1 /* ZD1211 USB-WLAN driver for Linux
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/usb.h>
26 #include <linux/jiffies.h>
27 #include <net/ieee80211_radiotap.h>
34 struct zd_reg_alpha2_map
{
39 static struct zd_reg_alpha2_map reg_alpha2_map
[] = {
40 { ZD_REGDOMAIN_FCC
, "US" },
41 { ZD_REGDOMAIN_IC
, "CA" },
42 { ZD_REGDOMAIN_ETSI
, "DE" }, /* Generic ETSI, use most restrictive */
43 { ZD_REGDOMAIN_JAPAN
, "JP" },
44 { ZD_REGDOMAIN_JAPAN_ADD
, "JP" },
45 { ZD_REGDOMAIN_SPAIN
, "ES" },
46 { ZD_REGDOMAIN_FRANCE
, "FR" },
49 /* This table contains the hardware specific values for the modulation rates. */
50 static const struct ieee80211_rate zd_rates
[] = {
52 .hw_value
= ZD_CCK_RATE_1M
, },
54 .hw_value
= ZD_CCK_RATE_2M
,
55 .hw_value_short
= ZD_CCK_RATE_2M
| ZD_CCK_PREA_SHORT
,
56 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
58 .hw_value
= ZD_CCK_RATE_5_5M
,
59 .hw_value_short
= ZD_CCK_RATE_5_5M
| ZD_CCK_PREA_SHORT
,
60 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
62 .hw_value
= ZD_CCK_RATE_11M
,
63 .hw_value_short
= ZD_CCK_RATE_11M
| ZD_CCK_PREA_SHORT
,
64 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
66 .hw_value
= ZD_OFDM_RATE_6M
,
69 .hw_value
= ZD_OFDM_RATE_9M
,
72 .hw_value
= ZD_OFDM_RATE_12M
,
75 .hw_value
= ZD_OFDM_RATE_18M
,
78 .hw_value
= ZD_OFDM_RATE_24M
,
81 .hw_value
= ZD_OFDM_RATE_36M
,
84 .hw_value
= ZD_OFDM_RATE_48M
,
87 .hw_value
= ZD_OFDM_RATE_54M
,
91 static const struct ieee80211_channel zd_channels
[] = {
92 { .center_freq
= 2412, .hw_value
= 1 },
93 { .center_freq
= 2417, .hw_value
= 2 },
94 { .center_freq
= 2422, .hw_value
= 3 },
95 { .center_freq
= 2427, .hw_value
= 4 },
96 { .center_freq
= 2432, .hw_value
= 5 },
97 { .center_freq
= 2437, .hw_value
= 6 },
98 { .center_freq
= 2442, .hw_value
= 7 },
99 { .center_freq
= 2447, .hw_value
= 8 },
100 { .center_freq
= 2452, .hw_value
= 9 },
101 { .center_freq
= 2457, .hw_value
= 10 },
102 { .center_freq
= 2462, .hw_value
= 11 },
103 { .center_freq
= 2467, .hw_value
= 12 },
104 { .center_freq
= 2472, .hw_value
= 13 },
105 { .center_freq
= 2484, .hw_value
= 14 },
108 static void housekeeping_init(struct zd_mac
*mac
);
109 static void housekeeping_enable(struct zd_mac
*mac
);
110 static void housekeeping_disable(struct zd_mac
*mac
);
112 static int zd_reg2alpha2(u8 regdomain
, char *alpha2
)
115 struct zd_reg_alpha2_map
*reg_map
;
116 for (i
= 0; i
< ARRAY_SIZE(reg_alpha2_map
); i
++) {
117 reg_map
= ®_alpha2_map
[i
];
118 if (regdomain
== reg_map
->reg
) {
119 alpha2
[0] = reg_map
->alpha2
[0];
120 alpha2
[1] = reg_map
->alpha2
[1];
127 int zd_mac_preinit_hw(struct ieee80211_hw
*hw
)
131 struct zd_mac
*mac
= zd_hw_mac(hw
);
133 r
= zd_chip_read_mac_addr_fw(&mac
->chip
, addr
);
137 SET_IEEE80211_PERM_ADDR(hw
, addr
);
142 int zd_mac_init_hw(struct ieee80211_hw
*hw
)
145 struct zd_mac
*mac
= zd_hw_mac(hw
);
146 struct zd_chip
*chip
= &mac
->chip
;
148 u8 default_regdomain
;
150 r
= zd_chip_enable_int(chip
);
153 r
= zd_chip_init_hw(chip
);
157 ZD_ASSERT(!irqs_disabled());
159 r
= zd_read_regdomain(chip
, &default_regdomain
);
162 spin_lock_irq(&mac
->lock
);
163 mac
->regdomain
= mac
->default_regdomain
= default_regdomain
;
164 spin_unlock_irq(&mac
->lock
);
166 /* We must inform the device that we are doing encryption/decryption in
167 * software at the moment. */
168 r
= zd_set_encryption_type(chip
, ENC_SNIFFER
);
172 r
= zd_reg2alpha2(mac
->regdomain
, alpha2
);
176 r
= regulatory_hint(hw
->wiphy
, alpha2
);
178 zd_chip_disable_int(chip
);
183 void zd_mac_clear(struct zd_mac
*mac
)
185 flush_workqueue(zd_workqueue
);
186 zd_chip_clear(&mac
->chip
);
187 ZD_ASSERT(!spin_is_locked(&mac
->lock
));
188 ZD_MEMCLEAR(mac
, sizeof(struct zd_mac
));
191 static int set_rx_filter(struct zd_mac
*mac
)
194 u32 filter
= STA_RX_FILTER
;
196 spin_lock_irqsave(&mac
->lock
, flags
);
198 filter
|= RX_FILTER_CTRL
;
199 spin_unlock_irqrestore(&mac
->lock
, flags
);
201 return zd_iowrite32(&mac
->chip
, CR_RX_FILTER
, filter
);
204 static int set_mc_hash(struct zd_mac
*mac
)
206 struct zd_mc_hash hash
;
208 return zd_chip_set_multicast_hash(&mac
->chip
, &hash
);
211 static int zd_op_start(struct ieee80211_hw
*hw
)
213 struct zd_mac
*mac
= zd_hw_mac(hw
);
214 struct zd_chip
*chip
= &mac
->chip
;
215 struct zd_usb
*usb
= &chip
->usb
;
218 if (!usb
->initialized
) {
219 r
= zd_usb_init_hw(usb
);
224 r
= zd_chip_enable_int(chip
);
228 r
= zd_chip_set_basic_rates(chip
, CR_RATES_80211B
| CR_RATES_80211G
);
231 r
= set_rx_filter(mac
);
234 r
= set_mc_hash(mac
);
237 r
= zd_chip_switch_radio_on(chip
);
240 r
= zd_chip_enable_rxtx(chip
);
243 r
= zd_chip_enable_hwint(chip
);
247 housekeeping_enable(mac
);
250 zd_chip_disable_rxtx(chip
);
252 zd_chip_switch_radio_off(chip
);
254 zd_chip_disable_int(chip
);
259 static void zd_op_stop(struct ieee80211_hw
*hw
)
261 struct zd_mac
*mac
= zd_hw_mac(hw
);
262 struct zd_chip
*chip
= &mac
->chip
;
264 struct sk_buff_head
*ack_wait_queue
= &mac
->ack_wait_queue
;
266 /* The order here deliberately is a little different from the open()
267 * method, since we need to make sure there is no opportunity for RX
268 * frames to be processed by mac80211 after we have stopped it.
271 zd_chip_disable_rxtx(chip
);
272 housekeeping_disable(mac
);
273 flush_workqueue(zd_workqueue
);
275 zd_chip_disable_hwint(chip
);
276 zd_chip_switch_radio_off(chip
);
277 zd_chip_disable_int(chip
);
280 while ((skb
= skb_dequeue(ack_wait_queue
)))
281 dev_kfree_skb_any(skb
);
285 * tx_status - reports tx status of a packet if required
286 * @hw - a &struct ieee80211_hw pointer
288 * @flags: extra flags to set in the TX status info
289 * @ackssi: ACK signal strength
290 * @success - True for successful transmission of the frame
292 * This information calls ieee80211_tx_status_irqsafe() if required by the
293 * control information. It copies the control information into the status
296 * If no status information has been requested, the skb is freed.
298 static void tx_status(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
299 int ackssi
, bool success
)
301 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
303 ieee80211_tx_info_clear_status(info
);
306 info
->flags
|= IEEE80211_TX_STAT_ACK
;
307 info
->status
.ack_signal
= ackssi
;
308 ieee80211_tx_status_irqsafe(hw
, skb
);
312 * zd_mac_tx_failed - callback for failed frames
313 * @dev: the mac80211 wireless device
315 * This function is called if a frame couldn't be succesfully be
316 * transferred. The first frame from the tx queue, will be selected and
317 * reported as error to the upper layers.
319 void zd_mac_tx_failed(struct ieee80211_hw
*hw
)
321 struct sk_buff_head
*q
= &zd_hw_mac(hw
)->ack_wait_queue
;
324 skb
= skb_dequeue(q
);
328 tx_status(hw
, skb
, 0, 0);
332 * zd_mac_tx_to_dev - callback for USB layer
333 * @skb: a &sk_buff pointer
334 * @error: error value, 0 if transmission successful
336 * Informs the MAC layer that the frame has successfully transferred to the
337 * device. If an ACK is required and the transfer to the device has been
338 * successful, the packets are put on the @ack_wait_queue with
339 * the control set removed.
341 void zd_mac_tx_to_dev(struct sk_buff
*skb
, int error
)
343 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
344 struct ieee80211_hw
*hw
= info
->rate_driver_data
[0];
346 skb_pull(skb
, sizeof(struct zd_ctrlset
));
347 if (unlikely(error
||
348 (info
->flags
& IEEE80211_TX_CTL_NO_ACK
))) {
349 tx_status(hw
, skb
, 0, !error
);
351 struct sk_buff_head
*q
=
352 &zd_hw_mac(hw
)->ack_wait_queue
;
354 skb_queue_tail(q
, skb
);
355 while (skb_queue_len(q
) > ZD_MAC_MAX_ACK_WAITERS
)
356 zd_mac_tx_failed(hw
);
360 static int zd_calc_tx_length_us(u8
*service
, u8 zd_rate
, u16 tx_length
)
362 /* ZD_PURE_RATE() must be used to remove the modulation type flag of
363 * the zd-rate values.
365 static const u8 rate_divisor
[] = {
366 [ZD_PURE_RATE(ZD_CCK_RATE_1M
)] = 1,
367 [ZD_PURE_RATE(ZD_CCK_RATE_2M
)] = 2,
368 /* Bits must be doubled. */
369 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M
)] = 11,
370 [ZD_PURE_RATE(ZD_CCK_RATE_11M
)] = 11,
371 [ZD_PURE_RATE(ZD_OFDM_RATE_6M
)] = 6,
372 [ZD_PURE_RATE(ZD_OFDM_RATE_9M
)] = 9,
373 [ZD_PURE_RATE(ZD_OFDM_RATE_12M
)] = 12,
374 [ZD_PURE_RATE(ZD_OFDM_RATE_18M
)] = 18,
375 [ZD_PURE_RATE(ZD_OFDM_RATE_24M
)] = 24,
376 [ZD_PURE_RATE(ZD_OFDM_RATE_36M
)] = 36,
377 [ZD_PURE_RATE(ZD_OFDM_RATE_48M
)] = 48,
378 [ZD_PURE_RATE(ZD_OFDM_RATE_54M
)] = 54,
381 u32 bits
= (u32
)tx_length
* 8;
384 divisor
= rate_divisor
[ZD_PURE_RATE(zd_rate
)];
389 case ZD_CCK_RATE_5_5M
:
390 bits
= (2*bits
) + 10; /* round up to the next integer */
392 case ZD_CCK_RATE_11M
:
395 *service
&= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION
;
396 if (0 < t
&& t
<= 3) {
397 *service
|= ZD_PLCP_SERVICE_LENGTH_EXTENSION
;
400 bits
+= 10; /* round up to the next integer */
407 static void cs_set_control(struct zd_mac
*mac
, struct zd_ctrlset
*cs
,
408 struct ieee80211_hdr
*header
,
409 struct ieee80211_tx_info
*info
)
413 * - if backoff needed, enable bit 0
414 * - if burst (backoff not needed) disable bit 0
420 if (info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
)
421 cs
->control
|= ZD_CS_NEED_RANDOM_BACKOFF
;
424 if (is_multicast_ether_addr(header
->addr1
))
425 cs
->control
|= ZD_CS_MULTICAST
;
428 if (ieee80211_is_pspoll(header
->frame_control
))
429 cs
->control
|= ZD_CS_PS_POLL_FRAME
;
431 if (info
->control
.rates
[0].flags
& IEEE80211_TX_RC_USE_RTS_CTS
)
432 cs
->control
|= ZD_CS_RTS
;
434 if (info
->control
.rates
[0].flags
& IEEE80211_TX_RC_USE_CTS_PROTECT
)
435 cs
->control
|= ZD_CS_SELF_CTS
;
437 /* FIXME: Management frame? */
440 static int zd_mac_config_beacon(struct ieee80211_hw
*hw
, struct sk_buff
*beacon
)
442 struct zd_mac
*mac
= zd_hw_mac(hw
);
445 /* 4 more bytes for tail CRC */
446 u32 full_len
= beacon
->len
+ 4;
448 r
= zd_iowrite32(&mac
->chip
, CR_BCN_FIFO_SEMAPHORE
, 0);
451 r
= zd_ioread32(&mac
->chip
, CR_BCN_FIFO_SEMAPHORE
, &tmp
);
456 r
= zd_ioread32(&mac
->chip
, CR_BCN_FIFO_SEMAPHORE
, &tmp
);
459 if ((++j
% 100) == 0) {
460 printk(KERN_ERR
"CR_BCN_FIFO_SEMAPHORE not ready\n");
462 printk(KERN_ERR
"Giving up beacon config.\n");
469 r
= zd_iowrite32(&mac
->chip
, CR_BCN_FIFO
, full_len
- 1);
472 if (zd_chip_is_zd1211b(&mac
->chip
)) {
473 r
= zd_iowrite32(&mac
->chip
, CR_BCN_LENGTH
, full_len
- 1);
478 for (j
= 0 ; j
< beacon
->len
; j
++) {
479 r
= zd_iowrite32(&mac
->chip
, CR_BCN_FIFO
,
480 *((u8
*)(beacon
->data
+ j
)));
485 for (j
= 0; j
< 4; j
++) {
486 r
= zd_iowrite32(&mac
->chip
, CR_BCN_FIFO
, 0x0);
491 r
= zd_iowrite32(&mac
->chip
, CR_BCN_FIFO_SEMAPHORE
, 1);
495 /* 802.11b/g 2.4G CCK 1Mb
496 * 802.11a, not yet implemented, uses different values (see GPL vendor
499 return zd_iowrite32(&mac
->chip
, CR_BCN_PLCP_CFG
, 0x00000400 |
503 static int fill_ctrlset(struct zd_mac
*mac
,
507 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
508 unsigned int frag_len
= skb
->len
+ FCS_LEN
;
509 unsigned int packet_length
;
510 struct ieee80211_rate
*txrate
;
511 struct zd_ctrlset
*cs
= (struct zd_ctrlset
*)
512 skb_push(skb
, sizeof(struct zd_ctrlset
));
513 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
515 ZD_ASSERT(frag_len
<= 0xffff);
517 txrate
= ieee80211_get_tx_rate(mac
->hw
, info
);
519 cs
->modulation
= txrate
->hw_value
;
520 if (info
->control
.rates
[0].flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
521 cs
->modulation
= txrate
->hw_value_short
;
523 cs
->tx_length
= cpu_to_le16(frag_len
);
525 cs_set_control(mac
, cs
, hdr
, info
);
527 packet_length
= frag_len
+ sizeof(struct zd_ctrlset
) + 10;
528 ZD_ASSERT(packet_length
<= 0xffff);
529 /* ZD1211B: Computing the length difference this way, gives us
530 * flexibility to compute the packet length.
532 cs
->packet_length
= cpu_to_le16(zd_chip_is_zd1211b(&mac
->chip
) ?
533 packet_length
- frag_len
: packet_length
);
537 * - transmit frame length in microseconds
538 * - seems to be derived from frame length
539 * - see Cal_Us_Service() in zdinlinef.h
540 * - if macp->bTxBurstEnable is enabled, then multiply by 4
541 * - bTxBurstEnable is never set in the vendor driver
544 * - "for PLCP configuration"
545 * - always 0 except in some situations at 802.11b 11M
546 * - see line 53 of zdinlinef.h
549 r
= zd_calc_tx_length_us(&cs
->service
, ZD_RATE(cs
->modulation
),
550 le16_to_cpu(cs
->tx_length
));
553 cs
->current_length
= cpu_to_le16(r
);
554 cs
->next_frame_length
= 0;
560 * zd_op_tx - transmits a network frame to the device
562 * @dev: mac80211 hardware device
563 * @skb: socket buffer
564 * @control: the control structure
566 * This function transmit an IEEE 802.11 network frame to the device. The
567 * control block of the skbuff will be initialized. If necessary the incoming
568 * mac80211 queues will be stopped.
570 static int zd_op_tx(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
572 struct zd_mac
*mac
= zd_hw_mac(hw
);
573 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
576 r
= fill_ctrlset(mac
, skb
);
580 info
->rate_driver_data
[0] = hw
;
582 r
= zd_usb_tx(&mac
->chip
.usb
, skb
);
593 * filter_ack - filters incoming packets for acknowledgements
594 * @dev: the mac80211 device
595 * @rx_hdr: received header
596 * @stats: the status for the received packet
598 * This functions looks for ACK packets and tries to match them with the
599 * frames in the tx queue. If a match is found the frame will be dequeued and
600 * the upper layers is informed about the successful transmission. If
601 * mac80211 queues have been stopped and the number of frames still to be
602 * transmitted is low the queues will be opened again.
604 * Returns 1 if the frame was an ACK, 0 if it was ignored.
606 static int filter_ack(struct ieee80211_hw
*hw
, struct ieee80211_hdr
*rx_hdr
,
607 struct ieee80211_rx_status
*stats
)
610 struct sk_buff_head
*q
;
613 if (!ieee80211_is_ack(rx_hdr
->frame_control
))
616 q
= &zd_hw_mac(hw
)->ack_wait_queue
;
617 spin_lock_irqsave(&q
->lock
, flags
);
618 skb_queue_walk(q
, skb
) {
619 struct ieee80211_hdr
*tx_hdr
;
621 tx_hdr
= (struct ieee80211_hdr
*)skb
->data
;
622 if (likely(!memcmp(tx_hdr
->addr2
, rx_hdr
->addr1
, ETH_ALEN
)))
624 __skb_unlink(skb
, q
);
625 tx_status(hw
, skb
, stats
->signal
, 1);
630 spin_unlock_irqrestore(&q
->lock
, flags
);
634 int zd_mac_rx(struct ieee80211_hw
*hw
, const u8
*buffer
, unsigned int length
)
636 struct zd_mac
*mac
= zd_hw_mac(hw
);
637 struct ieee80211_rx_status stats
;
638 const struct rx_status
*status
;
646 if (length
< ZD_PLCP_HEADER_SIZE
+ 10 /* IEEE80211_1ADDR_LEN */ +
647 FCS_LEN
+ sizeof(struct rx_status
))
650 memset(&stats
, 0, sizeof(stats
));
652 /* Note about pass_failed_fcs and pass_ctrl access below:
653 * mac locking intentionally omitted here, as this is the only unlocked
654 * reader and the only writer is configure_filter. Plus, if there were
655 * any races accessing these variables, it wouldn't really matter.
656 * If mac80211 ever provides a way for us to access filter flags
657 * from outside configure_filter, we could improve on this. Also, this
658 * situation may change once we implement some kind of DMA-into-skb
661 /* Caller has to ensure that length >= sizeof(struct rx_status). */
662 status
= (struct rx_status
*)
663 (buffer
+ (length
- sizeof(struct rx_status
)));
664 if (status
->frame_status
& ZD_RX_ERROR
) {
665 if (mac
->pass_failed_fcs
&&
666 (status
->frame_status
& ZD_RX_CRC32_ERROR
)) {
667 stats
.flag
|= RX_FLAG_FAILED_FCS_CRC
;
674 stats
.freq
= zd_channels
[_zd_chip_get_channel(&mac
->chip
) - 1].center_freq
;
675 stats
.band
= IEEE80211_BAND_2GHZ
;
676 stats
.signal
= status
->signal_strength
;
677 stats
.qual
= zd_rx_qual_percent(buffer
,
678 length
- sizeof(struct rx_status
),
681 rate
= zd_rx_rate(buffer
, status
);
683 /* todo: return index in the big switches in zd_rx_rate instead */
684 for (i
= 0; i
< mac
->band
.n_bitrates
; i
++)
685 if (rate
== mac
->band
.bitrates
[i
].hw_value
)
688 length
-= ZD_PLCP_HEADER_SIZE
+ sizeof(struct rx_status
);
689 buffer
+= ZD_PLCP_HEADER_SIZE
;
691 /* Except for bad frames, filter each frame to see if it is an ACK, in
692 * which case our internal TX tracking is updated. Normally we then
693 * bail here as there's no need to pass ACKs on up to the stack, but
694 * there is also the case where the stack has requested us to pass
695 * control frames on up (pass_ctrl) which we must consider. */
697 filter_ack(hw
, (struct ieee80211_hdr
*)buffer
, &stats
)
701 fc
= *(__le16
*)buffer
;
702 need_padding
= ieee80211_is_data_qos(fc
) ^ ieee80211_has_a4(fc
);
704 skb
= dev_alloc_skb(length
+ (need_padding
? 2 : 0));
708 /* Make sure the the payload data is 4 byte aligned. */
712 memcpy(skb_put(skb
, length
), buffer
, length
);
714 ieee80211_rx_irqsafe(hw
, skb
, &stats
);
718 static int zd_op_add_interface(struct ieee80211_hw
*hw
,
719 struct ieee80211_if_init_conf
*conf
)
721 struct zd_mac
*mac
= zd_hw_mac(hw
);
723 /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
724 if (mac
->type
!= NL80211_IFTYPE_UNSPECIFIED
)
727 switch (conf
->type
) {
728 case NL80211_IFTYPE_MONITOR
:
729 case NL80211_IFTYPE_MESH_POINT
:
730 case NL80211_IFTYPE_STATION
:
731 case NL80211_IFTYPE_ADHOC
:
732 mac
->type
= conf
->type
;
738 return zd_write_mac_addr(&mac
->chip
, conf
->mac_addr
);
741 static void zd_op_remove_interface(struct ieee80211_hw
*hw
,
742 struct ieee80211_if_init_conf
*conf
)
744 struct zd_mac
*mac
= zd_hw_mac(hw
);
745 mac
->type
= NL80211_IFTYPE_UNSPECIFIED
;
746 zd_set_beacon_interval(&mac
->chip
, 0);
747 zd_write_mac_addr(&mac
->chip
, NULL
);
750 static int zd_op_config(struct ieee80211_hw
*hw
, u32 changed
)
752 struct zd_mac
*mac
= zd_hw_mac(hw
);
753 struct ieee80211_conf
*conf
= &hw
->conf
;
755 return zd_chip_set_channel(&mac
->chip
, conf
->channel
->hw_value
);
758 static void zd_process_intr(struct work_struct
*work
)
761 struct zd_mac
*mac
= container_of(work
, struct zd_mac
, process_intr
);
763 int_status
= le16_to_cpu(*(__le16
*)(mac
->intr_buffer
+4));
764 if (int_status
& INT_CFG_NEXT_BCN
)
765 dev_dbg_f_limit(zd_mac_dev(mac
), "INT_CFG_NEXT_BCN\n");
767 dev_dbg_f(zd_mac_dev(mac
), "Unsupported interrupt\n");
769 zd_chip_enable_hwint(&mac
->chip
);
773 static void set_multicast_hash_handler(struct work_struct
*work
)
776 container_of(work
, struct zd_mac
, set_multicast_hash_work
);
777 struct zd_mc_hash hash
;
779 spin_lock_irq(&mac
->lock
);
780 hash
= mac
->multicast_hash
;
781 spin_unlock_irq(&mac
->lock
);
783 zd_chip_set_multicast_hash(&mac
->chip
, &hash
);
786 static void set_rx_filter_handler(struct work_struct
*work
)
789 container_of(work
, struct zd_mac
, set_rx_filter_work
);
792 dev_dbg_f(zd_mac_dev(mac
), "\n");
793 r
= set_rx_filter(mac
);
795 dev_err(zd_mac_dev(mac
), "set_rx_filter_handler error %d\n", r
);
798 #define SUPPORTED_FIF_FLAGS \
799 (FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
800 FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
801 static void zd_op_configure_filter(struct ieee80211_hw
*hw
,
802 unsigned int changed_flags
,
803 unsigned int *new_flags
,
804 int mc_count
, struct dev_mc_list
*mclist
)
806 struct zd_mc_hash hash
;
807 struct zd_mac
*mac
= zd_hw_mac(hw
);
811 /* Only deal with supported flags */
812 changed_flags
&= SUPPORTED_FIF_FLAGS
;
813 *new_flags
&= SUPPORTED_FIF_FLAGS
;
815 /* changed_flags is always populated but this driver
816 * doesn't support all FIF flags so its possible we don't
817 * need to do anything */
821 if (*new_flags
& (FIF_PROMISC_IN_BSS
| FIF_ALLMULTI
)) {
822 zd_mc_add_all(&hash
);
825 for (i
= 0; i
< mc_count
; i
++) {
828 dev_dbg_f(zd_mac_dev(mac
), "mc addr %pM\n",
830 zd_mc_add_addr(&hash
, mclist
->dmi_addr
);
831 mclist
= mclist
->next
;
835 spin_lock_irqsave(&mac
->lock
, flags
);
836 mac
->pass_failed_fcs
= !!(*new_flags
& FIF_FCSFAIL
);
837 mac
->pass_ctrl
= !!(*new_flags
& FIF_CONTROL
);
838 mac
->multicast_hash
= hash
;
839 spin_unlock_irqrestore(&mac
->lock
, flags
);
840 queue_work(zd_workqueue
, &mac
->set_multicast_hash_work
);
842 if (changed_flags
& FIF_CONTROL
)
843 queue_work(zd_workqueue
, &mac
->set_rx_filter_work
);
845 /* no handling required for FIF_OTHER_BSS as we don't currently
846 * do BSSID filtering */
847 /* FIXME: in future it would be nice to enable the probe response
848 * filter (so that the driver doesn't see them) until
849 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
850 * have to schedule work to enable prbresp reception, which might
851 * happen too late. For now we'll just listen and forward them all the
855 static void set_rts_cts_work(struct work_struct
*work
)
858 container_of(work
, struct zd_mac
, set_rts_cts_work
);
860 unsigned int short_preamble
;
862 mutex_lock(&mac
->chip
.mutex
);
864 spin_lock_irqsave(&mac
->lock
, flags
);
865 mac
->updating_rts_rate
= 0;
866 short_preamble
= mac
->short_preamble
;
867 spin_unlock_irqrestore(&mac
->lock
, flags
);
869 zd_chip_set_rts_cts_rate_locked(&mac
->chip
, short_preamble
);
870 mutex_unlock(&mac
->chip
.mutex
);
873 static void zd_op_bss_info_changed(struct ieee80211_hw
*hw
,
874 struct ieee80211_vif
*vif
,
875 struct ieee80211_bss_conf
*bss_conf
,
878 struct zd_mac
*mac
= zd_hw_mac(hw
);
882 dev_dbg_f(zd_mac_dev(mac
), "changes: %x\n", changes
);
884 if (mac
->type
== NL80211_IFTYPE_MESH_POINT
||
885 mac
->type
== NL80211_IFTYPE_ADHOC
) {
887 if (changes
& BSS_CHANGED_BEACON
) {
888 struct sk_buff
*beacon
= ieee80211_beacon_get(hw
, vif
);
891 zd_mac_config_beacon(hw
, beacon
);
896 if (changes
& BSS_CHANGED_BEACON_ENABLED
) {
899 if (bss_conf
->enable_beacon
)
900 interval
= BCN_MODE_IBSS
|
901 bss_conf
->beacon_int
;
905 zd_set_beacon_interval(&mac
->chip
, interval
);
908 associated
= is_valid_ether_addr(bss_conf
->bssid
);
910 spin_lock_irq(&mac
->lock
);
911 mac
->associated
= associated
;
912 spin_unlock_irq(&mac
->lock
);
914 /* TODO: do hardware bssid filtering */
916 if (changes
& BSS_CHANGED_ERP_PREAMBLE
) {
917 spin_lock_irqsave(&mac
->lock
, flags
);
918 mac
->short_preamble
= bss_conf
->use_short_preamble
;
919 if (!mac
->updating_rts_rate
) {
920 mac
->updating_rts_rate
= 1;
921 /* FIXME: should disable TX here, until work has
922 * completed and RTS_CTS reg is updated */
923 queue_work(zd_workqueue
, &mac
->set_rts_cts_work
);
925 spin_unlock_irqrestore(&mac
->lock
, flags
);
929 static u64
zd_op_get_tsf(struct ieee80211_hw
*hw
)
931 struct zd_mac
*mac
= zd_hw_mac(hw
);
932 return zd_chip_get_tsf(&mac
->chip
);
935 static const struct ieee80211_ops zd_ops
= {
937 .start
= zd_op_start
,
939 .add_interface
= zd_op_add_interface
,
940 .remove_interface
= zd_op_remove_interface
,
941 .config
= zd_op_config
,
942 .configure_filter
= zd_op_configure_filter
,
943 .bss_info_changed
= zd_op_bss_info_changed
,
944 .get_tsf
= zd_op_get_tsf
,
947 struct ieee80211_hw
*zd_mac_alloc_hw(struct usb_interface
*intf
)
950 struct ieee80211_hw
*hw
;
952 hw
= ieee80211_alloc_hw(sizeof(struct zd_mac
), &zd_ops
);
954 dev_dbg_f(&intf
->dev
, "out of memory\n");
960 memset(mac
, 0, sizeof(*mac
));
961 spin_lock_init(&mac
->lock
);
964 mac
->type
= NL80211_IFTYPE_UNSPECIFIED
;
966 memcpy(mac
->channels
, zd_channels
, sizeof(zd_channels
));
967 memcpy(mac
->rates
, zd_rates
, sizeof(zd_rates
));
968 mac
->band
.n_bitrates
= ARRAY_SIZE(zd_rates
);
969 mac
->band
.bitrates
= mac
->rates
;
970 mac
->band
.n_channels
= ARRAY_SIZE(zd_channels
);
971 mac
->band
.channels
= mac
->channels
;
973 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = &mac
->band
;
975 hw
->flags
= IEEE80211_HW_RX_INCLUDES_FCS
|
976 IEEE80211_HW_SIGNAL_UNSPEC
;
978 hw
->wiphy
->interface_modes
=
979 BIT(NL80211_IFTYPE_MESH_POINT
) |
980 BIT(NL80211_IFTYPE_STATION
) |
981 BIT(NL80211_IFTYPE_ADHOC
);
983 hw
->max_signal
= 100;
985 hw
->extra_tx_headroom
= sizeof(struct zd_ctrlset
);
987 skb_queue_head_init(&mac
->ack_wait_queue
);
989 zd_chip_init(&mac
->chip
, hw
, intf
);
990 housekeeping_init(mac
);
991 INIT_WORK(&mac
->set_multicast_hash_work
, set_multicast_hash_handler
);
992 INIT_WORK(&mac
->set_rts_cts_work
, set_rts_cts_work
);
993 INIT_WORK(&mac
->set_rx_filter_work
, set_rx_filter_handler
);
994 INIT_WORK(&mac
->process_intr
, zd_process_intr
);
996 SET_IEEE80211_DEV(hw
, &intf
->dev
);
1000 #define LINK_LED_WORK_DELAY HZ
1002 static void link_led_handler(struct work_struct
*work
)
1004 struct zd_mac
*mac
=
1005 container_of(work
, struct zd_mac
, housekeeping
.link_led_work
.work
);
1006 struct zd_chip
*chip
= &mac
->chip
;
1010 spin_lock_irq(&mac
->lock
);
1011 is_associated
= mac
->associated
;
1012 spin_unlock_irq(&mac
->lock
);
1014 r
= zd_chip_control_leds(chip
,
1015 is_associated
? LED_ASSOCIATED
: LED_SCANNING
);
1017 dev_dbg_f(zd_mac_dev(mac
), "zd_chip_control_leds error %d\n", r
);
1019 queue_delayed_work(zd_workqueue
, &mac
->housekeeping
.link_led_work
,
1020 LINK_LED_WORK_DELAY
);
1023 static void housekeeping_init(struct zd_mac
*mac
)
1025 INIT_DELAYED_WORK(&mac
->housekeeping
.link_led_work
, link_led_handler
);
1028 static void housekeeping_enable(struct zd_mac
*mac
)
1030 dev_dbg_f(zd_mac_dev(mac
), "\n");
1031 queue_delayed_work(zd_workqueue
, &mac
->housekeeping
.link_led_work
,
1035 static void housekeeping_disable(struct zd_mac
*mac
)
1037 dev_dbg_f(zd_mac_dev(mac
), "\n");
1038 cancel_rearming_delayed_workqueue(zd_workqueue
,
1039 &mac
->housekeeping
.link_led_work
);
1040 zd_chip_control_leds(&mac
->chip
, LED_OFF
);