key
->u
.ccmp
.rx_pn
[queue
],
1353 /* This is a fragment for a frame that should already be pending in
1354 * fragment cache. Add this fragment to the end of the pending entry.
1356 entry
= ieee80211_reassemble_find(rx
->sdata
, frag
, seq
, rx
->queue
, hdr
);
1358 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
1359 return RX_DROP_MONITOR
;
1362 /* Verify that MPDUs within one MSDU have sequential PN values.
1363 * (IEEE 802.11i, 8.3.3.4.5) */
1366 u8 pn
[CCMP_PN_LEN
], *rpn
;
1368 if (!rx
->key
|| rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_CCMP
)
1369 return RX_DROP_UNUSABLE
;
1370 memcpy(pn
, entry
->last_pn
, CCMP_PN_LEN
);
1371 for (i
= CCMP_PN_LEN
- 1; i
>= 0; i
--) {
1376 queue
= ieee80211_is_mgmt(fc
) ?
1377 NUM_RX_DATA_QUEUES
: rx
->queue
;
1378 rpn
= rx
->key
->u
.ccmp
.rx_pn
[queue
];
1379 if (memcmp(pn
, rpn
, CCMP_PN_LEN
))
1380 return RX_DROP_UNUSABLE
;
1381 memcpy(entry
->last_pn
, pn
, CCMP_PN_LEN
);
1384 skb_pull(rx
->skb
, ieee80211_hdrlen(fc
));
1385 __skb_queue_tail(&entry
->skb_list
, rx
->skb
);
1386 entry
->last_frag
= frag
;
1387 entry
->extra_len
+= rx
->skb
->len
;
1388 if (ieee80211_has_morefrags(fc
)) {
1393 rx
->skb
= __skb_dequeue(&entry
->skb_list
);
1394 if (skb_tailroom(rx
->skb
) < entry
->extra_len
) {
1395 I802_DEBUG_INC(rx
->local
->rx_expand_skb_head2
);
1396 if (unlikely(pskb_expand_head(rx
->skb
, 0, entry
->extra_len
,
1398 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
1399 __skb_queue_purge(&entry
->skb_list
);
1400 return RX_DROP_UNUSABLE
;
1403 while ((skb
= __skb_dequeue(&entry
->skb_list
))) {
1404 memcpy(skb_put(rx
->skb
, skb
->len
), skb
->data
, skb
->len
);
1408 /* Complete frame has been reassembled - process it now */
1409 status
= IEEE80211_SKB_RXCB(rx
->skb
);
1410 status
->rx_flags
|= IEEE80211_RX_FRAGMENTED
;
1414 rx
->sta
->rx_packets
++;
1415 if (is_multicast_ether_addr(hdr
->addr1
))
1416 rx
->local
->dot11MulticastReceivedFrameCount
++;
1418 ieee80211_led_rx(rx
->local
);
1422 static ieee80211_rx_result debug_noinline
1423 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data
*rx
)
1425 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1426 __le16 fc
= ((struct ieee80211_hdr
*)rx
->skb
->data
)->frame_control
;
1427 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1429 if (likely(!rx
->sta
|| !ieee80211_is_pspoll(fc
) ||
1430 !(status
->rx_flags
& IEEE80211_RX_RA_MATCH
)))
1433 if ((sdata
->vif
.type
!= NL80211_IFTYPE_AP
) &&
1434 (sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
))
1435 return RX_DROP_UNUSABLE
;
1437 if (!test_sta_flags(rx
->sta
, WLAN_STA_PS_DRIVER
))
1438 ieee80211_sta_ps_deliver_poll_response(rx
->sta
);
1440 set_sta_flags(rx
->sta
, WLAN_STA_PSPOLL
);
1442 /* Free PS Poll skb here instead of returning RX_DROP that would
1443 * count as an dropped frame. */
1444 dev_kfree_skb(rx
->skb
);
1449 static ieee80211_rx_result debug_noinline
1450 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data
*rx
)
1452 u8
*data
= rx
->skb
->data
;
1453 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)data
;
1455 if (!ieee80211_is_data_qos(hdr
->frame_control
))
1458 /* remove the qos control field, update frame type and meta-data */
1459 memmove(data
+ IEEE80211_QOS_CTL_LEN
, data
,
1460 ieee80211_hdrlen(hdr
->frame_control
) - IEEE80211_QOS_CTL_LEN
);
1461 hdr
= (struct ieee80211_hdr
*)skb_pull(rx
->skb
, IEEE80211_QOS_CTL_LEN
);
1462 /* change frame type to non QOS */
1463 hdr
->frame_control
&= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA
);
1469 ieee80211_802_1x_port_control(struct ieee80211_rx_data
*rx
)
1471 if (unlikely(!rx
->sta
||
1472 !test_sta_flags(rx
->sta
, WLAN_STA_AUTHORIZED
)))
1479 ieee80211_drop_unencrypted(struct ieee80211_rx_data
*rx
, __le16 fc
)
1481 struct sk_buff
*skb
= rx
->skb
;
1482 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1485 * Pass through unencrypted frames if the hardware has
1486 * decrypted them already.
1488 if (status
->flag
& RX_FLAG_DECRYPTED
)
1491 /* Drop unencrypted frames if key is set. */
1492 if (unlikely(!ieee80211_has_protected(fc
) &&
1493 !ieee80211_is_nullfunc(fc
) &&
1494 ieee80211_is_data(fc
) &&
1495 (rx
->key
|| rx
->sdata
->drop_unencrypted
)))
1502 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data
*rx
)
1504 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1505 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1506 __le16 fc
= hdr
->frame_control
;
1509 * Pass through unencrypted frames if the hardware has
1510 * decrypted them already.
1512 if (status
->flag
& RX_FLAG_DECRYPTED
)
1515 if (rx
->sta
&& test_sta_flags(rx
->sta
, WLAN_STA_MFP
)) {
1516 if (unlikely(!ieee80211_has_protected(fc
) &&
1517 ieee80211_is_unicast_robust_mgmt_frame(rx
->skb
) &&
1520 /* BIP does not use Protected field, so need to check MMIE */
1521 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx
->skb
) &&
1522 ieee80211_get_mmie_keyidx(rx
->skb
) < 0))
1525 * When using MFP, Action frames are not allowed prior to
1526 * having configured keys.
1528 if (unlikely(ieee80211_is_action(fc
) && !rx
->key
&&
1529 ieee80211_is_robust_mgmt_frame(
1530 (struct ieee80211_hdr
*) rx
->skb
->data
)))
1538 __ieee80211_data_to_8023(struct ieee80211_rx_data
*rx
)
1540 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1541 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1543 if (ieee80211_has_a4(hdr
->frame_control
) &&
1544 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& !sdata
->u
.vlan
.sta
)
1547 if (is_multicast_ether_addr(hdr
->addr1
) &&
1548 ((sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& sdata
->u
.vlan
.sta
) ||
1549 (sdata
->vif
.type
== NL80211_IFTYPE_STATION
&& sdata
->u
.mgd
.use_4addr
)))
1552 return ieee80211_data_to_8023(rx
->skb
, sdata
->vif
.addr
, sdata
->vif
.type
);
1556 * requires that rx->skb is a frame with ethernet header
1558 static bool ieee80211_frame_allowed(struct ieee80211_rx_data
*rx
, __le16 fc
)
1560 static const u8 pae_group_addr
[ETH_ALEN
] __aligned(2)
1561 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1562 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
1565 * Allow EAPOL frames to us/the PAE group address regardless
1566 * of whether the frame was encrypted or not.
1568 if (ehdr
->h_proto
== rx
->sdata
->control_port_protocol
&&
1569 (compare_ether_addr(ehdr
->h_dest
, rx
->sdata
->vif
.addr
) == 0 ||
1570 compare_ether_addr(ehdr
->h_dest
, pae_group_addr
) == 0))
1573 if (ieee80211_802_1x_port_control(rx
) ||
1574 ieee80211_drop_unencrypted(rx
, fc
))
1581 * requires that rx->skb is a frame with ethernet header
1584 ieee80211_deliver_skb(struct ieee80211_rx_data
*rx
)
1586 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1587 struct net_device
*dev
= sdata
->dev
;
1588 struct sk_buff
*skb
, *xmit_skb
;
1589 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
1590 struct sta_info
*dsta
;
1591 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1596 if ((sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1597 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
) &&
1598 !(sdata
->flags
& IEEE80211_SDATA_DONT_BRIDGE_PACKETS
) &&
1599 (status
->rx_flags
& IEEE80211_RX_RA_MATCH
) &&
1600 (sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
|| !sdata
->u
.vlan
.sta
)) {
1601 if (is_multicast_ether_addr(ehdr
->h_dest
)) {
1603 * send multicast frames both to higher layers in
1604 * local net stack and back to the wireless medium
1606 xmit_skb
= skb_copy(skb
, GFP_ATOMIC
);
1607 if (!xmit_skb
&& net_ratelimit())
1608 printk(KERN_DEBUG
"%s: failed to clone "
1609 "multicast frame\n", dev
->name
);
1611 dsta
= sta_info_get(sdata
, skb
->data
);
1614 * The destination station is associated to
1615 * this AP (in this VLAN), so send the frame
1616 * directly to it and do not pass it to local
1626 int align __maybe_unused
;
1628 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1630 * 'align' will only take the values 0 or 2 here
1631 * since all frames are required to be aligned
1632 * to 2-byte boundaries when being passed to
1633 * mac80211. That also explains the __skb_push()
1636 align
= ((unsigned long)(skb
->data
+ sizeof(struct ethhdr
))) & 3;
1638 if (WARN_ON(skb_headroom(skb
) < 3)) {
1642 u8
*data
= skb
->data
;
1643 size_t len
= skb_headlen(skb
);
1645 memmove(skb
->data
, data
, len
);
1646 skb_set_tail_pointer(skb
, len
);
1652 /* deliver to local stack */
1653 skb
->protocol
= eth_type_trans(skb
, dev
);
1654 memset(skb
->cb
, 0, sizeof(skb
->cb
));
1655 netif_receive_skb(skb
);
1660 /* send to wireless media */
1661 xmit_skb
->protocol
= htons(ETH_P_802_3
);
1662 skb_reset_network_header(xmit_skb
);
1663 skb_reset_mac_header(xmit_skb
);
1664 dev_queue_xmit(xmit_skb
);
1668 static ieee80211_rx_result debug_noinline
1669 ieee80211_rx_h_amsdu(struct ieee80211_rx_data
*rx
)
1671 struct net_device
*dev
= rx
->sdata
->dev
;
1672 struct sk_buff
*skb
= rx
->skb
;
1673 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1674 __le16 fc
= hdr
->frame_control
;
1675 struct sk_buff_head frame_list
;
1676 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1678 if (unlikely(!ieee80211_is_data(fc
)))
1681 if (unlikely(!ieee80211_is_data_present(fc
)))
1682 return RX_DROP_MONITOR
;
1684 if (!(status
->rx_flags
& IEEE80211_RX_AMSDU
))
1687 if (ieee80211_has_a4(hdr
->frame_control
) &&
1688 rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1689 !rx
->sdata
->u
.vlan
.sta
)
1690 return RX_DROP_UNUSABLE
;
1692 if (is_multicast_ether_addr(hdr
->addr1
) &&
1693 ((rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1694 rx
->sdata
->u
.vlan
.sta
) ||
1695 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
1696 rx
->sdata
->u
.mgd
.use_4addr
)))
1697 return RX_DROP_UNUSABLE
;
1700 __skb_queue_head_init(&frame_list
);
1702 if (skb_linearize(skb
))
1703 return RX_DROP_UNUSABLE
;
1705 ieee80211_amsdu_to_8023s(skb
, &frame_list
, dev
->dev_addr
,
1706 rx
->sdata
->vif
.type
,
1707 rx
->local
->hw
.extra_tx_headroom
);
1709 while (!skb_queue_empty(&frame_list
)) {
1710 rx
->skb
= __skb_dequeue(&frame_list
);
1712 if (!ieee80211_frame_allowed(rx
, fc
)) {
1713 dev_kfree_skb(rx
->skb
);
1716 dev
->stats
.rx_packets
++;
1717 dev
->stats
.rx_bytes
+= rx
->skb
->len
;
1719 ieee80211_deliver_skb(rx
);
1725 #ifdef CONFIG_MAC80211_MESH
1726 static ieee80211_rx_result
1727 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data
*rx
)
1729 struct ieee80211_hdr
*hdr
;
1730 struct ieee80211s_hdr
*mesh_hdr
;
1731 unsigned int hdrlen
;
1732 struct sk_buff
*skb
= rx
->skb
, *fwd_skb
;
1733 struct ieee80211_local
*local
= rx
->local
;
1734 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1735 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1737 hdr
= (struct ieee80211_hdr
*) skb
->data
;
1738 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
1739 mesh_hdr
= (struct ieee80211s_hdr
*) (skb
->data
+ hdrlen
);
1741 if (!ieee80211_is_data(hdr
->frame_control
))
1746 return RX_DROP_MONITOR
;
1748 if (mesh_hdr
->flags
& MESH_FLAGS_AE
) {
1749 struct mesh_path
*mppath
;
1753 if (is_multicast_ether_addr(hdr
->addr1
)) {
1754 mpp_addr
= hdr
->addr3
;
1755 proxied_addr
= mesh_hdr
->eaddr1
;
1757 mpp_addr
= hdr
->addr4
;
1758 proxied_addr
= mesh_hdr
->eaddr2
;
1762 mppath
= mpp_path_lookup(proxied_addr
, sdata
);
1764 mpp_path_add(proxied_addr
, mpp_addr
, sdata
);
1766 spin_lock_bh(&mppath
->state_lock
);
1767 if (compare_ether_addr(mppath
->mpp
, mpp_addr
) != 0)
1768 memcpy(mppath
->mpp
, mpp_addr
, ETH_ALEN
);
1769 spin_unlock_bh(&mppath
->state_lock
);
1774 /* Frame has reached destination. Don't forward */
1775 if (!is_multicast_ether_addr(hdr
->addr1
) &&
1776 compare_ether_addr(sdata
->vif
.addr
, hdr
->addr3
) == 0)
1781 if (status
->rx_flags
& IEEE80211_RX_RA_MATCH
) {
1783 IEEE80211_IFSTA_MESH_CTR_INC(&rx
->sdata
->u
.mesh
,
1784 dropped_frames_ttl
);
1786 struct ieee80211_hdr
*fwd_hdr
;
1787 struct ieee80211_tx_info
*info
;
1789 fwd_skb
= skb_copy(skb
, GFP_ATOMIC
);
1791 if (!fwd_skb
&& net_ratelimit())
1792 printk(KERN_DEBUG
"%s: failed to clone mesh frame\n",
1795 fwd_hdr
= (struct ieee80211_hdr
*) fwd_skb
->data
;
1796 memcpy(fwd_hdr
->addr2
, sdata
->vif
.addr
, ETH_ALEN
);
1797 info
= IEEE80211_SKB_CB(fwd_skb
);
1798 memset(info
, 0, sizeof(*info
));
1799 info
->flags
|= IEEE80211_TX_INTFL_NEED_TXPROCESSING
;
1800 info
->control
.vif
= &rx
->sdata
->vif
;
1801 skb_set_queue_mapping(skb
,
1802 ieee80211_select_queue(rx
->sdata
, fwd_skb
));
1803 ieee80211_set_qos_hdr(local
, skb
);
1804 if (is_multicast_ether_addr(fwd_hdr
->addr1
))
1805 IEEE80211_IFSTA_MESH_CTR_INC(&sdata
->u
.mesh
,
1810 * Save TA to addr1 to send TA a path error if a
1811 * suitable next hop is not found
1813 memcpy(fwd_hdr
->addr1
, fwd_hdr
->addr2
,
1815 err
= mesh_nexthop_lookup(fwd_skb
, sdata
);
1816 /* Failed to immediately resolve next hop:
1817 * fwded frame was dropped or will be added
1818 * later to the pending skb queue. */
1820 return RX_DROP_MONITOR
;
1822 IEEE80211_IFSTA_MESH_CTR_INC(&sdata
->u
.mesh
,
1825 IEEE80211_IFSTA_MESH_CTR_INC(&sdata
->u
.mesh
,
1827 ieee80211_add_pending_skb(local
, fwd_skb
);
1831 if (is_multicast_ether_addr(hdr
->addr1
) ||
1832 sdata
->dev
->flags
& IFF_PROMISC
)
1835 return RX_DROP_MONITOR
;
1839 static ieee80211_rx_result debug_noinline
1840 ieee80211_rx_h_data(struct ieee80211_rx_data
*rx
)
1842 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1843 struct ieee80211_local
*local
= rx
->local
;
1844 struct net_device
*dev
= sdata
->dev
;
1845 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1846 __le16 fc
= hdr
->frame_control
;
1849 if (unlikely(!ieee80211_is_data(hdr
->frame_control
)))
1852 if (unlikely(!ieee80211_is_data_present(hdr
->frame_control
)))
1853 return RX_DROP_MONITOR
;
1856 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1857 * that a 4-addr station can be detected and moved into a separate VLAN
1859 if (ieee80211_has_a4(hdr
->frame_control
) &&
1860 sdata
->vif
.type
== NL80211_IFTYPE_AP
)
1861 return RX_DROP_MONITOR
;
1863 err
= __ieee80211_data_to_8023(rx
);
1865 return RX_DROP_UNUSABLE
;
1867 if (!ieee80211_frame_allowed(rx
, fc
))
1868 return RX_DROP_MONITOR
;
1872 dev
->stats
.rx_packets
++;
1873 dev
->stats
.rx_bytes
+= rx
->skb
->len
;
1875 if (ieee80211_is_data(hdr
->frame_control
) &&
1876 !is_multicast_ether_addr(hdr
->addr1
) &&
1877 local
->hw
.conf
.dynamic_ps_timeout
> 0 && local
->ps_sdata
) {
1878 mod_timer(&local
->dynamic_ps_timer
, jiffies
+
1879 msecs_to_jiffies(local
->hw
.conf
.dynamic_ps_timeout
));
1882 ieee80211_deliver_skb(rx
);
1887 static ieee80211_rx_result debug_noinline
1888 ieee80211_rx_h_ctrl(struct ieee80211_rx_data
*rx
, struct sk_buff_head
*frames
)
1890 struct ieee80211_local
*local
= rx
->local
;
1891 struct ieee80211_hw
*hw
= &local
->hw
;
1892 struct sk_buff
*skb
= rx
->skb
;
1893 struct ieee80211_bar
*bar
= (struct ieee80211_bar
*)skb
->data
;
1894 struct tid_ampdu_rx
*tid_agg_rx
;
1898 if (likely(!ieee80211_is_ctl(bar
->frame_control
)))
1901 if (ieee80211_is_back_req(bar
->frame_control
)) {
1903 __le16 control
, start_seq_num
;
1904 } __packed bar_data
;
1907 return RX_DROP_MONITOR
;
1909 if (skb_copy_bits(skb
, offsetof(struct ieee80211_bar
, control
),
1910 &bar_data
, sizeof(bar_data
)))
1911 return RX_DROP_MONITOR
;
1913 tid
= le16_to_cpu(bar_data
.control
) >> 12;
1915 tid_agg_rx
= rcu_dereference(rx
->sta
->ampdu_mlme
.tid_rx
[tid
]);
1917 return RX_DROP_MONITOR
;
1919 start_seq_num
= le16_to_cpu(bar_data
.start_seq_num
) >> 4;
1921 /* reset session timer */
1922 if (tid_agg_rx
->timeout
)
1923 mod_timer(&tid_agg_rx
->session_timer
,
1924 TU_TO_EXP_TIME(tid_agg_rx
->timeout
));
1926 /* release stored frames up to start of BAR */
1927 ieee80211_release_reorder_frames(hw
, tid_agg_rx
, start_seq_num
,
1934 * After this point, we only want management frames,
1935 * so we can drop all remaining control frames to
1936 * cooked monitor interfaces.
1938 return RX_DROP_MONITOR
;
1941 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data
*sdata
,
1942 struct ieee80211_mgmt
*mgmt
,
1945 struct ieee80211_local
*local
= sdata
->local
;
1946 struct sk_buff
*skb
;
1947 struct ieee80211_mgmt
*resp
;
1949 if (compare_ether_addr(mgmt
->da
, sdata
->vif
.addr
) != 0) {
1950 /* Not to own unicast address */
1954 if (compare_ether_addr(mgmt
->sa
, sdata
->u
.mgd
.bssid
) != 0 ||
1955 compare_ether_addr(mgmt
->bssid
, sdata
->u
.mgd
.bssid
) != 0) {
1956 /* Not from the current AP or not associated yet. */
1960 if (len
< 24 + 1 + sizeof(resp
->u
.action
.u
.sa_query
)) {
1961 /* Too short SA Query request frame */
1965 skb
= dev_alloc_skb(sizeof(*resp
) + local
->hw
.extra_tx_headroom
);
1969 skb_reserve(skb
, local
->hw
.extra_tx_headroom
);
1970 resp
= (struct ieee80211_mgmt
*) skb_put(skb
, 24);
1971 memset(resp
, 0, 24);
1972 memcpy(resp
->da
, mgmt
->sa
, ETH_ALEN
);
1973 memcpy(resp
->sa
, sdata
->vif
.addr
, ETH_ALEN
);
1974 memcpy(resp
->bssid
, sdata
->u
.mgd
.bssid
, ETH_ALEN
);
1975 resp
->frame_control
= cpu_to_le16(IEEE80211_FTYPE_MGMT
|
1976 IEEE80211_STYPE_ACTION
);
1977 skb_put(skb
, 1 + sizeof(resp
->u
.action
.u
.sa_query
));
1978 resp
->u
.action
.category
= WLAN_CATEGORY_SA_QUERY
;
1979 resp
->u
.action
.u
.sa_query
.action
= WLAN_ACTION_SA_QUERY_RESPONSE
;
1980 memcpy(resp
->u
.action
.u
.sa_query
.trans_id
,
1981 mgmt
->u
.action
.u
.sa_query
.trans_id
,
1982 WLAN_SA_QUERY_TR_ID_LEN
);
1984 ieee80211_tx_skb(sdata
, skb
);
1987 static ieee80211_rx_result debug_noinline
1988 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data
*rx
)
1990 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
1991 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1994 * From here on, look only at management frames.
1995 * Data and control frames are already handled,
1996 * and unknown (reserved) frames are useless.
1998 if (rx
->skb
->len
< 24)
1999 return RX_DROP_MONITOR
;
2001 if (!ieee80211_is_mgmt(mgmt
->frame_control
))
2002 return RX_DROP_MONITOR
;
2004 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
2005 return RX_DROP_MONITOR
;
2007 if (ieee80211_drop_unencrypted_mgmt(rx
))
2008 return RX_DROP_UNUSABLE
;
2013 static ieee80211_rx_result debug_noinline
2014 ieee80211_rx_h_action(struct ieee80211_rx_data
*rx
)
2016 struct ieee80211_local
*local
= rx
->local
;
2017 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2018 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2019 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2020 int len
= rx
->skb
->len
;
2022 if (!ieee80211_is_action(mgmt
->frame_control
))
2025 /* drop too small frames */
2026 if (len
< IEEE80211_MIN_ACTION_SIZE
)
2027 return RX_DROP_UNUSABLE
;
2029 if (!rx
->sta
&& mgmt
->u
.action
.category
!= WLAN_CATEGORY_PUBLIC
)
2030 return RX_DROP_UNUSABLE
;
2032 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
2033 return RX_DROP_UNUSABLE
;
2035 switch (mgmt
->u
.action
.category
) {
2036 case WLAN_CATEGORY_BACK
:
2038 * The aggregation code is not prepared to handle
2039 * anything but STA/AP due to the BSSID handling;
2040 * IBSS could work in the code but isn't supported
2041 * by drivers or the standard.
2043 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
2044 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
2045 sdata
->vif
.type
!= NL80211_IFTYPE_AP
)
2048 /* verify action_code is present */
2049 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2052 switch (mgmt
->u
.action
.u
.addba_req
.action_code
) {
2053 case WLAN_ACTION_ADDBA_REQ
:
2054 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2055 sizeof(mgmt
->u
.action
.u
.addba_req
)))
2058 case WLAN_ACTION_ADDBA_RESP
:
2059 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2060 sizeof(mgmt
->u
.action
.u
.addba_resp
)))
2063 case WLAN_ACTION_DELBA
:
2064 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2065 sizeof(mgmt
->u
.action
.u
.delba
)))
2073 case WLAN_CATEGORY_SPECTRUM_MGMT
:
2074 if (local
->hw
.conf
.channel
->band
!= IEEE80211_BAND_5GHZ
)
2077 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2080 /* verify action_code is present */
2081 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2084 switch (mgmt
->u
.action
.u
.measurement
.action_code
) {
2085 case WLAN_ACTION_SPCT_MSR_REQ
:
2086 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2087 sizeof(mgmt
->u
.action
.u
.measurement
)))
2089 ieee80211_process_measurement_req(sdata
, mgmt
, len
);
2091 case WLAN_ACTION_SPCT_CHL_SWITCH
:
2092 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2093 sizeof(mgmt
->u
.action
.u
.chan_switch
)))
2096 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2099 if (memcmp(mgmt
->bssid
, sdata
->u
.mgd
.bssid
, ETH_ALEN
))
2105 case WLAN_CATEGORY_SA_QUERY
:
2106 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2107 sizeof(mgmt
->u
.action
.u
.sa_query
)))
2110 switch (mgmt
->u
.action
.u
.sa_query
.action
) {
2111 case WLAN_ACTION_SA_QUERY_REQUEST
:
2112 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2114 ieee80211_process_sa_query_req(sdata
, mgmt
, len
);
2118 case WLAN_CATEGORY_MESH_PLINK
:
2119 case WLAN_CATEGORY_MESH_PATH_SEL
:
2120 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
2128 status
->rx_flags
|= IEEE80211_RX_MALFORMED_ACTION_FRM
;
2129 /* will return in the next handlers */
2134 rx
->sta
->rx_packets
++;
2135 dev_kfree_skb(rx
->skb
);
2139 rx
->skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
2140 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
2141 ieee80211_queue_work(&local
->hw
, &sdata
->work
);
2143 rx
->sta
->rx_packets
++;
2147 static ieee80211_rx_result debug_noinline
2148 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data
*rx
)
2150 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2152 /* skip known-bad action frames and return them in the next handler */
2153 if (status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
)
2157 * Getting here means the kernel doesn't know how to handle
2158 * it, but maybe userspace does ... include returned frames
2159 * so userspace can register for those to know whether ones
2160 * it transmitted were processed or returned.
2163 if (cfg80211_rx_mgmt(rx
->sdata
->dev
, status
->freq
,
2164 rx
->skb
->data
, rx
->skb
->len
,
2167 rx
->sta
->rx_packets
++;
2168 dev_kfree_skb(rx
->skb
);
2176 static ieee80211_rx_result debug_noinline
2177 ieee80211_rx_h_action_return(struct ieee80211_rx_data
*rx
)
2179 struct ieee80211_local
*local
= rx
->local
;
2180 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2181 struct sk_buff
*nskb
;
2182 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2183 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2185 if (!ieee80211_is_action(mgmt
->frame_control
))
2189 * For AP mode, hostapd is responsible for handling any action
2190 * frames that we didn't handle, including returning unknown
2191 * ones. For all other modes we will return them to the sender,
2192 * setting the 0x80 bit in the action category, as required by
2193 * 802.11-2007 7.3.1.11.
2194 * Newer versions of hostapd shall also use the management frame
2195 * registration mechanisms, but older ones still use cooked
2196 * monitor interfaces so push all frames there.
2198 if (!(status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
) &&
2199 (sdata
->vif
.type
== NL80211_IFTYPE_AP
||
2200 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
))
2201 return RX_DROP_MONITOR
;
2203 /* do not return rejected action frames */
2204 if (mgmt
->u
.action
.category
& 0x80)
2205 return RX_DROP_UNUSABLE
;
2207 nskb
= skb_copy_expand(rx
->skb
, local
->hw
.extra_tx_headroom
, 0,
2210 struct ieee80211_mgmt
*nmgmt
= (void *)nskb
->data
;
2212 nmgmt
->u
.action
.category
|= 0x80;
2213 memcpy(nmgmt
->da
, nmgmt
->sa
, ETH_ALEN
);
2214 memcpy(nmgmt
->sa
, rx
->sdata
->vif
.addr
, ETH_ALEN
);
2216 memset(nskb
->cb
, 0, sizeof(nskb
->cb
));
2218 ieee80211_tx_skb(rx
->sdata
, nskb
);
2220 dev_kfree_skb(rx
->skb
);
2224 static ieee80211_rx_result debug_noinline
2225 ieee80211_rx_h_mgmt(struct ieee80211_rx_data
*rx
)
2227 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2228 ieee80211_rx_result rxs
;
2229 struct ieee80211_mgmt
*mgmt
= (void *)rx
->skb
->data
;
2232 rxs
= ieee80211_work_rx_mgmt(rx
->sdata
, rx
->skb
);
2233 if (rxs
!= RX_CONTINUE
)
2236 stype
= mgmt
->frame_control
& cpu_to_le16(IEEE80211_FCTL_STYPE
);
2238 if (!ieee80211_vif_is_mesh(&sdata
->vif
) &&
2239 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
2240 sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2241 return RX_DROP_MONITOR
;
2244 case cpu_to_le16(IEEE80211_STYPE_BEACON
):
2245 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP
):
2246 /* process for all: mesh, mlme, ibss */
2248 case cpu_to_le16(IEEE80211_STYPE_DEAUTH
):
2249 case cpu_to_le16(IEEE80211_STYPE_DISASSOC
):
2250 /* process only for station */
2251 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2252 return RX_DROP_MONITOR
;
2254 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ
):
2255 case cpu_to_le16(IEEE80211_STYPE_AUTH
):
2256 /* process only for ibss */
2257 if (sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
2258 return RX_DROP_MONITOR
;
2261 return RX_DROP_MONITOR
;
2264 /* queue up frame and kick off work to process it */
2265 rx
->skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
2266 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
2267 ieee80211_queue_work(&rx
->local
->hw
, &sdata
->work
);
2269 rx
->sta
->rx_packets
++;
2274 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr
*hdr
,
2275 struct ieee80211_rx_data
*rx
)
2278 unsigned int hdrlen
;
2280 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
2281 if (rx
->skb
->len
>= hdrlen
+ 4)
2282 keyidx
= rx
->skb
->data
[hdrlen
+ 3] >> 6;
2288 * Some hardware seem to generate incorrect Michael MIC
2289 * reports; ignore them to avoid triggering countermeasures.
2294 if (!ieee80211_has_protected(hdr
->frame_control
))
2297 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
&& keyidx
) {
2299 * APs with pairwise keys should never receive Michael MIC
2300 * errors for non-zero keyidx because these are reserved for
2301 * group keys and only the AP is sending real multicast
2302 * frames in the BSS.
2307 if (!ieee80211_is_data(hdr
->frame_control
) &&
2308 !ieee80211_is_auth(hdr
->frame_control
))
2311 mac80211_ev_michael_mic_failure(rx
->sdata
, keyidx
, hdr
, NULL
,
2315 /* TODO: use IEEE80211_RX_FRAGMENTED */
2316 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data
*rx
,
2317 struct ieee80211_rate
*rate
)
2319 struct ieee80211_sub_if_data
*sdata
;
2320 struct ieee80211_local
*local
= rx
->local
;
2321 struct ieee80211_rtap_hdr
{
2322 struct ieee80211_radiotap_header hdr
;
2328 struct sk_buff
*skb
= rx
->skb
, *skb2
;
2329 struct net_device
*prev_dev
= NULL
;
2330 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2333 * If cooked monitor has been processed already, then
2334 * don't do it again. If not, set the flag.
2336 if (rx
->flags
& IEEE80211_RX_CMNTR
)
2338 rx
->flags
|= IEEE80211_RX_CMNTR
;
2340 if (skb_headroom(skb
) < sizeof(*rthdr
) &&
2341 pskb_expand_head(skb
, sizeof(*rthdr
), 0, GFP_ATOMIC
))
2344 rthdr
= (void *)skb_push(skb
, sizeof(*rthdr
));
2345 memset(rthdr
, 0, sizeof(*rthdr
));
2346 rthdr
->hdr
.it_len
= cpu_to_le16(sizeof(*rthdr
));
2347 rthdr
->hdr
.it_present
=
2348 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS
) |
2349 (1 << IEEE80211_RADIOTAP_CHANNEL
));
2352 rthdr
->rate_or_pad
= rate
->bitrate
/ 5;
2353 rthdr
->hdr
.it_present
|=
2354 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE
);
2356 rthdr
->chan_freq
= cpu_to_le16(status
->freq
);
2358 if (status
->band
== IEEE80211_BAND_5GHZ
)
2359 rthdr
->chan_flags
= cpu_to_le16(IEEE80211_CHAN_OFDM
|
2360 IEEE80211_CHAN_5GHZ
);
2362 rthdr
->chan_flags
= cpu_to_le16(IEEE80211_CHAN_DYN
|
2363 IEEE80211_CHAN_2GHZ
);
2365 skb_set_mac_header(skb
, 0);
2366 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2367 skb
->pkt_type
= PACKET_OTHERHOST
;
2368 skb
->protocol
= htons(ETH_P_802_2
);
2370 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
2371 if (!ieee80211_sdata_running(sdata
))
2374 if (sdata
->vif
.type
!= NL80211_IFTYPE_MONITOR
||
2375 !(sdata
->u
.mntr_flags
& MONITOR_FLAG_COOK_FRAMES
))
2379 skb2
= skb_clone(skb
, GFP_ATOMIC
);
2381 skb2
->dev
= prev_dev
;
2382 netif_receive_skb(skb2
);
2386 prev_dev
= sdata
->dev
;
2387 sdata
->dev
->stats
.rx_packets
++;
2388 sdata
->dev
->stats
.rx_bytes
+= skb
->len
;
2392 skb
->dev
= prev_dev
;
2393 netif_receive_skb(skb
);
2401 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data
*rx
,
2402 ieee80211_rx_result res
)
2405 case RX_DROP_MONITOR
:
2406 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
2408 rx
->sta
->rx_dropped
++;
2411 struct ieee80211_rate
*rate
= NULL
;
2412 struct ieee80211_supported_band
*sband
;
2413 struct ieee80211_rx_status
*status
;
2415 status
= IEEE80211_SKB_RXCB((rx
->skb
));
2417 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
2418 if (!(status
->flag
& RX_FLAG_HT
))
2419 rate
= &sband
->bitrates
[status
->rate_idx
];
2421 ieee80211_rx_cooked_monitor(rx
, rate
);
2424 case RX_DROP_UNUSABLE
:
2425 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
2427 rx
->sta
->rx_dropped
++;
2428 dev_kfree_skb(rx
->skb
);
2431 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_queued
);
2436 static void ieee80211_rx_handlers(struct ieee80211_rx_data
*rx
,
2437 struct sk_buff_head
*frames
)
2439 ieee80211_rx_result res
= RX_DROP_MONITOR
;
2440 struct sk_buff
*skb
;
2442 #define CALL_RXH(rxh) \
2445 if (res != RX_CONTINUE) \
2449 while ((skb
= __skb_dequeue(frames
))) {
2451 * all the other fields are valid across frames
2452 * that belong to an aMPDU since they are on the
2453 * same TID from the same station
2458 CALL_RXH(ieee80211_rx_h_decrypt
)
2459 CALL_RXH(ieee80211_rx_h_check_more_data
)
2460 CALL_RXH(ieee80211_rx_h_sta_process
)
2461 CALL_RXH(ieee80211_rx_h_defragment
)
2462 CALL_RXH(ieee80211_rx_h_ps_poll
)
2463 CALL_RXH(ieee80211_rx_h_michael_mic_verify
)
2464 /* must be after MMIC verify so header is counted in MPDU mic */
2465 CALL_RXH(ieee80211_rx_h_remove_qos_control
)
2466 CALL_RXH(ieee80211_rx_h_amsdu
)
2467 #ifdef CONFIG_MAC80211_MESH
2468 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
2469 CALL_RXH(ieee80211_rx_h_mesh_fwding
);
2471 CALL_RXH(ieee80211_rx_h_data
)
2473 /* special treatment -- needs the queue */
2474 res
= ieee80211_rx_h_ctrl(rx
, frames
);
2475 if (res
!= RX_CONTINUE
)
2478 CALL_RXH(ieee80211_rx_h_mgmt_check
)
2479 CALL_RXH(ieee80211_rx_h_action
)
2480 CALL_RXH(ieee80211_rx_h_userspace_mgmt
)
2481 CALL_RXH(ieee80211_rx_h_action_return
)
2482 CALL_RXH(ieee80211_rx_h_mgmt
)
2485 ieee80211_rx_handlers_result(rx
, res
);
2491 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data
*rx
)
2493 struct sk_buff_head reorder_release
;
2494 ieee80211_rx_result res
= RX_DROP_MONITOR
;
2496 __skb_queue_head_init(&reorder_release
);
2498 #define CALL_RXH(rxh) \
2501 if (res != RX_CONTINUE) \
2505 CALL_RXH(ieee80211_rx_h_passive_scan
)
2506 CALL_RXH(ieee80211_rx_h_check
)
2508 ieee80211_rx_reorder_ampdu(rx
, &reorder_release
);
2510 ieee80211_rx_handlers(rx
, &reorder_release
);
2514 ieee80211_rx_handlers_result(rx
, res
);
2520 * This function makes calls into the RX path. Therefore the
2521 * caller must hold the sta_info->lock and everything has to
2522 * be under rcu_read_lock protection as well.
2524 void ieee80211_release_reorder_timeout(struct sta_info
*sta
, int tid
)
2526 struct sk_buff_head frames
;
2527 struct ieee80211_rx_data rx
= {
2529 .sdata
= sta
->sdata
,
2530 .local
= sta
->local
,
2533 struct tid_ampdu_rx
*tid_agg_rx
;
2535 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
2539 __skb_queue_head_init(&frames
);
2541 spin_lock(&tid_agg_rx
->reorder_lock
);
2542 ieee80211_sta_reorder_release(&sta
->local
->hw
, tid_agg_rx
, &frames
);
2543 spin_unlock(&tid_agg_rx
->reorder_lock
);
2545 ieee80211_rx_handlers(&rx
, &frames
);
2548 /* main receive path */
2550 static int prepare_for_handlers(struct ieee80211_rx_data
*rx
,
2551 struct ieee80211_hdr
*hdr
)
2553 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2554 struct sk_buff
*skb
= rx
->skb
;
2555 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2556 u8
*bssid
= ieee80211_get_bssid(hdr
, skb
->len
, sdata
->vif
.type
);
2557 int multicast
= is_multicast_ether_addr(hdr
->addr1
);
2559 switch (sdata
->vif
.type
) {
2560 case NL80211_IFTYPE_STATION
:
2561 if (!bssid
&& !sdata
->u
.mgd
.use_4addr
)
2564 compare_ether_addr(sdata
->vif
.addr
, hdr
->addr1
) != 0) {
2565 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
2567 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2570 case NL80211_IFTYPE_ADHOC
:
2573 if (ieee80211_is_beacon(hdr
->frame_control
)) {
2576 else if (!ieee80211_bssid_match(bssid
, sdata
->u
.ibss
.bssid
)) {
2577 if (!(status
->rx_flags
& IEEE80211_RX_IN_SCAN
))
2579 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2580 } else if (!multicast
&&
2581 compare_ether_addr(sdata
->vif
.addr
,
2583 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
2585 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2586 } else if (!rx
->sta
) {
2588 if (status
->flag
& RX_FLAG_HT
)
2589 rate_idx
= 0; /* TODO: HT rates */
2591 rate_idx
= status
->rate_idx
;
2592 rx
->sta
= ieee80211_ibss_add_sta(sdata
, bssid
,
2593 hdr
->addr2
, BIT(rate_idx
), GFP_ATOMIC
);
2596 case NL80211_IFTYPE_MESH_POINT
:
2598 compare_ether_addr(sdata
->vif
.addr
,
2600 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
2603 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2606 case NL80211_IFTYPE_AP_VLAN
:
2607 case NL80211_IFTYPE_AP
:
2609 if (compare_ether_addr(sdata
->vif
.addr
,
2612 } else if (!ieee80211_bssid_match(bssid
,
2614 if (!(status
->rx_flags
& IEEE80211_RX_IN_SCAN
))
2616 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2619 case NL80211_IFTYPE_WDS
:
2620 if (bssid
|| !ieee80211_is_data(hdr
->frame_control
))
2622 if (compare_ether_addr(sdata
->u
.wds
.remote_addr
, hdr
->addr2
))
2626 /* should never get here */
2635 * This function returns whether or not the SKB
2636 * was destined for RX processing or not, which,
2637 * if consume is true, is equivalent to whether
2638 * or not the skb was consumed.
2640 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data
*rx
,
2641 struct sk_buff
*skb
, bool consume
)
2643 struct ieee80211_local
*local
= rx
->local
;
2644 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2645 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2646 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
2650 status
->rx_flags
|= IEEE80211_RX_RA_MATCH
;
2651 prepares
= prepare_for_handlers(rx
, hdr
);
2656 if (status
->flag
& RX_FLAG_MMIC_ERROR
) {
2657 if (status
->rx_flags
& IEEE80211_RX_RA_MATCH
)
2658 ieee80211_rx_michael_mic_report(hdr
, rx
);
2663 skb
= skb_copy(skb
, GFP_ATOMIC
);
2665 if (net_ratelimit())
2666 wiphy_debug(local
->hw
.wiphy
,
2667 "failed to copy multicast frame for %s\n",
2675 ieee80211_invoke_rx_handlers(rx
);
2680 * This is the actual Rx frames handler. as it blongs to Rx path it must
2681 * be called with rcu_read_lock protection.
2683 static void __ieee80211_rx_handle_packet(struct ieee80211_hw
*hw
,
2684 struct sk_buff
*skb
)
2686 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2687 struct ieee80211_local
*local
= hw_to_local(hw
);
2688 struct ieee80211_sub_if_data
*sdata
;
2689 struct ieee80211_hdr
*hdr
;
2691 struct ieee80211_rx_data rx
;
2692 struct ieee80211_sub_if_data
*prev
;
2693 struct sta_info
*sta
, *tmp
, *prev_sta
;
2696 fc
= ((struct ieee80211_hdr
*)skb
->data
)->frame_control
;
2697 memset(&rx
, 0, sizeof(rx
));
2701 if (ieee80211_is_data(fc
) || ieee80211_is_mgmt(fc
))
2702 local
->dot11ReceivedFragmentCount
++;
2704 if (unlikely(test_bit(SCAN_HW_SCANNING
, &local
->scanning
) ||
2705 test_bit(SCAN_OFF_CHANNEL
, &local
->scanning
)))
2706 status
->rx_flags
|= IEEE80211_RX_IN_SCAN
;
2708 if (ieee80211_is_mgmt(fc
))
2709 err
= skb_linearize(skb
);
2711 err
= !pskb_may_pull(skb
, ieee80211_hdrlen(fc
));
2718 hdr
= (struct ieee80211_hdr
*)skb
->data
;
2719 ieee80211_parse_qos(&rx
);
2720 ieee80211_verify_alignment(&rx
);
2722 if (ieee80211_is_data(fc
)) {
2725 for_each_sta_info(local
, hdr
->addr2
, sta
, tmp
) {
2732 rx
.sdata
= prev_sta
->sdata
;
2733 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
2740 rx
.sdata
= prev_sta
->sdata
;
2742 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
2749 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
2750 if (!ieee80211_sdata_running(sdata
))
2753 if (sdata
->vif
.type
== NL80211_IFTYPE_MONITOR
||
2754 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)
2758 * frame is destined for this interface, but if it's
2759 * not also for the previous one we handle that after
2760 * the loop to avoid copying the SKB once too much
2768 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
2770 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
2776 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
2779 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
2787 * This is the receive path handler. It is called by a low level driver when an
2788 * 802.11 MPDU is received from the hardware.
2790 void ieee80211_rx(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
2792 struct ieee80211_local
*local
= hw_to_local(hw
);
2793 struct ieee80211_rate
*rate
= NULL
;
2794 struct ieee80211_supported_band
*sband
;
2795 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2797 WARN_ON_ONCE(softirq_count() == 0);
2799 if (WARN_ON(status
->band
< 0 ||
2800 status
->band
>= IEEE80211_NUM_BANDS
))
2803 sband
= local
->hw
.wiphy
->bands
[status
->band
];
2804 if (WARN_ON(!sband
))
2808 * If we're suspending, it is possible although not too likely
2809 * that we'd be receiving frames after having already partially
2810 * quiesced the stack. We can't process such frames then since
2811 * that might, for example, cause stations to be added or other
2812 * driver callbacks be invoked.
2814 if (unlikely(local
->quiescing
|| local
->suspended
))
2818 * The same happens when we're not even started,
2819 * but that's worth a warning.
2821 if (WARN_ON(!local
->started
))
2824 if (likely(!(status
->flag
& RX_FLAG_FAILED_PLCP_CRC
))) {
2826 * Validate the rate, unless a PLCP error means that
2827 * we probably can't have a valid rate here anyway.
2830 if (status
->flag
& RX_FLAG_HT
) {
2832 * rate_idx is MCS index, which can be [0-76]
2835 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2837 * Anything else would be some sort of driver or
2838 * hardware error. The driver should catch hardware
2841 if (WARN((status
->rate_idx
< 0 ||
2842 status
->rate_idx
> 76),
2843 "Rate marked as an HT rate but passed "
2844 "status->rate_idx is not "
2845 "an MCS index [0-76]: %d (0x%02x)\n",
2850 if (WARN_ON(status
->rate_idx
< 0 ||
2851 status
->rate_idx
>= sband
->n_bitrates
))
2853 rate
= &sband
->bitrates
[status
->rate_idx
];
2857 status
->rx_flags
= 0;
2860 * key references and virtual interfaces are protected using RCU
2861 * and this requires that we are in a read-side RCU section during
2862 * receive processing
2867 * Frames with failed FCS/PLCP checksum are not returned,
2868 * all other frames are returned without radiotap header
2869 * if it was previously present.
2870 * Also, frames with less than 16 bytes are dropped.
2872 skb
= ieee80211_rx_monitor(local
, skb
, rate
);
2878 __ieee80211_rx_handle_packet(hw
, skb
);
2886 EXPORT_SYMBOL(ieee80211_rx
);
2888 /* This is a version of the rx handler that can be called from hard irq
2889 * context. Post the skb on the queue and schedule the tasklet */
2890 void ieee80211_rx_irqsafe(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
2892 struct ieee80211_local
*local
= hw_to_local(hw
);
2894 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status
) > sizeof(skb
->cb
));
2896 skb
->pkt_type
= IEEE80211_RX_MSG
;
2897 skb_queue_tail(&local
->skb_queue
, skb
);
2898 tasklet_schedule(&local
->tasklet
);
2900 EXPORT_SYMBOL(ieee80211_rx_irqsafe
);