davinci: cp_intc: provide set_wake function
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / proc / task_mmu.c
blob47c03f4336b843ed1ba9a7f28b3f4824e1c663d1
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/mount.h>
4 #include <linux/seq_file.h>
5 #include <linux/highmem.h>
6 #include <linux/ptrace.h>
7 #include <linux/pagemap.h>
8 #include <linux/mempolicy.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
12 #include <asm/elf.h>
13 #include <asm/uaccess.h>
14 #include <asm/tlbflush.h>
15 #include "internal.h"
17 void task_mem(struct seq_file *m, struct mm_struct *mm)
19 unsigned long data, text, lib;
20 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
23 * Note: to minimize their overhead, mm maintains hiwater_vm and
24 * hiwater_rss only when about to *lower* total_vm or rss. Any
25 * collector of these hiwater stats must therefore get total_vm
26 * and rss too, which will usually be the higher. Barriers? not
27 * worth the effort, such snapshots can always be inconsistent.
29 hiwater_vm = total_vm = mm->total_vm;
30 if (hiwater_vm < mm->hiwater_vm)
31 hiwater_vm = mm->hiwater_vm;
32 hiwater_rss = total_rss = get_mm_rss(mm);
33 if (hiwater_rss < mm->hiwater_rss)
34 hiwater_rss = mm->hiwater_rss;
36 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
37 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
38 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
39 seq_printf(m,
40 "VmPeak:\t%8lu kB\n"
41 "VmSize:\t%8lu kB\n"
42 "VmLck:\t%8lu kB\n"
43 "VmHWM:\t%8lu kB\n"
44 "VmRSS:\t%8lu kB\n"
45 "VmData:\t%8lu kB\n"
46 "VmStk:\t%8lu kB\n"
47 "VmExe:\t%8lu kB\n"
48 "VmLib:\t%8lu kB\n"
49 "VmPTE:\t%8lu kB\n",
50 hiwater_vm << (PAGE_SHIFT-10),
51 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
52 mm->locked_vm << (PAGE_SHIFT-10),
53 hiwater_rss << (PAGE_SHIFT-10),
54 total_rss << (PAGE_SHIFT-10),
55 data << (PAGE_SHIFT-10),
56 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
57 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10);
60 unsigned long task_vsize(struct mm_struct *mm)
62 return PAGE_SIZE * mm->total_vm;
65 int task_statm(struct mm_struct *mm, int *shared, int *text,
66 int *data, int *resident)
68 *shared = get_mm_counter(mm, file_rss);
69 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
70 >> PAGE_SHIFT;
71 *data = mm->total_vm - mm->shared_vm;
72 *resident = *shared + get_mm_counter(mm, anon_rss);
73 return mm->total_vm;
76 static void pad_len_spaces(struct seq_file *m, int len)
78 len = 25 + sizeof(void*) * 6 - len;
79 if (len < 1)
80 len = 1;
81 seq_printf(m, "%*c", len, ' ');
84 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
86 if (vma && vma != priv->tail_vma) {
87 struct mm_struct *mm = vma->vm_mm;
88 up_read(&mm->mmap_sem);
89 mmput(mm);
93 static void *m_start(struct seq_file *m, loff_t *pos)
95 struct proc_maps_private *priv = m->private;
96 unsigned long last_addr = m->version;
97 struct mm_struct *mm;
98 struct vm_area_struct *vma, *tail_vma = NULL;
99 loff_t l = *pos;
101 /* Clear the per syscall fields in priv */
102 priv->task = NULL;
103 priv->tail_vma = NULL;
106 * We remember last_addr rather than next_addr to hit with
107 * mmap_cache most of the time. We have zero last_addr at
108 * the beginning and also after lseek. We will have -1 last_addr
109 * after the end of the vmas.
112 if (last_addr == -1UL)
113 return NULL;
115 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
116 if (!priv->task)
117 return NULL;
119 mm = mm_for_maps(priv->task);
120 if (!mm)
121 return NULL;
122 down_read(&mm->mmap_sem);
124 tail_vma = get_gate_vma(priv->task);
125 priv->tail_vma = tail_vma;
127 /* Start with last addr hint */
128 vma = find_vma(mm, last_addr);
129 if (last_addr && vma) {
130 vma = vma->vm_next;
131 goto out;
135 * Check the vma index is within the range and do
136 * sequential scan until m_index.
138 vma = NULL;
139 if ((unsigned long)l < mm->map_count) {
140 vma = mm->mmap;
141 while (l-- && vma)
142 vma = vma->vm_next;
143 goto out;
146 if (l != mm->map_count)
147 tail_vma = NULL; /* After gate vma */
149 out:
150 if (vma)
151 return vma;
153 /* End of vmas has been reached */
154 m->version = (tail_vma != NULL)? 0: -1UL;
155 up_read(&mm->mmap_sem);
156 mmput(mm);
157 return tail_vma;
160 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
162 struct proc_maps_private *priv = m->private;
163 struct vm_area_struct *vma = v;
164 struct vm_area_struct *tail_vma = priv->tail_vma;
166 (*pos)++;
167 if (vma && (vma != tail_vma) && vma->vm_next)
168 return vma->vm_next;
169 vma_stop(priv, vma);
170 return (vma != tail_vma)? tail_vma: NULL;
173 static void m_stop(struct seq_file *m, void *v)
175 struct proc_maps_private *priv = m->private;
176 struct vm_area_struct *vma = v;
178 vma_stop(priv, vma);
179 if (priv->task)
180 put_task_struct(priv->task);
183 static int do_maps_open(struct inode *inode, struct file *file,
184 const struct seq_operations *ops)
186 struct proc_maps_private *priv;
187 int ret = -ENOMEM;
188 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
189 if (priv) {
190 priv->pid = proc_pid(inode);
191 ret = seq_open(file, ops);
192 if (!ret) {
193 struct seq_file *m = file->private_data;
194 m->private = priv;
195 } else {
196 kfree(priv);
199 return ret;
202 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
204 struct mm_struct *mm = vma->vm_mm;
205 struct file *file = vma->vm_file;
206 int flags = vma->vm_flags;
207 unsigned long ino = 0;
208 unsigned long long pgoff = 0;
209 dev_t dev = 0;
210 int len;
212 if (file) {
213 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
214 dev = inode->i_sb->s_dev;
215 ino = inode->i_ino;
216 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
219 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
220 vma->vm_start,
221 vma->vm_end,
222 flags & VM_READ ? 'r' : '-',
223 flags & VM_WRITE ? 'w' : '-',
224 flags & VM_EXEC ? 'x' : '-',
225 flags & VM_MAYSHARE ? 's' : 'p',
226 pgoff,
227 MAJOR(dev), MINOR(dev), ino, &len);
230 * Print the dentry name for named mappings, and a
231 * special [heap] marker for the heap:
233 if (file) {
234 pad_len_spaces(m, len);
235 seq_path(m, &file->f_path, "\n");
236 } else {
237 const char *name = arch_vma_name(vma);
238 if (!name) {
239 if (mm) {
240 if (vma->vm_start <= mm->start_brk &&
241 vma->vm_end >= mm->brk) {
242 name = "[heap]";
243 } else if (vma->vm_start <= mm->start_stack &&
244 vma->vm_end >= mm->start_stack) {
245 name = "[stack]";
246 } else {
247 unsigned long stack_start;
248 struct proc_maps_private *pmp;
250 pmp = m->private;
251 stack_start = pmp->task->stack_start;
253 if (vma->vm_start <= stack_start &&
254 vma->vm_end >= stack_start) {
255 pad_len_spaces(m, len);
256 seq_printf(m,
257 "[threadstack:%08lx]",
258 #ifdef CONFIG_STACK_GROWSUP
259 vma->vm_end - stack_start
260 #else
261 stack_start - vma->vm_start
262 #endif
266 } else {
267 name = "[vdso]";
270 if (name) {
271 pad_len_spaces(m, len);
272 seq_puts(m, name);
275 seq_putc(m, '\n');
278 static int show_map(struct seq_file *m, void *v)
280 struct vm_area_struct *vma = v;
281 struct proc_maps_private *priv = m->private;
282 struct task_struct *task = priv->task;
284 show_map_vma(m, vma);
286 if (m->count < m->size) /* vma is copied successfully */
287 m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
288 return 0;
291 static const struct seq_operations proc_pid_maps_op = {
292 .start = m_start,
293 .next = m_next,
294 .stop = m_stop,
295 .show = show_map
298 static int maps_open(struct inode *inode, struct file *file)
300 return do_maps_open(inode, file, &proc_pid_maps_op);
303 const struct file_operations proc_maps_operations = {
304 .open = maps_open,
305 .read = seq_read,
306 .llseek = seq_lseek,
307 .release = seq_release_private,
311 * Proportional Set Size(PSS): my share of RSS.
313 * PSS of a process is the count of pages it has in memory, where each
314 * page is divided by the number of processes sharing it. So if a
315 * process has 1000 pages all to itself, and 1000 shared with one other
316 * process, its PSS will be 1500.
318 * To keep (accumulated) division errors low, we adopt a 64bit
319 * fixed-point pss counter to minimize division errors. So (pss >>
320 * PSS_SHIFT) would be the real byte count.
322 * A shift of 12 before division means (assuming 4K page size):
323 * - 1M 3-user-pages add up to 8KB errors;
324 * - supports mapcount up to 2^24, or 16M;
325 * - supports PSS up to 2^52 bytes, or 4PB.
327 #define PSS_SHIFT 12
329 #ifdef CONFIG_PROC_PAGE_MONITOR
330 struct mem_size_stats {
331 struct vm_area_struct *vma;
332 unsigned long resident;
333 unsigned long shared_clean;
334 unsigned long shared_dirty;
335 unsigned long private_clean;
336 unsigned long private_dirty;
337 unsigned long referenced;
338 unsigned long swap;
339 u64 pss;
342 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
343 struct mm_walk *walk)
345 struct mem_size_stats *mss = walk->private;
346 struct vm_area_struct *vma = mss->vma;
347 pte_t *pte, ptent;
348 spinlock_t *ptl;
349 struct page *page;
350 int mapcount;
352 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
353 for (; addr != end; pte++, addr += PAGE_SIZE) {
354 ptent = *pte;
356 if (is_swap_pte(ptent)) {
357 mss->swap += PAGE_SIZE;
358 continue;
361 if (!pte_present(ptent))
362 continue;
364 mss->resident += PAGE_SIZE;
366 page = vm_normal_page(vma, addr, ptent);
367 if (!page)
368 continue;
370 /* Accumulate the size in pages that have been accessed. */
371 if (pte_young(ptent) || PageReferenced(page))
372 mss->referenced += PAGE_SIZE;
373 mapcount = page_mapcount(page);
374 if (mapcount >= 2) {
375 if (pte_dirty(ptent))
376 mss->shared_dirty += PAGE_SIZE;
377 else
378 mss->shared_clean += PAGE_SIZE;
379 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
380 } else {
381 if (pte_dirty(ptent))
382 mss->private_dirty += PAGE_SIZE;
383 else
384 mss->private_clean += PAGE_SIZE;
385 mss->pss += (PAGE_SIZE << PSS_SHIFT);
388 pte_unmap_unlock(pte - 1, ptl);
389 cond_resched();
390 return 0;
393 static int show_smap(struct seq_file *m, void *v)
395 struct proc_maps_private *priv = m->private;
396 struct task_struct *task = priv->task;
397 struct vm_area_struct *vma = v;
398 struct mem_size_stats mss;
399 struct mm_walk smaps_walk = {
400 .pmd_entry = smaps_pte_range,
401 .mm = vma->vm_mm,
402 .private = &mss,
405 memset(&mss, 0, sizeof mss);
406 mss.vma = vma;
407 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
408 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
410 show_map_vma(m, vma);
412 seq_printf(m,
413 "Size: %8lu kB\n"
414 "Rss: %8lu kB\n"
415 "Pss: %8lu kB\n"
416 "Shared_Clean: %8lu kB\n"
417 "Shared_Dirty: %8lu kB\n"
418 "Private_Clean: %8lu kB\n"
419 "Private_Dirty: %8lu kB\n"
420 "Referenced: %8lu kB\n"
421 "Swap: %8lu kB\n"
422 "KernelPageSize: %8lu kB\n"
423 "MMUPageSize: %8lu kB\n",
424 (vma->vm_end - vma->vm_start) >> 10,
425 mss.resident >> 10,
426 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
427 mss.shared_clean >> 10,
428 mss.shared_dirty >> 10,
429 mss.private_clean >> 10,
430 mss.private_dirty >> 10,
431 mss.referenced >> 10,
432 mss.swap >> 10,
433 vma_kernel_pagesize(vma) >> 10,
434 vma_mmu_pagesize(vma) >> 10);
436 if (m->count < m->size) /* vma is copied successfully */
437 m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
438 return 0;
441 static const struct seq_operations proc_pid_smaps_op = {
442 .start = m_start,
443 .next = m_next,
444 .stop = m_stop,
445 .show = show_smap
448 static int smaps_open(struct inode *inode, struct file *file)
450 return do_maps_open(inode, file, &proc_pid_smaps_op);
453 const struct file_operations proc_smaps_operations = {
454 .open = smaps_open,
455 .read = seq_read,
456 .llseek = seq_lseek,
457 .release = seq_release_private,
460 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
461 unsigned long end, struct mm_walk *walk)
463 struct vm_area_struct *vma = walk->private;
464 pte_t *pte, ptent;
465 spinlock_t *ptl;
466 struct page *page;
468 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
469 for (; addr != end; pte++, addr += PAGE_SIZE) {
470 ptent = *pte;
471 if (!pte_present(ptent))
472 continue;
474 page = vm_normal_page(vma, addr, ptent);
475 if (!page)
476 continue;
478 /* Clear accessed and referenced bits. */
479 ptep_test_and_clear_young(vma, addr, pte);
480 ClearPageReferenced(page);
482 pte_unmap_unlock(pte - 1, ptl);
483 cond_resched();
484 return 0;
487 #define CLEAR_REFS_ALL 1
488 #define CLEAR_REFS_ANON 2
489 #define CLEAR_REFS_MAPPED 3
491 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
492 size_t count, loff_t *ppos)
494 struct task_struct *task;
495 char buffer[PROC_NUMBUF];
496 struct mm_struct *mm;
497 struct vm_area_struct *vma;
498 long type;
500 memset(buffer, 0, sizeof(buffer));
501 if (count > sizeof(buffer) - 1)
502 count = sizeof(buffer) - 1;
503 if (copy_from_user(buffer, buf, count))
504 return -EFAULT;
505 if (strict_strtol(strstrip(buffer), 10, &type))
506 return -EINVAL;
507 if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
508 return -EINVAL;
509 task = get_proc_task(file->f_path.dentry->d_inode);
510 if (!task)
511 return -ESRCH;
512 mm = get_task_mm(task);
513 if (mm) {
514 struct mm_walk clear_refs_walk = {
515 .pmd_entry = clear_refs_pte_range,
516 .mm = mm,
518 down_read(&mm->mmap_sem);
519 for (vma = mm->mmap; vma; vma = vma->vm_next) {
520 clear_refs_walk.private = vma;
521 if (is_vm_hugetlb_page(vma))
522 continue;
524 * Writing 1 to /proc/pid/clear_refs affects all pages.
526 * Writing 2 to /proc/pid/clear_refs only affects
527 * Anonymous pages.
529 * Writing 3 to /proc/pid/clear_refs only affects file
530 * mapped pages.
532 if (type == CLEAR_REFS_ANON && vma->vm_file)
533 continue;
534 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
535 continue;
536 walk_page_range(vma->vm_start, vma->vm_end,
537 &clear_refs_walk);
539 flush_tlb_mm(mm);
540 up_read(&mm->mmap_sem);
541 mmput(mm);
543 put_task_struct(task);
545 return count;
548 const struct file_operations proc_clear_refs_operations = {
549 .write = clear_refs_write,
552 struct pagemapread {
553 u64 __user *out, *end;
556 #define PM_ENTRY_BYTES sizeof(u64)
557 #define PM_STATUS_BITS 3
558 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
559 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
560 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
561 #define PM_PSHIFT_BITS 6
562 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
563 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
564 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
565 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
566 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
568 #define PM_PRESENT PM_STATUS(4LL)
569 #define PM_SWAP PM_STATUS(2LL)
570 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
571 #define PM_END_OF_BUFFER 1
573 static int add_to_pagemap(unsigned long addr, u64 pfn,
574 struct pagemapread *pm)
576 if (put_user(pfn, pm->out))
577 return -EFAULT;
578 pm->out++;
579 if (pm->out >= pm->end)
580 return PM_END_OF_BUFFER;
581 return 0;
584 static int pagemap_pte_hole(unsigned long start, unsigned long end,
585 struct mm_walk *walk)
587 struct pagemapread *pm = walk->private;
588 unsigned long addr;
589 int err = 0;
590 for (addr = start; addr < end; addr += PAGE_SIZE) {
591 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
592 if (err)
593 break;
595 return err;
598 static u64 swap_pte_to_pagemap_entry(pte_t pte)
600 swp_entry_t e = pte_to_swp_entry(pte);
601 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
604 static u64 pte_to_pagemap_entry(pte_t pte)
606 u64 pme = 0;
607 if (is_swap_pte(pte))
608 pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
609 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
610 else if (pte_present(pte))
611 pme = PM_PFRAME(pte_pfn(pte))
612 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
613 return pme;
616 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
617 struct mm_walk *walk)
619 struct vm_area_struct *vma;
620 struct pagemapread *pm = walk->private;
621 pte_t *pte;
622 int err = 0;
624 /* find the first VMA at or above 'addr' */
625 vma = find_vma(walk->mm, addr);
626 for (; addr != end; addr += PAGE_SIZE) {
627 u64 pfn = PM_NOT_PRESENT;
629 /* check to see if we've left 'vma' behind
630 * and need a new, higher one */
631 if (vma && (addr >= vma->vm_end))
632 vma = find_vma(walk->mm, addr);
634 /* check that 'vma' actually covers this address,
635 * and that it isn't a huge page vma */
636 if (vma && (vma->vm_start <= addr) &&
637 !is_vm_hugetlb_page(vma)) {
638 pte = pte_offset_map(pmd, addr);
639 pfn = pte_to_pagemap_entry(*pte);
640 /* unmap before userspace copy */
641 pte_unmap(pte);
643 err = add_to_pagemap(addr, pfn, pm);
644 if (err)
645 return err;
648 cond_resched();
650 return err;
653 static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
655 u64 pme = 0;
656 if (pte_present(pte))
657 pme = PM_PFRAME(pte_pfn(pte) + offset)
658 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
659 return pme;
662 static int pagemap_hugetlb_range(pte_t *pte, unsigned long addr,
663 unsigned long end, struct mm_walk *walk)
665 struct vm_area_struct *vma;
666 struct pagemapread *pm = walk->private;
667 struct hstate *hs = NULL;
668 int err = 0;
670 vma = find_vma(walk->mm, addr);
671 if (vma)
672 hs = hstate_vma(vma);
673 for (; addr != end; addr += PAGE_SIZE) {
674 u64 pfn = PM_NOT_PRESENT;
676 if (vma && (addr >= vma->vm_end)) {
677 vma = find_vma(walk->mm, addr);
678 if (vma)
679 hs = hstate_vma(vma);
682 if (vma && (vma->vm_start <= addr) && is_vm_hugetlb_page(vma)) {
683 /* calculate pfn of the "raw" page in the hugepage. */
684 int offset = (addr & ~huge_page_mask(hs)) >> PAGE_SHIFT;
685 pfn = huge_pte_to_pagemap_entry(*pte, offset);
687 err = add_to_pagemap(addr, pfn, pm);
688 if (err)
689 return err;
692 cond_resched();
694 return err;
698 * /proc/pid/pagemap - an array mapping virtual pages to pfns
700 * For each page in the address space, this file contains one 64-bit entry
701 * consisting of the following:
703 * Bits 0-55 page frame number (PFN) if present
704 * Bits 0-4 swap type if swapped
705 * Bits 5-55 swap offset if swapped
706 * Bits 55-60 page shift (page size = 1<<page shift)
707 * Bit 61 reserved for future use
708 * Bit 62 page swapped
709 * Bit 63 page present
711 * If the page is not present but in swap, then the PFN contains an
712 * encoding of the swap file number and the page's offset into the
713 * swap. Unmapped pages return a null PFN. This allows determining
714 * precisely which pages are mapped (or in swap) and comparing mapped
715 * pages between processes.
717 * Efficient users of this interface will use /proc/pid/maps to
718 * determine which areas of memory are actually mapped and llseek to
719 * skip over unmapped regions.
721 static ssize_t pagemap_read(struct file *file, char __user *buf,
722 size_t count, loff_t *ppos)
724 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
725 struct page **pages, *page;
726 unsigned long uaddr, uend;
727 struct mm_struct *mm;
728 struct pagemapread pm;
729 int pagecount;
730 int ret = -ESRCH;
731 struct mm_walk pagemap_walk = {};
732 unsigned long src;
733 unsigned long svpfn;
734 unsigned long start_vaddr;
735 unsigned long end_vaddr;
737 if (!task)
738 goto out;
740 ret = -EACCES;
741 if (!ptrace_may_access(task, PTRACE_MODE_READ))
742 goto out_task;
744 ret = -EINVAL;
745 /* file position must be aligned */
746 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
747 goto out_task;
749 ret = 0;
751 if (!count)
752 goto out_task;
754 mm = get_task_mm(task);
755 if (!mm)
756 goto out_task;
759 uaddr = (unsigned long)buf & PAGE_MASK;
760 uend = (unsigned long)(buf + count);
761 pagecount = (PAGE_ALIGN(uend) - uaddr) / PAGE_SIZE;
762 ret = 0;
763 if (pagecount == 0)
764 goto out_mm;
765 pages = kcalloc(pagecount, sizeof(struct page *), GFP_KERNEL);
766 ret = -ENOMEM;
767 if (!pages)
768 goto out_mm;
770 down_read(&current->mm->mmap_sem);
771 ret = get_user_pages(current, current->mm, uaddr, pagecount,
772 1, 0, pages, NULL);
773 up_read(&current->mm->mmap_sem);
775 if (ret < 0)
776 goto out_free;
778 if (ret != pagecount) {
779 pagecount = ret;
780 ret = -EFAULT;
781 goto out_pages;
784 pm.out = (u64 __user *)buf;
785 pm.end = (u64 __user *)(buf + count);
787 pagemap_walk.pmd_entry = pagemap_pte_range;
788 pagemap_walk.pte_hole = pagemap_pte_hole;
789 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
790 pagemap_walk.mm = mm;
791 pagemap_walk.private = &pm;
793 src = *ppos;
794 svpfn = src / PM_ENTRY_BYTES;
795 start_vaddr = svpfn << PAGE_SHIFT;
796 end_vaddr = TASK_SIZE_OF(task);
798 /* watch out for wraparound */
799 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
800 start_vaddr = end_vaddr;
803 * The odds are that this will stop walking way
804 * before end_vaddr, because the length of the
805 * user buffer is tracked in "pm", and the walk
806 * will stop when we hit the end of the buffer.
808 ret = walk_page_range(start_vaddr, end_vaddr, &pagemap_walk);
809 if (ret == PM_END_OF_BUFFER)
810 ret = 0;
811 /* don't need mmap_sem for these, but this looks cleaner */
812 *ppos += (char __user *)pm.out - buf;
813 if (!ret)
814 ret = (char __user *)pm.out - buf;
816 out_pages:
817 for (; pagecount; pagecount--) {
818 page = pages[pagecount-1];
819 if (!PageReserved(page))
820 SetPageDirty(page);
821 page_cache_release(page);
823 out_free:
824 kfree(pages);
825 out_mm:
826 mmput(mm);
827 out_task:
828 put_task_struct(task);
829 out:
830 return ret;
833 const struct file_operations proc_pagemap_operations = {
834 .llseek = mem_lseek, /* borrow this */
835 .read = pagemap_read,
837 #endif /* CONFIG_PROC_PAGE_MONITOR */
839 #ifdef CONFIG_NUMA
840 extern int show_numa_map(struct seq_file *m, void *v);
842 static const struct seq_operations proc_pid_numa_maps_op = {
843 .start = m_start,
844 .next = m_next,
845 .stop = m_stop,
846 .show = show_numa_map,
849 static int numa_maps_open(struct inode *inode, struct file *file)
851 return do_maps_open(inode, file, &proc_pid_numa_maps_op);
854 const struct file_operations proc_numa_maps_operations = {
855 .open = numa_maps_open,
856 .read = seq_read,
857 .llseek = seq_lseek,
858 .release = seq_release_private,
860 #endif