davinci: Keep count of channel controllers on a platform
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / arm / mach-davinci / dma.c
blob97a49f98fe139b6b2142a7dae03a565893fd05c5
1 /*
2 * EDMA3 support for DaVinci
4 * Copyright (C) 2006-2009 Texas Instruments.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/platform_device.h>
25 #include <linux/io.h>
27 #include <mach/edma.h>
29 /* Offsets matching "struct edmacc_param" */
30 #define PARM_OPT 0x00
31 #define PARM_SRC 0x04
32 #define PARM_A_B_CNT 0x08
33 #define PARM_DST 0x0c
34 #define PARM_SRC_DST_BIDX 0x10
35 #define PARM_LINK_BCNTRLD 0x14
36 #define PARM_SRC_DST_CIDX 0x18
37 #define PARM_CCNT 0x1c
39 #define PARM_SIZE 0x20
41 /* Offsets for EDMA CC global channel registers and their shadows */
42 #define SH_ER 0x00 /* 64 bits */
43 #define SH_ECR 0x08 /* 64 bits */
44 #define SH_ESR 0x10 /* 64 bits */
45 #define SH_CER 0x18 /* 64 bits */
46 #define SH_EER 0x20 /* 64 bits */
47 #define SH_EECR 0x28 /* 64 bits */
48 #define SH_EESR 0x30 /* 64 bits */
49 #define SH_SER 0x38 /* 64 bits */
50 #define SH_SECR 0x40 /* 64 bits */
51 #define SH_IER 0x50 /* 64 bits */
52 #define SH_IECR 0x58 /* 64 bits */
53 #define SH_IESR 0x60 /* 64 bits */
54 #define SH_IPR 0x68 /* 64 bits */
55 #define SH_ICR 0x70 /* 64 bits */
56 #define SH_IEVAL 0x78
57 #define SH_QER 0x80
58 #define SH_QEER 0x84
59 #define SH_QEECR 0x88
60 #define SH_QEESR 0x8c
61 #define SH_QSER 0x90
62 #define SH_QSECR 0x94
63 #define SH_SIZE 0x200
65 /* Offsets for EDMA CC global registers */
66 #define EDMA_REV 0x0000
67 #define EDMA_CCCFG 0x0004
68 #define EDMA_QCHMAP 0x0200 /* 8 registers */
69 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
70 #define EDMA_QDMAQNUM 0x0260
71 #define EDMA_QUETCMAP 0x0280
72 #define EDMA_QUEPRI 0x0284
73 #define EDMA_EMR 0x0300 /* 64 bits */
74 #define EDMA_EMCR 0x0308 /* 64 bits */
75 #define EDMA_QEMR 0x0310
76 #define EDMA_QEMCR 0x0314
77 #define EDMA_CCERR 0x0318
78 #define EDMA_CCERRCLR 0x031c
79 #define EDMA_EEVAL 0x0320
80 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
81 #define EDMA_QRAE 0x0380 /* 4 registers */
82 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
83 #define EDMA_QSTAT 0x0600 /* 2 registers */
84 #define EDMA_QWMTHRA 0x0620
85 #define EDMA_QWMTHRB 0x0624
86 #define EDMA_CCSTAT 0x0640
88 #define EDMA_M 0x1000 /* global channel registers */
89 #define EDMA_ECR 0x1008
90 #define EDMA_ECRH 0x100C
91 #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
92 #define EDMA_PARM 0x4000 /* 128 param entries */
94 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
96 #define EDMA_DCHMAP 0x0100 /* 64 registers */
97 #define CHMAP_EXIST BIT(24)
99 #define EDMA_MAX_DMACH 64
100 #define EDMA_MAX_PARAMENTRY 512
101 #define EDMA_MAX_CC 2
104 /*****************************************************************************/
106 static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
108 static inline unsigned int edma_read(unsigned ctlr, int offset)
110 return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
113 static inline void edma_write(unsigned ctlr, int offset, int val)
115 __raw_writel(val, edmacc_regs_base[ctlr] + offset);
117 static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
118 unsigned or)
120 unsigned val = edma_read(ctlr, offset);
121 val &= and;
122 val |= or;
123 edma_write(ctlr, offset, val);
125 static inline void edma_and(unsigned ctlr, int offset, unsigned and)
127 unsigned val = edma_read(ctlr, offset);
128 val &= and;
129 edma_write(ctlr, offset, val);
131 static inline void edma_or(unsigned ctlr, int offset, unsigned or)
133 unsigned val = edma_read(ctlr, offset);
134 val |= or;
135 edma_write(ctlr, offset, val);
137 static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
139 return edma_read(ctlr, offset + (i << 2));
141 static inline void edma_write_array(unsigned ctlr, int offset, int i,
142 unsigned val)
144 edma_write(ctlr, offset + (i << 2), val);
146 static inline void edma_modify_array(unsigned ctlr, int offset, int i,
147 unsigned and, unsigned or)
149 edma_modify(ctlr, offset + (i << 2), and, or);
151 static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
153 edma_or(ctlr, offset + (i << 2), or);
155 static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
156 unsigned or)
158 edma_or(ctlr, offset + ((i*2 + j) << 2), or);
160 static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
161 unsigned val)
163 edma_write(ctlr, offset + ((i*2 + j) << 2), val);
165 static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
167 return edma_read(ctlr, EDMA_SHADOW0 + offset);
169 static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
170 int i)
172 return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
174 static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
176 edma_write(ctlr, EDMA_SHADOW0 + offset, val);
178 static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
179 unsigned val)
181 edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
183 static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
184 int param_no)
186 return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
188 static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
189 unsigned val)
191 edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
193 static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
194 unsigned and, unsigned or)
196 edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
198 static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
199 unsigned and)
201 edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
203 static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
204 unsigned or)
206 edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
209 /*****************************************************************************/
211 /* actual number of DMA channels and slots on this silicon */
212 struct edma {
213 /* how many dma resources of each type */
214 unsigned num_channels;
215 unsigned num_region;
216 unsigned num_slots;
217 unsigned num_tc;
218 unsigned num_cc;
219 enum dma_event_q default_queue;
221 /* list of channels with no even trigger; terminated by "-1" */
222 const s8 *noevent;
224 /* The edma_inuse bit for each PaRAM slot is clear unless the
225 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
227 DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
229 /* The edma_noevent bit for each channel is clear unless
230 * it doesn't trigger DMA events on this platform. It uses a
231 * bit of SOC-specific initialization code.
233 DECLARE_BITMAP(edma_noevent, EDMA_MAX_DMACH);
235 unsigned irq_res_start;
236 unsigned irq_res_end;
238 struct dma_interrupt_data {
239 void (*callback)(unsigned channel, unsigned short ch_status,
240 void *data);
241 void *data;
242 } intr_data[EDMA_MAX_DMACH];
245 static struct edma *edma_info[EDMA_MAX_CC];
246 static int arch_num_cc;
248 /* dummy param set used to (re)initialize parameter RAM slots */
249 static const struct edmacc_param dummy_paramset = {
250 .link_bcntrld = 0xffff,
251 .ccnt = 1,
254 /*****************************************************************************/
256 static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
257 enum dma_event_q queue_no)
259 int bit = (ch_no & 0x7) * 4;
261 /* default to low priority queue */
262 if (queue_no == EVENTQ_DEFAULT)
263 queue_no = edma_info[ctlr]->default_queue;
265 queue_no &= 7;
266 edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
267 ~(0x7 << bit), queue_no << bit);
270 static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
272 int bit = queue_no * 4;
273 edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
276 static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
277 int priority)
279 int bit = queue_no * 4;
280 edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
281 ((priority & 0x7) << bit));
285 * map_dmach_param - Maps channel number to param entry number
287 * This maps the dma channel number to param entry numberter. In
288 * other words using the DMA channel mapping registers a param entry
289 * can be mapped to any channel
291 * Callers are responsible for ensuring the channel mapping logic is
292 * included in that particular EDMA variant (Eg : dm646x)
295 static void __init map_dmach_param(unsigned ctlr)
297 int i;
298 for (i = 0; i < EDMA_MAX_DMACH; i++)
299 edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
302 static inline void
303 setup_dma_interrupt(unsigned lch,
304 void (*callback)(unsigned channel, u16 ch_status, void *data),
305 void *data)
307 unsigned ctlr;
309 ctlr = EDMA_CTLR(lch);
310 lch = EDMA_CHAN_SLOT(lch);
312 if (!callback) {
313 edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
314 (1 << (lch & 0x1f)));
317 edma_info[ctlr]->intr_data[lch].callback = callback;
318 edma_info[ctlr]->intr_data[lch].data = data;
320 if (callback) {
321 edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
322 (1 << (lch & 0x1f)));
323 edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
324 (1 << (lch & 0x1f)));
328 static int irq2ctlr(int irq)
330 if (irq >= edma_info[0]->irq_res_start &&
331 irq <= edma_info[0]->irq_res_end)
332 return 0;
333 else if (irq >= edma_info[1]->irq_res_start &&
334 irq <= edma_info[1]->irq_res_end)
335 return 1;
337 return -1;
340 /******************************************************************************
342 * DMA interrupt handler
344 *****************************************************************************/
345 static irqreturn_t dma_irq_handler(int irq, void *data)
347 int i;
348 unsigned ctlr;
349 unsigned int cnt = 0;
351 ctlr = irq2ctlr(irq);
353 dev_dbg(data, "dma_irq_handler\n");
355 if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0)
356 && (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
357 return IRQ_NONE;
359 while (1) {
360 int j;
361 if (edma_shadow0_read_array(ctlr, SH_IPR, 0))
362 j = 0;
363 else if (edma_shadow0_read_array(ctlr, SH_IPR, 1))
364 j = 1;
365 else
366 break;
367 dev_dbg(data, "IPR%d %08x\n", j,
368 edma_shadow0_read_array(ctlr, SH_IPR, j));
369 for (i = 0; i < 32; i++) {
370 int k = (j << 5) + i;
371 if (edma_shadow0_read_array(ctlr, SH_IPR, j) &
372 (1 << i)) {
373 /* Clear the corresponding IPR bits */
374 edma_shadow0_write_array(ctlr, SH_ICR, j,
375 (1 << i));
376 if (edma_info[ctlr]->intr_data[k].callback) {
377 edma_info[ctlr]->intr_data[k].callback(
378 k, DMA_COMPLETE,
379 edma_info[ctlr]->intr_data[k].
380 data);
384 cnt++;
385 if (cnt > 10)
386 break;
388 edma_shadow0_write(ctlr, SH_IEVAL, 1);
389 return IRQ_HANDLED;
392 /******************************************************************************
394 * DMA error interrupt handler
396 *****************************************************************************/
397 static irqreturn_t dma_ccerr_handler(int irq, void *data)
399 int i;
400 unsigned ctlr;
401 unsigned int cnt = 0;
403 ctlr = irq2ctlr(irq);
405 dev_dbg(data, "dma_ccerr_handler\n");
407 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
408 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
409 (edma_read(ctlr, EDMA_QEMR) == 0) &&
410 (edma_read(ctlr, EDMA_CCERR) == 0))
411 return IRQ_NONE;
413 while (1) {
414 int j = -1;
415 if (edma_read_array(ctlr, EDMA_EMR, 0))
416 j = 0;
417 else if (edma_read_array(ctlr, EDMA_EMR, 1))
418 j = 1;
419 if (j >= 0) {
420 dev_dbg(data, "EMR%d %08x\n", j,
421 edma_read_array(ctlr, EDMA_EMR, j));
422 for (i = 0; i < 32; i++) {
423 int k = (j << 5) + i;
424 if (edma_read_array(ctlr, EDMA_EMR, j) &
425 (1 << i)) {
426 /* Clear the corresponding EMR bits */
427 edma_write_array(ctlr, EDMA_EMCR, j,
428 1 << i);
429 /* Clear any SER */
430 edma_shadow0_write_array(ctlr, SH_SECR,
431 j, (1 << i));
432 if (edma_info[ctlr]->intr_data[k].
433 callback) {
434 edma_info[ctlr]->intr_data[k].
435 callback(k,
436 DMA_CC_ERROR,
437 edma_info[ctlr]->intr_data
438 [k].data);
442 } else if (edma_read(ctlr, EDMA_QEMR)) {
443 dev_dbg(data, "QEMR %02x\n",
444 edma_read(ctlr, EDMA_QEMR));
445 for (i = 0; i < 8; i++) {
446 if (edma_read(ctlr, EDMA_QEMR) & (1 << i)) {
447 /* Clear the corresponding IPR bits */
448 edma_write(ctlr, EDMA_QEMCR, 1 << i);
449 edma_shadow0_write(ctlr, SH_QSECR,
450 (1 << i));
452 /* NOTE: not reported!! */
455 } else if (edma_read(ctlr, EDMA_CCERR)) {
456 dev_dbg(data, "CCERR %08x\n",
457 edma_read(ctlr, EDMA_CCERR));
458 /* FIXME: CCERR.BIT(16) ignored! much better
459 * to just write CCERRCLR with CCERR value...
461 for (i = 0; i < 8; i++) {
462 if (edma_read(ctlr, EDMA_CCERR) & (1 << i)) {
463 /* Clear the corresponding IPR bits */
464 edma_write(ctlr, EDMA_CCERRCLR, 1 << i);
466 /* NOTE: not reported!! */
470 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0)
471 && (edma_read_array(ctlr, EDMA_EMR, 1) == 0)
472 && (edma_read(ctlr, EDMA_QEMR) == 0)
473 && (edma_read(ctlr, EDMA_CCERR) == 0)) {
474 break;
476 cnt++;
477 if (cnt > 10)
478 break;
480 edma_write(ctlr, EDMA_EEVAL, 1);
481 return IRQ_HANDLED;
484 /******************************************************************************
486 * Transfer controller error interrupt handlers
488 *****************************************************************************/
490 #define tc_errs_handled false /* disabled as long as they're NOPs */
492 static irqreturn_t dma_tc0err_handler(int irq, void *data)
494 dev_dbg(data, "dma_tc0err_handler\n");
495 return IRQ_HANDLED;
498 static irqreturn_t dma_tc1err_handler(int irq, void *data)
500 dev_dbg(data, "dma_tc1err_handler\n");
501 return IRQ_HANDLED;
504 static int reserve_contiguous_slots(int ctlr, unsigned int id,
505 unsigned int num_slots,
506 unsigned int start_slot)
508 int i, j;
509 unsigned int count = num_slots;
510 int stop_slot = start_slot;
511 DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
513 for (i = start_slot; i < edma_info[ctlr]->num_slots; ++i) {
514 j = EDMA_CHAN_SLOT(i);
515 if (!test_and_set_bit(j, edma_info[ctlr]->edma_inuse)) {
516 /* Record our current beginning slot */
517 if (count == num_slots)
518 stop_slot = i;
520 count--;
521 set_bit(j, tmp_inuse);
523 if (count == 0)
524 break;
525 } else {
526 clear_bit(j, tmp_inuse);
528 if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
529 stop_slot = i;
530 break;
531 } else
532 count = num_slots;
537 * We have to clear any bits that we set
538 * if we run out parameter RAM slots, i.e we do find a set
539 * of contiguous parameter RAM slots but do not find the exact number
540 * requested as we may reach the total number of parameter RAM slots
542 if (i == edma_info[ctlr]->num_slots)
543 stop_slot = i;
545 for (j = start_slot; j < stop_slot; j++)
546 if (test_bit(j, tmp_inuse))
547 clear_bit(j, edma_info[ctlr]->edma_inuse);
549 if (count)
550 return -EBUSY;
552 for (j = i - num_slots + 1; j <= i; ++j)
553 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
554 &dummy_paramset, PARM_SIZE);
556 return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
559 /*-----------------------------------------------------------------------*/
561 /* Resource alloc/free: dma channels, parameter RAM slots */
564 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
565 * @channel: specific channel to allocate; negative for "any unmapped channel"
566 * @callback: optional; to be issued on DMA completion or errors
567 * @data: passed to callback
568 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
569 * Controller (TC) executes requests using this channel. Use
570 * EVENTQ_DEFAULT unless you really need a high priority queue.
572 * This allocates a DMA channel and its associated parameter RAM slot.
573 * The parameter RAM is initialized to hold a dummy transfer.
575 * Normal use is to pass a specific channel number as @channel, to make
576 * use of hardware events mapped to that channel. When the channel will
577 * be used only for software triggering or event chaining, channels not
578 * mapped to hardware events (or mapped to unused events) are preferable.
580 * DMA transfers start from a channel using edma_start(), or by
581 * chaining. When the transfer described in that channel's parameter RAM
582 * slot completes, that slot's data may be reloaded through a link.
584 * DMA errors are only reported to the @callback associated with the
585 * channel driving that transfer, but transfer completion callbacks can
586 * be sent to another channel under control of the TCC field in
587 * the option word of the transfer's parameter RAM set. Drivers must not
588 * use DMA transfer completion callbacks for channels they did not allocate.
589 * (The same applies to TCC codes used in transfer chaining.)
591 * Returns the number of the channel, else negative errno.
593 int edma_alloc_channel(int channel,
594 void (*callback)(unsigned channel, u16 ch_status, void *data),
595 void *data,
596 enum dma_event_q eventq_no)
598 unsigned i, done, ctlr = 0;
600 if (channel >= 0) {
601 ctlr = EDMA_CTLR(channel);
602 channel = EDMA_CHAN_SLOT(channel);
605 if (channel < 0) {
606 for (i = 0; i < arch_num_cc; i++) {
607 channel = 0;
608 for (;;) {
609 channel = find_next_bit(edma_info[i]->
610 edma_noevent,
611 edma_info[i]->num_channels,
612 channel);
613 if (channel == edma_info[i]->num_channels)
614 return -ENOMEM;
615 if (!test_and_set_bit(channel,
616 edma_info[i]->edma_inuse)) {
617 done = 1;
618 ctlr = i;
619 break;
621 channel++;
623 if (done)
624 break;
626 } else if (channel >= edma_info[ctlr]->num_channels) {
627 return -EINVAL;
628 } else if (test_and_set_bit(channel, edma_info[ctlr]->edma_inuse)) {
629 return -EBUSY;
632 /* ensure access through shadow region 0 */
633 edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, 1 << (channel & 0x1f));
635 /* ensure no events are pending */
636 edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
637 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
638 &dummy_paramset, PARM_SIZE);
640 if (callback)
641 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
642 callback, data);
644 map_dmach_queue(ctlr, channel, eventq_no);
646 return EDMA_CTLR_CHAN(ctlr, channel);
648 EXPORT_SYMBOL(edma_alloc_channel);
652 * edma_free_channel - deallocate DMA channel
653 * @channel: dma channel returned from edma_alloc_channel()
655 * This deallocates the DMA channel and associated parameter RAM slot
656 * allocated by edma_alloc_channel().
658 * Callers are responsible for ensuring the channel is inactive, and
659 * will not be reactivated by linking, chaining, or software calls to
660 * edma_start().
662 void edma_free_channel(unsigned channel)
664 unsigned ctlr;
666 ctlr = EDMA_CTLR(channel);
667 channel = EDMA_CHAN_SLOT(channel);
669 if (channel >= edma_info[ctlr]->num_channels)
670 return;
672 setup_dma_interrupt(channel, NULL, NULL);
673 /* REVISIT should probably take out of shadow region 0 */
675 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
676 &dummy_paramset, PARM_SIZE);
677 clear_bit(channel, edma_info[ctlr]->edma_inuse);
679 EXPORT_SYMBOL(edma_free_channel);
682 * edma_alloc_slot - allocate DMA parameter RAM
683 * @slot: specific slot to allocate; negative for "any unused slot"
685 * This allocates a parameter RAM slot, initializing it to hold a
686 * dummy transfer. Slots allocated using this routine have not been
687 * mapped to a hardware DMA channel, and will normally be used by
688 * linking to them from a slot associated with a DMA channel.
690 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
691 * slots may be allocated on behalf of DSP firmware.
693 * Returns the number of the slot, else negative errno.
695 int edma_alloc_slot(unsigned ctlr, int slot)
697 if (slot >= 0)
698 slot = EDMA_CHAN_SLOT(slot);
700 if (slot < 0) {
701 slot = edma_info[ctlr]->num_channels;
702 for (;;) {
703 slot = find_next_zero_bit(edma_info[ctlr]->edma_inuse,
704 edma_info[ctlr]->num_slots, slot);
705 if (slot == edma_info[ctlr]->num_slots)
706 return -ENOMEM;
707 if (!test_and_set_bit(slot,
708 edma_info[ctlr]->edma_inuse))
709 break;
711 } else if (slot < edma_info[ctlr]->num_channels ||
712 slot >= edma_info[ctlr]->num_slots) {
713 return -EINVAL;
714 } else if (test_and_set_bit(slot, edma_info[ctlr]->edma_inuse)) {
715 return -EBUSY;
718 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
719 &dummy_paramset, PARM_SIZE);
721 return EDMA_CTLR_CHAN(ctlr, slot);
723 EXPORT_SYMBOL(edma_alloc_slot);
726 * edma_free_slot - deallocate DMA parameter RAM
727 * @slot: parameter RAM slot returned from edma_alloc_slot()
729 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
730 * Callers are responsible for ensuring the slot is inactive, and will
731 * not be activated.
733 void edma_free_slot(unsigned slot)
735 unsigned ctlr;
737 ctlr = EDMA_CTLR(slot);
738 slot = EDMA_CHAN_SLOT(slot);
740 if (slot < edma_info[ctlr]->num_channels ||
741 slot >= edma_info[ctlr]->num_slots)
742 return;
744 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
745 &dummy_paramset, PARM_SIZE);
746 clear_bit(slot, edma_info[ctlr]->edma_inuse);
748 EXPORT_SYMBOL(edma_free_slot);
752 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
753 * The API will return the starting point of a set of
754 * contiguous parameter RAM slots that have been requested
756 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
757 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
758 * @count: number of contiguous Paramter RAM slots
759 * @slot - the start value of Parameter RAM slot that should be passed if id
760 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
762 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
763 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
764 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
766 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
767 * set of contiguous parameter RAM slots from the "slot" that is passed as an
768 * argument to the API.
770 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
771 * starts looking for a set of contiguous parameter RAMs from the "slot"
772 * that is passed as an argument to the API. On failure the API will try to
773 * find a set of contiguous Parameter RAM slots from the remaining Parameter
774 * RAM slots
776 int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
779 * The start slot requested should be greater than
780 * the number of channels and lesser than the total number
781 * of slots
783 if ((id != EDMA_CONT_PARAMS_ANY) &&
784 (slot < edma_info[ctlr]->num_channels ||
785 slot >= edma_info[ctlr]->num_slots))
786 return -EINVAL;
789 * The number of parameter RAM slots requested cannot be less than 1
790 * and cannot be more than the number of slots minus the number of
791 * channels
793 if (count < 1 || count >
794 (edma_info[ctlr]->num_slots - edma_info[ctlr]->num_channels))
795 return -EINVAL;
797 switch (id) {
798 case EDMA_CONT_PARAMS_ANY:
799 return reserve_contiguous_slots(ctlr, id, count,
800 edma_info[ctlr]->num_channels);
801 case EDMA_CONT_PARAMS_FIXED_EXACT:
802 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
803 return reserve_contiguous_slots(ctlr, id, count, slot);
804 default:
805 return -EINVAL;
809 EXPORT_SYMBOL(edma_alloc_cont_slots);
812 * edma_free_cont_slots - deallocate DMA parameter RAM slots
813 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
814 * @count: the number of contiguous parameter RAM slots to be freed
816 * This deallocates the parameter RAM slots allocated by
817 * edma_alloc_cont_slots.
818 * Callers/applications need to keep track of sets of contiguous
819 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
820 * API.
821 * Callers are responsible for ensuring the slots are inactive, and will
822 * not be activated.
824 int edma_free_cont_slots(unsigned slot, int count)
826 unsigned ctlr, slot_to_free;
827 int i;
829 ctlr = EDMA_CTLR(slot);
830 slot = EDMA_CHAN_SLOT(slot);
832 if (slot < edma_info[ctlr]->num_channels ||
833 slot >= edma_info[ctlr]->num_slots ||
834 count < 1)
835 return -EINVAL;
837 for (i = slot; i < slot + count; ++i) {
838 ctlr = EDMA_CTLR(i);
839 slot_to_free = EDMA_CHAN_SLOT(i);
841 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
842 &dummy_paramset, PARM_SIZE);
843 clear_bit(slot_to_free, edma_info[ctlr]->edma_inuse);
846 return 0;
848 EXPORT_SYMBOL(edma_free_cont_slots);
850 /*-----------------------------------------------------------------------*/
852 /* Parameter RAM operations (i) -- read/write partial slots */
855 * edma_set_src - set initial DMA source address in parameter RAM slot
856 * @slot: parameter RAM slot being configured
857 * @src_port: physical address of source (memory, controller FIFO, etc)
858 * @addressMode: INCR, except in very rare cases
859 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
860 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
862 * Note that the source address is modified during the DMA transfer
863 * according to edma_set_src_index().
865 void edma_set_src(unsigned slot, dma_addr_t src_port,
866 enum address_mode mode, enum fifo_width width)
868 unsigned ctlr;
870 ctlr = EDMA_CTLR(slot);
871 slot = EDMA_CHAN_SLOT(slot);
873 if (slot < edma_info[ctlr]->num_slots) {
874 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
876 if (mode) {
877 /* set SAM and program FWID */
878 i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
879 } else {
880 /* clear SAM */
881 i &= ~SAM;
883 edma_parm_write(ctlr, PARM_OPT, slot, i);
885 /* set the source port address
886 in source register of param structure */
887 edma_parm_write(ctlr, PARM_SRC, slot, src_port);
890 EXPORT_SYMBOL(edma_set_src);
893 * edma_set_dest - set initial DMA destination address in parameter RAM slot
894 * @slot: parameter RAM slot being configured
895 * @dest_port: physical address of destination (memory, controller FIFO, etc)
896 * @addressMode: INCR, except in very rare cases
897 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
898 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
900 * Note that the destination address is modified during the DMA transfer
901 * according to edma_set_dest_index().
903 void edma_set_dest(unsigned slot, dma_addr_t dest_port,
904 enum address_mode mode, enum fifo_width width)
906 unsigned ctlr;
908 ctlr = EDMA_CTLR(slot);
909 slot = EDMA_CHAN_SLOT(slot);
911 if (slot < edma_info[ctlr]->num_slots) {
912 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
914 if (mode) {
915 /* set DAM and program FWID */
916 i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
917 } else {
918 /* clear DAM */
919 i &= ~DAM;
921 edma_parm_write(ctlr, PARM_OPT, slot, i);
922 /* set the destination port address
923 in dest register of param structure */
924 edma_parm_write(ctlr, PARM_DST, slot, dest_port);
927 EXPORT_SYMBOL(edma_set_dest);
930 * edma_get_position - returns the current transfer points
931 * @slot: parameter RAM slot being examined
932 * @src: pointer to source port position
933 * @dst: pointer to destination port position
935 * Returns current source and destination addresses for a particular
936 * parameter RAM slot. Its channel should not be active when this is called.
938 void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
940 struct edmacc_param temp;
941 unsigned ctlr;
943 ctlr = EDMA_CTLR(slot);
944 slot = EDMA_CHAN_SLOT(slot);
946 edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
947 if (src != NULL)
948 *src = temp.src;
949 if (dst != NULL)
950 *dst = temp.dst;
952 EXPORT_SYMBOL(edma_get_position);
955 * edma_set_src_index - configure DMA source address indexing
956 * @slot: parameter RAM slot being configured
957 * @src_bidx: byte offset between source arrays in a frame
958 * @src_cidx: byte offset between source frames in a block
960 * Offsets are specified to support either contiguous or discontiguous
961 * memory transfers, or repeated access to a hardware register, as needed.
962 * When accessing hardware registers, both offsets are normally zero.
964 void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
966 unsigned ctlr;
968 ctlr = EDMA_CTLR(slot);
969 slot = EDMA_CHAN_SLOT(slot);
971 if (slot < edma_info[ctlr]->num_slots) {
972 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
973 0xffff0000, src_bidx);
974 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
975 0xffff0000, src_cidx);
978 EXPORT_SYMBOL(edma_set_src_index);
981 * edma_set_dest_index - configure DMA destination address indexing
982 * @slot: parameter RAM slot being configured
983 * @dest_bidx: byte offset between destination arrays in a frame
984 * @dest_cidx: byte offset between destination frames in a block
986 * Offsets are specified to support either contiguous or discontiguous
987 * memory transfers, or repeated access to a hardware register, as needed.
988 * When accessing hardware registers, both offsets are normally zero.
990 void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
992 unsigned ctlr;
994 ctlr = EDMA_CTLR(slot);
995 slot = EDMA_CHAN_SLOT(slot);
997 if (slot < edma_info[ctlr]->num_slots) {
998 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
999 0x0000ffff, dest_bidx << 16);
1000 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1001 0x0000ffff, dest_cidx << 16);
1004 EXPORT_SYMBOL(edma_set_dest_index);
1007 * edma_set_transfer_params - configure DMA transfer parameters
1008 * @slot: parameter RAM slot being configured
1009 * @acnt: how many bytes per array (at least one)
1010 * @bcnt: how many arrays per frame (at least one)
1011 * @ccnt: how many frames per block (at least one)
1012 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1013 * the value to reload into bcnt when it decrements to zero
1014 * @sync_mode: ASYNC or ABSYNC
1016 * See the EDMA3 documentation to understand how to configure and link
1017 * transfers using the fields in PaRAM slots. If you are not doing it
1018 * all at once with edma_write_slot(), you will use this routine
1019 * plus two calls each for source and destination, setting the initial
1020 * address and saying how to index that address.
1022 * An example of an A-Synchronized transfer is a serial link using a
1023 * single word shift register. In that case, @acnt would be equal to
1024 * that word size; the serial controller issues a DMA synchronization
1025 * event to transfer each word, and memory access by the DMA transfer
1026 * controller will be word-at-a-time.
1028 * An example of an AB-Synchronized transfer is a device using a FIFO.
1029 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1030 * The controller with the FIFO issues DMA synchronization events when
1031 * the FIFO threshold is reached, and the DMA transfer controller will
1032 * transfer one frame to (or from) the FIFO. It will probably use
1033 * efficient burst modes to access memory.
1035 void edma_set_transfer_params(unsigned slot,
1036 u16 acnt, u16 bcnt, u16 ccnt,
1037 u16 bcnt_rld, enum sync_dimension sync_mode)
1039 unsigned ctlr;
1041 ctlr = EDMA_CTLR(slot);
1042 slot = EDMA_CHAN_SLOT(slot);
1044 if (slot < edma_info[ctlr]->num_slots) {
1045 edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
1046 0x0000ffff, bcnt_rld << 16);
1047 if (sync_mode == ASYNC)
1048 edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
1049 else
1050 edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
1051 /* Set the acount, bcount, ccount registers */
1052 edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
1053 edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
1056 EXPORT_SYMBOL(edma_set_transfer_params);
1059 * edma_link - link one parameter RAM slot to another
1060 * @from: parameter RAM slot originating the link
1061 * @to: parameter RAM slot which is the link target
1063 * The originating slot should not be part of any active DMA transfer.
1065 void edma_link(unsigned from, unsigned to)
1067 unsigned ctlr_from, ctlr_to;
1069 ctlr_from = EDMA_CTLR(from);
1070 from = EDMA_CHAN_SLOT(from);
1071 ctlr_to = EDMA_CTLR(to);
1072 to = EDMA_CHAN_SLOT(to);
1074 if (from >= edma_info[ctlr_from]->num_slots)
1075 return;
1076 if (to >= edma_info[ctlr_to]->num_slots)
1077 return;
1078 edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
1079 PARM_OFFSET(to));
1081 EXPORT_SYMBOL(edma_link);
1084 * edma_unlink - cut link from one parameter RAM slot
1085 * @from: parameter RAM slot originating the link
1087 * The originating slot should not be part of any active DMA transfer.
1088 * Its link is set to 0xffff.
1090 void edma_unlink(unsigned from)
1092 unsigned ctlr;
1094 ctlr = EDMA_CTLR(from);
1095 from = EDMA_CHAN_SLOT(from);
1097 if (from >= edma_info[ctlr]->num_slots)
1098 return;
1099 edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
1101 EXPORT_SYMBOL(edma_unlink);
1103 /*-----------------------------------------------------------------------*/
1105 /* Parameter RAM operations (ii) -- read/write whole parameter sets */
1108 * edma_write_slot - write parameter RAM data for slot
1109 * @slot: number of parameter RAM slot being modified
1110 * @param: data to be written into parameter RAM slot
1112 * Use this to assign all parameters of a transfer at once. This
1113 * allows more efficient setup of transfers than issuing multiple
1114 * calls to set up those parameters in small pieces, and provides
1115 * complete control over all transfer options.
1117 void edma_write_slot(unsigned slot, const struct edmacc_param *param)
1119 unsigned ctlr;
1121 ctlr = EDMA_CTLR(slot);
1122 slot = EDMA_CHAN_SLOT(slot);
1124 if (slot >= edma_info[ctlr]->num_slots)
1125 return;
1126 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
1127 PARM_SIZE);
1129 EXPORT_SYMBOL(edma_write_slot);
1132 * edma_read_slot - read parameter RAM data from slot
1133 * @slot: number of parameter RAM slot being copied
1134 * @param: where to store copy of parameter RAM data
1136 * Use this to read data from a parameter RAM slot, perhaps to
1137 * save them as a template for later reuse.
1139 void edma_read_slot(unsigned slot, struct edmacc_param *param)
1141 unsigned ctlr;
1143 ctlr = EDMA_CTLR(slot);
1144 slot = EDMA_CHAN_SLOT(slot);
1146 if (slot >= edma_info[ctlr]->num_slots)
1147 return;
1148 memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1149 PARM_SIZE);
1151 EXPORT_SYMBOL(edma_read_slot);
1153 /*-----------------------------------------------------------------------*/
1155 /* Various EDMA channel control operations */
1158 * edma_pause - pause dma on a channel
1159 * @channel: on which edma_start() has been called
1161 * This temporarily disables EDMA hardware events on the specified channel,
1162 * preventing them from triggering new transfers on its behalf
1164 void edma_pause(unsigned channel)
1166 unsigned ctlr;
1168 ctlr = EDMA_CTLR(channel);
1169 channel = EDMA_CHAN_SLOT(channel);
1171 if (channel < edma_info[ctlr]->num_channels) {
1172 unsigned int mask = (1 << (channel & 0x1f));
1174 edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
1177 EXPORT_SYMBOL(edma_pause);
1180 * edma_resume - resumes dma on a paused channel
1181 * @channel: on which edma_pause() has been called
1183 * This re-enables EDMA hardware events on the specified channel.
1185 void edma_resume(unsigned channel)
1187 unsigned ctlr;
1189 ctlr = EDMA_CTLR(channel);
1190 channel = EDMA_CHAN_SLOT(channel);
1192 if (channel < edma_info[ctlr]->num_channels) {
1193 unsigned int mask = (1 << (channel & 0x1f));
1195 edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
1198 EXPORT_SYMBOL(edma_resume);
1201 * edma_start - start dma on a channel
1202 * @channel: channel being activated
1204 * Channels with event associations will be triggered by their hardware
1205 * events, and channels without such associations will be triggered by
1206 * software. (At this writing there is no interface for using software
1207 * triggers except with channels that don't support hardware triggers.)
1209 * Returns zero on success, else negative errno.
1211 int edma_start(unsigned channel)
1213 unsigned ctlr;
1215 ctlr = EDMA_CTLR(channel);
1216 channel = EDMA_CHAN_SLOT(channel);
1218 if (channel < edma_info[ctlr]->num_channels) {
1219 int j = channel >> 5;
1220 unsigned int mask = (1 << (channel & 0x1f));
1222 /* EDMA channels without event association */
1223 if (test_bit(channel, edma_info[ctlr]->edma_noevent)) {
1224 pr_debug("EDMA: ESR%d %08x\n", j,
1225 edma_shadow0_read_array(ctlr, SH_ESR, j));
1226 edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
1227 return 0;
1230 /* EDMA channel with event association */
1231 pr_debug("EDMA: ER%d %08x\n", j,
1232 edma_shadow0_read_array(ctlr, SH_ER, j));
1233 /* Clear any pending error */
1234 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1235 /* Clear any SER */
1236 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1237 edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
1238 pr_debug("EDMA: EER%d %08x\n", j,
1239 edma_shadow0_read_array(ctlr, SH_EER, j));
1240 return 0;
1243 return -EINVAL;
1245 EXPORT_SYMBOL(edma_start);
1248 * edma_stop - stops dma on the channel passed
1249 * @channel: channel being deactivated
1251 * When @lch is a channel, any active transfer is paused and
1252 * all pending hardware events are cleared. The current transfer
1253 * may not be resumed, and the channel's Parameter RAM should be
1254 * reinitialized before being reused.
1256 void edma_stop(unsigned channel)
1258 unsigned ctlr;
1260 ctlr = EDMA_CTLR(channel);
1261 channel = EDMA_CHAN_SLOT(channel);
1263 if (channel < edma_info[ctlr]->num_channels) {
1264 int j = channel >> 5;
1265 unsigned int mask = (1 << (channel & 0x1f));
1267 edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1268 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1269 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1270 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1272 pr_debug("EDMA: EER%d %08x\n", j,
1273 edma_shadow0_read_array(ctlr, SH_EER, j));
1275 /* REVISIT: consider guarding against inappropriate event
1276 * chaining by overwriting with dummy_paramset.
1280 EXPORT_SYMBOL(edma_stop);
1282 /******************************************************************************
1284 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1285 * been removed before EDMA has finished.It is usedful for removable media.
1286 * Arguments:
1287 * ch_no - channel no
1289 * Return: zero on success, or corresponding error no on failure
1291 * FIXME this should not be needed ... edma_stop() should suffice.
1293 *****************************************************************************/
1295 void edma_clean_channel(unsigned channel)
1297 unsigned ctlr;
1299 ctlr = EDMA_CTLR(channel);
1300 channel = EDMA_CHAN_SLOT(channel);
1302 if (channel < edma_info[ctlr]->num_channels) {
1303 int j = (channel >> 5);
1304 unsigned int mask = 1 << (channel & 0x1f);
1306 pr_debug("EDMA: EMR%d %08x\n", j,
1307 edma_read_array(ctlr, EDMA_EMR, j));
1308 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1309 /* Clear the corresponding EMR bits */
1310 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1311 /* Clear any SER */
1312 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1313 edma_write(ctlr, EDMA_CCERRCLR, (1 << 16) | 0x3);
1316 EXPORT_SYMBOL(edma_clean_channel);
1319 * edma_clear_event - clear an outstanding event on the DMA channel
1320 * Arguments:
1321 * channel - channel number
1323 void edma_clear_event(unsigned channel)
1325 unsigned ctlr;
1327 ctlr = EDMA_CTLR(channel);
1328 channel = EDMA_CHAN_SLOT(channel);
1330 if (channel >= edma_info[ctlr]->num_channels)
1331 return;
1332 if (channel < 32)
1333 edma_write(ctlr, EDMA_ECR, 1 << channel);
1334 else
1335 edma_write(ctlr, EDMA_ECRH, 1 << (channel - 32));
1337 EXPORT_SYMBOL(edma_clear_event);
1339 /*-----------------------------------------------------------------------*/
1341 static int __init edma_probe(struct platform_device *pdev)
1343 struct edma_soc_info *info = pdev->dev.platform_data;
1344 const s8 (*queue_priority_mapping)[2];
1345 const s8 (*queue_tc_mapping)[2];
1346 int i, j, found = 0;
1347 int status = -1;
1348 const s8 *noevent;
1349 int irq[EDMA_MAX_CC] = {0, 0};
1350 int err_irq[EDMA_MAX_CC] = {0, 0};
1351 struct resource *r[EDMA_MAX_CC] = {NULL};
1352 resource_size_t len[EDMA_MAX_CC];
1353 char res_name[10];
1354 char irq_name[10];
1356 if (!info)
1357 return -ENODEV;
1359 for (j = 0; j < EDMA_MAX_CC; j++) {
1360 sprintf(res_name, "edma_cc%d", j);
1361 r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1362 res_name);
1363 if (!r[j]) {
1364 if (found)
1365 break;
1366 else
1367 return -ENODEV;
1368 } else
1369 found = 1;
1371 len[j] = resource_size(r[j]);
1373 r[j] = request_mem_region(r[j]->start, len[j],
1374 dev_name(&pdev->dev));
1375 if (!r[j]) {
1376 status = -EBUSY;
1377 goto fail1;
1380 edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
1381 if (!edmacc_regs_base[j]) {
1382 status = -EBUSY;
1383 goto fail1;
1386 edma_info[j] = kmalloc(sizeof(struct edma), GFP_KERNEL);
1387 if (!edma_info[j]) {
1388 status = -ENOMEM;
1389 goto fail1;
1391 memset(edma_info[j], 0, sizeof(struct edma));
1393 edma_info[j]->num_channels = min_t(unsigned, info[j].n_channel,
1394 EDMA_MAX_DMACH);
1395 edma_info[j]->num_slots = min_t(unsigned, info[j].n_slot,
1396 EDMA_MAX_PARAMENTRY);
1397 edma_info[j]->num_cc = min_t(unsigned, info[j].n_cc,
1398 EDMA_MAX_CC);
1400 edma_info[j]->default_queue = info[j].default_queue;
1401 if (!edma_info[j]->default_queue)
1402 edma_info[j]->default_queue = EVENTQ_1;
1404 dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1405 edmacc_regs_base[j]);
1407 for (i = 0; i < edma_info[j]->num_slots; i++)
1408 memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1409 &dummy_paramset, PARM_SIZE);
1411 noevent = info[j].noevent;
1412 if (noevent) {
1413 while (*noevent != -1)
1414 set_bit(*noevent++, edma_info[j]->edma_noevent);
1417 sprintf(irq_name, "edma%d", j);
1418 irq[j] = platform_get_irq_byname(pdev, irq_name);
1419 edma_info[j]->irq_res_start = irq[j];
1420 status = request_irq(irq[j], dma_irq_handler, 0, "edma",
1421 &pdev->dev);
1422 if (status < 0) {
1423 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1424 irq[j], status);
1425 goto fail;
1428 sprintf(irq_name, "edma%d_err", j);
1429 err_irq[j] = platform_get_irq_byname(pdev, irq_name);
1430 edma_info[j]->irq_res_end = err_irq[j];
1431 status = request_irq(err_irq[j], dma_ccerr_handler, 0,
1432 "edma_error", &pdev->dev);
1433 if (status < 0) {
1434 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1435 err_irq[j], status);
1436 goto fail;
1439 /* Everything lives on transfer controller 1 until otherwise
1440 * specified. This way, long transfers on the low priority queue
1441 * started by the codec engine will not cause audio defects.
1443 for (i = 0; i < edma_info[j]->num_channels; i++)
1444 map_dmach_queue(j, i, EVENTQ_1);
1446 queue_tc_mapping = info[j].queue_tc_mapping;
1447 queue_priority_mapping = info[j].queue_priority_mapping;
1449 /* Event queue to TC mapping */
1450 for (i = 0; queue_tc_mapping[i][0] != -1; i++)
1451 map_queue_tc(j, queue_tc_mapping[i][0],
1452 queue_tc_mapping[i][1]);
1454 /* Event queue priority mapping */
1455 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1456 assign_priority_to_queue(j,
1457 queue_priority_mapping[i][0],
1458 queue_priority_mapping[i][1]);
1460 /* Map the channel to param entry if channel mapping logic
1461 * exist
1463 if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1464 map_dmach_param(j);
1466 for (i = 0; i < info[j].n_region; i++) {
1467 edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1468 edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1469 edma_write_array(j, EDMA_QRAE, i, 0x0);
1471 arch_num_cc++;
1474 if (tc_errs_handled) {
1475 status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
1476 "edma_tc0", &pdev->dev);
1477 if (status < 0) {
1478 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1479 IRQ_TCERRINT0, status);
1480 return status;
1482 status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
1483 "edma_tc1", &pdev->dev);
1484 if (status < 0) {
1485 dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
1486 IRQ_TCERRINT, status);
1487 return status;
1491 return 0;
1493 fail:
1494 for (i = 0; i < EDMA_MAX_CC; i++) {
1495 if (err_irq[i])
1496 free_irq(err_irq[i], &pdev->dev);
1497 if (irq[i])
1498 free_irq(irq[i], &pdev->dev);
1500 fail1:
1501 for (i = 0; i < EDMA_MAX_CC; i++) {
1502 if (r[i])
1503 release_mem_region(r[i]->start, len[i]);
1504 if (edmacc_regs_base[i])
1505 iounmap(edmacc_regs_base[i]);
1506 kfree(edma_info[i]);
1508 return status;
1512 static struct platform_driver edma_driver = {
1513 .driver.name = "edma",
1516 static int __init edma_init(void)
1518 return platform_driver_probe(&edma_driver, edma_probe);
1520 arch_initcall(edma_init);