1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
32 #include <cluster/masklog.h>
39 #include "extent_map.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
49 #include "buffer_head_io.h"
51 static int ocfs2_symlink_get_block(struct inode
*inode
, sector_t iblock
,
52 struct buffer_head
*bh_result
, int create
)
56 struct ocfs2_dinode
*fe
= NULL
;
57 struct buffer_head
*bh
= NULL
;
58 struct buffer_head
*buffer_cache_bh
= NULL
;
59 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
64 (unsigned long long)iblock
, bh_result
, create
);
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode
));
68 if ((iblock
<< inode
->i_sb
->s_blocksize_bits
) > PATH_MAX
+ 1) {
69 mlog(ML_ERROR
, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock
);
74 status
= ocfs2_read_inode_block(inode
, &bh
);
79 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
81 if ((u64
)iblock
>= ocfs2_clusters_to_blocks(inode
->i_sb
,
82 le32_to_cpu(fe
->i_clusters
))) {
83 mlog(ML_ERROR
, "block offset is outside the allocated size: "
84 "%llu\n", (unsigned long long)iblock
);
88 /* We don't use the page cache to create symlink data, so if
89 * need be, copy it over from the buffer cache. */
90 if (!buffer_uptodate(bh_result
) && ocfs2_inode_is_new(inode
)) {
91 u64 blkno
= le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) +
93 buffer_cache_bh
= sb_getblk(osb
->sb
, blkno
);
94 if (!buffer_cache_bh
) {
95 mlog(ML_ERROR
, "couldn't getblock for symlink!\n");
99 /* we haven't locked out transactions, so a commit
100 * could've happened. Since we've got a reference on
101 * the bh, even if it commits while we're doing the
102 * copy, the data is still good. */
103 if (buffer_jbd(buffer_cache_bh
)
104 && ocfs2_inode_is_new(inode
)) {
105 kaddr
= kmap_atomic(bh_result
->b_page
, KM_USER0
);
107 mlog(ML_ERROR
, "couldn't kmap!\n");
110 memcpy(kaddr
+ (bh_result
->b_size
* iblock
),
111 buffer_cache_bh
->b_data
,
113 kunmap_atomic(kaddr
, KM_USER0
);
114 set_buffer_uptodate(bh_result
);
116 brelse(buffer_cache_bh
);
119 map_bh(bh_result
, inode
->i_sb
,
120 le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) + iblock
);
130 int ocfs2_get_block(struct inode
*inode
, sector_t iblock
,
131 struct buffer_head
*bh_result
, int create
)
134 unsigned int ext_flags
;
135 u64 max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
136 u64 p_blkno
, count
, past_eof
;
137 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
140 (unsigned long long)iblock
, bh_result
, create
);
142 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
)
143 mlog(ML_NOTICE
, "get_block on system inode 0x%p (%lu)\n",
144 inode
, inode
->i_ino
);
146 if (S_ISLNK(inode
->i_mode
)) {
147 /* this always does I/O for some reason. */
148 err
= ocfs2_symlink_get_block(inode
, iblock
, bh_result
, create
);
152 err
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
, &count
,
155 mlog(ML_ERROR
, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err
, inode
, (unsigned long long)iblock
,
157 (unsigned long long)p_blkno
);
161 if (max_blocks
< count
)
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows __block_write_begin() to zero.
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
175 if (create
&& p_blkno
== 0 && ocfs2_sparse_alloc(osb
)) {
176 clear_buffer_dirty(bh_result
);
177 clear_buffer_uptodate(bh_result
);
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
183 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
185 bh_result
->b_size
= count
<< inode
->i_blkbits
;
187 if (!ocfs2_sparse_alloc(osb
)) {
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock
,
193 (unsigned long long)p_blkno
,
194 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
195 mlog(ML_ERROR
, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode
), OCFS2_I(inode
)->ip_clusters
);
201 past_eof
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
204 (unsigned long long)past_eof
);
205 if (create
&& (iblock
>= past_eof
))
206 set_buffer_new(bh_result
);
215 int ocfs2_read_inline_data(struct inode
*inode
, struct page
*page
,
216 struct buffer_head
*di_bh
)
220 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
222 if (!(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
)) {
223 ocfs2_error(inode
->i_sb
, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
228 size
= i_size_read(inode
);
230 if (size
> PAGE_CACHE_SIZE
||
231 size
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
)) {
232 ocfs2_error(inode
->i_sb
,
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
235 (unsigned long long)size
);
239 kaddr
= kmap_atomic(page
, KM_USER0
);
241 memcpy(kaddr
, di
->id2
.i_data
.id_data
, size
);
242 /* Clear the remaining part of the page */
243 memset(kaddr
+ size
, 0, PAGE_CACHE_SIZE
- size
);
244 flush_dcache_page(page
);
245 kunmap_atomic(kaddr
, KM_USER0
);
247 SetPageUptodate(page
);
252 static int ocfs2_readpage_inline(struct inode
*inode
, struct page
*page
)
255 struct buffer_head
*di_bh
= NULL
;
257 BUG_ON(!PageLocked(page
));
258 BUG_ON(!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
));
260 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
266 ret
= ocfs2_read_inline_data(inode
, page
, di_bh
);
274 static int ocfs2_readpage(struct file
*file
, struct page
*page
)
276 struct inode
*inode
= page
->mapping
->host
;
277 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
278 loff_t start
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
281 trace_ocfs2_readpage((unsigned long long)oi
->ip_blkno
,
282 (page
? page
->index
: 0));
284 ret
= ocfs2_inode_lock_with_page(inode
, NULL
, 0, page
);
286 if (ret
== AOP_TRUNCATED_PAGE
)
292 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
293 ret
= AOP_TRUNCATED_PAGE
;
294 goto out_inode_unlock
;
298 * i_size might have just been updated as we grabed the meta lock. We
299 * might now be discovering a truncate that hit on another node.
300 * block_read_full_page->get_block freaks out if it is asked to read
301 * beyond the end of a file, so we check here. Callers
302 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303 * and notice that the page they just read isn't needed.
305 * XXX sys_readahead() seems to get that wrong?
307 if (start
>= i_size_read(inode
)) {
308 zero_user(page
, 0, PAGE_SIZE
);
309 SetPageUptodate(page
);
314 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
315 ret
= ocfs2_readpage_inline(inode
, page
);
317 ret
= block_read_full_page(page
, ocfs2_get_block
);
321 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
323 ocfs2_inode_unlock(inode
, 0);
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
339 static int ocfs2_readpages(struct file
*filp
, struct address_space
*mapping
,
340 struct list_head
*pages
, unsigned nr_pages
)
343 struct inode
*inode
= mapping
->host
;
344 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
349 * Use the nonblocking flag for the dlm code to avoid page
350 * lock inversion, but don't bother with retrying.
352 ret
= ocfs2_inode_lock_full(inode
, NULL
, 0, OCFS2_LOCK_NONBLOCK
);
356 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
357 ocfs2_inode_unlock(inode
, 0);
362 * Don't bother with inline-data. There isn't anything
363 * to read-ahead in that case anyway...
365 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
369 * Check whether a remote node truncated this file - we just
370 * drop out in that case as it's not worth handling here.
372 last
= list_entry(pages
->prev
, struct page
, lru
);
373 start
= (loff_t
)last
->index
<< PAGE_CACHE_SHIFT
;
374 if (start
>= i_size_read(inode
))
377 err
= mpage_readpages(mapping
, pages
, nr_pages
, ocfs2_get_block
);
380 up_read(&oi
->ip_alloc_sem
);
381 ocfs2_inode_unlock(inode
, 0);
386 /* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing. It can't block on any cluster locks
393 * to during block mapping. It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
397 static int ocfs2_writepage(struct page
*page
, struct writeback_control
*wbc
)
399 trace_ocfs2_writepage(
400 (unsigned long long)OCFS2_I(page
->mapping
->host
)->ip_blkno
,
403 return block_write_full_page(page
, ocfs2_get_block
, wbc
);
406 /* Taken from ext3. We don't necessarily need the full blown
407 * functionality yet, but IMHO it's better to cut and paste the whole
408 * thing so we can avoid introducing our own bugs (and easily pick up
409 * their fixes when they happen) --Mark */
410 int walk_page_buffers( handle_t
*handle
,
411 struct buffer_head
*head
,
415 int (*fn
)( handle_t
*handle
,
416 struct buffer_head
*bh
))
418 struct buffer_head
*bh
;
419 unsigned block_start
, block_end
;
420 unsigned blocksize
= head
->b_size
;
422 struct buffer_head
*next
;
424 for ( bh
= head
, block_start
= 0;
425 ret
== 0 && (bh
!= head
|| !block_start
);
426 block_start
= block_end
, bh
= next
)
428 next
= bh
->b_this_page
;
429 block_end
= block_start
+ blocksize
;
430 if (block_end
<= from
|| block_start
>= to
) {
431 if (partial
&& !buffer_uptodate(bh
))
435 err
= (*fn
)(handle
, bh
);
442 static sector_t
ocfs2_bmap(struct address_space
*mapping
, sector_t block
)
447 struct inode
*inode
= mapping
->host
;
449 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
450 (unsigned long long)block
);
452 /* We don't need to lock journal system files, since they aren't
453 * accessed concurrently from multiple nodes.
455 if (!INODE_JOURNAL(inode
)) {
456 err
= ocfs2_inode_lock(inode
, NULL
, 0);
462 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
465 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
466 err
= ocfs2_extent_map_get_blocks(inode
, block
, &p_blkno
, NULL
,
469 if (!INODE_JOURNAL(inode
)) {
470 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
471 ocfs2_inode_unlock(inode
, 0);
475 mlog(ML_ERROR
, "get_blocks() failed, block = %llu\n",
476 (unsigned long long)block
);
482 status
= err
? 0 : p_blkno
;
488 * TODO: Make this into a generic get_blocks function.
490 * From do_direct_io in direct-io.c:
491 * "So what we do is to permit the ->get_blocks function to populate
492 * bh.b_size with the size of IO which is permitted at this offset and
495 * This function is called directly from get_more_blocks in direct-io.c.
497 * called like this: dio->get_blocks(dio->inode, fs_startblk,
498 * fs_count, map_bh, dio->rw == WRITE);
500 * Note that we never bother to allocate blocks here, and thus ignore the
503 static int ocfs2_direct_IO_get_blocks(struct inode
*inode
, sector_t iblock
,
504 struct buffer_head
*bh_result
, int create
)
507 u64 p_blkno
, inode_blocks
, contig_blocks
;
508 unsigned int ext_flags
;
509 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
510 unsigned long max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
512 /* This function won't even be called if the request isn't all
513 * nicely aligned and of the right size, so there's no need
514 * for us to check any of that. */
516 inode_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
518 /* This figures out the size of the next contiguous block, and
519 * our logical offset */
520 ret
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
,
521 &contig_blocks
, &ext_flags
);
523 mlog(ML_ERROR
, "get_blocks() failed iblock=%llu\n",
524 (unsigned long long)iblock
);
529 /* We should already CoW the refcounted extent in case of create. */
530 BUG_ON(create
&& (ext_flags
& OCFS2_EXT_REFCOUNTED
));
533 * get_more_blocks() expects us to describe a hole by clearing
534 * the mapped bit on bh_result().
536 * Consider an unwritten extent as a hole.
538 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
539 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
541 clear_buffer_mapped(bh_result
);
543 /* make sure we don't map more than max_blocks blocks here as
544 that's all the kernel will handle at this point. */
545 if (max_blocks
< contig_blocks
)
546 contig_blocks
= max_blocks
;
547 bh_result
->b_size
= contig_blocks
<< blocksize_bits
;
553 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
554 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
555 * to protect io on one node from truncation on another.
557 static void ocfs2_dio_end_io(struct kiocb
*iocb
,
564 struct inode
*inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
567 /* this io's submitter should not have unlocked this before we could */
568 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb
));
570 if (ocfs2_iocb_is_sem_locked(iocb
))
571 ocfs2_iocb_clear_sem_locked(iocb
);
573 ocfs2_iocb_clear_rw_locked(iocb
);
575 level
= ocfs2_iocb_rw_locked_level(iocb
);
576 ocfs2_rw_unlock(inode
, level
);
579 aio_complete(iocb
, ret
, 0);
580 inode_dio_done(inode
);
584 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
585 * from ext3. PageChecked() bits have been removed as OCFS2 does not
586 * do journalled data.
588 static void ocfs2_invalidatepage(struct page
*page
, unsigned long offset
)
590 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
592 jbd2_journal_invalidatepage(journal
, page
, offset
);
595 static int ocfs2_releasepage(struct page
*page
, gfp_t wait
)
597 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
599 if (!page_has_buffers(page
))
601 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
604 static ssize_t
ocfs2_direct_IO(int rw
,
606 const struct iovec
*iov
,
608 unsigned long nr_segs
)
610 struct file
*file
= iocb
->ki_filp
;
611 struct inode
*inode
= file
->f_path
.dentry
->d_inode
->i_mapping
->host
;
614 * Fallback to buffered I/O if we see an inode without
617 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
620 /* Fallback to buffered I/O if we are appending. */
621 if (i_size_read(inode
) <= offset
)
624 return __blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
,
625 iov
, offset
, nr_segs
,
626 ocfs2_direct_IO_get_blocks
,
627 ocfs2_dio_end_io
, NULL
, 0);
630 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super
*osb
,
635 unsigned int cluster_start
= 0, cluster_end
= PAGE_CACHE_SIZE
;
637 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
)) {
640 cpp
= 1 << (PAGE_CACHE_SHIFT
- osb
->s_clustersize_bits
);
642 cluster_start
= cpos
% cpp
;
643 cluster_start
= cluster_start
<< osb
->s_clustersize_bits
;
645 cluster_end
= cluster_start
+ osb
->s_clustersize
;
648 BUG_ON(cluster_start
> PAGE_SIZE
);
649 BUG_ON(cluster_end
> PAGE_SIZE
);
652 *start
= cluster_start
;
658 * 'from' and 'to' are the region in the page to avoid zeroing.
660 * If pagesize > clustersize, this function will avoid zeroing outside
661 * of the cluster boundary.
663 * from == to == 0 is code for "zero the entire cluster region"
665 static void ocfs2_clear_page_regions(struct page
*page
,
666 struct ocfs2_super
*osb
, u32 cpos
,
667 unsigned from
, unsigned to
)
670 unsigned int cluster_start
, cluster_end
;
672 ocfs2_figure_cluster_boundaries(osb
, cpos
, &cluster_start
, &cluster_end
);
674 kaddr
= kmap_atomic(page
, KM_USER0
);
677 if (from
> cluster_start
)
678 memset(kaddr
+ cluster_start
, 0, from
- cluster_start
);
679 if (to
< cluster_end
)
680 memset(kaddr
+ to
, 0, cluster_end
- to
);
682 memset(kaddr
+ cluster_start
, 0, cluster_end
- cluster_start
);
685 kunmap_atomic(kaddr
, KM_USER0
);
689 * Nonsparse file systems fully allocate before we get to the write
690 * code. This prevents ocfs2_write() from tagging the write as an
691 * allocating one, which means ocfs2_map_page_blocks() might try to
692 * read-in the blocks at the tail of our file. Avoid reading them by
693 * testing i_size against each block offset.
695 static int ocfs2_should_read_blk(struct inode
*inode
, struct page
*page
,
696 unsigned int block_start
)
698 u64 offset
= page_offset(page
) + block_start
;
700 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
703 if (i_size_read(inode
) > offset
)
710 * Some of this taken from __block_write_begin(). We already have our
711 * mapping by now though, and the entire write will be allocating or
712 * it won't, so not much need to use BH_New.
714 * This will also skip zeroing, which is handled externally.
716 int ocfs2_map_page_blocks(struct page
*page
, u64
*p_blkno
,
717 struct inode
*inode
, unsigned int from
,
718 unsigned int to
, int new)
721 struct buffer_head
*head
, *bh
, *wait
[2], **wait_bh
= wait
;
722 unsigned int block_end
, block_start
;
723 unsigned int bsize
= 1 << inode
->i_blkbits
;
725 if (!page_has_buffers(page
))
726 create_empty_buffers(page
, bsize
, 0);
728 head
= page_buffers(page
);
729 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
730 bh
= bh
->b_this_page
, block_start
+= bsize
) {
731 block_end
= block_start
+ bsize
;
733 clear_buffer_new(bh
);
736 * Ignore blocks outside of our i/o range -
737 * they may belong to unallocated clusters.
739 if (block_start
>= to
|| block_end
<= from
) {
740 if (PageUptodate(page
))
741 set_buffer_uptodate(bh
);
746 * For an allocating write with cluster size >= page
747 * size, we always write the entire page.
752 if (!buffer_mapped(bh
)) {
753 map_bh(bh
, inode
->i_sb
, *p_blkno
);
754 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
757 if (PageUptodate(page
)) {
758 if (!buffer_uptodate(bh
))
759 set_buffer_uptodate(bh
);
760 } else if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
762 ocfs2_should_read_blk(inode
, page
, block_start
) &&
763 (block_start
< from
|| block_end
> to
)) {
764 ll_rw_block(READ
, 1, &bh
);
768 *p_blkno
= *p_blkno
+ 1;
772 * If we issued read requests - let them complete.
774 while(wait_bh
> wait
) {
775 wait_on_buffer(*--wait_bh
);
776 if (!buffer_uptodate(*wait_bh
))
780 if (ret
== 0 || !new)
784 * If we get -EIO above, zero out any newly allocated blocks
785 * to avoid exposing stale data.
790 block_end
= block_start
+ bsize
;
791 if (block_end
<= from
)
793 if (block_start
>= to
)
796 zero_user(page
, block_start
, bh
->b_size
);
797 set_buffer_uptodate(bh
);
798 mark_buffer_dirty(bh
);
801 block_start
= block_end
;
802 bh
= bh
->b_this_page
;
803 } while (bh
!= head
);
808 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
809 #define OCFS2_MAX_CTXT_PAGES 1
811 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
814 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
817 * Describe the state of a single cluster to be written to.
819 struct ocfs2_write_cluster_desc
{
823 * Give this a unique field because c_phys eventually gets
827 unsigned c_unwritten
;
828 unsigned c_needs_zero
;
831 struct ocfs2_write_ctxt
{
832 /* Logical cluster position / len of write */
836 /* First cluster allocated in a nonsparse extend */
837 u32 w_first_new_cpos
;
839 struct ocfs2_write_cluster_desc w_desc
[OCFS2_MAX_CLUSTERS_PER_PAGE
];
842 * This is true if page_size > cluster_size.
844 * It triggers a set of special cases during write which might
845 * have to deal with allocating writes to partial pages.
847 unsigned int w_large_pages
;
850 * Pages involved in this write.
852 * w_target_page is the page being written to by the user.
854 * w_pages is an array of pages which always contains
855 * w_target_page, and in the case of an allocating write with
856 * page_size < cluster size, it will contain zero'd and mapped
857 * pages adjacent to w_target_page which need to be written
858 * out in so that future reads from that region will get
861 unsigned int w_num_pages
;
862 struct page
*w_pages
[OCFS2_MAX_CTXT_PAGES
];
863 struct page
*w_target_page
;
866 * ocfs2_write_end() uses this to know what the real range to
867 * write in the target should be.
869 unsigned int w_target_from
;
870 unsigned int w_target_to
;
873 * We could use journal_current_handle() but this is cleaner,
878 struct buffer_head
*w_di_bh
;
880 struct ocfs2_cached_dealloc_ctxt w_dealloc
;
883 void ocfs2_unlock_and_free_pages(struct page
**pages
, int num_pages
)
887 for(i
= 0; i
< num_pages
; i
++) {
889 unlock_page(pages
[i
]);
890 mark_page_accessed(pages
[i
]);
891 page_cache_release(pages
[i
]);
896 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt
*wc
)
898 ocfs2_unlock_and_free_pages(wc
->w_pages
, wc
->w_num_pages
);
904 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt
**wcp
,
905 struct ocfs2_super
*osb
, loff_t pos
,
906 unsigned len
, struct buffer_head
*di_bh
)
909 struct ocfs2_write_ctxt
*wc
;
911 wc
= kzalloc(sizeof(struct ocfs2_write_ctxt
), GFP_NOFS
);
915 wc
->w_cpos
= pos
>> osb
->s_clustersize_bits
;
916 wc
->w_first_new_cpos
= UINT_MAX
;
917 cend
= (pos
+ len
- 1) >> osb
->s_clustersize_bits
;
918 wc
->w_clen
= cend
- wc
->w_cpos
+ 1;
922 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
))
923 wc
->w_large_pages
= 1;
925 wc
->w_large_pages
= 0;
927 ocfs2_init_dealloc_ctxt(&wc
->w_dealloc
);
935 * If a page has any new buffers, zero them out here, and mark them uptodate
936 * and dirty so they'll be written out (in order to prevent uninitialised
937 * block data from leaking). And clear the new bit.
939 static void ocfs2_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
941 unsigned int block_start
, block_end
;
942 struct buffer_head
*head
, *bh
;
944 BUG_ON(!PageLocked(page
));
945 if (!page_has_buffers(page
))
948 bh
= head
= page_buffers(page
);
951 block_end
= block_start
+ bh
->b_size
;
953 if (buffer_new(bh
)) {
954 if (block_end
> from
&& block_start
< to
) {
955 if (!PageUptodate(page
)) {
958 start
= max(from
, block_start
);
959 end
= min(to
, block_end
);
961 zero_user_segment(page
, start
, end
);
962 set_buffer_uptodate(bh
);
965 clear_buffer_new(bh
);
966 mark_buffer_dirty(bh
);
970 block_start
= block_end
;
971 bh
= bh
->b_this_page
;
972 } while (bh
!= head
);
976 * Only called when we have a failure during allocating write to write
977 * zero's to the newly allocated region.
979 static void ocfs2_write_failure(struct inode
*inode
,
980 struct ocfs2_write_ctxt
*wc
,
981 loff_t user_pos
, unsigned user_len
)
984 unsigned from
= user_pos
& (PAGE_CACHE_SIZE
- 1),
985 to
= user_pos
+ user_len
;
986 struct page
*tmppage
;
988 ocfs2_zero_new_buffers(wc
->w_target_page
, from
, to
);
990 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
991 tmppage
= wc
->w_pages
[i
];
993 if (page_has_buffers(tmppage
)) {
994 if (ocfs2_should_order_data(inode
))
995 ocfs2_jbd2_file_inode(wc
->w_handle
, inode
);
997 block_commit_write(tmppage
, from
, to
);
1002 static int ocfs2_prepare_page_for_write(struct inode
*inode
, u64
*p_blkno
,
1003 struct ocfs2_write_ctxt
*wc
,
1004 struct page
*page
, u32 cpos
,
1005 loff_t user_pos
, unsigned user_len
,
1009 unsigned int map_from
= 0, map_to
= 0;
1010 unsigned int cluster_start
, cluster_end
;
1011 unsigned int user_data_from
= 0, user_data_to
= 0;
1013 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode
->i_sb
), cpos
,
1014 &cluster_start
, &cluster_end
);
1016 /* treat the write as new if the a hole/lseek spanned across
1017 * the page boundary.
1019 new = new | ((i_size_read(inode
) <= page_offset(page
)) &&
1020 (page_offset(page
) <= user_pos
));
1022 if (page
== wc
->w_target_page
) {
1023 map_from
= user_pos
& (PAGE_CACHE_SIZE
- 1);
1024 map_to
= map_from
+ user_len
;
1027 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1028 cluster_start
, cluster_end
,
1031 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1032 map_from
, map_to
, new);
1038 user_data_from
= map_from
;
1039 user_data_to
= map_to
;
1041 map_from
= cluster_start
;
1042 map_to
= cluster_end
;
1046 * If we haven't allocated the new page yet, we
1047 * shouldn't be writing it out without copying user
1048 * data. This is likely a math error from the caller.
1052 map_from
= cluster_start
;
1053 map_to
= cluster_end
;
1055 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1056 cluster_start
, cluster_end
, new);
1064 * Parts of newly allocated pages need to be zero'd.
1066 * Above, we have also rewritten 'to' and 'from' - as far as
1067 * the rest of the function is concerned, the entire cluster
1068 * range inside of a page needs to be written.
1070 * We can skip this if the page is up to date - it's already
1071 * been zero'd from being read in as a hole.
1073 if (new && !PageUptodate(page
))
1074 ocfs2_clear_page_regions(page
, OCFS2_SB(inode
->i_sb
),
1075 cpos
, user_data_from
, user_data_to
);
1077 flush_dcache_page(page
);
1084 * This function will only grab one clusters worth of pages.
1086 static int ocfs2_grab_pages_for_write(struct address_space
*mapping
,
1087 struct ocfs2_write_ctxt
*wc
,
1088 u32 cpos
, loff_t user_pos
,
1089 unsigned user_len
, int new,
1090 struct page
*mmap_page
)
1093 unsigned long start
, target_index
, end_index
, index
;
1094 struct inode
*inode
= mapping
->host
;
1097 target_index
= user_pos
>> PAGE_CACHE_SHIFT
;
1100 * Figure out how many pages we'll be manipulating here. For
1101 * non allocating write, we just change the one
1102 * page. Otherwise, we'll need a whole clusters worth. If we're
1103 * writing past i_size, we only need enough pages to cover the
1104 * last page of the write.
1107 wc
->w_num_pages
= ocfs2_pages_per_cluster(inode
->i_sb
);
1108 start
= ocfs2_align_clusters_to_page_index(inode
->i_sb
, cpos
);
1110 * We need the index *past* the last page we could possibly
1111 * touch. This is the page past the end of the write or
1112 * i_size, whichever is greater.
1114 last_byte
= max(user_pos
+ user_len
, i_size_read(inode
));
1115 BUG_ON(last_byte
< 1);
1116 end_index
= ((last_byte
- 1) >> PAGE_CACHE_SHIFT
) + 1;
1117 if ((start
+ wc
->w_num_pages
) > end_index
)
1118 wc
->w_num_pages
= end_index
- start
;
1120 wc
->w_num_pages
= 1;
1121 start
= target_index
;
1124 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1127 if (index
== target_index
&& mmap_page
) {
1129 * ocfs2_pagemkwrite() is a little different
1130 * and wants us to directly use the page
1133 lock_page(mmap_page
);
1135 if (mmap_page
->mapping
!= mapping
) {
1136 unlock_page(mmap_page
);
1138 * Sanity check - the locking in
1139 * ocfs2_pagemkwrite() should ensure
1140 * that this code doesn't trigger.
1147 page_cache_get(mmap_page
);
1148 wc
->w_pages
[i
] = mmap_page
;
1150 wc
->w_pages
[i
] = find_or_create_page(mapping
, index
,
1152 if (!wc
->w_pages
[i
]) {
1159 if (index
== target_index
)
1160 wc
->w_target_page
= wc
->w_pages
[i
];
1167 * Prepare a single cluster for write one cluster into the file.
1169 static int ocfs2_write_cluster(struct address_space
*mapping
,
1170 u32 phys
, unsigned int unwritten
,
1171 unsigned int should_zero
,
1172 struct ocfs2_alloc_context
*data_ac
,
1173 struct ocfs2_alloc_context
*meta_ac
,
1174 struct ocfs2_write_ctxt
*wc
, u32 cpos
,
1175 loff_t user_pos
, unsigned user_len
)
1178 u64 v_blkno
, p_blkno
;
1179 struct inode
*inode
= mapping
->host
;
1180 struct ocfs2_extent_tree et
;
1182 new = phys
== 0 ? 1 : 0;
1187 * This is safe to call with the page locks - it won't take
1188 * any additional semaphores or cluster locks.
1191 ret
= ocfs2_add_inode_data(OCFS2_SB(inode
->i_sb
), inode
,
1192 &tmp_pos
, 1, 0, wc
->w_di_bh
,
1193 wc
->w_handle
, data_ac
,
1196 * This shouldn't happen because we must have already
1197 * calculated the correct meta data allocation required. The
1198 * internal tree allocation code should know how to increase
1199 * transaction credits itself.
1201 * If need be, we could handle -EAGAIN for a
1202 * RESTART_TRANS here.
1204 mlog_bug_on_msg(ret
== -EAGAIN
,
1205 "Inode %llu: EAGAIN return during allocation.\n",
1206 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1211 } else if (unwritten
) {
1212 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1214 ret
= ocfs2_mark_extent_written(inode
, &et
,
1215 wc
->w_handle
, cpos
, 1, phys
,
1216 meta_ac
, &wc
->w_dealloc
);
1224 v_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, cpos
);
1226 v_blkno
= user_pos
>> inode
->i_sb
->s_blocksize_bits
;
1229 * The only reason this should fail is due to an inability to
1230 * find the extent added.
1232 ret
= ocfs2_extent_map_get_blocks(inode
, v_blkno
, &p_blkno
, NULL
,
1235 ocfs2_error(inode
->i_sb
, "Corrupting extend for inode %llu, "
1236 "at logical block %llu",
1237 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1238 (unsigned long long)v_blkno
);
1242 BUG_ON(p_blkno
== 0);
1244 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1247 tmpret
= ocfs2_prepare_page_for_write(inode
, &p_blkno
, wc
,
1248 wc
->w_pages
[i
], cpos
,
1259 * We only have cleanup to do in case of allocating write.
1262 ocfs2_write_failure(inode
, wc
, user_pos
, user_len
);
1269 static int ocfs2_write_cluster_by_desc(struct address_space
*mapping
,
1270 struct ocfs2_alloc_context
*data_ac
,
1271 struct ocfs2_alloc_context
*meta_ac
,
1272 struct ocfs2_write_ctxt
*wc
,
1273 loff_t pos
, unsigned len
)
1277 unsigned int local_len
= len
;
1278 struct ocfs2_write_cluster_desc
*desc
;
1279 struct ocfs2_super
*osb
= OCFS2_SB(mapping
->host
->i_sb
);
1281 for (i
= 0; i
< wc
->w_clen
; i
++) {
1282 desc
= &wc
->w_desc
[i
];
1285 * We have to make sure that the total write passed in
1286 * doesn't extend past a single cluster.
1289 cluster_off
= pos
& (osb
->s_clustersize
- 1);
1290 if ((cluster_off
+ local_len
) > osb
->s_clustersize
)
1291 local_len
= osb
->s_clustersize
- cluster_off
;
1293 ret
= ocfs2_write_cluster(mapping
, desc
->c_phys
,
1297 wc
, desc
->c_cpos
, pos
, local_len
);
1313 * ocfs2_write_end() wants to know which parts of the target page it
1314 * should complete the write on. It's easiest to compute them ahead of
1315 * time when a more complete view of the write is available.
1317 static void ocfs2_set_target_boundaries(struct ocfs2_super
*osb
,
1318 struct ocfs2_write_ctxt
*wc
,
1319 loff_t pos
, unsigned len
, int alloc
)
1321 struct ocfs2_write_cluster_desc
*desc
;
1323 wc
->w_target_from
= pos
& (PAGE_CACHE_SIZE
- 1);
1324 wc
->w_target_to
= wc
->w_target_from
+ len
;
1330 * Allocating write - we may have different boundaries based
1331 * on page size and cluster size.
1333 * NOTE: We can no longer compute one value from the other as
1334 * the actual write length and user provided length may be
1338 if (wc
->w_large_pages
) {
1340 * We only care about the 1st and last cluster within
1341 * our range and whether they should be zero'd or not. Either
1342 * value may be extended out to the start/end of a
1343 * newly allocated cluster.
1345 desc
= &wc
->w_desc
[0];
1346 if (desc
->c_needs_zero
)
1347 ocfs2_figure_cluster_boundaries(osb
,
1352 desc
= &wc
->w_desc
[wc
->w_clen
- 1];
1353 if (desc
->c_needs_zero
)
1354 ocfs2_figure_cluster_boundaries(osb
,
1359 wc
->w_target_from
= 0;
1360 wc
->w_target_to
= PAGE_CACHE_SIZE
;
1365 * Populate each single-cluster write descriptor in the write context
1366 * with information about the i/o to be done.
1368 * Returns the number of clusters that will have to be allocated, as
1369 * well as a worst case estimate of the number of extent records that
1370 * would have to be created during a write to an unwritten region.
1372 static int ocfs2_populate_write_desc(struct inode
*inode
,
1373 struct ocfs2_write_ctxt
*wc
,
1374 unsigned int *clusters_to_alloc
,
1375 unsigned int *extents_to_split
)
1378 struct ocfs2_write_cluster_desc
*desc
;
1379 unsigned int num_clusters
= 0;
1380 unsigned int ext_flags
= 0;
1384 *clusters_to_alloc
= 0;
1385 *extents_to_split
= 0;
1387 for (i
= 0; i
< wc
->w_clen
; i
++) {
1388 desc
= &wc
->w_desc
[i
];
1389 desc
->c_cpos
= wc
->w_cpos
+ i
;
1391 if (num_clusters
== 0) {
1393 * Need to look up the next extent record.
1395 ret
= ocfs2_get_clusters(inode
, desc
->c_cpos
, &phys
,
1396 &num_clusters
, &ext_flags
);
1402 /* We should already CoW the refcountd extent. */
1403 BUG_ON(ext_flags
& OCFS2_EXT_REFCOUNTED
);
1406 * Assume worst case - that we're writing in
1407 * the middle of the extent.
1409 * We can assume that the write proceeds from
1410 * left to right, in which case the extent
1411 * insert code is smart enough to coalesce the
1412 * next splits into the previous records created.
1414 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1415 *extents_to_split
= *extents_to_split
+ 2;
1418 * Only increment phys if it doesn't describe
1425 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1426 * file that got extended. w_first_new_cpos tells us
1427 * where the newly allocated clusters are so we can
1430 if (desc
->c_cpos
>= wc
->w_first_new_cpos
) {
1432 desc
->c_needs_zero
= 1;
1435 desc
->c_phys
= phys
;
1438 desc
->c_needs_zero
= 1;
1439 *clusters_to_alloc
= *clusters_to_alloc
+ 1;
1442 if (ext_flags
& OCFS2_EXT_UNWRITTEN
) {
1443 desc
->c_unwritten
= 1;
1444 desc
->c_needs_zero
= 1;
1455 static int ocfs2_write_begin_inline(struct address_space
*mapping
,
1456 struct inode
*inode
,
1457 struct ocfs2_write_ctxt
*wc
)
1460 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1463 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1465 page
= find_or_create_page(mapping
, 0, GFP_NOFS
);
1472 * If we don't set w_num_pages then this page won't get unlocked
1473 * and freed on cleanup of the write context.
1475 wc
->w_pages
[0] = wc
->w_target_page
= page
;
1476 wc
->w_num_pages
= 1;
1478 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1479 if (IS_ERR(handle
)) {
1480 ret
= PTR_ERR(handle
);
1485 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1486 OCFS2_JOURNAL_ACCESS_WRITE
);
1488 ocfs2_commit_trans(osb
, handle
);
1494 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
1495 ocfs2_set_inode_data_inline(inode
, di
);
1497 if (!PageUptodate(page
)) {
1498 ret
= ocfs2_read_inline_data(inode
, page
, wc
->w_di_bh
);
1500 ocfs2_commit_trans(osb
, handle
);
1506 wc
->w_handle
= handle
;
1511 int ocfs2_size_fits_inline_data(struct buffer_head
*di_bh
, u64 new_size
)
1513 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1515 if (new_size
<= le16_to_cpu(di
->id2
.i_data
.id_count
))
1520 static int ocfs2_try_to_write_inline_data(struct address_space
*mapping
,
1521 struct inode
*inode
, loff_t pos
,
1522 unsigned len
, struct page
*mmap_page
,
1523 struct ocfs2_write_ctxt
*wc
)
1525 int ret
, written
= 0;
1526 loff_t end
= pos
+ len
;
1527 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1528 struct ocfs2_dinode
*di
= NULL
;
1530 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi
->ip_blkno
,
1531 len
, (unsigned long long)pos
,
1532 oi
->ip_dyn_features
);
1535 * Handle inodes which already have inline data 1st.
1537 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1538 if (mmap_page
== NULL
&&
1539 ocfs2_size_fits_inline_data(wc
->w_di_bh
, end
))
1540 goto do_inline_write
;
1543 * The write won't fit - we have to give this inode an
1544 * inline extent list now.
1546 ret
= ocfs2_convert_inline_data_to_extents(inode
, wc
->w_di_bh
);
1553 * Check whether the inode can accept inline data.
1555 if (oi
->ip_clusters
!= 0 || i_size_read(inode
) != 0)
1559 * Check whether the write can fit.
1561 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1563 end
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
))
1567 ret
= ocfs2_write_begin_inline(mapping
, inode
, wc
);
1574 * This signals to the caller that the data can be written
1579 return written
? written
: ret
;
1583 * This function only does anything for file systems which can't
1584 * handle sparse files.
1586 * What we want to do here is fill in any hole between the current end
1587 * of allocation and the end of our write. That way the rest of the
1588 * write path can treat it as an non-allocating write, which has no
1589 * special case code for sparse/nonsparse files.
1591 static int ocfs2_expand_nonsparse_inode(struct inode
*inode
,
1592 struct buffer_head
*di_bh
,
1593 loff_t pos
, unsigned len
,
1594 struct ocfs2_write_ctxt
*wc
)
1597 loff_t newsize
= pos
+ len
;
1599 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1601 if (newsize
<= i_size_read(inode
))
1604 ret
= ocfs2_extend_no_holes(inode
, di_bh
, newsize
, pos
);
1608 wc
->w_first_new_cpos
=
1609 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
));
1614 static int ocfs2_zero_tail(struct inode
*inode
, struct buffer_head
*di_bh
,
1619 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1620 if (pos
> i_size_read(inode
))
1621 ret
= ocfs2_zero_extend(inode
, di_bh
, pos
);
1627 * Try to flush truncate logs if we can free enough clusters from it.
1628 * As for return value, "< 0" means error, "0" no space and "1" means
1629 * we have freed enough spaces and let the caller try to allocate again.
1631 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super
*osb
,
1632 unsigned int needed
)
1636 unsigned int truncated_clusters
;
1638 mutex_lock(&osb
->osb_tl_inode
->i_mutex
);
1639 truncated_clusters
= osb
->truncated_clusters
;
1640 mutex_unlock(&osb
->osb_tl_inode
->i_mutex
);
1643 * Check whether we can succeed in allocating if we free
1646 if (truncated_clusters
< needed
)
1649 ret
= ocfs2_flush_truncate_log(osb
);
1655 if (jbd2_journal_start_commit(osb
->journal
->j_journal
, &target
)) {
1656 jbd2_log_wait_commit(osb
->journal
->j_journal
, target
);
1663 int ocfs2_write_begin_nolock(struct file
*filp
,
1664 struct address_space
*mapping
,
1665 loff_t pos
, unsigned len
, unsigned flags
,
1666 struct page
**pagep
, void **fsdata
,
1667 struct buffer_head
*di_bh
, struct page
*mmap_page
)
1669 int ret
, cluster_of_pages
, credits
= OCFS2_INODE_UPDATE_CREDITS
;
1670 unsigned int clusters_to_alloc
, extents_to_split
, clusters_need
= 0;
1671 struct ocfs2_write_ctxt
*wc
;
1672 struct inode
*inode
= mapping
->host
;
1673 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1674 struct ocfs2_dinode
*di
;
1675 struct ocfs2_alloc_context
*data_ac
= NULL
;
1676 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1678 struct ocfs2_extent_tree et
;
1679 int try_free
= 1, ret1
;
1682 ret
= ocfs2_alloc_write_ctxt(&wc
, osb
, pos
, len
, di_bh
);
1688 if (ocfs2_supports_inline_data(osb
)) {
1689 ret
= ocfs2_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1701 if (ocfs2_sparse_alloc(osb
))
1702 ret
= ocfs2_zero_tail(inode
, di_bh
, pos
);
1704 ret
= ocfs2_expand_nonsparse_inode(inode
, di_bh
, pos
, len
,
1711 ret
= ocfs2_check_range_for_refcount(inode
, pos
, len
);
1715 } else if (ret
== 1) {
1716 clusters_need
= wc
->w_clen
;
1717 ret
= ocfs2_refcount_cow(inode
, filp
, di_bh
,
1718 wc
->w_cpos
, wc
->w_clen
, UINT_MAX
);
1725 ret
= ocfs2_populate_write_desc(inode
, wc
, &clusters_to_alloc
,
1731 clusters_need
+= clusters_to_alloc
;
1733 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1735 trace_ocfs2_write_begin_nolock(
1736 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1737 (long long)i_size_read(inode
),
1738 le32_to_cpu(di
->i_clusters
),
1739 pos
, len
, flags
, mmap_page
,
1740 clusters_to_alloc
, extents_to_split
);
1743 * We set w_target_from, w_target_to here so that
1744 * ocfs2_write_end() knows which range in the target page to
1745 * write out. An allocation requires that we write the entire
1748 if (clusters_to_alloc
|| extents_to_split
) {
1750 * XXX: We are stretching the limits of
1751 * ocfs2_lock_allocators(). It greatly over-estimates
1752 * the work to be done.
1754 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1756 ret
= ocfs2_lock_allocators(inode
, &et
,
1757 clusters_to_alloc
, extents_to_split
,
1758 &data_ac
, &meta_ac
);
1765 data_ac
->ac_resv
= &OCFS2_I(inode
)->ip_la_data_resv
;
1767 credits
= ocfs2_calc_extend_credits(inode
->i_sb
,
1774 * We have to zero sparse allocated clusters, unwritten extent clusters,
1775 * and non-sparse clusters we just extended. For non-sparse writes,
1776 * we know zeros will only be needed in the first and/or last cluster.
1778 if (clusters_to_alloc
|| extents_to_split
||
1779 (wc
->w_clen
&& (wc
->w_desc
[0].c_needs_zero
||
1780 wc
->w_desc
[wc
->w_clen
- 1].c_needs_zero
)))
1781 cluster_of_pages
= 1;
1783 cluster_of_pages
= 0;
1785 ocfs2_set_target_boundaries(osb
, wc
, pos
, len
, cluster_of_pages
);
1787 handle
= ocfs2_start_trans(osb
, credits
);
1788 if (IS_ERR(handle
)) {
1789 ret
= PTR_ERR(handle
);
1794 wc
->w_handle
= handle
;
1796 if (clusters_to_alloc
) {
1797 ret
= dquot_alloc_space_nodirty(inode
,
1798 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1803 * We don't want this to fail in ocfs2_write_end(), so do it
1806 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1807 OCFS2_JOURNAL_ACCESS_WRITE
);
1814 * Fill our page array first. That way we've grabbed enough so
1815 * that we can zero and flush if we error after adding the
1818 ret
= ocfs2_grab_pages_for_write(mapping
, wc
, wc
->w_cpos
, pos
, len
,
1819 cluster_of_pages
, mmap_page
);
1825 ret
= ocfs2_write_cluster_by_desc(mapping
, data_ac
, meta_ac
, wc
, pos
,
1833 ocfs2_free_alloc_context(data_ac
);
1835 ocfs2_free_alloc_context(meta_ac
);
1838 *pagep
= wc
->w_target_page
;
1842 if (clusters_to_alloc
)
1843 dquot_free_space(inode
,
1844 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1846 ocfs2_commit_trans(osb
, handle
);
1849 ocfs2_free_write_ctxt(wc
);
1852 ocfs2_free_alloc_context(data_ac
);
1854 ocfs2_free_alloc_context(meta_ac
);
1856 if (ret
== -ENOSPC
&& try_free
) {
1858 * Try to free some truncate log so that we can have enough
1859 * clusters to allocate.
1863 ret1
= ocfs2_try_to_free_truncate_log(osb
, clusters_need
);
1874 static int ocfs2_write_begin(struct file
*file
, struct address_space
*mapping
,
1875 loff_t pos
, unsigned len
, unsigned flags
,
1876 struct page
**pagep
, void **fsdata
)
1879 struct buffer_head
*di_bh
= NULL
;
1880 struct inode
*inode
= mapping
->host
;
1882 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1889 * Take alloc sem here to prevent concurrent lookups. That way
1890 * the mapping, zeroing and tree manipulation within
1891 * ocfs2_write() will be safe against ->readpage(). This
1892 * should also serve to lock out allocation from a shared
1895 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1897 ret
= ocfs2_write_begin_nolock(file
, mapping
, pos
, len
, flags
, pagep
,
1898 fsdata
, di_bh
, NULL
);
1909 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1912 ocfs2_inode_unlock(inode
, 1);
1917 static void ocfs2_write_end_inline(struct inode
*inode
, loff_t pos
,
1918 unsigned len
, unsigned *copied
,
1919 struct ocfs2_dinode
*di
,
1920 struct ocfs2_write_ctxt
*wc
)
1924 if (unlikely(*copied
< len
)) {
1925 if (!PageUptodate(wc
->w_target_page
)) {
1931 kaddr
= kmap_atomic(wc
->w_target_page
, KM_USER0
);
1932 memcpy(di
->id2
.i_data
.id_data
+ pos
, kaddr
+ pos
, *copied
);
1933 kunmap_atomic(kaddr
, KM_USER0
);
1935 trace_ocfs2_write_end_inline(
1936 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1937 (unsigned long long)pos
, *copied
,
1938 le16_to_cpu(di
->id2
.i_data
.id_count
),
1939 le16_to_cpu(di
->i_dyn_features
));
1942 int ocfs2_write_end_nolock(struct address_space
*mapping
,
1943 loff_t pos
, unsigned len
, unsigned copied
,
1944 struct page
*page
, void *fsdata
)
1947 unsigned from
, to
, start
= pos
& (PAGE_CACHE_SIZE
- 1);
1948 struct inode
*inode
= mapping
->host
;
1949 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1950 struct ocfs2_write_ctxt
*wc
= fsdata
;
1951 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1952 handle_t
*handle
= wc
->w_handle
;
1953 struct page
*tmppage
;
1955 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1956 ocfs2_write_end_inline(inode
, pos
, len
, &copied
, di
, wc
);
1957 goto out_write_size
;
1960 if (unlikely(copied
< len
)) {
1961 if (!PageUptodate(wc
->w_target_page
))
1964 ocfs2_zero_new_buffers(wc
->w_target_page
, start
+copied
,
1967 flush_dcache_page(wc
->w_target_page
);
1969 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1970 tmppage
= wc
->w_pages
[i
];
1972 if (tmppage
== wc
->w_target_page
) {
1973 from
= wc
->w_target_from
;
1974 to
= wc
->w_target_to
;
1976 BUG_ON(from
> PAGE_CACHE_SIZE
||
1977 to
> PAGE_CACHE_SIZE
||
1981 * Pages adjacent to the target (if any) imply
1982 * a hole-filling write in which case we want
1983 * to flush their entire range.
1986 to
= PAGE_CACHE_SIZE
;
1989 if (page_has_buffers(tmppage
)) {
1990 if (ocfs2_should_order_data(inode
))
1991 ocfs2_jbd2_file_inode(wc
->w_handle
, inode
);
1992 block_commit_write(tmppage
, from
, to
);
1998 if (pos
> inode
->i_size
) {
1999 i_size_write(inode
, pos
);
2000 mark_inode_dirty(inode
);
2002 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
2003 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
2004 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
2005 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
2006 di
->i_mtime_nsec
= di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
2007 ocfs2_journal_dirty(handle
, wc
->w_di_bh
);
2009 ocfs2_commit_trans(osb
, handle
);
2011 ocfs2_run_deallocs(osb
, &wc
->w_dealloc
);
2013 ocfs2_free_write_ctxt(wc
);
2018 static int ocfs2_write_end(struct file
*file
, struct address_space
*mapping
,
2019 loff_t pos
, unsigned len
, unsigned copied
,
2020 struct page
*page
, void *fsdata
)
2023 struct inode
*inode
= mapping
->host
;
2025 ret
= ocfs2_write_end_nolock(mapping
, pos
, len
, copied
, page
, fsdata
);
2027 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
2028 ocfs2_inode_unlock(inode
, 1);
2033 const struct address_space_operations ocfs2_aops
= {
2034 .readpage
= ocfs2_readpage
,
2035 .readpages
= ocfs2_readpages
,
2036 .writepage
= ocfs2_writepage
,
2037 .write_begin
= ocfs2_write_begin
,
2038 .write_end
= ocfs2_write_end
,
2040 .direct_IO
= ocfs2_direct_IO
,
2041 .invalidatepage
= ocfs2_invalidatepage
,
2042 .releasepage
= ocfs2_releasepage
,
2043 .migratepage
= buffer_migrate_page
,
2044 .is_partially_uptodate
= block_is_partially_uptodate
,
2045 .error_remove_page
= generic_error_remove_page
,