Btrfs: use the commit_root for reading free_space_inode crcs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / cfq-iosched.c
blobab7a9e6a9b1cb12c1952f5fd725ca2ea0dd20fd1
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "cfq.h"
20 * tunables
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static int cfq_group_idle = HZ / 125;
34 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35 static const int cfq_hist_divisor = 4;
38 * offset from end of service tree
40 #define CFQ_IDLE_DELAY (HZ / 5)
43 * below this threshold, we consider thinktime immediate
45 #define CFQ_MIN_TT (2)
47 #define CFQ_SLICE_SCALE (5)
48 #define CFQ_HW_QUEUE_MIN (5)
49 #define CFQ_SERVICE_SHIFT 12
51 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56 #define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
61 static struct kmem_cache *cfq_pool;
62 static struct kmem_cache *cfq_ioc_pool;
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65 static struct completion *ioc_gone;
66 static DEFINE_SPINLOCK(ioc_gone_lock);
68 static DEFINE_SPINLOCK(cic_index_lock);
69 static DEFINE_IDA(cic_index_ida);
71 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
75 #define sample_valid(samples) ((samples) > 80)
76 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
84 struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 unsigned total_weight;
89 u64 min_vdisktime;
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
95 * Per process-grouping structure
97 struct cfq_queue {
98 /* reference count */
99 int ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
141 pid_t pid;
143 u32 seek_history;
144 sector_t last_request_pos;
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors;
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
157 enum wl_prio_t {
158 BE_WORKLOAD = 0,
159 RT_WORKLOAD = 1,
160 IDLE_WORKLOAD = 2,
161 CFQ_PRIO_NR,
165 * Second index in the service_trees.
167 enum wl_type_t {
168 ASYNC_WORKLOAD = 0,
169 SYNC_NOIDLE_WORKLOAD = 1,
170 SYNC_WORKLOAD = 2
173 /* This is per cgroup per device grouping structure */
174 struct cfq_group {
175 /* group service_tree member */
176 struct rb_node rb_node;
178 /* group service_tree key */
179 u64 vdisktime;
180 unsigned int weight;
181 unsigned int new_weight;
182 bool needs_update;
184 /* number of cfqq currently on this group */
185 int nr_cfqq;
188 * Per group busy queus average. Useful for workload slice calc. We
189 * create the array for each prio class but at run time it is used
190 * only for RT and BE class and slot for IDLE class remains unused.
191 * This is primarily done to avoid confusion and a gcc warning.
193 unsigned int busy_queues_avg[CFQ_PRIO_NR];
195 * rr lists of queues with requests. We maintain service trees for
196 * RT and BE classes. These trees are subdivided in subclasses
197 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
198 * class there is no subclassification and all the cfq queues go on
199 * a single tree service_tree_idle.
200 * Counts are embedded in the cfq_rb_root
202 struct cfq_rb_root service_trees[2][3];
203 struct cfq_rb_root service_tree_idle;
205 unsigned long saved_workload_slice;
206 enum wl_type_t saved_workload;
207 enum wl_prio_t saved_serving_prio;
208 struct blkio_group blkg;
209 #ifdef CONFIG_CFQ_GROUP_IOSCHED
210 struct hlist_node cfqd_node;
211 int ref;
212 #endif
213 /* number of requests that are on the dispatch list or inside driver */
214 int dispatched;
218 * Per block device queue structure
220 struct cfq_data {
221 struct request_queue *queue;
222 /* Root service tree for cfq_groups */
223 struct cfq_rb_root grp_service_tree;
224 struct cfq_group root_group;
227 * The priority currently being served
229 enum wl_prio_t serving_prio;
230 enum wl_type_t serving_type;
231 unsigned long workload_expires;
232 struct cfq_group *serving_group;
235 * Each priority tree is sorted by next_request position. These
236 * trees are used when determining if two or more queues are
237 * interleaving requests (see cfq_close_cooperator).
239 struct rb_root prio_trees[CFQ_PRIO_LISTS];
241 unsigned int busy_queues;
242 unsigned int busy_sync_queues;
244 int rq_in_driver;
245 int rq_in_flight[2];
248 * queue-depth detection
250 int rq_queued;
251 int hw_tag;
253 * hw_tag can be
254 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
256 * 0 => no NCQ
258 int hw_tag_est_depth;
259 unsigned int hw_tag_samples;
262 * idle window management
264 struct timer_list idle_slice_timer;
265 struct work_struct unplug_work;
267 struct cfq_queue *active_queue;
268 struct cfq_io_context *active_cic;
271 * async queue for each priority case
273 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
274 struct cfq_queue *async_idle_cfqq;
276 sector_t last_position;
279 * tunables, see top of file
281 unsigned int cfq_quantum;
282 unsigned int cfq_fifo_expire[2];
283 unsigned int cfq_back_penalty;
284 unsigned int cfq_back_max;
285 unsigned int cfq_slice[2];
286 unsigned int cfq_slice_async_rq;
287 unsigned int cfq_slice_idle;
288 unsigned int cfq_group_idle;
289 unsigned int cfq_latency;
291 unsigned int cic_index;
292 struct list_head cic_list;
295 * Fallback dummy cfqq for extreme OOM conditions
297 struct cfq_queue oom_cfqq;
299 unsigned long last_delayed_sync;
301 /* List of cfq groups being managed on this device*/
302 struct hlist_head cfqg_list;
303 struct rcu_head rcu;
306 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
308 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
309 enum wl_prio_t prio,
310 enum wl_type_t type)
312 if (!cfqg)
313 return NULL;
315 if (prio == IDLE_WORKLOAD)
316 return &cfqg->service_tree_idle;
318 return &cfqg->service_trees[prio][type];
321 enum cfqq_state_flags {
322 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
323 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
324 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
325 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
326 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
327 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
328 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
329 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
330 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
331 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
332 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
333 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
334 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
337 #define CFQ_CFQQ_FNS(name) \
338 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
340 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
342 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
344 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
346 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
348 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
351 CFQ_CFQQ_FNS(on_rr);
352 CFQ_CFQQ_FNS(wait_request);
353 CFQ_CFQQ_FNS(must_dispatch);
354 CFQ_CFQQ_FNS(must_alloc_slice);
355 CFQ_CFQQ_FNS(fifo_expire);
356 CFQ_CFQQ_FNS(idle_window);
357 CFQ_CFQQ_FNS(prio_changed);
358 CFQ_CFQQ_FNS(slice_new);
359 CFQ_CFQQ_FNS(sync);
360 CFQ_CFQQ_FNS(coop);
361 CFQ_CFQQ_FNS(split_coop);
362 CFQ_CFQQ_FNS(deep);
363 CFQ_CFQQ_FNS(wait_busy);
364 #undef CFQ_CFQQ_FNS
366 #ifdef CONFIG_CFQ_GROUP_IOSCHED
367 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
368 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
369 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
370 blkg_path(&(cfqq)->cfqg->blkg), ##args);
372 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
373 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
374 blkg_path(&(cfqg)->blkg), ##args); \
376 #else
377 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
378 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
379 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
380 #endif
381 #define cfq_log(cfqd, fmt, args...) \
382 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
384 /* Traverses through cfq group service trees */
385 #define for_each_cfqg_st(cfqg, i, j, st) \
386 for (i = 0; i <= IDLE_WORKLOAD; i++) \
387 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
388 : &cfqg->service_tree_idle; \
389 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
390 (i == IDLE_WORKLOAD && j == 0); \
391 j++, st = i < IDLE_WORKLOAD ? \
392 &cfqg->service_trees[i][j]: NULL) \
395 static inline bool iops_mode(struct cfq_data *cfqd)
398 * If we are not idling on queues and it is a NCQ drive, parallel
399 * execution of requests is on and measuring time is not possible
400 * in most of the cases until and unless we drive shallower queue
401 * depths and that becomes a performance bottleneck. In such cases
402 * switch to start providing fairness in terms of number of IOs.
404 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
405 return true;
406 else
407 return false;
410 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
412 if (cfq_class_idle(cfqq))
413 return IDLE_WORKLOAD;
414 if (cfq_class_rt(cfqq))
415 return RT_WORKLOAD;
416 return BE_WORKLOAD;
420 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
422 if (!cfq_cfqq_sync(cfqq))
423 return ASYNC_WORKLOAD;
424 if (!cfq_cfqq_idle_window(cfqq))
425 return SYNC_NOIDLE_WORKLOAD;
426 return SYNC_WORKLOAD;
429 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
430 struct cfq_data *cfqd,
431 struct cfq_group *cfqg)
433 if (wl == IDLE_WORKLOAD)
434 return cfqg->service_tree_idle.count;
436 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
437 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
438 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
441 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
442 struct cfq_group *cfqg)
444 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
445 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
448 static void cfq_dispatch_insert(struct request_queue *, struct request *);
449 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
450 struct io_context *, gfp_t);
451 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
452 struct io_context *);
454 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
455 bool is_sync)
457 return cic->cfqq[is_sync];
460 static inline void cic_set_cfqq(struct cfq_io_context *cic,
461 struct cfq_queue *cfqq, bool is_sync)
463 cic->cfqq[is_sync] = cfqq;
466 #define CIC_DEAD_KEY 1ul
467 #define CIC_DEAD_INDEX_SHIFT 1
469 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
471 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
474 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
476 struct cfq_data *cfqd = cic->key;
478 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
479 return NULL;
481 return cfqd;
485 * We regard a request as SYNC, if it's either a read or has the SYNC bit
486 * set (in which case it could also be direct WRITE).
488 static inline bool cfq_bio_sync(struct bio *bio)
490 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
494 * scheduler run of queue, if there are requests pending and no one in the
495 * driver that will restart queueing
497 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
499 if (cfqd->busy_queues) {
500 cfq_log(cfqd, "schedule dispatch");
501 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
506 * Scale schedule slice based on io priority. Use the sync time slice only
507 * if a queue is marked sync and has sync io queued. A sync queue with async
508 * io only, should not get full sync slice length.
510 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
511 unsigned short prio)
513 const int base_slice = cfqd->cfq_slice[sync];
515 WARN_ON(prio >= IOPRIO_BE_NR);
517 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
520 static inline int
521 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
523 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
526 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
528 u64 d = delta << CFQ_SERVICE_SHIFT;
530 d = d * BLKIO_WEIGHT_DEFAULT;
531 do_div(d, cfqg->weight);
532 return d;
535 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
537 s64 delta = (s64)(vdisktime - min_vdisktime);
538 if (delta > 0)
539 min_vdisktime = vdisktime;
541 return min_vdisktime;
544 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
546 s64 delta = (s64)(vdisktime - min_vdisktime);
547 if (delta < 0)
548 min_vdisktime = vdisktime;
550 return min_vdisktime;
553 static void update_min_vdisktime(struct cfq_rb_root *st)
555 struct cfq_group *cfqg;
557 if (st->left) {
558 cfqg = rb_entry_cfqg(st->left);
559 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
560 cfqg->vdisktime);
565 * get averaged number of queues of RT/BE priority.
566 * average is updated, with a formula that gives more weight to higher numbers,
567 * to quickly follows sudden increases and decrease slowly
570 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
571 struct cfq_group *cfqg, bool rt)
573 unsigned min_q, max_q;
574 unsigned mult = cfq_hist_divisor - 1;
575 unsigned round = cfq_hist_divisor / 2;
576 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
578 min_q = min(cfqg->busy_queues_avg[rt], busy);
579 max_q = max(cfqg->busy_queues_avg[rt], busy);
580 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
581 cfq_hist_divisor;
582 return cfqg->busy_queues_avg[rt];
585 static inline unsigned
586 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
588 struct cfq_rb_root *st = &cfqd->grp_service_tree;
590 return cfq_target_latency * cfqg->weight / st->total_weight;
593 static inline unsigned
594 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
596 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
597 if (cfqd->cfq_latency) {
599 * interested queues (we consider only the ones with the same
600 * priority class in the cfq group)
602 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
603 cfq_class_rt(cfqq));
604 unsigned sync_slice = cfqd->cfq_slice[1];
605 unsigned expect_latency = sync_slice * iq;
606 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
608 if (expect_latency > group_slice) {
609 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
610 /* scale low_slice according to IO priority
611 * and sync vs async */
612 unsigned low_slice =
613 min(slice, base_low_slice * slice / sync_slice);
614 /* the adapted slice value is scaled to fit all iqs
615 * into the target latency */
616 slice = max(slice * group_slice / expect_latency,
617 low_slice);
620 return slice;
623 static inline void
624 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
626 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
628 cfqq->slice_start = jiffies;
629 cfqq->slice_end = jiffies + slice;
630 cfqq->allocated_slice = slice;
631 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
635 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
636 * isn't valid until the first request from the dispatch is activated
637 * and the slice time set.
639 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
641 if (cfq_cfqq_slice_new(cfqq))
642 return false;
643 if (time_before(jiffies, cfqq->slice_end))
644 return false;
646 return true;
650 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
651 * We choose the request that is closest to the head right now. Distance
652 * behind the head is penalized and only allowed to a certain extent.
654 static struct request *
655 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
657 sector_t s1, s2, d1 = 0, d2 = 0;
658 unsigned long back_max;
659 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
660 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
661 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
663 if (rq1 == NULL || rq1 == rq2)
664 return rq2;
665 if (rq2 == NULL)
666 return rq1;
668 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
669 return rq1;
670 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
671 return rq2;
672 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
673 return rq1;
674 else if ((rq2->cmd_flags & REQ_META) &&
675 !(rq1->cmd_flags & REQ_META))
676 return rq2;
678 s1 = blk_rq_pos(rq1);
679 s2 = blk_rq_pos(rq2);
682 * by definition, 1KiB is 2 sectors
684 back_max = cfqd->cfq_back_max * 2;
687 * Strict one way elevator _except_ in the case where we allow
688 * short backward seeks which are biased as twice the cost of a
689 * similar forward seek.
691 if (s1 >= last)
692 d1 = s1 - last;
693 else if (s1 + back_max >= last)
694 d1 = (last - s1) * cfqd->cfq_back_penalty;
695 else
696 wrap |= CFQ_RQ1_WRAP;
698 if (s2 >= last)
699 d2 = s2 - last;
700 else if (s2 + back_max >= last)
701 d2 = (last - s2) * cfqd->cfq_back_penalty;
702 else
703 wrap |= CFQ_RQ2_WRAP;
705 /* Found required data */
708 * By doing switch() on the bit mask "wrap" we avoid having to
709 * check two variables for all permutations: --> faster!
711 switch (wrap) {
712 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
713 if (d1 < d2)
714 return rq1;
715 else if (d2 < d1)
716 return rq2;
717 else {
718 if (s1 >= s2)
719 return rq1;
720 else
721 return rq2;
724 case CFQ_RQ2_WRAP:
725 return rq1;
726 case CFQ_RQ1_WRAP:
727 return rq2;
728 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
729 default:
731 * Since both rqs are wrapped,
732 * start with the one that's further behind head
733 * (--> only *one* back seek required),
734 * since back seek takes more time than forward.
736 if (s1 <= s2)
737 return rq1;
738 else
739 return rq2;
744 * The below is leftmost cache rbtree addon
746 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
748 /* Service tree is empty */
749 if (!root->count)
750 return NULL;
752 if (!root->left)
753 root->left = rb_first(&root->rb);
755 if (root->left)
756 return rb_entry(root->left, struct cfq_queue, rb_node);
758 return NULL;
761 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
763 if (!root->left)
764 root->left = rb_first(&root->rb);
766 if (root->left)
767 return rb_entry_cfqg(root->left);
769 return NULL;
772 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
774 rb_erase(n, root);
775 RB_CLEAR_NODE(n);
778 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
780 if (root->left == n)
781 root->left = NULL;
782 rb_erase_init(n, &root->rb);
783 --root->count;
787 * would be nice to take fifo expire time into account as well
789 static struct request *
790 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
791 struct request *last)
793 struct rb_node *rbnext = rb_next(&last->rb_node);
794 struct rb_node *rbprev = rb_prev(&last->rb_node);
795 struct request *next = NULL, *prev = NULL;
797 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
799 if (rbprev)
800 prev = rb_entry_rq(rbprev);
802 if (rbnext)
803 next = rb_entry_rq(rbnext);
804 else {
805 rbnext = rb_first(&cfqq->sort_list);
806 if (rbnext && rbnext != &last->rb_node)
807 next = rb_entry_rq(rbnext);
810 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
813 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
814 struct cfq_queue *cfqq)
817 * just an approximation, should be ok.
819 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
820 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
823 static inline s64
824 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
826 return cfqg->vdisktime - st->min_vdisktime;
829 static void
830 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
832 struct rb_node **node = &st->rb.rb_node;
833 struct rb_node *parent = NULL;
834 struct cfq_group *__cfqg;
835 s64 key = cfqg_key(st, cfqg);
836 int left = 1;
838 while (*node != NULL) {
839 parent = *node;
840 __cfqg = rb_entry_cfqg(parent);
842 if (key < cfqg_key(st, __cfqg))
843 node = &parent->rb_left;
844 else {
845 node = &parent->rb_right;
846 left = 0;
850 if (left)
851 st->left = &cfqg->rb_node;
853 rb_link_node(&cfqg->rb_node, parent, node);
854 rb_insert_color(&cfqg->rb_node, &st->rb);
857 static void
858 cfq_update_group_weight(struct cfq_group *cfqg)
860 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
861 if (cfqg->needs_update) {
862 cfqg->weight = cfqg->new_weight;
863 cfqg->needs_update = false;
867 static void
868 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
870 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
872 cfq_update_group_weight(cfqg);
873 __cfq_group_service_tree_add(st, cfqg);
874 st->total_weight += cfqg->weight;
877 static void
878 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
880 struct cfq_rb_root *st = &cfqd->grp_service_tree;
881 struct cfq_group *__cfqg;
882 struct rb_node *n;
884 cfqg->nr_cfqq++;
885 if (!RB_EMPTY_NODE(&cfqg->rb_node))
886 return;
889 * Currently put the group at the end. Later implement something
890 * so that groups get lesser vtime based on their weights, so that
891 * if group does not loose all if it was not continuously backlogged.
893 n = rb_last(&st->rb);
894 if (n) {
895 __cfqg = rb_entry_cfqg(n);
896 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
897 } else
898 cfqg->vdisktime = st->min_vdisktime;
899 cfq_group_service_tree_add(st, cfqg);
902 static void
903 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
905 st->total_weight -= cfqg->weight;
906 if (!RB_EMPTY_NODE(&cfqg->rb_node))
907 cfq_rb_erase(&cfqg->rb_node, st);
910 static void
911 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
913 struct cfq_rb_root *st = &cfqd->grp_service_tree;
915 BUG_ON(cfqg->nr_cfqq < 1);
916 cfqg->nr_cfqq--;
918 /* If there are other cfq queues under this group, don't delete it */
919 if (cfqg->nr_cfqq)
920 return;
922 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
923 cfq_group_service_tree_del(st, cfqg);
924 cfqg->saved_workload_slice = 0;
925 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
928 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
929 unsigned int *unaccounted_time)
931 unsigned int slice_used;
934 * Queue got expired before even a single request completed or
935 * got expired immediately after first request completion.
937 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
939 * Also charge the seek time incurred to the group, otherwise
940 * if there are mutiple queues in the group, each can dispatch
941 * a single request on seeky media and cause lots of seek time
942 * and group will never know it.
944 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
946 } else {
947 slice_used = jiffies - cfqq->slice_start;
948 if (slice_used > cfqq->allocated_slice) {
949 *unaccounted_time = slice_used - cfqq->allocated_slice;
950 slice_used = cfqq->allocated_slice;
952 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
953 *unaccounted_time += cfqq->slice_start -
954 cfqq->dispatch_start;
957 return slice_used;
960 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
961 struct cfq_queue *cfqq)
963 struct cfq_rb_root *st = &cfqd->grp_service_tree;
964 unsigned int used_sl, charge, unaccounted_sl = 0;
965 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
966 - cfqg->service_tree_idle.count;
968 BUG_ON(nr_sync < 0);
969 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
971 if (iops_mode(cfqd))
972 charge = cfqq->slice_dispatch;
973 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
974 charge = cfqq->allocated_slice;
976 /* Can't update vdisktime while group is on service tree */
977 cfq_group_service_tree_del(st, cfqg);
978 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
979 /* If a new weight was requested, update now, off tree */
980 cfq_group_service_tree_add(st, cfqg);
982 /* This group is being expired. Save the context */
983 if (time_after(cfqd->workload_expires, jiffies)) {
984 cfqg->saved_workload_slice = cfqd->workload_expires
985 - jiffies;
986 cfqg->saved_workload = cfqd->serving_type;
987 cfqg->saved_serving_prio = cfqd->serving_prio;
988 } else
989 cfqg->saved_workload_slice = 0;
991 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
992 st->min_vdisktime);
993 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
994 " sect=%u", used_sl, cfqq->slice_dispatch, charge,
995 iops_mode(cfqd), cfqq->nr_sectors);
996 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
997 unaccounted_sl);
998 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1001 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1002 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1004 if (blkg)
1005 return container_of(blkg, struct cfq_group, blkg);
1006 return NULL;
1009 void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1010 unsigned int weight)
1012 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1013 cfqg->new_weight = weight;
1014 cfqg->needs_update = true;
1017 static struct cfq_group * cfq_find_alloc_cfqg(struct cfq_data *cfqd,
1018 struct blkio_cgroup *blkcg, int create)
1020 struct cfq_group *cfqg = NULL;
1021 void *key = cfqd;
1022 int i, j;
1023 struct cfq_rb_root *st;
1024 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1025 unsigned int major, minor;
1027 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1028 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1029 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1030 cfqg->blkg.dev = MKDEV(major, minor);
1031 goto done;
1033 if (cfqg || !create)
1034 goto done;
1036 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1037 if (!cfqg)
1038 goto done;
1040 for_each_cfqg_st(cfqg, i, j, st)
1041 *st = CFQ_RB_ROOT;
1042 RB_CLEAR_NODE(&cfqg->rb_node);
1045 * Take the initial reference that will be released on destroy
1046 * This can be thought of a joint reference by cgroup and
1047 * elevator which will be dropped by either elevator exit
1048 * or cgroup deletion path depending on who is exiting first.
1050 cfqg->ref = 1;
1053 * Add group onto cgroup list. It might happen that bdi->dev is
1054 * not initialized yet. Initialize this new group without major
1055 * and minor info and this info will be filled in once a new thread
1056 * comes for IO. See code above.
1058 if (bdi->dev) {
1059 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1060 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1061 MKDEV(major, minor));
1062 } else
1063 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1066 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1068 /* Add group on cfqd list */
1069 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1071 done:
1072 return cfqg;
1076 * Search for the cfq group current task belongs to. If create = 1, then also
1077 * create the cfq group if it does not exist. request_queue lock must be held.
1079 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1081 struct blkio_cgroup *blkcg;
1082 struct cfq_group *cfqg = NULL;
1084 rcu_read_lock();
1085 blkcg = task_blkio_cgroup(current);
1086 cfqg = cfq_find_alloc_cfqg(cfqd, blkcg, create);
1087 if (!cfqg && create)
1088 cfqg = &cfqd->root_group;
1089 rcu_read_unlock();
1090 return cfqg;
1093 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1095 cfqg->ref++;
1096 return cfqg;
1099 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1101 /* Currently, all async queues are mapped to root group */
1102 if (!cfq_cfqq_sync(cfqq))
1103 cfqg = &cfqq->cfqd->root_group;
1105 cfqq->cfqg = cfqg;
1106 /* cfqq reference on cfqg */
1107 cfqq->cfqg->ref++;
1110 static void cfq_put_cfqg(struct cfq_group *cfqg)
1112 struct cfq_rb_root *st;
1113 int i, j;
1115 BUG_ON(cfqg->ref <= 0);
1116 cfqg->ref--;
1117 if (cfqg->ref)
1118 return;
1119 for_each_cfqg_st(cfqg, i, j, st)
1120 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1121 kfree(cfqg);
1124 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1126 /* Something wrong if we are trying to remove same group twice */
1127 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1129 hlist_del_init(&cfqg->cfqd_node);
1132 * Put the reference taken at the time of creation so that when all
1133 * queues are gone, group can be destroyed.
1135 cfq_put_cfqg(cfqg);
1138 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1140 struct hlist_node *pos, *n;
1141 struct cfq_group *cfqg;
1143 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1145 * If cgroup removal path got to blk_group first and removed
1146 * it from cgroup list, then it will take care of destroying
1147 * cfqg also.
1149 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1150 cfq_destroy_cfqg(cfqd, cfqg);
1155 * Blk cgroup controller notification saying that blkio_group object is being
1156 * delinked as associated cgroup object is going away. That also means that
1157 * no new IO will come in this group. So get rid of this group as soon as
1158 * any pending IO in the group is finished.
1160 * This function is called under rcu_read_lock(). key is the rcu protected
1161 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1162 * read lock.
1164 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1165 * it should not be NULL as even if elevator was exiting, cgroup deltion
1166 * path got to it first.
1168 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1170 unsigned long flags;
1171 struct cfq_data *cfqd = key;
1173 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1174 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1175 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1178 #else /* GROUP_IOSCHED */
1179 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1181 return &cfqd->root_group;
1184 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1186 return cfqg;
1189 static inline void
1190 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1191 cfqq->cfqg = cfqg;
1194 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1195 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1197 #endif /* GROUP_IOSCHED */
1200 * The cfqd->service_trees holds all pending cfq_queue's that have
1201 * requests waiting to be processed. It is sorted in the order that
1202 * we will service the queues.
1204 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1205 bool add_front)
1207 struct rb_node **p, *parent;
1208 struct cfq_queue *__cfqq;
1209 unsigned long rb_key;
1210 struct cfq_rb_root *service_tree;
1211 int left;
1212 int new_cfqq = 1;
1213 int group_changed = 0;
1215 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1216 cfqq_type(cfqq));
1217 if (cfq_class_idle(cfqq)) {
1218 rb_key = CFQ_IDLE_DELAY;
1219 parent = rb_last(&service_tree->rb);
1220 if (parent && parent != &cfqq->rb_node) {
1221 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1222 rb_key += __cfqq->rb_key;
1223 } else
1224 rb_key += jiffies;
1225 } else if (!add_front) {
1227 * Get our rb key offset. Subtract any residual slice
1228 * value carried from last service. A negative resid
1229 * count indicates slice overrun, and this should position
1230 * the next service time further away in the tree.
1232 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1233 rb_key -= cfqq->slice_resid;
1234 cfqq->slice_resid = 0;
1235 } else {
1236 rb_key = -HZ;
1237 __cfqq = cfq_rb_first(service_tree);
1238 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1241 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1242 new_cfqq = 0;
1244 * same position, nothing more to do
1246 if (rb_key == cfqq->rb_key &&
1247 cfqq->service_tree == service_tree)
1248 return;
1250 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1251 cfqq->service_tree = NULL;
1254 left = 1;
1255 parent = NULL;
1256 cfqq->service_tree = service_tree;
1257 p = &service_tree->rb.rb_node;
1258 while (*p) {
1259 struct rb_node **n;
1261 parent = *p;
1262 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1265 * sort by key, that represents service time.
1267 if (time_before(rb_key, __cfqq->rb_key))
1268 n = &(*p)->rb_left;
1269 else {
1270 n = &(*p)->rb_right;
1271 left = 0;
1274 p = n;
1277 if (left)
1278 service_tree->left = &cfqq->rb_node;
1280 cfqq->rb_key = rb_key;
1281 rb_link_node(&cfqq->rb_node, parent, p);
1282 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1283 service_tree->count++;
1284 if ((add_front || !new_cfqq) && !group_changed)
1285 return;
1286 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1289 static struct cfq_queue *
1290 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1291 sector_t sector, struct rb_node **ret_parent,
1292 struct rb_node ***rb_link)
1294 struct rb_node **p, *parent;
1295 struct cfq_queue *cfqq = NULL;
1297 parent = NULL;
1298 p = &root->rb_node;
1299 while (*p) {
1300 struct rb_node **n;
1302 parent = *p;
1303 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1306 * Sort strictly based on sector. Smallest to the left,
1307 * largest to the right.
1309 if (sector > blk_rq_pos(cfqq->next_rq))
1310 n = &(*p)->rb_right;
1311 else if (sector < blk_rq_pos(cfqq->next_rq))
1312 n = &(*p)->rb_left;
1313 else
1314 break;
1315 p = n;
1316 cfqq = NULL;
1319 *ret_parent = parent;
1320 if (rb_link)
1321 *rb_link = p;
1322 return cfqq;
1325 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1327 struct rb_node **p, *parent;
1328 struct cfq_queue *__cfqq;
1330 if (cfqq->p_root) {
1331 rb_erase(&cfqq->p_node, cfqq->p_root);
1332 cfqq->p_root = NULL;
1335 if (cfq_class_idle(cfqq))
1336 return;
1337 if (!cfqq->next_rq)
1338 return;
1340 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1341 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1342 blk_rq_pos(cfqq->next_rq), &parent, &p);
1343 if (!__cfqq) {
1344 rb_link_node(&cfqq->p_node, parent, p);
1345 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1346 } else
1347 cfqq->p_root = NULL;
1351 * Update cfqq's position in the service tree.
1353 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1356 * Resorting requires the cfqq to be on the RR list already.
1358 if (cfq_cfqq_on_rr(cfqq)) {
1359 cfq_service_tree_add(cfqd, cfqq, 0);
1360 cfq_prio_tree_add(cfqd, cfqq);
1365 * add to busy list of queues for service, trying to be fair in ordering
1366 * the pending list according to last request service
1368 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1370 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1371 BUG_ON(cfq_cfqq_on_rr(cfqq));
1372 cfq_mark_cfqq_on_rr(cfqq);
1373 cfqd->busy_queues++;
1374 if (cfq_cfqq_sync(cfqq))
1375 cfqd->busy_sync_queues++;
1377 cfq_resort_rr_list(cfqd, cfqq);
1381 * Called when the cfqq no longer has requests pending, remove it from
1382 * the service tree.
1384 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1386 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1387 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1388 cfq_clear_cfqq_on_rr(cfqq);
1390 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1391 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1392 cfqq->service_tree = NULL;
1394 if (cfqq->p_root) {
1395 rb_erase(&cfqq->p_node, cfqq->p_root);
1396 cfqq->p_root = NULL;
1399 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1400 BUG_ON(!cfqd->busy_queues);
1401 cfqd->busy_queues--;
1402 if (cfq_cfqq_sync(cfqq))
1403 cfqd->busy_sync_queues--;
1407 * rb tree support functions
1409 static void cfq_del_rq_rb(struct request *rq)
1411 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1412 const int sync = rq_is_sync(rq);
1414 BUG_ON(!cfqq->queued[sync]);
1415 cfqq->queued[sync]--;
1417 elv_rb_del(&cfqq->sort_list, rq);
1419 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1421 * Queue will be deleted from service tree when we actually
1422 * expire it later. Right now just remove it from prio tree
1423 * as it is empty.
1425 if (cfqq->p_root) {
1426 rb_erase(&cfqq->p_node, cfqq->p_root);
1427 cfqq->p_root = NULL;
1432 static void cfq_add_rq_rb(struct request *rq)
1434 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1435 struct cfq_data *cfqd = cfqq->cfqd;
1436 struct request *__alias, *prev;
1438 cfqq->queued[rq_is_sync(rq)]++;
1441 * looks a little odd, but the first insert might return an alias.
1442 * if that happens, put the alias on the dispatch list
1444 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1445 cfq_dispatch_insert(cfqd->queue, __alias);
1447 if (!cfq_cfqq_on_rr(cfqq))
1448 cfq_add_cfqq_rr(cfqd, cfqq);
1451 * check if this request is a better next-serve candidate
1453 prev = cfqq->next_rq;
1454 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1457 * adjust priority tree position, if ->next_rq changes
1459 if (prev != cfqq->next_rq)
1460 cfq_prio_tree_add(cfqd, cfqq);
1462 BUG_ON(!cfqq->next_rq);
1465 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1467 elv_rb_del(&cfqq->sort_list, rq);
1468 cfqq->queued[rq_is_sync(rq)]--;
1469 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1470 rq_data_dir(rq), rq_is_sync(rq));
1471 cfq_add_rq_rb(rq);
1472 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1473 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1474 rq_is_sync(rq));
1477 static struct request *
1478 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1480 struct task_struct *tsk = current;
1481 struct cfq_io_context *cic;
1482 struct cfq_queue *cfqq;
1484 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1485 if (!cic)
1486 return NULL;
1488 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1489 if (cfqq) {
1490 sector_t sector = bio->bi_sector + bio_sectors(bio);
1492 return elv_rb_find(&cfqq->sort_list, sector);
1495 return NULL;
1498 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1500 struct cfq_data *cfqd = q->elevator->elevator_data;
1502 cfqd->rq_in_driver++;
1503 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1504 cfqd->rq_in_driver);
1506 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1509 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1511 struct cfq_data *cfqd = q->elevator->elevator_data;
1513 WARN_ON(!cfqd->rq_in_driver);
1514 cfqd->rq_in_driver--;
1515 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1516 cfqd->rq_in_driver);
1519 static void cfq_remove_request(struct request *rq)
1521 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1523 if (cfqq->next_rq == rq)
1524 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1526 list_del_init(&rq->queuelist);
1527 cfq_del_rq_rb(rq);
1529 cfqq->cfqd->rq_queued--;
1530 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1531 rq_data_dir(rq), rq_is_sync(rq));
1532 if (rq->cmd_flags & REQ_META) {
1533 WARN_ON(!cfqq->meta_pending);
1534 cfqq->meta_pending--;
1538 static int cfq_merge(struct request_queue *q, struct request **req,
1539 struct bio *bio)
1541 struct cfq_data *cfqd = q->elevator->elevator_data;
1542 struct request *__rq;
1544 __rq = cfq_find_rq_fmerge(cfqd, bio);
1545 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1546 *req = __rq;
1547 return ELEVATOR_FRONT_MERGE;
1550 return ELEVATOR_NO_MERGE;
1553 static void cfq_merged_request(struct request_queue *q, struct request *req,
1554 int type)
1556 if (type == ELEVATOR_FRONT_MERGE) {
1557 struct cfq_queue *cfqq = RQ_CFQQ(req);
1559 cfq_reposition_rq_rb(cfqq, req);
1563 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1564 struct bio *bio)
1566 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1567 bio_data_dir(bio), cfq_bio_sync(bio));
1570 static void
1571 cfq_merged_requests(struct request_queue *q, struct request *rq,
1572 struct request *next)
1574 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1576 * reposition in fifo if next is older than rq
1578 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1579 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1580 list_move(&rq->queuelist, &next->queuelist);
1581 rq_set_fifo_time(rq, rq_fifo_time(next));
1584 if (cfqq->next_rq == next)
1585 cfqq->next_rq = rq;
1586 cfq_remove_request(next);
1587 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1588 rq_data_dir(next), rq_is_sync(next));
1591 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1592 struct bio *bio)
1594 struct cfq_data *cfqd = q->elevator->elevator_data;
1595 struct cfq_io_context *cic;
1596 struct cfq_queue *cfqq;
1599 * Disallow merge of a sync bio into an async request.
1601 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1602 return false;
1605 * Lookup the cfqq that this bio will be queued with. Allow
1606 * merge only if rq is queued there.
1608 cic = cfq_cic_lookup(cfqd, current->io_context);
1609 if (!cic)
1610 return false;
1612 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1613 return cfqq == RQ_CFQQ(rq);
1616 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1618 del_timer(&cfqd->idle_slice_timer);
1619 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1622 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1623 struct cfq_queue *cfqq)
1625 if (cfqq) {
1626 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1627 cfqd->serving_prio, cfqd->serving_type);
1628 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1629 cfqq->slice_start = 0;
1630 cfqq->dispatch_start = jiffies;
1631 cfqq->allocated_slice = 0;
1632 cfqq->slice_end = 0;
1633 cfqq->slice_dispatch = 0;
1634 cfqq->nr_sectors = 0;
1636 cfq_clear_cfqq_wait_request(cfqq);
1637 cfq_clear_cfqq_must_dispatch(cfqq);
1638 cfq_clear_cfqq_must_alloc_slice(cfqq);
1639 cfq_clear_cfqq_fifo_expire(cfqq);
1640 cfq_mark_cfqq_slice_new(cfqq);
1642 cfq_del_timer(cfqd, cfqq);
1645 cfqd->active_queue = cfqq;
1649 * current cfqq expired its slice (or was too idle), select new one
1651 static void
1652 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1653 bool timed_out)
1655 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1657 if (cfq_cfqq_wait_request(cfqq))
1658 cfq_del_timer(cfqd, cfqq);
1660 cfq_clear_cfqq_wait_request(cfqq);
1661 cfq_clear_cfqq_wait_busy(cfqq);
1664 * If this cfqq is shared between multiple processes, check to
1665 * make sure that those processes are still issuing I/Os within
1666 * the mean seek distance. If not, it may be time to break the
1667 * queues apart again.
1669 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1670 cfq_mark_cfqq_split_coop(cfqq);
1673 * store what was left of this slice, if the queue idled/timed out
1675 if (timed_out) {
1676 if (cfq_cfqq_slice_new(cfqq))
1677 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1678 else
1679 cfqq->slice_resid = cfqq->slice_end - jiffies;
1680 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1683 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1685 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1686 cfq_del_cfqq_rr(cfqd, cfqq);
1688 cfq_resort_rr_list(cfqd, cfqq);
1690 if (cfqq == cfqd->active_queue)
1691 cfqd->active_queue = NULL;
1693 if (cfqd->active_cic) {
1694 put_io_context(cfqd->active_cic->ioc);
1695 cfqd->active_cic = NULL;
1699 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1701 struct cfq_queue *cfqq = cfqd->active_queue;
1703 if (cfqq)
1704 __cfq_slice_expired(cfqd, cfqq, timed_out);
1708 * Get next queue for service. Unless we have a queue preemption,
1709 * we'll simply select the first cfqq in the service tree.
1711 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1713 struct cfq_rb_root *service_tree =
1714 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1715 cfqd->serving_type);
1717 if (!cfqd->rq_queued)
1718 return NULL;
1720 /* There is nothing to dispatch */
1721 if (!service_tree)
1722 return NULL;
1723 if (RB_EMPTY_ROOT(&service_tree->rb))
1724 return NULL;
1725 return cfq_rb_first(service_tree);
1728 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1730 struct cfq_group *cfqg;
1731 struct cfq_queue *cfqq;
1732 int i, j;
1733 struct cfq_rb_root *st;
1735 if (!cfqd->rq_queued)
1736 return NULL;
1738 cfqg = cfq_get_next_cfqg(cfqd);
1739 if (!cfqg)
1740 return NULL;
1742 for_each_cfqg_st(cfqg, i, j, st)
1743 if ((cfqq = cfq_rb_first(st)) != NULL)
1744 return cfqq;
1745 return NULL;
1749 * Get and set a new active queue for service.
1751 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1752 struct cfq_queue *cfqq)
1754 if (!cfqq)
1755 cfqq = cfq_get_next_queue(cfqd);
1757 __cfq_set_active_queue(cfqd, cfqq);
1758 return cfqq;
1761 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1762 struct request *rq)
1764 if (blk_rq_pos(rq) >= cfqd->last_position)
1765 return blk_rq_pos(rq) - cfqd->last_position;
1766 else
1767 return cfqd->last_position - blk_rq_pos(rq);
1770 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1771 struct request *rq)
1773 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1776 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1777 struct cfq_queue *cur_cfqq)
1779 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1780 struct rb_node *parent, *node;
1781 struct cfq_queue *__cfqq;
1782 sector_t sector = cfqd->last_position;
1784 if (RB_EMPTY_ROOT(root))
1785 return NULL;
1788 * First, if we find a request starting at the end of the last
1789 * request, choose it.
1791 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1792 if (__cfqq)
1793 return __cfqq;
1796 * If the exact sector wasn't found, the parent of the NULL leaf
1797 * will contain the closest sector.
1799 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1800 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1801 return __cfqq;
1803 if (blk_rq_pos(__cfqq->next_rq) < sector)
1804 node = rb_next(&__cfqq->p_node);
1805 else
1806 node = rb_prev(&__cfqq->p_node);
1807 if (!node)
1808 return NULL;
1810 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1811 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1812 return __cfqq;
1814 return NULL;
1818 * cfqd - obvious
1819 * cur_cfqq - passed in so that we don't decide that the current queue is
1820 * closely cooperating with itself.
1822 * So, basically we're assuming that that cur_cfqq has dispatched at least
1823 * one request, and that cfqd->last_position reflects a position on the disk
1824 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1825 * assumption.
1827 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1828 struct cfq_queue *cur_cfqq)
1830 struct cfq_queue *cfqq;
1832 if (cfq_class_idle(cur_cfqq))
1833 return NULL;
1834 if (!cfq_cfqq_sync(cur_cfqq))
1835 return NULL;
1836 if (CFQQ_SEEKY(cur_cfqq))
1837 return NULL;
1840 * Don't search priority tree if it's the only queue in the group.
1842 if (cur_cfqq->cfqg->nr_cfqq == 1)
1843 return NULL;
1846 * We should notice if some of the queues are cooperating, eg
1847 * working closely on the same area of the disk. In that case,
1848 * we can group them together and don't waste time idling.
1850 cfqq = cfqq_close(cfqd, cur_cfqq);
1851 if (!cfqq)
1852 return NULL;
1854 /* If new queue belongs to different cfq_group, don't choose it */
1855 if (cur_cfqq->cfqg != cfqq->cfqg)
1856 return NULL;
1859 * It only makes sense to merge sync queues.
1861 if (!cfq_cfqq_sync(cfqq))
1862 return NULL;
1863 if (CFQQ_SEEKY(cfqq))
1864 return NULL;
1867 * Do not merge queues of different priority classes
1869 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1870 return NULL;
1872 return cfqq;
1876 * Determine whether we should enforce idle window for this queue.
1879 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1881 enum wl_prio_t prio = cfqq_prio(cfqq);
1882 struct cfq_rb_root *service_tree = cfqq->service_tree;
1884 BUG_ON(!service_tree);
1885 BUG_ON(!service_tree->count);
1887 if (!cfqd->cfq_slice_idle)
1888 return false;
1890 /* We never do for idle class queues. */
1891 if (prio == IDLE_WORKLOAD)
1892 return false;
1894 /* We do for queues that were marked with idle window flag. */
1895 if (cfq_cfqq_idle_window(cfqq) &&
1896 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1897 return true;
1900 * Otherwise, we do only if they are the last ones
1901 * in their service tree.
1903 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1904 return true;
1905 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1906 service_tree->count);
1907 return false;
1910 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1912 struct cfq_queue *cfqq = cfqd->active_queue;
1913 struct cfq_io_context *cic;
1914 unsigned long sl, group_idle = 0;
1917 * SSD device without seek penalty, disable idling. But only do so
1918 * for devices that support queuing, otherwise we still have a problem
1919 * with sync vs async workloads.
1921 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1922 return;
1924 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1925 WARN_ON(cfq_cfqq_slice_new(cfqq));
1928 * idle is disabled, either manually or by past process history
1930 if (!cfq_should_idle(cfqd, cfqq)) {
1931 /* no queue idling. Check for group idling */
1932 if (cfqd->cfq_group_idle)
1933 group_idle = cfqd->cfq_group_idle;
1934 else
1935 return;
1939 * still active requests from this queue, don't idle
1941 if (cfqq->dispatched)
1942 return;
1945 * task has exited, don't wait
1947 cic = cfqd->active_cic;
1948 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1949 return;
1952 * If our average think time is larger than the remaining time
1953 * slice, then don't idle. This avoids overrunning the allotted
1954 * time slice.
1956 if (sample_valid(cic->ttime_samples) &&
1957 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1958 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1959 cic->ttime_mean);
1960 return;
1963 /* There are other queues in the group, don't do group idle */
1964 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1965 return;
1967 cfq_mark_cfqq_wait_request(cfqq);
1969 if (group_idle)
1970 sl = cfqd->cfq_group_idle;
1971 else
1972 sl = cfqd->cfq_slice_idle;
1974 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1975 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1976 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1977 group_idle ? 1 : 0);
1981 * Move request from internal lists to the request queue dispatch list.
1983 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1985 struct cfq_data *cfqd = q->elevator->elevator_data;
1986 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1988 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1990 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1991 cfq_remove_request(rq);
1992 cfqq->dispatched++;
1993 (RQ_CFQG(rq))->dispatched++;
1994 elv_dispatch_sort(q, rq);
1996 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1997 cfqq->nr_sectors += blk_rq_sectors(rq);
1998 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1999 rq_data_dir(rq), rq_is_sync(rq));
2003 * return expired entry, or NULL to just start from scratch in rbtree
2005 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2007 struct request *rq = NULL;
2009 if (cfq_cfqq_fifo_expire(cfqq))
2010 return NULL;
2012 cfq_mark_cfqq_fifo_expire(cfqq);
2014 if (list_empty(&cfqq->fifo))
2015 return NULL;
2017 rq = rq_entry_fifo(cfqq->fifo.next);
2018 if (time_before(jiffies, rq_fifo_time(rq)))
2019 rq = NULL;
2021 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2022 return rq;
2025 static inline int
2026 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2028 const int base_rq = cfqd->cfq_slice_async_rq;
2030 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2032 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
2036 * Must be called with the queue_lock held.
2038 static int cfqq_process_refs(struct cfq_queue *cfqq)
2040 int process_refs, io_refs;
2042 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2043 process_refs = cfqq->ref - io_refs;
2044 BUG_ON(process_refs < 0);
2045 return process_refs;
2048 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2050 int process_refs, new_process_refs;
2051 struct cfq_queue *__cfqq;
2054 * If there are no process references on the new_cfqq, then it is
2055 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2056 * chain may have dropped their last reference (not just their
2057 * last process reference).
2059 if (!cfqq_process_refs(new_cfqq))
2060 return;
2062 /* Avoid a circular list and skip interim queue merges */
2063 while ((__cfqq = new_cfqq->new_cfqq)) {
2064 if (__cfqq == cfqq)
2065 return;
2066 new_cfqq = __cfqq;
2069 process_refs = cfqq_process_refs(cfqq);
2070 new_process_refs = cfqq_process_refs(new_cfqq);
2072 * If the process for the cfqq has gone away, there is no
2073 * sense in merging the queues.
2075 if (process_refs == 0 || new_process_refs == 0)
2076 return;
2079 * Merge in the direction of the lesser amount of work.
2081 if (new_process_refs >= process_refs) {
2082 cfqq->new_cfqq = new_cfqq;
2083 new_cfqq->ref += process_refs;
2084 } else {
2085 new_cfqq->new_cfqq = cfqq;
2086 cfqq->ref += new_process_refs;
2090 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2091 struct cfq_group *cfqg, enum wl_prio_t prio)
2093 struct cfq_queue *queue;
2094 int i;
2095 bool key_valid = false;
2096 unsigned long lowest_key = 0;
2097 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2099 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2100 /* select the one with lowest rb_key */
2101 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2102 if (queue &&
2103 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2104 lowest_key = queue->rb_key;
2105 cur_best = i;
2106 key_valid = true;
2110 return cur_best;
2113 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2115 unsigned slice;
2116 unsigned count;
2117 struct cfq_rb_root *st;
2118 unsigned group_slice;
2119 enum wl_prio_t original_prio = cfqd->serving_prio;
2121 /* Choose next priority. RT > BE > IDLE */
2122 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2123 cfqd->serving_prio = RT_WORKLOAD;
2124 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2125 cfqd->serving_prio = BE_WORKLOAD;
2126 else {
2127 cfqd->serving_prio = IDLE_WORKLOAD;
2128 cfqd->workload_expires = jiffies + 1;
2129 return;
2132 if (original_prio != cfqd->serving_prio)
2133 goto new_workload;
2136 * For RT and BE, we have to choose also the type
2137 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2138 * expiration time
2140 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2141 count = st->count;
2144 * check workload expiration, and that we still have other queues ready
2146 if (count && !time_after(jiffies, cfqd->workload_expires))
2147 return;
2149 new_workload:
2150 /* otherwise select new workload type */
2151 cfqd->serving_type =
2152 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2153 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2154 count = st->count;
2157 * the workload slice is computed as a fraction of target latency
2158 * proportional to the number of queues in that workload, over
2159 * all the queues in the same priority class
2161 group_slice = cfq_group_slice(cfqd, cfqg);
2163 slice = group_slice * count /
2164 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2165 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2167 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2168 unsigned int tmp;
2171 * Async queues are currently system wide. Just taking
2172 * proportion of queues with-in same group will lead to higher
2173 * async ratio system wide as generally root group is going
2174 * to have higher weight. A more accurate thing would be to
2175 * calculate system wide asnc/sync ratio.
2177 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2178 tmp = tmp/cfqd->busy_queues;
2179 slice = min_t(unsigned, slice, tmp);
2181 /* async workload slice is scaled down according to
2182 * the sync/async slice ratio. */
2183 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2184 } else
2185 /* sync workload slice is at least 2 * cfq_slice_idle */
2186 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2188 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2189 cfq_log(cfqd, "workload slice:%d", slice);
2190 cfqd->workload_expires = jiffies + slice;
2193 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2195 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2196 struct cfq_group *cfqg;
2198 if (RB_EMPTY_ROOT(&st->rb))
2199 return NULL;
2200 cfqg = cfq_rb_first_group(st);
2201 update_min_vdisktime(st);
2202 return cfqg;
2205 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2207 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2209 cfqd->serving_group = cfqg;
2211 /* Restore the workload type data */
2212 if (cfqg->saved_workload_slice) {
2213 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2214 cfqd->serving_type = cfqg->saved_workload;
2215 cfqd->serving_prio = cfqg->saved_serving_prio;
2216 } else
2217 cfqd->workload_expires = jiffies - 1;
2219 choose_service_tree(cfqd, cfqg);
2223 * Select a queue for service. If we have a current active queue,
2224 * check whether to continue servicing it, or retrieve and set a new one.
2226 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2228 struct cfq_queue *cfqq, *new_cfqq = NULL;
2230 cfqq = cfqd->active_queue;
2231 if (!cfqq)
2232 goto new_queue;
2234 if (!cfqd->rq_queued)
2235 return NULL;
2238 * We were waiting for group to get backlogged. Expire the queue
2240 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2241 goto expire;
2244 * The active queue has run out of time, expire it and select new.
2246 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2248 * If slice had not expired at the completion of last request
2249 * we might not have turned on wait_busy flag. Don't expire
2250 * the queue yet. Allow the group to get backlogged.
2252 * The very fact that we have used the slice, that means we
2253 * have been idling all along on this queue and it should be
2254 * ok to wait for this request to complete.
2256 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2257 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2258 cfqq = NULL;
2259 goto keep_queue;
2260 } else
2261 goto check_group_idle;
2265 * The active queue has requests and isn't expired, allow it to
2266 * dispatch.
2268 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2269 goto keep_queue;
2272 * If another queue has a request waiting within our mean seek
2273 * distance, let it run. The expire code will check for close
2274 * cooperators and put the close queue at the front of the service
2275 * tree. If possible, merge the expiring queue with the new cfqq.
2277 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2278 if (new_cfqq) {
2279 if (!cfqq->new_cfqq)
2280 cfq_setup_merge(cfqq, new_cfqq);
2281 goto expire;
2285 * No requests pending. If the active queue still has requests in
2286 * flight or is idling for a new request, allow either of these
2287 * conditions to happen (or time out) before selecting a new queue.
2289 if (timer_pending(&cfqd->idle_slice_timer)) {
2290 cfqq = NULL;
2291 goto keep_queue;
2295 * This is a deep seek queue, but the device is much faster than
2296 * the queue can deliver, don't idle
2298 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2299 (cfq_cfqq_slice_new(cfqq) ||
2300 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2301 cfq_clear_cfqq_deep(cfqq);
2302 cfq_clear_cfqq_idle_window(cfqq);
2305 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2306 cfqq = NULL;
2307 goto keep_queue;
2311 * If group idle is enabled and there are requests dispatched from
2312 * this group, wait for requests to complete.
2314 check_group_idle:
2315 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2316 && cfqq->cfqg->dispatched) {
2317 cfqq = NULL;
2318 goto keep_queue;
2321 expire:
2322 cfq_slice_expired(cfqd, 0);
2323 new_queue:
2325 * Current queue expired. Check if we have to switch to a new
2326 * service tree
2328 if (!new_cfqq)
2329 cfq_choose_cfqg(cfqd);
2331 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2332 keep_queue:
2333 return cfqq;
2336 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2338 int dispatched = 0;
2340 while (cfqq->next_rq) {
2341 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2342 dispatched++;
2345 BUG_ON(!list_empty(&cfqq->fifo));
2347 /* By default cfqq is not expired if it is empty. Do it explicitly */
2348 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2349 return dispatched;
2353 * Drain our current requests. Used for barriers and when switching
2354 * io schedulers on-the-fly.
2356 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2358 struct cfq_queue *cfqq;
2359 int dispatched = 0;
2361 /* Expire the timeslice of the current active queue first */
2362 cfq_slice_expired(cfqd, 0);
2363 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2364 __cfq_set_active_queue(cfqd, cfqq);
2365 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2368 BUG_ON(cfqd->busy_queues);
2370 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2371 return dispatched;
2374 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2375 struct cfq_queue *cfqq)
2377 /* the queue hasn't finished any request, can't estimate */
2378 if (cfq_cfqq_slice_new(cfqq))
2379 return true;
2380 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2381 cfqq->slice_end))
2382 return true;
2384 return false;
2387 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2389 unsigned int max_dispatch;
2392 * Drain async requests before we start sync IO
2394 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2395 return false;
2398 * If this is an async queue and we have sync IO in flight, let it wait
2400 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2401 return false;
2403 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2404 if (cfq_class_idle(cfqq))
2405 max_dispatch = 1;
2408 * Does this cfqq already have too much IO in flight?
2410 if (cfqq->dispatched >= max_dispatch) {
2411 bool promote_sync = false;
2413 * idle queue must always only have a single IO in flight
2415 if (cfq_class_idle(cfqq))
2416 return false;
2419 * If there is only one sync queue
2420 * we can ignore async queue here and give the sync
2421 * queue no dispatch limit. The reason is a sync queue can
2422 * preempt async queue, limiting the sync queue doesn't make
2423 * sense. This is useful for aiostress test.
2425 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2426 promote_sync = true;
2429 * We have other queues, don't allow more IO from this one
2431 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2432 !promote_sync)
2433 return false;
2436 * Sole queue user, no limit
2438 if (cfqd->busy_queues == 1 || promote_sync)
2439 max_dispatch = -1;
2440 else
2442 * Normally we start throttling cfqq when cfq_quantum/2
2443 * requests have been dispatched. But we can drive
2444 * deeper queue depths at the beginning of slice
2445 * subjected to upper limit of cfq_quantum.
2446 * */
2447 max_dispatch = cfqd->cfq_quantum;
2451 * Async queues must wait a bit before being allowed dispatch.
2452 * We also ramp up the dispatch depth gradually for async IO,
2453 * based on the last sync IO we serviced
2455 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2456 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2457 unsigned int depth;
2459 depth = last_sync / cfqd->cfq_slice[1];
2460 if (!depth && !cfqq->dispatched)
2461 depth = 1;
2462 if (depth < max_dispatch)
2463 max_dispatch = depth;
2467 * If we're below the current max, allow a dispatch
2469 return cfqq->dispatched < max_dispatch;
2473 * Dispatch a request from cfqq, moving them to the request queue
2474 * dispatch list.
2476 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2478 struct request *rq;
2480 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2482 if (!cfq_may_dispatch(cfqd, cfqq))
2483 return false;
2486 * follow expired path, else get first next available
2488 rq = cfq_check_fifo(cfqq);
2489 if (!rq)
2490 rq = cfqq->next_rq;
2493 * insert request into driver dispatch list
2495 cfq_dispatch_insert(cfqd->queue, rq);
2497 if (!cfqd->active_cic) {
2498 struct cfq_io_context *cic = RQ_CIC(rq);
2500 atomic_long_inc(&cic->ioc->refcount);
2501 cfqd->active_cic = cic;
2504 return true;
2508 * Find the cfqq that we need to service and move a request from that to the
2509 * dispatch list
2511 static int cfq_dispatch_requests(struct request_queue *q, int force)
2513 struct cfq_data *cfqd = q->elevator->elevator_data;
2514 struct cfq_queue *cfqq;
2516 if (!cfqd->busy_queues)
2517 return 0;
2519 if (unlikely(force))
2520 return cfq_forced_dispatch(cfqd);
2522 cfqq = cfq_select_queue(cfqd);
2523 if (!cfqq)
2524 return 0;
2527 * Dispatch a request from this cfqq, if it is allowed
2529 if (!cfq_dispatch_request(cfqd, cfqq))
2530 return 0;
2532 cfqq->slice_dispatch++;
2533 cfq_clear_cfqq_must_dispatch(cfqq);
2536 * expire an async queue immediately if it has used up its slice. idle
2537 * queue always expire after 1 dispatch round.
2539 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2540 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2541 cfq_class_idle(cfqq))) {
2542 cfqq->slice_end = jiffies + 1;
2543 cfq_slice_expired(cfqd, 0);
2546 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2547 return 1;
2551 * task holds one reference to the queue, dropped when task exits. each rq
2552 * in-flight on this queue also holds a reference, dropped when rq is freed.
2554 * Each cfq queue took a reference on the parent group. Drop it now.
2555 * queue lock must be held here.
2557 static void cfq_put_queue(struct cfq_queue *cfqq)
2559 struct cfq_data *cfqd = cfqq->cfqd;
2560 struct cfq_group *cfqg;
2562 BUG_ON(cfqq->ref <= 0);
2564 cfqq->ref--;
2565 if (cfqq->ref)
2566 return;
2568 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2569 BUG_ON(rb_first(&cfqq->sort_list));
2570 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2571 cfqg = cfqq->cfqg;
2573 if (unlikely(cfqd->active_queue == cfqq)) {
2574 __cfq_slice_expired(cfqd, cfqq, 0);
2575 cfq_schedule_dispatch(cfqd);
2578 BUG_ON(cfq_cfqq_on_rr(cfqq));
2579 kmem_cache_free(cfq_pool, cfqq);
2580 cfq_put_cfqg(cfqg);
2584 * Call func for each cic attached to this ioc.
2586 static void
2587 call_for_each_cic(struct io_context *ioc,
2588 void (*func)(struct io_context *, struct cfq_io_context *))
2590 struct cfq_io_context *cic;
2591 struct hlist_node *n;
2593 rcu_read_lock();
2595 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2596 func(ioc, cic);
2598 rcu_read_unlock();
2601 static void cfq_cic_free_rcu(struct rcu_head *head)
2603 struct cfq_io_context *cic;
2605 cic = container_of(head, struct cfq_io_context, rcu_head);
2607 kmem_cache_free(cfq_ioc_pool, cic);
2608 elv_ioc_count_dec(cfq_ioc_count);
2610 if (ioc_gone) {
2612 * CFQ scheduler is exiting, grab exit lock and check
2613 * the pending io context count. If it hits zero,
2614 * complete ioc_gone and set it back to NULL
2616 spin_lock(&ioc_gone_lock);
2617 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2618 complete(ioc_gone);
2619 ioc_gone = NULL;
2621 spin_unlock(&ioc_gone_lock);
2625 static void cfq_cic_free(struct cfq_io_context *cic)
2627 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2630 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2632 unsigned long flags;
2633 unsigned long dead_key = (unsigned long) cic->key;
2635 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2637 spin_lock_irqsave(&ioc->lock, flags);
2638 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2639 hlist_del_rcu(&cic->cic_list);
2640 spin_unlock_irqrestore(&ioc->lock, flags);
2642 cfq_cic_free(cic);
2646 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2647 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2648 * and ->trim() which is called with the task lock held
2650 static void cfq_free_io_context(struct io_context *ioc)
2653 * ioc->refcount is zero here, or we are called from elv_unregister(),
2654 * so no more cic's are allowed to be linked into this ioc. So it
2655 * should be ok to iterate over the known list, we will see all cic's
2656 * since no new ones are added.
2658 call_for_each_cic(ioc, cic_free_func);
2661 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2663 struct cfq_queue *__cfqq, *next;
2666 * If this queue was scheduled to merge with another queue, be
2667 * sure to drop the reference taken on that queue (and others in
2668 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2670 __cfqq = cfqq->new_cfqq;
2671 while (__cfqq) {
2672 if (__cfqq == cfqq) {
2673 WARN(1, "cfqq->new_cfqq loop detected\n");
2674 break;
2676 next = __cfqq->new_cfqq;
2677 cfq_put_queue(__cfqq);
2678 __cfqq = next;
2682 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2684 if (unlikely(cfqq == cfqd->active_queue)) {
2685 __cfq_slice_expired(cfqd, cfqq, 0);
2686 cfq_schedule_dispatch(cfqd);
2689 cfq_put_cooperator(cfqq);
2691 cfq_put_queue(cfqq);
2694 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2695 struct cfq_io_context *cic)
2697 struct io_context *ioc = cic->ioc;
2699 list_del_init(&cic->queue_list);
2702 * Make sure dead mark is seen for dead queues
2704 smp_wmb();
2705 cic->key = cfqd_dead_key(cfqd);
2707 if (ioc->ioc_data == cic)
2708 rcu_assign_pointer(ioc->ioc_data, NULL);
2710 if (cic->cfqq[BLK_RW_ASYNC]) {
2711 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2712 cic->cfqq[BLK_RW_ASYNC] = NULL;
2715 if (cic->cfqq[BLK_RW_SYNC]) {
2716 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2717 cic->cfqq[BLK_RW_SYNC] = NULL;
2721 static void cfq_exit_single_io_context(struct io_context *ioc,
2722 struct cfq_io_context *cic)
2724 struct cfq_data *cfqd = cic_to_cfqd(cic);
2726 if (cfqd) {
2727 struct request_queue *q = cfqd->queue;
2728 unsigned long flags;
2730 spin_lock_irqsave(q->queue_lock, flags);
2733 * Ensure we get a fresh copy of the ->key to prevent
2734 * race between exiting task and queue
2736 smp_read_barrier_depends();
2737 if (cic->key == cfqd)
2738 __cfq_exit_single_io_context(cfqd, cic);
2740 spin_unlock_irqrestore(q->queue_lock, flags);
2745 * The process that ioc belongs to has exited, we need to clean up
2746 * and put the internal structures we have that belongs to that process.
2748 static void cfq_exit_io_context(struct io_context *ioc)
2750 call_for_each_cic(ioc, cfq_exit_single_io_context);
2753 static struct cfq_io_context *
2754 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2756 struct cfq_io_context *cic;
2758 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2759 cfqd->queue->node);
2760 if (cic) {
2761 cic->last_end_request = jiffies;
2762 INIT_LIST_HEAD(&cic->queue_list);
2763 INIT_HLIST_NODE(&cic->cic_list);
2764 cic->dtor = cfq_free_io_context;
2765 cic->exit = cfq_exit_io_context;
2766 elv_ioc_count_inc(cfq_ioc_count);
2769 return cic;
2772 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2774 struct task_struct *tsk = current;
2775 int ioprio_class;
2777 if (!cfq_cfqq_prio_changed(cfqq))
2778 return;
2780 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2781 switch (ioprio_class) {
2782 default:
2783 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2784 case IOPRIO_CLASS_NONE:
2786 * no prio set, inherit CPU scheduling settings
2788 cfqq->ioprio = task_nice_ioprio(tsk);
2789 cfqq->ioprio_class = task_nice_ioclass(tsk);
2790 break;
2791 case IOPRIO_CLASS_RT:
2792 cfqq->ioprio = task_ioprio(ioc);
2793 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2794 break;
2795 case IOPRIO_CLASS_BE:
2796 cfqq->ioprio = task_ioprio(ioc);
2797 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2798 break;
2799 case IOPRIO_CLASS_IDLE:
2800 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2801 cfqq->ioprio = 7;
2802 cfq_clear_cfqq_idle_window(cfqq);
2803 break;
2807 * keep track of original prio settings in case we have to temporarily
2808 * elevate the priority of this queue
2810 cfqq->org_ioprio = cfqq->ioprio;
2811 cfqq->org_ioprio_class = cfqq->ioprio_class;
2812 cfq_clear_cfqq_prio_changed(cfqq);
2815 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2817 struct cfq_data *cfqd = cic_to_cfqd(cic);
2818 struct cfq_queue *cfqq;
2819 unsigned long flags;
2821 if (unlikely(!cfqd))
2822 return;
2824 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2826 cfqq = cic->cfqq[BLK_RW_ASYNC];
2827 if (cfqq) {
2828 struct cfq_queue *new_cfqq;
2829 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2830 GFP_ATOMIC);
2831 if (new_cfqq) {
2832 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2833 cfq_put_queue(cfqq);
2837 cfqq = cic->cfqq[BLK_RW_SYNC];
2838 if (cfqq)
2839 cfq_mark_cfqq_prio_changed(cfqq);
2841 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2844 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2846 call_for_each_cic(ioc, changed_ioprio);
2847 ioc->ioprio_changed = 0;
2850 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2851 pid_t pid, bool is_sync)
2853 RB_CLEAR_NODE(&cfqq->rb_node);
2854 RB_CLEAR_NODE(&cfqq->p_node);
2855 INIT_LIST_HEAD(&cfqq->fifo);
2857 cfqq->ref = 0;
2858 cfqq->cfqd = cfqd;
2860 cfq_mark_cfqq_prio_changed(cfqq);
2862 if (is_sync) {
2863 if (!cfq_class_idle(cfqq))
2864 cfq_mark_cfqq_idle_window(cfqq);
2865 cfq_mark_cfqq_sync(cfqq);
2867 cfqq->pid = pid;
2870 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2871 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2873 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2874 struct cfq_data *cfqd = cic_to_cfqd(cic);
2875 unsigned long flags;
2876 struct request_queue *q;
2878 if (unlikely(!cfqd))
2879 return;
2881 q = cfqd->queue;
2883 spin_lock_irqsave(q->queue_lock, flags);
2885 if (sync_cfqq) {
2887 * Drop reference to sync queue. A new sync queue will be
2888 * assigned in new group upon arrival of a fresh request.
2890 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2891 cic_set_cfqq(cic, NULL, 1);
2892 cfq_put_queue(sync_cfqq);
2895 spin_unlock_irqrestore(q->queue_lock, flags);
2898 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2900 call_for_each_cic(ioc, changed_cgroup);
2901 ioc->cgroup_changed = 0;
2903 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2905 static struct cfq_queue *
2906 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2907 struct io_context *ioc, gfp_t gfp_mask)
2909 struct cfq_queue *cfqq, *new_cfqq = NULL;
2910 struct cfq_io_context *cic;
2911 struct cfq_group *cfqg;
2913 retry:
2914 cfqg = cfq_get_cfqg(cfqd, 1);
2915 cic = cfq_cic_lookup(cfqd, ioc);
2916 /* cic always exists here */
2917 cfqq = cic_to_cfqq(cic, is_sync);
2920 * Always try a new alloc if we fell back to the OOM cfqq
2921 * originally, since it should just be a temporary situation.
2923 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2924 cfqq = NULL;
2925 if (new_cfqq) {
2926 cfqq = new_cfqq;
2927 new_cfqq = NULL;
2928 } else if (gfp_mask & __GFP_WAIT) {
2929 spin_unlock_irq(cfqd->queue->queue_lock);
2930 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2931 gfp_mask | __GFP_ZERO,
2932 cfqd->queue->node);
2933 spin_lock_irq(cfqd->queue->queue_lock);
2934 if (new_cfqq)
2935 goto retry;
2936 } else {
2937 cfqq = kmem_cache_alloc_node(cfq_pool,
2938 gfp_mask | __GFP_ZERO,
2939 cfqd->queue->node);
2942 if (cfqq) {
2943 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2944 cfq_init_prio_data(cfqq, ioc);
2945 cfq_link_cfqq_cfqg(cfqq, cfqg);
2946 cfq_log_cfqq(cfqd, cfqq, "alloced");
2947 } else
2948 cfqq = &cfqd->oom_cfqq;
2951 if (new_cfqq)
2952 kmem_cache_free(cfq_pool, new_cfqq);
2954 return cfqq;
2957 static struct cfq_queue **
2958 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2960 switch (ioprio_class) {
2961 case IOPRIO_CLASS_RT:
2962 return &cfqd->async_cfqq[0][ioprio];
2963 case IOPRIO_CLASS_BE:
2964 return &cfqd->async_cfqq[1][ioprio];
2965 case IOPRIO_CLASS_IDLE:
2966 return &cfqd->async_idle_cfqq;
2967 default:
2968 BUG();
2972 static struct cfq_queue *
2973 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2974 gfp_t gfp_mask)
2976 const int ioprio = task_ioprio(ioc);
2977 const int ioprio_class = task_ioprio_class(ioc);
2978 struct cfq_queue **async_cfqq = NULL;
2979 struct cfq_queue *cfqq = NULL;
2981 if (!is_sync) {
2982 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2983 cfqq = *async_cfqq;
2986 if (!cfqq)
2987 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2990 * pin the queue now that it's allocated, scheduler exit will prune it
2992 if (!is_sync && !(*async_cfqq)) {
2993 cfqq->ref++;
2994 *async_cfqq = cfqq;
2997 cfqq->ref++;
2998 return cfqq;
3002 * We drop cfq io contexts lazily, so we may find a dead one.
3004 static void
3005 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3006 struct cfq_io_context *cic)
3008 unsigned long flags;
3010 WARN_ON(!list_empty(&cic->queue_list));
3011 BUG_ON(cic->key != cfqd_dead_key(cfqd));
3013 spin_lock_irqsave(&ioc->lock, flags);
3015 BUG_ON(ioc->ioc_data == cic);
3017 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3018 hlist_del_rcu(&cic->cic_list);
3019 spin_unlock_irqrestore(&ioc->lock, flags);
3021 cfq_cic_free(cic);
3024 static struct cfq_io_context *
3025 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3027 struct cfq_io_context *cic;
3028 unsigned long flags;
3030 if (unlikely(!ioc))
3031 return NULL;
3033 rcu_read_lock();
3036 * we maintain a last-hit cache, to avoid browsing over the tree
3038 cic = rcu_dereference(ioc->ioc_data);
3039 if (cic && cic->key == cfqd) {
3040 rcu_read_unlock();
3041 return cic;
3044 do {
3045 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3046 rcu_read_unlock();
3047 if (!cic)
3048 break;
3049 if (unlikely(cic->key != cfqd)) {
3050 cfq_drop_dead_cic(cfqd, ioc, cic);
3051 rcu_read_lock();
3052 continue;
3055 spin_lock_irqsave(&ioc->lock, flags);
3056 rcu_assign_pointer(ioc->ioc_data, cic);
3057 spin_unlock_irqrestore(&ioc->lock, flags);
3058 break;
3059 } while (1);
3061 return cic;
3065 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3066 * the process specific cfq io context when entered from the block layer.
3067 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3069 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3070 struct cfq_io_context *cic, gfp_t gfp_mask)
3072 unsigned long flags;
3073 int ret;
3075 ret = radix_tree_preload(gfp_mask);
3076 if (!ret) {
3077 cic->ioc = ioc;
3078 cic->key = cfqd;
3080 spin_lock_irqsave(&ioc->lock, flags);
3081 ret = radix_tree_insert(&ioc->radix_root,
3082 cfqd->cic_index, cic);
3083 if (!ret)
3084 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3085 spin_unlock_irqrestore(&ioc->lock, flags);
3087 radix_tree_preload_end();
3089 if (!ret) {
3090 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3091 list_add(&cic->queue_list, &cfqd->cic_list);
3092 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3096 if (ret)
3097 printk(KERN_ERR "cfq: cic link failed!\n");
3099 return ret;
3103 * Setup general io context and cfq io context. There can be several cfq
3104 * io contexts per general io context, if this process is doing io to more
3105 * than one device managed by cfq.
3107 static struct cfq_io_context *
3108 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3110 struct io_context *ioc = NULL;
3111 struct cfq_io_context *cic;
3113 might_sleep_if(gfp_mask & __GFP_WAIT);
3115 ioc = get_io_context(gfp_mask, cfqd->queue->node);
3116 if (!ioc)
3117 return NULL;
3119 cic = cfq_cic_lookup(cfqd, ioc);
3120 if (cic)
3121 goto out;
3123 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3124 if (cic == NULL)
3125 goto err;
3127 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3128 goto err_free;
3130 out:
3131 smp_read_barrier_depends();
3132 if (unlikely(ioc->ioprio_changed))
3133 cfq_ioc_set_ioprio(ioc);
3135 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3136 if (unlikely(ioc->cgroup_changed))
3137 cfq_ioc_set_cgroup(ioc);
3138 #endif
3139 return cic;
3140 err_free:
3141 cfq_cic_free(cic);
3142 err:
3143 put_io_context(ioc);
3144 return NULL;
3147 static void
3148 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3150 unsigned long elapsed = jiffies - cic->last_end_request;
3151 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3153 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3154 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3155 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3158 static void
3159 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3160 struct request *rq)
3162 sector_t sdist = 0;
3163 sector_t n_sec = blk_rq_sectors(rq);
3164 if (cfqq->last_request_pos) {
3165 if (cfqq->last_request_pos < blk_rq_pos(rq))
3166 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3167 else
3168 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3171 cfqq->seek_history <<= 1;
3172 if (blk_queue_nonrot(cfqd->queue))
3173 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3174 else
3175 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3179 * Disable idle window if the process thinks too long or seeks so much that
3180 * it doesn't matter
3182 static void
3183 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3184 struct cfq_io_context *cic)
3186 int old_idle, enable_idle;
3189 * Don't idle for async or idle io prio class
3191 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3192 return;
3194 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3196 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3197 cfq_mark_cfqq_deep(cfqq);
3199 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3200 enable_idle = 0;
3201 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3202 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3203 enable_idle = 0;
3204 else if (sample_valid(cic->ttime_samples)) {
3205 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3206 enable_idle = 0;
3207 else
3208 enable_idle = 1;
3211 if (old_idle != enable_idle) {
3212 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3213 if (enable_idle)
3214 cfq_mark_cfqq_idle_window(cfqq);
3215 else
3216 cfq_clear_cfqq_idle_window(cfqq);
3221 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3222 * no or if we aren't sure, a 1 will cause a preempt.
3224 static bool
3225 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3226 struct request *rq)
3228 struct cfq_queue *cfqq;
3230 cfqq = cfqd->active_queue;
3231 if (!cfqq)
3232 return false;
3234 if (cfq_class_idle(new_cfqq))
3235 return false;
3237 if (cfq_class_idle(cfqq))
3238 return true;
3241 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3243 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3244 return false;
3247 * if the new request is sync, but the currently running queue is
3248 * not, let the sync request have priority.
3250 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3251 return true;
3253 if (new_cfqq->cfqg != cfqq->cfqg)
3254 return false;
3256 if (cfq_slice_used(cfqq))
3257 return true;
3259 /* Allow preemption only if we are idling on sync-noidle tree */
3260 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3261 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3262 new_cfqq->service_tree->count == 2 &&
3263 RB_EMPTY_ROOT(&cfqq->sort_list))
3264 return true;
3267 * So both queues are sync. Let the new request get disk time if
3268 * it's a metadata request and the current queue is doing regular IO.
3270 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
3271 return true;
3274 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3276 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3277 return true;
3279 /* An idle queue should not be idle now for some reason */
3280 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3281 return true;
3283 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3284 return false;
3287 * if this request is as-good as one we would expect from the
3288 * current cfqq, let it preempt
3290 if (cfq_rq_close(cfqd, cfqq, rq))
3291 return true;
3293 return false;
3297 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3298 * let it have half of its nominal slice.
3300 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3302 struct cfq_queue *old_cfqq = cfqd->active_queue;
3304 cfq_log_cfqq(cfqd, cfqq, "preempt");
3305 cfq_slice_expired(cfqd, 1);
3308 * workload type is changed, don't save slice, otherwise preempt
3309 * doesn't happen
3311 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3312 cfqq->cfqg->saved_workload_slice = 0;
3315 * Put the new queue at the front of the of the current list,
3316 * so we know that it will be selected next.
3318 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3320 cfq_service_tree_add(cfqd, cfqq, 1);
3322 cfqq->slice_end = 0;
3323 cfq_mark_cfqq_slice_new(cfqq);
3327 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3328 * something we should do about it
3330 static void
3331 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3332 struct request *rq)
3334 struct cfq_io_context *cic = RQ_CIC(rq);
3336 cfqd->rq_queued++;
3337 if (rq->cmd_flags & REQ_META)
3338 cfqq->meta_pending++;
3340 cfq_update_io_thinktime(cfqd, cic);
3341 cfq_update_io_seektime(cfqd, cfqq, rq);
3342 cfq_update_idle_window(cfqd, cfqq, cic);
3344 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3346 if (cfqq == cfqd->active_queue) {
3348 * Remember that we saw a request from this process, but
3349 * don't start queuing just yet. Otherwise we risk seeing lots
3350 * of tiny requests, because we disrupt the normal plugging
3351 * and merging. If the request is already larger than a single
3352 * page, let it rip immediately. For that case we assume that
3353 * merging is already done. Ditto for a busy system that
3354 * has other work pending, don't risk delaying until the
3355 * idle timer unplug to continue working.
3357 if (cfq_cfqq_wait_request(cfqq)) {
3358 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3359 cfqd->busy_queues > 1) {
3360 cfq_del_timer(cfqd, cfqq);
3361 cfq_clear_cfqq_wait_request(cfqq);
3362 __blk_run_queue(cfqd->queue);
3363 } else {
3364 cfq_blkiocg_update_idle_time_stats(
3365 &cfqq->cfqg->blkg);
3366 cfq_mark_cfqq_must_dispatch(cfqq);
3369 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3371 * not the active queue - expire current slice if it is
3372 * idle and has expired it's mean thinktime or this new queue
3373 * has some old slice time left and is of higher priority or
3374 * this new queue is RT and the current one is BE
3376 cfq_preempt_queue(cfqd, cfqq);
3377 __blk_run_queue(cfqd->queue);
3381 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3383 struct cfq_data *cfqd = q->elevator->elevator_data;
3384 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3386 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3387 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3389 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3390 list_add_tail(&rq->queuelist, &cfqq->fifo);
3391 cfq_add_rq_rb(rq);
3392 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3393 &cfqd->serving_group->blkg, rq_data_dir(rq),
3394 rq_is_sync(rq));
3395 cfq_rq_enqueued(cfqd, cfqq, rq);
3399 * Update hw_tag based on peak queue depth over 50 samples under
3400 * sufficient load.
3402 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3404 struct cfq_queue *cfqq = cfqd->active_queue;
3406 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3407 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3409 if (cfqd->hw_tag == 1)
3410 return;
3412 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3413 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3414 return;
3417 * If active queue hasn't enough requests and can idle, cfq might not
3418 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3419 * case
3421 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3422 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3423 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3424 return;
3426 if (cfqd->hw_tag_samples++ < 50)
3427 return;
3429 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3430 cfqd->hw_tag = 1;
3431 else
3432 cfqd->hw_tag = 0;
3435 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3437 struct cfq_io_context *cic = cfqd->active_cic;
3439 /* If the queue already has requests, don't wait */
3440 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3441 return false;
3443 /* If there are other queues in the group, don't wait */
3444 if (cfqq->cfqg->nr_cfqq > 1)
3445 return false;
3447 if (cfq_slice_used(cfqq))
3448 return true;
3450 /* if slice left is less than think time, wait busy */
3451 if (cic && sample_valid(cic->ttime_samples)
3452 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3453 return true;
3456 * If think times is less than a jiffy than ttime_mean=0 and above
3457 * will not be true. It might happen that slice has not expired yet
3458 * but will expire soon (4-5 ns) during select_queue(). To cover the
3459 * case where think time is less than a jiffy, mark the queue wait
3460 * busy if only 1 jiffy is left in the slice.
3462 if (cfqq->slice_end - jiffies == 1)
3463 return true;
3465 return false;
3468 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3470 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3471 struct cfq_data *cfqd = cfqq->cfqd;
3472 const int sync = rq_is_sync(rq);
3473 unsigned long now;
3475 now = jiffies;
3476 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3477 !!(rq->cmd_flags & REQ_NOIDLE));
3479 cfq_update_hw_tag(cfqd);
3481 WARN_ON(!cfqd->rq_in_driver);
3482 WARN_ON(!cfqq->dispatched);
3483 cfqd->rq_in_driver--;
3484 cfqq->dispatched--;
3485 (RQ_CFQG(rq))->dispatched--;
3486 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3487 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3488 rq_data_dir(rq), rq_is_sync(rq));
3490 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3492 if (sync) {
3493 RQ_CIC(rq)->last_end_request = now;
3494 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3495 cfqd->last_delayed_sync = now;
3499 * If this is the active queue, check if it needs to be expired,
3500 * or if we want to idle in case it has no pending requests.
3502 if (cfqd->active_queue == cfqq) {
3503 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3505 if (cfq_cfqq_slice_new(cfqq)) {
3506 cfq_set_prio_slice(cfqd, cfqq);
3507 cfq_clear_cfqq_slice_new(cfqq);
3511 * Should we wait for next request to come in before we expire
3512 * the queue.
3514 if (cfq_should_wait_busy(cfqd, cfqq)) {
3515 unsigned long extend_sl = cfqd->cfq_slice_idle;
3516 if (!cfqd->cfq_slice_idle)
3517 extend_sl = cfqd->cfq_group_idle;
3518 cfqq->slice_end = jiffies + extend_sl;
3519 cfq_mark_cfqq_wait_busy(cfqq);
3520 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3524 * Idling is not enabled on:
3525 * - expired queues
3526 * - idle-priority queues
3527 * - async queues
3528 * - queues with still some requests queued
3529 * - when there is a close cooperator
3531 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3532 cfq_slice_expired(cfqd, 1);
3533 else if (sync && cfqq_empty &&
3534 !cfq_close_cooperator(cfqd, cfqq)) {
3535 cfq_arm_slice_timer(cfqd);
3539 if (!cfqd->rq_in_driver)
3540 cfq_schedule_dispatch(cfqd);
3544 * we temporarily boost lower priority queues if they are holding fs exclusive
3545 * resources. they are boosted to normal prio (CLASS_BE/4)
3547 static void cfq_prio_boost(struct cfq_queue *cfqq)
3549 if (has_fs_excl()) {
3551 * boost idle prio on transactions that would lock out other
3552 * users of the filesystem
3554 if (cfq_class_idle(cfqq))
3555 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3556 if (cfqq->ioprio > IOPRIO_NORM)
3557 cfqq->ioprio = IOPRIO_NORM;
3558 } else {
3560 * unboost the queue (if needed)
3562 cfqq->ioprio_class = cfqq->org_ioprio_class;
3563 cfqq->ioprio = cfqq->org_ioprio;
3567 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3569 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3570 cfq_mark_cfqq_must_alloc_slice(cfqq);
3571 return ELV_MQUEUE_MUST;
3574 return ELV_MQUEUE_MAY;
3577 static int cfq_may_queue(struct request_queue *q, int rw)
3579 struct cfq_data *cfqd = q->elevator->elevator_data;
3580 struct task_struct *tsk = current;
3581 struct cfq_io_context *cic;
3582 struct cfq_queue *cfqq;
3585 * don't force setup of a queue from here, as a call to may_queue
3586 * does not necessarily imply that a request actually will be queued.
3587 * so just lookup a possibly existing queue, or return 'may queue'
3588 * if that fails
3590 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3591 if (!cic)
3592 return ELV_MQUEUE_MAY;
3594 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3595 if (cfqq) {
3596 cfq_init_prio_data(cfqq, cic->ioc);
3597 cfq_prio_boost(cfqq);
3599 return __cfq_may_queue(cfqq);
3602 return ELV_MQUEUE_MAY;
3606 * queue lock held here
3608 static void cfq_put_request(struct request *rq)
3610 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3612 if (cfqq) {
3613 const int rw = rq_data_dir(rq);
3615 BUG_ON(!cfqq->allocated[rw]);
3616 cfqq->allocated[rw]--;
3618 put_io_context(RQ_CIC(rq)->ioc);
3620 rq->elevator_private[0] = NULL;
3621 rq->elevator_private[1] = NULL;
3623 /* Put down rq reference on cfqg */
3624 cfq_put_cfqg(RQ_CFQG(rq));
3625 rq->elevator_private[2] = NULL;
3627 cfq_put_queue(cfqq);
3631 static struct cfq_queue *
3632 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3633 struct cfq_queue *cfqq)
3635 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3636 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3637 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3638 cfq_put_queue(cfqq);
3639 return cic_to_cfqq(cic, 1);
3643 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3644 * was the last process referring to said cfqq.
3646 static struct cfq_queue *
3647 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3649 if (cfqq_process_refs(cfqq) == 1) {
3650 cfqq->pid = current->pid;
3651 cfq_clear_cfqq_coop(cfqq);
3652 cfq_clear_cfqq_split_coop(cfqq);
3653 return cfqq;
3656 cic_set_cfqq(cic, NULL, 1);
3658 cfq_put_cooperator(cfqq);
3660 cfq_put_queue(cfqq);
3661 return NULL;
3664 * Allocate cfq data structures associated with this request.
3666 static int
3667 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3669 struct cfq_data *cfqd = q->elevator->elevator_data;
3670 struct cfq_io_context *cic;
3671 const int rw = rq_data_dir(rq);
3672 const bool is_sync = rq_is_sync(rq);
3673 struct cfq_queue *cfqq;
3674 unsigned long flags;
3676 might_sleep_if(gfp_mask & __GFP_WAIT);
3678 cic = cfq_get_io_context(cfqd, gfp_mask);
3680 spin_lock_irqsave(q->queue_lock, flags);
3682 if (!cic)
3683 goto queue_fail;
3685 new_queue:
3686 cfqq = cic_to_cfqq(cic, is_sync);
3687 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3688 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3689 cic_set_cfqq(cic, cfqq, is_sync);
3690 } else {
3692 * If the queue was seeky for too long, break it apart.
3694 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3695 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3696 cfqq = split_cfqq(cic, cfqq);
3697 if (!cfqq)
3698 goto new_queue;
3702 * Check to see if this queue is scheduled to merge with
3703 * another, closely cooperating queue. The merging of
3704 * queues happens here as it must be done in process context.
3705 * The reference on new_cfqq was taken in merge_cfqqs.
3707 if (cfqq->new_cfqq)
3708 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3711 cfqq->allocated[rw]++;
3713 cfqq->ref++;
3714 rq->elevator_private[0] = cic;
3715 rq->elevator_private[1] = cfqq;
3716 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3717 spin_unlock_irqrestore(q->queue_lock, flags);
3718 return 0;
3720 queue_fail:
3721 if (cic)
3722 put_io_context(cic->ioc);
3724 cfq_schedule_dispatch(cfqd);
3725 spin_unlock_irqrestore(q->queue_lock, flags);
3726 cfq_log(cfqd, "set_request fail");
3727 return 1;
3730 static void cfq_kick_queue(struct work_struct *work)
3732 struct cfq_data *cfqd =
3733 container_of(work, struct cfq_data, unplug_work);
3734 struct request_queue *q = cfqd->queue;
3736 spin_lock_irq(q->queue_lock);
3737 __blk_run_queue(cfqd->queue);
3738 spin_unlock_irq(q->queue_lock);
3742 * Timer running if the active_queue is currently idling inside its time slice
3744 static void cfq_idle_slice_timer(unsigned long data)
3746 struct cfq_data *cfqd = (struct cfq_data *) data;
3747 struct cfq_queue *cfqq;
3748 unsigned long flags;
3749 int timed_out = 1;
3751 cfq_log(cfqd, "idle timer fired");
3753 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3755 cfqq = cfqd->active_queue;
3756 if (cfqq) {
3757 timed_out = 0;
3760 * We saw a request before the queue expired, let it through
3762 if (cfq_cfqq_must_dispatch(cfqq))
3763 goto out_kick;
3766 * expired
3768 if (cfq_slice_used(cfqq))
3769 goto expire;
3772 * only expire and reinvoke request handler, if there are
3773 * other queues with pending requests
3775 if (!cfqd->busy_queues)
3776 goto out_cont;
3779 * not expired and it has a request pending, let it dispatch
3781 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3782 goto out_kick;
3785 * Queue depth flag is reset only when the idle didn't succeed
3787 cfq_clear_cfqq_deep(cfqq);
3789 expire:
3790 cfq_slice_expired(cfqd, timed_out);
3791 out_kick:
3792 cfq_schedule_dispatch(cfqd);
3793 out_cont:
3794 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3797 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3799 del_timer_sync(&cfqd->idle_slice_timer);
3800 cancel_work_sync(&cfqd->unplug_work);
3803 static void cfq_put_async_queues(struct cfq_data *cfqd)
3805 int i;
3807 for (i = 0; i < IOPRIO_BE_NR; i++) {
3808 if (cfqd->async_cfqq[0][i])
3809 cfq_put_queue(cfqd->async_cfqq[0][i]);
3810 if (cfqd->async_cfqq[1][i])
3811 cfq_put_queue(cfqd->async_cfqq[1][i]);
3814 if (cfqd->async_idle_cfqq)
3815 cfq_put_queue(cfqd->async_idle_cfqq);
3818 static void cfq_cfqd_free(struct rcu_head *head)
3820 kfree(container_of(head, struct cfq_data, rcu));
3823 static void cfq_exit_queue(struct elevator_queue *e)
3825 struct cfq_data *cfqd = e->elevator_data;
3826 struct request_queue *q = cfqd->queue;
3828 cfq_shutdown_timer_wq(cfqd);
3830 spin_lock_irq(q->queue_lock);
3832 if (cfqd->active_queue)
3833 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3835 while (!list_empty(&cfqd->cic_list)) {
3836 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3837 struct cfq_io_context,
3838 queue_list);
3840 __cfq_exit_single_io_context(cfqd, cic);
3843 cfq_put_async_queues(cfqd);
3844 cfq_release_cfq_groups(cfqd);
3845 cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3847 spin_unlock_irq(q->queue_lock);
3849 cfq_shutdown_timer_wq(cfqd);
3851 spin_lock(&cic_index_lock);
3852 ida_remove(&cic_index_ida, cfqd->cic_index);
3853 spin_unlock(&cic_index_lock);
3855 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3856 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3859 static int cfq_alloc_cic_index(void)
3861 int index, error;
3863 do {
3864 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3865 return -ENOMEM;
3867 spin_lock(&cic_index_lock);
3868 error = ida_get_new(&cic_index_ida, &index);
3869 spin_unlock(&cic_index_lock);
3870 if (error && error != -EAGAIN)
3871 return error;
3872 } while (error);
3874 return index;
3877 static void *cfq_init_queue(struct request_queue *q)
3879 struct cfq_data *cfqd;
3880 int i, j;
3881 struct cfq_group *cfqg;
3882 struct cfq_rb_root *st;
3884 i = cfq_alloc_cic_index();
3885 if (i < 0)
3886 return NULL;
3888 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3889 if (!cfqd)
3890 return NULL;
3893 * Don't need take queue_lock in the routine, since we are
3894 * initializing the ioscheduler, and nobody is using cfqd
3896 cfqd->cic_index = i;
3898 /* Init root service tree */
3899 cfqd->grp_service_tree = CFQ_RB_ROOT;
3901 /* Init root group */
3902 cfqg = &cfqd->root_group;
3903 for_each_cfqg_st(cfqg, i, j, st)
3904 *st = CFQ_RB_ROOT;
3905 RB_CLEAR_NODE(&cfqg->rb_node);
3907 /* Give preference to root group over other groups */
3908 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3910 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3912 * Take a reference to root group which we never drop. This is just
3913 * to make sure that cfq_put_cfqg() does not try to kfree root group
3915 cfqg->ref = 1;
3916 rcu_read_lock();
3917 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3918 (void *)cfqd, 0);
3919 rcu_read_unlock();
3920 #endif
3922 * Not strictly needed (since RB_ROOT just clears the node and we
3923 * zeroed cfqd on alloc), but better be safe in case someone decides
3924 * to add magic to the rb code
3926 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3927 cfqd->prio_trees[i] = RB_ROOT;
3930 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3931 * Grab a permanent reference to it, so that the normal code flow
3932 * will not attempt to free it.
3934 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3935 cfqd->oom_cfqq.ref++;
3936 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3938 INIT_LIST_HEAD(&cfqd->cic_list);
3940 cfqd->queue = q;
3942 init_timer(&cfqd->idle_slice_timer);
3943 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3944 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3946 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3948 cfqd->cfq_quantum = cfq_quantum;
3949 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3950 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3951 cfqd->cfq_back_max = cfq_back_max;
3952 cfqd->cfq_back_penalty = cfq_back_penalty;
3953 cfqd->cfq_slice[0] = cfq_slice_async;
3954 cfqd->cfq_slice[1] = cfq_slice_sync;
3955 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3956 cfqd->cfq_slice_idle = cfq_slice_idle;
3957 cfqd->cfq_group_idle = cfq_group_idle;
3958 cfqd->cfq_latency = 1;
3959 cfqd->hw_tag = -1;
3961 * we optimistically start assuming sync ops weren't delayed in last
3962 * second, in order to have larger depth for async operations.
3964 cfqd->last_delayed_sync = jiffies - HZ;
3965 return cfqd;
3968 static void cfq_slab_kill(void)
3971 * Caller already ensured that pending RCU callbacks are completed,
3972 * so we should have no busy allocations at this point.
3974 if (cfq_pool)
3975 kmem_cache_destroy(cfq_pool);
3976 if (cfq_ioc_pool)
3977 kmem_cache_destroy(cfq_ioc_pool);
3980 static int __init cfq_slab_setup(void)
3982 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3983 if (!cfq_pool)
3984 goto fail;
3986 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3987 if (!cfq_ioc_pool)
3988 goto fail;
3990 return 0;
3991 fail:
3992 cfq_slab_kill();
3993 return -ENOMEM;
3997 * sysfs parts below -->
3999 static ssize_t
4000 cfq_var_show(unsigned int var, char *page)
4002 return sprintf(page, "%d\n", var);
4005 static ssize_t
4006 cfq_var_store(unsigned int *var, const char *page, size_t count)
4008 char *p = (char *) page;
4010 *var = simple_strtoul(p, &p, 10);
4011 return count;
4014 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4015 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4017 struct cfq_data *cfqd = e->elevator_data; \
4018 unsigned int __data = __VAR; \
4019 if (__CONV) \
4020 __data = jiffies_to_msecs(__data); \
4021 return cfq_var_show(__data, (page)); \
4023 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4024 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4025 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4026 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4027 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4028 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4029 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4030 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4031 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4032 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4033 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4034 #undef SHOW_FUNCTION
4036 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4037 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4039 struct cfq_data *cfqd = e->elevator_data; \
4040 unsigned int __data; \
4041 int ret = cfq_var_store(&__data, (page), count); \
4042 if (__data < (MIN)) \
4043 __data = (MIN); \
4044 else if (__data > (MAX)) \
4045 __data = (MAX); \
4046 if (__CONV) \
4047 *(__PTR) = msecs_to_jiffies(__data); \
4048 else \
4049 *(__PTR) = __data; \
4050 return ret; \
4052 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4053 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4054 UINT_MAX, 1);
4055 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4056 UINT_MAX, 1);
4057 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4058 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4059 UINT_MAX, 0);
4060 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4061 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4062 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4063 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4064 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4065 UINT_MAX, 0);
4066 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4067 #undef STORE_FUNCTION
4069 #define CFQ_ATTR(name) \
4070 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4072 static struct elv_fs_entry cfq_attrs[] = {
4073 CFQ_ATTR(quantum),
4074 CFQ_ATTR(fifo_expire_sync),
4075 CFQ_ATTR(fifo_expire_async),
4076 CFQ_ATTR(back_seek_max),
4077 CFQ_ATTR(back_seek_penalty),
4078 CFQ_ATTR(slice_sync),
4079 CFQ_ATTR(slice_async),
4080 CFQ_ATTR(slice_async_rq),
4081 CFQ_ATTR(slice_idle),
4082 CFQ_ATTR(group_idle),
4083 CFQ_ATTR(low_latency),
4084 __ATTR_NULL
4087 static struct elevator_type iosched_cfq = {
4088 .ops = {
4089 .elevator_merge_fn = cfq_merge,
4090 .elevator_merged_fn = cfq_merged_request,
4091 .elevator_merge_req_fn = cfq_merged_requests,
4092 .elevator_allow_merge_fn = cfq_allow_merge,
4093 .elevator_bio_merged_fn = cfq_bio_merged,
4094 .elevator_dispatch_fn = cfq_dispatch_requests,
4095 .elevator_add_req_fn = cfq_insert_request,
4096 .elevator_activate_req_fn = cfq_activate_request,
4097 .elevator_deactivate_req_fn = cfq_deactivate_request,
4098 .elevator_completed_req_fn = cfq_completed_request,
4099 .elevator_former_req_fn = elv_rb_former_request,
4100 .elevator_latter_req_fn = elv_rb_latter_request,
4101 .elevator_set_req_fn = cfq_set_request,
4102 .elevator_put_req_fn = cfq_put_request,
4103 .elevator_may_queue_fn = cfq_may_queue,
4104 .elevator_init_fn = cfq_init_queue,
4105 .elevator_exit_fn = cfq_exit_queue,
4106 .trim = cfq_free_io_context,
4108 .elevator_attrs = cfq_attrs,
4109 .elevator_name = "cfq",
4110 .elevator_owner = THIS_MODULE,
4113 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4114 static struct blkio_policy_type blkio_policy_cfq = {
4115 .ops = {
4116 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4117 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4119 .plid = BLKIO_POLICY_PROP,
4121 #else
4122 static struct blkio_policy_type blkio_policy_cfq;
4123 #endif
4125 static int __init cfq_init(void)
4128 * could be 0 on HZ < 1000 setups
4130 if (!cfq_slice_async)
4131 cfq_slice_async = 1;
4132 if (!cfq_slice_idle)
4133 cfq_slice_idle = 1;
4135 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4136 if (!cfq_group_idle)
4137 cfq_group_idle = 1;
4138 #else
4139 cfq_group_idle = 0;
4140 #endif
4141 if (cfq_slab_setup())
4142 return -ENOMEM;
4144 elv_register(&iosched_cfq);
4145 blkio_policy_register(&blkio_policy_cfq);
4147 return 0;
4150 static void __exit cfq_exit(void)
4152 DECLARE_COMPLETION_ONSTACK(all_gone);
4153 blkio_policy_unregister(&blkio_policy_cfq);
4154 elv_unregister(&iosched_cfq);
4155 ioc_gone = &all_gone;
4156 /* ioc_gone's update must be visible before reading ioc_count */
4157 smp_wmb();
4160 * this also protects us from entering cfq_slab_kill() with
4161 * pending RCU callbacks
4163 if (elv_ioc_count_read(cfq_ioc_count))
4164 wait_for_completion(&all_gone);
4165 ida_destroy(&cic_index_ida);
4166 cfq_slab_kill();
4169 module_init(cfq_init);
4170 module_exit(cfq_exit);
4172 MODULE_AUTHOR("Jens Axboe");
4173 MODULE_LICENSE("GPL");
4174 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");