2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
38 * Passed to splice_to_pipe
40 struct splice_pipe_desc
{
41 struct page
**pages
; /* page map */
42 struct partial_page
*partial
; /* pages[] may not be contig */
43 int nr_pages
; /* number of pages in map */
44 unsigned int flags
; /* splice flags */
45 const struct pipe_buf_operations
*ops
;/* ops associated with output pipe */
49 * Attempt to steal a page from a pipe buffer. This should perhaps go into
50 * a vm helper function, it's already simplified quite a bit by the
51 * addition of remove_mapping(). If success is returned, the caller may
52 * attempt to reuse this page for another destination.
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info
*pipe
,
55 struct pipe_buffer
*buf
)
57 struct page
*page
= buf
->page
;
58 struct address_space
*mapping
;
62 mapping
= page_mapping(page
);
64 WARN_ON(!PageUptodate(page
));
67 * At least for ext2 with nobh option, we need to wait on
68 * writeback completing on this page, since we'll remove it
69 * from the pagecache. Otherwise truncate wont wait on the
70 * page, allowing the disk blocks to be reused by someone else
71 * before we actually wrote our data to them. fs corruption
74 wait_on_page_writeback(page
);
76 if (PagePrivate(page
))
77 try_to_release_page(page
, GFP_KERNEL
);
80 * If we succeeded in removing the mapping, set LRU flag
83 if (remove_mapping(mapping
, page
)) {
84 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
90 * Raced with truncate or failed to remove page from current
91 * address space, unlock and return failure.
97 static void page_cache_pipe_buf_release(struct pipe_inode_info
*pipe
,
98 struct pipe_buffer
*buf
)
100 page_cache_release(buf
->page
);
101 buf
->flags
&= ~PIPE_BUF_FLAG_LRU
;
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info
*pipe
,
105 struct pipe_buffer
*buf
)
107 struct page
*page
= buf
->page
;
110 if (!PageUptodate(page
)) {
114 * Page got truncated/unhashed. This will cause a 0-byte
115 * splice, if this is the first page.
117 if (!page
->mapping
) {
123 * Uh oh, read-error from disk.
125 if (!PageUptodate(page
)) {
131 * Page is ok afterall, we are done.
142 static const struct pipe_buf_operations page_cache_pipe_buf_ops
= {
144 .map
= generic_pipe_buf_map
,
145 .unmap
= generic_pipe_buf_unmap
,
146 .pin
= page_cache_pipe_buf_pin
,
147 .release
= page_cache_pipe_buf_release
,
148 .steal
= page_cache_pipe_buf_steal
,
149 .get
= generic_pipe_buf_get
,
152 static int user_page_pipe_buf_steal(struct pipe_inode_info
*pipe
,
153 struct pipe_buffer
*buf
)
155 if (!(buf
->flags
& PIPE_BUF_FLAG_GIFT
))
158 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
159 return generic_pipe_buf_steal(pipe
, buf
);
162 static const struct pipe_buf_operations user_page_pipe_buf_ops
= {
164 .map
= generic_pipe_buf_map
,
165 .unmap
= generic_pipe_buf_unmap
,
166 .pin
= generic_pipe_buf_pin
,
167 .release
= page_cache_pipe_buf_release
,
168 .steal
= user_page_pipe_buf_steal
,
169 .get
= generic_pipe_buf_get
,
173 * Pipe output worker. This sets up our pipe format with the page cache
174 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
176 static ssize_t
splice_to_pipe(struct pipe_inode_info
*pipe
,
177 struct splice_pipe_desc
*spd
)
179 int ret
, do_wakeup
, page_nr
;
186 mutex_lock(&pipe
->inode
->i_mutex
);
189 if (!pipe
->readers
) {
190 send_sig(SIGPIPE
, current
, 0);
196 if (pipe
->nrbufs
< PIPE_BUFFERS
) {
197 int newbuf
= (pipe
->curbuf
+ pipe
->nrbufs
) & (PIPE_BUFFERS
- 1);
198 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
200 buf
->page
= spd
->pages
[page_nr
];
201 buf
->offset
= spd
->partial
[page_nr
].offset
;
202 buf
->len
= spd
->partial
[page_nr
].len
;
204 if (spd
->flags
& SPLICE_F_GIFT
)
205 buf
->flags
|= PIPE_BUF_FLAG_GIFT
;
214 if (!--spd
->nr_pages
)
216 if (pipe
->nrbufs
< PIPE_BUFFERS
)
222 if (spd
->flags
& SPLICE_F_NONBLOCK
) {
228 if (signal_pending(current
)) {
236 if (waitqueue_active(&pipe
->wait
))
237 wake_up_interruptible_sync(&pipe
->wait
);
238 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
242 pipe
->waiting_writers
++;
244 pipe
->waiting_writers
--;
248 mutex_unlock(&pipe
->inode
->i_mutex
);
252 if (waitqueue_active(&pipe
->wait
))
253 wake_up_interruptible(&pipe
->wait
);
254 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
257 while (page_nr
< spd
->nr_pages
)
258 page_cache_release(spd
->pages
[page_nr
++]);
264 __generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
265 struct pipe_inode_info
*pipe
, size_t len
,
268 struct address_space
*mapping
= in
->f_mapping
;
269 unsigned int loff
, nr_pages
;
270 struct page
*pages
[PIPE_BUFFERS
];
271 struct partial_page partial
[PIPE_BUFFERS
];
273 pgoff_t index
, end_index
;
277 struct splice_pipe_desc spd
= {
281 .ops
= &page_cache_pipe_buf_ops
,
284 index
= *ppos
>> PAGE_CACHE_SHIFT
;
285 loff
= *ppos
& ~PAGE_CACHE_MASK
;
286 nr_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
288 if (nr_pages
> PIPE_BUFFERS
)
289 nr_pages
= PIPE_BUFFERS
;
292 * Initiate read-ahead on this page range. however, don't call into
293 * read-ahead if this is a non-zero offset (we are likely doing small
294 * chunk splice and the page is already there) for a single page.
296 if (!loff
|| nr_pages
> 1)
297 page_cache_readahead(mapping
, &in
->f_ra
, in
, index
, nr_pages
);
300 * Now fill in the holes:
306 * Lookup the (hopefully) full range of pages we need.
308 spd
.nr_pages
= find_get_pages_contig(mapping
, index
, nr_pages
, pages
);
311 * If find_get_pages_contig() returned fewer pages than we needed,
314 index
+= spd
.nr_pages
;
315 while (spd
.nr_pages
< nr_pages
) {
317 * Page could be there, find_get_pages_contig() breaks on
320 page
= find_get_page(mapping
, index
);
323 * Make sure the read-ahead engine is notified
324 * about this failure.
326 handle_ra_miss(mapping
, &in
->f_ra
, index
);
329 * page didn't exist, allocate one.
331 page
= page_cache_alloc_cold(mapping
);
335 error
= add_to_page_cache_lru(page
, mapping
, index
,
337 if (unlikely(error
)) {
338 page_cache_release(page
);
339 if (error
== -EEXIST
)
344 * add_to_page_cache() locks the page, unlock it
345 * to avoid convoluting the logic below even more.
350 pages
[spd
.nr_pages
++] = page
;
355 * Now loop over the map and see if we need to start IO on any
356 * pages, fill in the partial map, etc.
358 index
= *ppos
>> PAGE_CACHE_SHIFT
;
359 nr_pages
= spd
.nr_pages
;
361 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
362 unsigned int this_len
;
368 * this_len is the max we'll use from this page
370 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
371 page
= pages
[page_nr
];
374 * If the page isn't uptodate, we may need to start io on it
376 if (!PageUptodate(page
)) {
378 * If in nonblock mode then dont block on waiting
379 * for an in-flight io page
381 if (flags
& SPLICE_F_NONBLOCK
)
387 * page was truncated, stop here. if this isn't the
388 * first page, we'll just complete what we already
391 if (!page
->mapping
) {
396 * page was already under io and is now done, great
398 if (PageUptodate(page
)) {
404 * need to read in the page
406 error
= mapping
->a_ops
->readpage(in
, page
);
407 if (unlikely(error
)) {
409 * We really should re-lookup the page here,
410 * but it complicates things a lot. Instead
411 * lets just do what we already stored, and
412 * we'll get it the next time we are called.
414 if (error
== AOP_TRUNCATED_PAGE
)
421 * i_size must be checked after ->readpage().
423 isize
= i_size_read(mapping
->host
);
424 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
425 if (unlikely(!isize
|| index
> end_index
))
429 * if this is the last page, see if we need to shrink
430 * the length and stop
432 if (end_index
== index
) {
433 loff
= PAGE_CACHE_SIZE
- (isize
& ~PAGE_CACHE_MASK
);
434 if (total_len
+ loff
> isize
)
437 * force quit after adding this page
440 this_len
= min(this_len
, loff
);
445 partial
[page_nr
].offset
= loff
;
446 partial
[page_nr
].len
= this_len
;
448 total_len
+= this_len
;
455 * Release any pages at the end, if we quit early. 'i' is how far
456 * we got, 'nr_pages' is how many pages are in the map.
458 while (page_nr
< nr_pages
)
459 page_cache_release(pages
[page_nr
++]);
462 return splice_to_pipe(pipe
, &spd
);
468 * generic_file_splice_read - splice data from file to a pipe
469 * @in: file to splice from
470 * @pipe: pipe to splice to
471 * @len: number of bytes to splice
472 * @flags: splice modifier flags
474 * Will read pages from given file and fill them into a pipe.
476 ssize_t
generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
477 struct pipe_inode_info
*pipe
, size_t len
,
487 ret
= __generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
494 if (flags
& SPLICE_F_NONBLOCK
) {
511 EXPORT_SYMBOL(generic_file_splice_read
);
514 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
515 * using sendpage(). Return the number of bytes sent.
517 static int pipe_to_sendpage(struct pipe_inode_info
*pipe
,
518 struct pipe_buffer
*buf
, struct splice_desc
*sd
)
520 struct file
*file
= sd
->file
;
521 loff_t pos
= sd
->pos
;
524 ret
= buf
->ops
->pin(pipe
, buf
);
526 more
= (sd
->flags
& SPLICE_F_MORE
) || sd
->len
< sd
->total_len
;
528 ret
= file
->f_op
->sendpage(file
, buf
->page
, buf
->offset
,
529 sd
->len
, &pos
, more
);
536 * This is a little more tricky than the file -> pipe splicing. There are
537 * basically three cases:
539 * - Destination page already exists in the address space and there
540 * are users of it. For that case we have no other option that
541 * copying the data. Tough luck.
542 * - Destination page already exists in the address space, but there
543 * are no users of it. Make sure it's uptodate, then drop it. Fall
544 * through to last case.
545 * - Destination page does not exist, we can add the pipe page to
546 * the page cache and avoid the copy.
548 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
549 * sd->flags), we attempt to migrate pages from the pipe to the output
550 * file address space page cache. This is possible if no one else has
551 * the pipe page referenced outside of the pipe and page cache. If
552 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
553 * a new page in the output file page cache and fill/dirty that.
555 static int pipe_to_file(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
556 struct splice_desc
*sd
)
558 struct file
*file
= sd
->file
;
559 struct address_space
*mapping
= file
->f_mapping
;
560 unsigned int offset
, this_len
;
566 * make sure the data in this buffer is uptodate
568 ret
= buf
->ops
->pin(pipe
, buf
);
572 index
= sd
->pos
>> PAGE_CACHE_SHIFT
;
573 offset
= sd
->pos
& ~PAGE_CACHE_MASK
;
576 if (this_len
+ offset
> PAGE_CACHE_SIZE
)
577 this_len
= PAGE_CACHE_SIZE
- offset
;
580 * Reuse buf page, if SPLICE_F_MOVE is set and we are doing a full
583 if ((sd
->flags
& SPLICE_F_MOVE
) && this_len
== PAGE_CACHE_SIZE
) {
585 * If steal succeeds, buf->page is now pruned from the
586 * pagecache and we can reuse it. The page will also be
587 * locked on successful return.
589 if (buf
->ops
->steal(pipe
, buf
))
593 if (add_to_page_cache(page
, mapping
, index
, GFP_KERNEL
)) {
598 page_cache_get(page
);
600 if (!(buf
->flags
& PIPE_BUF_FLAG_LRU
))
604 page
= find_lock_page(mapping
, index
);
607 page
= page_cache_alloc_cold(mapping
);
612 * This will also lock the page
614 ret
= add_to_page_cache_lru(page
, mapping
, index
,
621 * We get here with the page locked. If the page is also
622 * uptodate, we don't need to do more. If it isn't, we
623 * may need to bring it in if we are not going to overwrite
626 if (!PageUptodate(page
)) {
627 if (this_len
< PAGE_CACHE_SIZE
) {
628 ret
= mapping
->a_ops
->readpage(file
, page
);
634 if (!PageUptodate(page
)) {
636 * Page got invalidated, repeat.
638 if (!page
->mapping
) {
640 page_cache_release(page
);
647 SetPageUptodate(page
);
651 ret
= mapping
->a_ops
->prepare_write(file
, page
, offset
, offset
+this_len
);
653 loff_t isize
= i_size_read(mapping
->host
);
655 if (ret
!= AOP_TRUNCATED_PAGE
)
657 page_cache_release(page
);
658 if (ret
== AOP_TRUNCATED_PAGE
)
662 * prepare_write() may have instantiated a few blocks
663 * outside i_size. Trim these off again.
665 if (sd
->pos
+ this_len
> isize
)
666 vmtruncate(mapping
->host
, isize
);
671 if (buf
->page
!= page
) {
673 * Careful, ->map() uses KM_USER0!
675 char *src
= buf
->ops
->map(pipe
, buf
, 1);
676 char *dst
= kmap_atomic(page
, KM_USER1
);
678 memcpy(dst
+ offset
, src
+ buf
->offset
, this_len
);
679 flush_dcache_page(page
);
680 kunmap_atomic(dst
, KM_USER1
);
681 buf
->ops
->unmap(pipe
, buf
, src
);
684 ret
= mapping
->a_ops
->commit_write(file
, page
, offset
, offset
+this_len
);
687 * Return the number of bytes written and mark page as
688 * accessed, we are now done!
691 mark_page_accessed(page
);
692 balance_dirty_pages_ratelimited(mapping
);
693 } else if (ret
== AOP_TRUNCATED_PAGE
) {
694 page_cache_release(page
);
698 page_cache_release(page
);
705 * Pipe input worker. Most of this logic works like a regular pipe, the
706 * key here is the 'actor' worker passed in that actually moves the data
707 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
709 static ssize_t
__splice_from_pipe(struct pipe_inode_info
*pipe
,
710 struct file
*out
, loff_t
*ppos
, size_t len
,
711 unsigned int flags
, splice_actor
*actor
)
713 int ret
, do_wakeup
, err
;
714 struct splice_desc sd
;
726 struct pipe_buffer
*buf
= pipe
->bufs
+ pipe
->curbuf
;
727 const struct pipe_buf_operations
*ops
= buf
->ops
;
730 if (sd
.len
> sd
.total_len
)
731 sd
.len
= sd
.total_len
;
733 err
= actor(pipe
, buf
, &sd
);
735 if (!ret
&& err
!= -ENODATA
)
753 ops
->release(pipe
, buf
);
754 pipe
->curbuf
= (pipe
->curbuf
+ 1) & (PIPE_BUFFERS
- 1);
768 if (!pipe
->waiting_writers
) {
773 if (flags
& SPLICE_F_NONBLOCK
) {
779 if (signal_pending(current
)) {
787 if (waitqueue_active(&pipe
->wait
))
788 wake_up_interruptible_sync(&pipe
->wait
);
789 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
798 if (waitqueue_active(&pipe
->wait
))
799 wake_up_interruptible(&pipe
->wait
);
800 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
806 ssize_t
splice_from_pipe(struct pipe_inode_info
*pipe
, struct file
*out
,
807 loff_t
*ppos
, size_t len
, unsigned int flags
,
811 struct inode
*inode
= out
->f_mapping
->host
;
814 * The actor worker might be calling ->prepare_write and
815 * ->commit_write. Most of the time, these expect i_mutex to
816 * be held. Since this may result in an ABBA deadlock with
817 * pipe->inode, we have to order lock acquiry here.
819 inode_double_lock(inode
, pipe
->inode
);
820 ret
= __splice_from_pipe(pipe
, out
, ppos
, len
, flags
, actor
);
821 inode_double_unlock(inode
, pipe
->inode
);
827 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
829 * @out: file to write to
830 * @len: number of bytes to splice
831 * @flags: splice modifier flags
833 * Will either move or copy pages (determined by @flags options) from
834 * the given pipe inode to the given file. The caller is responsible
835 * for acquiring i_mutex on both inodes.
839 generic_file_splice_write_nolock(struct pipe_inode_info
*pipe
, struct file
*out
,
840 loff_t
*ppos
, size_t len
, unsigned int flags
)
842 struct address_space
*mapping
= out
->f_mapping
;
843 struct inode
*inode
= mapping
->host
;
847 err
= remove_suid(out
->f_path
.dentry
);
851 ret
= __splice_from_pipe(pipe
, out
, ppos
, len
, flags
, pipe_to_file
);
856 * If file or inode is SYNC and we actually wrote some data,
859 if (unlikely((out
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
860 err
= generic_osync_inode(inode
, mapping
,
861 OSYNC_METADATA
|OSYNC_DATA
);
871 EXPORT_SYMBOL(generic_file_splice_write_nolock
);
874 * generic_file_splice_write - splice data from a pipe to a file
876 * @out: file to write to
877 * @len: number of bytes to splice
878 * @flags: splice modifier flags
880 * Will either move or copy pages (determined by @flags options) from
881 * the given pipe inode to the given file.
885 generic_file_splice_write(struct pipe_inode_info
*pipe
, struct file
*out
,
886 loff_t
*ppos
, size_t len
, unsigned int flags
)
888 struct address_space
*mapping
= out
->f_mapping
;
889 struct inode
*inode
= mapping
->host
;
893 err
= should_remove_suid(out
->f_path
.dentry
);
895 mutex_lock(&inode
->i_mutex
);
896 err
= __remove_suid(out
->f_path
.dentry
, err
);
897 mutex_unlock(&inode
->i_mutex
);
902 ret
= splice_from_pipe(pipe
, out
, ppos
, len
, flags
, pipe_to_file
);
907 * If file or inode is SYNC and we actually wrote some data,
910 if (unlikely((out
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
911 mutex_lock(&inode
->i_mutex
);
912 err
= generic_osync_inode(inode
, mapping
,
913 OSYNC_METADATA
|OSYNC_DATA
);
914 mutex_unlock(&inode
->i_mutex
);
924 EXPORT_SYMBOL(generic_file_splice_write
);
927 * generic_splice_sendpage - splice data from a pipe to a socket
929 * @out: socket to write to
930 * @len: number of bytes to splice
931 * @flags: splice modifier flags
933 * Will send @len bytes from the pipe to a network socket. No data copying
937 ssize_t
generic_splice_sendpage(struct pipe_inode_info
*pipe
, struct file
*out
,
938 loff_t
*ppos
, size_t len
, unsigned int flags
)
940 return splice_from_pipe(pipe
, out
, ppos
, len
, flags
, pipe_to_sendpage
);
943 EXPORT_SYMBOL(generic_splice_sendpage
);
946 * Attempt to initiate a splice from pipe to file.
948 static long do_splice_from(struct pipe_inode_info
*pipe
, struct file
*out
,
949 loff_t
*ppos
, size_t len
, unsigned int flags
)
953 if (unlikely(!out
->f_op
|| !out
->f_op
->splice_write
))
956 if (unlikely(!(out
->f_mode
& FMODE_WRITE
)))
959 ret
= rw_verify_area(WRITE
, out
, ppos
, len
);
960 if (unlikely(ret
< 0))
963 return out
->f_op
->splice_write(pipe
, out
, ppos
, len
, flags
);
967 * Attempt to initiate a splice from a file to a pipe.
969 static long do_splice_to(struct file
*in
, loff_t
*ppos
,
970 struct pipe_inode_info
*pipe
, size_t len
,
976 if (unlikely(!in
->f_op
|| !in
->f_op
->splice_read
))
979 if (unlikely(!(in
->f_mode
& FMODE_READ
)))
982 ret
= rw_verify_area(READ
, in
, ppos
, len
);
983 if (unlikely(ret
< 0))
986 isize
= i_size_read(in
->f_mapping
->host
);
987 if (unlikely(*ppos
>= isize
))
990 left
= isize
- *ppos
;
991 if (unlikely(left
< len
))
994 return in
->f_op
->splice_read(in
, ppos
, pipe
, len
, flags
);
997 long do_splice_direct(struct file
*in
, loff_t
*ppos
, struct file
*out
,
998 size_t len
, unsigned int flags
)
1000 struct pipe_inode_info
*pipe
;
1007 * We require the input being a regular file, as we don't want to
1008 * randomly drop data for eg socket -> socket splicing. Use the
1009 * piped splicing for that!
1011 i_mode
= in
->f_path
.dentry
->d_inode
->i_mode
;
1012 if (unlikely(!S_ISREG(i_mode
) && !S_ISBLK(i_mode
)))
1016 * neither in nor out is a pipe, setup an internal pipe attached to
1017 * 'out' and transfer the wanted data from 'in' to 'out' through that
1019 pipe
= current
->splice_pipe
;
1020 if (unlikely(!pipe
)) {
1021 pipe
= alloc_pipe_info(NULL
);
1026 * We don't have an immediate reader, but we'll read the stuff
1027 * out of the pipe right after the splice_to_pipe(). So set
1028 * PIPE_READERS appropriately.
1032 current
->splice_pipe
= pipe
;
1043 size_t read_len
, max_read_len
;
1046 * Do at most PIPE_BUFFERS pages worth of transfer:
1048 max_read_len
= min(len
, (size_t)(PIPE_BUFFERS
*PAGE_SIZE
));
1050 ret
= do_splice_to(in
, ppos
, pipe
, max_read_len
, flags
);
1051 if (unlikely(ret
< 0))
1057 * NOTE: nonblocking mode only applies to the input. We
1058 * must not do the output in nonblocking mode as then we
1059 * could get stuck data in the internal pipe:
1061 ret
= do_splice_from(pipe
, out
, &out_off
, read_len
,
1062 flags
& ~SPLICE_F_NONBLOCK
);
1063 if (unlikely(ret
< 0))
1070 * In nonblocking mode, if we got back a short read then
1071 * that was due to either an IO error or due to the
1072 * pagecache entry not being there. In the IO error case
1073 * the _next_ splice attempt will produce a clean IO error
1074 * return value (not a short read), so in both cases it's
1075 * correct to break out of the loop here:
1077 if ((flags
& SPLICE_F_NONBLOCK
) && (read_len
< max_read_len
))
1081 pipe
->nrbufs
= pipe
->curbuf
= 0;
1087 * If we did an incomplete transfer we must release
1088 * the pipe buffers in question:
1090 for (i
= 0; i
< PIPE_BUFFERS
; i
++) {
1091 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
1094 buf
->ops
->release(pipe
, buf
);
1098 pipe
->nrbufs
= pipe
->curbuf
= 0;
1101 * If we transferred some data, return the number of bytes:
1109 EXPORT_SYMBOL(do_splice_direct
);
1112 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1113 * location, so checking ->i_pipe is not enough to verify that this is a
1116 static inline struct pipe_inode_info
*pipe_info(struct inode
*inode
)
1118 if (S_ISFIFO(inode
->i_mode
))
1119 return inode
->i_pipe
;
1125 * Determine where to splice to/from.
1127 static long do_splice(struct file
*in
, loff_t __user
*off_in
,
1128 struct file
*out
, loff_t __user
*off_out
,
1129 size_t len
, unsigned int flags
)
1131 struct pipe_inode_info
*pipe
;
1132 loff_t offset
, *off
;
1135 pipe
= pipe_info(in
->f_path
.dentry
->d_inode
);
1140 if (out
->f_op
->llseek
== no_llseek
)
1142 if (copy_from_user(&offset
, off_out
, sizeof(loff_t
)))
1148 ret
= do_splice_from(pipe
, out
, off
, len
, flags
);
1150 if (off_out
&& copy_to_user(off_out
, off
, sizeof(loff_t
)))
1156 pipe
= pipe_info(out
->f_path
.dentry
->d_inode
);
1161 if (in
->f_op
->llseek
== no_llseek
)
1163 if (copy_from_user(&offset
, off_in
, sizeof(loff_t
)))
1169 ret
= do_splice_to(in
, off
, pipe
, len
, flags
);
1171 if (off_in
&& copy_to_user(off_in
, off
, sizeof(loff_t
)))
1181 * Map an iov into an array of pages and offset/length tupples. With the
1182 * partial_page structure, we can map several non-contiguous ranges into
1183 * our ones pages[] map instead of splitting that operation into pieces.
1184 * Could easily be exported as a generic helper for other users, in which
1185 * case one would probably want to add a 'max_nr_pages' parameter as well.
1187 static int get_iovec_page_array(const struct iovec __user
*iov
,
1188 unsigned int nr_vecs
, struct page
**pages
,
1189 struct partial_page
*partial
, int aligned
)
1191 int buffers
= 0, error
= 0;
1194 * It's ok to take the mmap_sem for reading, even
1195 * across a "get_user()".
1197 down_read(¤t
->mm
->mmap_sem
);
1200 unsigned long off
, npages
;
1206 * Get user address base and length for this iovec.
1208 error
= get_user(base
, &iov
->iov_base
);
1209 if (unlikely(error
))
1211 error
= get_user(len
, &iov
->iov_len
);
1212 if (unlikely(error
))
1216 * Sanity check this iovec. 0 read succeeds.
1221 if (unlikely(!base
))
1225 * Get this base offset and number of pages, then map
1226 * in the user pages.
1228 off
= (unsigned long) base
& ~PAGE_MASK
;
1231 * If asked for alignment, the offset must be zero and the
1232 * length a multiple of the PAGE_SIZE.
1235 if (aligned
&& (off
|| len
& ~PAGE_MASK
))
1238 npages
= (off
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1239 if (npages
> PIPE_BUFFERS
- buffers
)
1240 npages
= PIPE_BUFFERS
- buffers
;
1242 error
= get_user_pages(current
, current
->mm
,
1243 (unsigned long) base
, npages
, 0, 0,
1244 &pages
[buffers
], NULL
);
1246 if (unlikely(error
<= 0))
1250 * Fill this contiguous range into the partial page map.
1252 for (i
= 0; i
< error
; i
++) {
1253 const int plen
= min_t(size_t, len
, PAGE_SIZE
- off
);
1255 partial
[buffers
].offset
= off
;
1256 partial
[buffers
].len
= plen
;
1264 * We didn't complete this iov, stop here since it probably
1265 * means we have to move some of this into a pipe to
1266 * be able to continue.
1272 * Don't continue if we mapped fewer pages than we asked for,
1273 * or if we mapped the max number of pages that we have
1276 if (error
< npages
|| buffers
== PIPE_BUFFERS
)
1283 up_read(¤t
->mm
->mmap_sem
);
1292 * vmsplice splices a user address range into a pipe. It can be thought of
1293 * as splice-from-memory, where the regular splice is splice-from-file (or
1294 * to file). In both cases the output is a pipe, naturally.
1296 * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1297 * not the other way around. Splicing from user memory is a simple operation
1298 * that can be supported without any funky alignment restrictions or nasty
1299 * vm tricks. We simply map in the user memory and fill them into a pipe.
1300 * The reverse isn't quite as easy, though. There are two possible solutions
1303 * - memcpy() the data internally, at which point we might as well just
1304 * do a regular read() on the buffer anyway.
1305 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1306 * has restriction limitations on both ends of the pipe).
1308 * Alas, it isn't here.
1311 static long do_vmsplice(struct file
*file
, const struct iovec __user
*iov
,
1312 unsigned long nr_segs
, unsigned int flags
)
1314 struct pipe_inode_info
*pipe
;
1315 struct page
*pages
[PIPE_BUFFERS
];
1316 struct partial_page partial
[PIPE_BUFFERS
];
1317 struct splice_pipe_desc spd
= {
1321 .ops
= &user_page_pipe_buf_ops
,
1324 pipe
= pipe_info(file
->f_path
.dentry
->d_inode
);
1327 if (unlikely(nr_segs
> UIO_MAXIOV
))
1329 else if (unlikely(!nr_segs
))
1332 spd
.nr_pages
= get_iovec_page_array(iov
, nr_segs
, pages
, partial
,
1333 flags
& SPLICE_F_GIFT
);
1334 if (spd
.nr_pages
<= 0)
1335 return spd
.nr_pages
;
1337 return splice_to_pipe(pipe
, &spd
);
1340 asmlinkage
long sys_vmsplice(int fd
, const struct iovec __user
*iov
,
1341 unsigned long nr_segs
, unsigned int flags
)
1348 file
= fget_light(fd
, &fput
);
1350 if (file
->f_mode
& FMODE_WRITE
)
1351 error
= do_vmsplice(file
, iov
, nr_segs
, flags
);
1353 fput_light(file
, fput
);
1359 asmlinkage
long sys_splice(int fd_in
, loff_t __user
*off_in
,
1360 int fd_out
, loff_t __user
*off_out
,
1361 size_t len
, unsigned int flags
)
1364 struct file
*in
, *out
;
1365 int fput_in
, fput_out
;
1371 in
= fget_light(fd_in
, &fput_in
);
1373 if (in
->f_mode
& FMODE_READ
) {
1374 out
= fget_light(fd_out
, &fput_out
);
1376 if (out
->f_mode
& FMODE_WRITE
)
1377 error
= do_splice(in
, off_in
,
1380 fput_light(out
, fput_out
);
1384 fput_light(in
, fput_in
);
1391 * Make sure there's data to read. Wait for input if we can, otherwise
1392 * return an appropriate error.
1394 static int link_ipipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1399 * Check ->nrbufs without the inode lock first. This function
1400 * is speculative anyways, so missing one is ok.
1406 mutex_lock(&pipe
->inode
->i_mutex
);
1408 while (!pipe
->nrbufs
) {
1409 if (signal_pending(current
)) {
1415 if (!pipe
->waiting_writers
) {
1416 if (flags
& SPLICE_F_NONBLOCK
) {
1424 mutex_unlock(&pipe
->inode
->i_mutex
);
1429 * Make sure there's writeable room. Wait for room if we can, otherwise
1430 * return an appropriate error.
1432 static int link_opipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1437 * Check ->nrbufs without the inode lock first. This function
1438 * is speculative anyways, so missing one is ok.
1440 if (pipe
->nrbufs
< PIPE_BUFFERS
)
1444 mutex_lock(&pipe
->inode
->i_mutex
);
1446 while (pipe
->nrbufs
>= PIPE_BUFFERS
) {
1447 if (!pipe
->readers
) {
1448 send_sig(SIGPIPE
, current
, 0);
1452 if (flags
& SPLICE_F_NONBLOCK
) {
1456 if (signal_pending(current
)) {
1460 pipe
->waiting_writers
++;
1462 pipe
->waiting_writers
--;
1465 mutex_unlock(&pipe
->inode
->i_mutex
);
1470 * Link contents of ipipe to opipe.
1472 static int link_pipe(struct pipe_inode_info
*ipipe
,
1473 struct pipe_inode_info
*opipe
,
1474 size_t len
, unsigned int flags
)
1476 struct pipe_buffer
*ibuf
, *obuf
;
1477 int ret
= 0, i
= 0, nbuf
;
1480 * Potential ABBA deadlock, work around it by ordering lock
1481 * grabbing by inode address. Otherwise two different processes
1482 * could deadlock (one doing tee from A -> B, the other from B -> A).
1484 inode_double_lock(ipipe
->inode
, opipe
->inode
);
1487 if (!opipe
->readers
) {
1488 send_sig(SIGPIPE
, current
, 0);
1495 * If we have iterated all input buffers or ran out of
1496 * output room, break.
1498 if (i
>= ipipe
->nrbufs
|| opipe
->nrbufs
>= PIPE_BUFFERS
)
1501 ibuf
= ipipe
->bufs
+ ((ipipe
->curbuf
+ i
) & (PIPE_BUFFERS
- 1));
1502 nbuf
= (opipe
->curbuf
+ opipe
->nrbufs
) & (PIPE_BUFFERS
- 1);
1505 * Get a reference to this pipe buffer,
1506 * so we can copy the contents over.
1508 ibuf
->ops
->get(ipipe
, ibuf
);
1510 obuf
= opipe
->bufs
+ nbuf
;
1514 * Don't inherit the gift flag, we need to
1515 * prevent multiple steals of this page.
1517 obuf
->flags
&= ~PIPE_BUF_FLAG_GIFT
;
1519 if (obuf
->len
> len
)
1528 inode_double_unlock(ipipe
->inode
, opipe
->inode
);
1531 * If we put data in the output pipe, wakeup any potential readers.
1535 if (waitqueue_active(&opipe
->wait
))
1536 wake_up_interruptible(&opipe
->wait
);
1537 kill_fasync(&opipe
->fasync_readers
, SIGIO
, POLL_IN
);
1544 * This is a tee(1) implementation that works on pipes. It doesn't copy
1545 * any data, it simply references the 'in' pages on the 'out' pipe.
1546 * The 'flags' used are the SPLICE_F_* variants, currently the only
1547 * applicable one is SPLICE_F_NONBLOCK.
1549 static long do_tee(struct file
*in
, struct file
*out
, size_t len
,
1552 struct pipe_inode_info
*ipipe
= pipe_info(in
->f_path
.dentry
->d_inode
);
1553 struct pipe_inode_info
*opipe
= pipe_info(out
->f_path
.dentry
->d_inode
);
1557 * Duplicate the contents of ipipe to opipe without actually
1560 if (ipipe
&& opipe
&& ipipe
!= opipe
) {
1562 * Keep going, unless we encounter an error. The ipipe/opipe
1563 * ordering doesn't really matter.
1565 ret
= link_ipipe_prep(ipipe
, flags
);
1567 ret
= link_opipe_prep(opipe
, flags
);
1569 ret
= link_pipe(ipipe
, opipe
, len
, flags
);
1570 if (!ret
&& (flags
& SPLICE_F_NONBLOCK
))
1579 asmlinkage
long sys_tee(int fdin
, int fdout
, size_t len
, unsigned int flags
)
1588 in
= fget_light(fdin
, &fput_in
);
1590 if (in
->f_mode
& FMODE_READ
) {
1592 struct file
*out
= fget_light(fdout
, &fput_out
);
1595 if (out
->f_mode
& FMODE_WRITE
)
1596 error
= do_tee(in
, out
, len
, flags
);
1597 fput_light(out
, fput_out
);
1600 fput_light(in
, fput_in
);