2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
38 struct scsi_host_sg_pool
{
41 struct kmem_cache
*slab
;
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 static struct scsi_host_sg_pool scsi_sg_pools
[] = {
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
64 SP(SCSI_MAX_SG_SEGMENTS
)
68 struct kmem_cache
*scsi_sdb_cache
;
71 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
72 * not change behaviour from the previous unplug mechanism, experimentation
73 * may prove this needs changing.
75 #define SCSI_QUEUE_DELAY 3
78 * Function: scsi_unprep_request()
80 * Purpose: Remove all preparation done for a request, including its
81 * associated scsi_cmnd, so that it can be requeued.
83 * Arguments: req - request to unprepare
85 * Lock status: Assumed that no locks are held upon entry.
89 static void scsi_unprep_request(struct request
*req
)
91 struct scsi_cmnd
*cmd
= req
->special
;
93 blk_unprep_request(req
);
96 scsi_put_command(cmd
);
100 * __scsi_queue_insert - private queue insertion
101 * @cmd: The SCSI command being requeued
102 * @reason: The reason for the requeue
103 * @unbusy: Whether the queue should be unbusied
105 * This is a private queue insertion. The public interface
106 * scsi_queue_insert() always assumes the queue should be unbusied
107 * because it's always called before the completion. This function is
108 * for a requeue after completion, which should only occur in this
111 static int __scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
, int unbusy
)
113 struct Scsi_Host
*host
= cmd
->device
->host
;
114 struct scsi_device
*device
= cmd
->device
;
115 struct scsi_target
*starget
= scsi_target(device
);
116 struct request_queue
*q
= device
->request_queue
;
120 printk("Inserting command %p into mlqueue\n", cmd
));
123 * Set the appropriate busy bit for the device/host.
125 * If the host/device isn't busy, assume that something actually
126 * completed, and that we should be able to queue a command now.
128 * Note that the prior mid-layer assumption that any host could
129 * always queue at least one command is now broken. The mid-layer
130 * will implement a user specifiable stall (see
131 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
132 * if a command is requeued with no other commands outstanding
133 * either for the device or for the host.
136 case SCSI_MLQUEUE_HOST_BUSY
:
137 host
->host_blocked
= host
->max_host_blocked
;
139 case SCSI_MLQUEUE_DEVICE_BUSY
:
140 case SCSI_MLQUEUE_EH_RETRY
:
141 device
->device_blocked
= device
->max_device_blocked
;
143 case SCSI_MLQUEUE_TARGET_BUSY
:
144 starget
->target_blocked
= starget
->max_target_blocked
;
149 * Decrement the counters, since these commands are no longer
150 * active on the host/device.
153 scsi_device_unbusy(device
);
156 * Requeue this command. It will go before all other commands
157 * that are already in the queue.
159 spin_lock_irqsave(q
->queue_lock
, flags
);
160 blk_requeue_request(q
, cmd
->request
);
161 spin_unlock_irqrestore(q
->queue_lock
, flags
);
163 kblockd_schedule_work(q
, &device
->requeue_work
);
169 * Function: scsi_queue_insert()
171 * Purpose: Insert a command in the midlevel queue.
173 * Arguments: cmd - command that we are adding to queue.
174 * reason - why we are inserting command to queue.
176 * Lock status: Assumed that lock is not held upon entry.
180 * Notes: We do this for one of two cases. Either the host is busy
181 * and it cannot accept any more commands for the time being,
182 * or the device returned QUEUE_FULL and can accept no more
184 * Notes: This could be called either from an interrupt context or a
185 * normal process context.
187 int scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
)
189 return __scsi_queue_insert(cmd
, reason
, 1);
192 * scsi_execute - insert request and wait for the result
195 * @data_direction: data direction
196 * @buffer: data buffer
197 * @bufflen: len of buffer
198 * @sense: optional sense buffer
199 * @timeout: request timeout in seconds
200 * @retries: number of times to retry request
201 * @flags: or into request flags;
202 * @resid: optional residual length
204 * returns the req->errors value which is the scsi_cmnd result
207 int scsi_execute(struct scsi_device
*sdev
, const unsigned char *cmd
,
208 int data_direction
, void *buffer
, unsigned bufflen
,
209 unsigned char *sense
, int timeout
, int retries
, int flags
,
213 int write
= (data_direction
== DMA_TO_DEVICE
);
214 int ret
= DRIVER_ERROR
<< 24;
216 req
= blk_get_request(sdev
->request_queue
, write
, __GFP_WAIT
);
220 if (bufflen
&& blk_rq_map_kern(sdev
->request_queue
, req
,
221 buffer
, bufflen
, __GFP_WAIT
))
224 req
->cmd_len
= COMMAND_SIZE(cmd
[0]);
225 memcpy(req
->cmd
, cmd
, req
->cmd_len
);
228 req
->retries
= retries
;
229 req
->timeout
= timeout
;
230 req
->cmd_type
= REQ_TYPE_BLOCK_PC
;
231 req
->cmd_flags
|= flags
| REQ_QUIET
| REQ_PREEMPT
;
234 * head injection *required* here otherwise quiesce won't work
236 blk_execute_rq(req
->q
, NULL
, req
, 1);
239 * Some devices (USB mass-storage in particular) may transfer
240 * garbage data together with a residue indicating that the data
241 * is invalid. Prevent the garbage from being misinterpreted
242 * and prevent security leaks by zeroing out the excess data.
244 if (unlikely(req
->resid_len
> 0 && req
->resid_len
<= bufflen
))
245 memset(buffer
+ (bufflen
- req
->resid_len
), 0, req
->resid_len
);
248 *resid
= req
->resid_len
;
251 blk_put_request(req
);
255 EXPORT_SYMBOL(scsi_execute
);
258 int scsi_execute_req(struct scsi_device
*sdev
, const unsigned char *cmd
,
259 int data_direction
, void *buffer
, unsigned bufflen
,
260 struct scsi_sense_hdr
*sshdr
, int timeout
, int retries
,
267 sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_NOIO
);
269 return DRIVER_ERROR
<< 24;
271 result
= scsi_execute(sdev
, cmd
, data_direction
, buffer
, bufflen
,
272 sense
, timeout
, retries
, 0, resid
);
274 scsi_normalize_sense(sense
, SCSI_SENSE_BUFFERSIZE
, sshdr
);
279 EXPORT_SYMBOL(scsi_execute_req
);
282 * Function: scsi_init_cmd_errh()
284 * Purpose: Initialize cmd fields related to error handling.
286 * Arguments: cmd - command that is ready to be queued.
288 * Notes: This function has the job of initializing a number of
289 * fields related to error handling. Typically this will
290 * be called once for each command, as required.
292 static void scsi_init_cmd_errh(struct scsi_cmnd
*cmd
)
294 cmd
->serial_number
= 0;
295 scsi_set_resid(cmd
, 0);
296 memset(cmd
->sense_buffer
, 0, SCSI_SENSE_BUFFERSIZE
);
297 if (cmd
->cmd_len
== 0)
298 cmd
->cmd_len
= scsi_command_size(cmd
->cmnd
);
301 void scsi_device_unbusy(struct scsi_device
*sdev
)
303 struct Scsi_Host
*shost
= sdev
->host
;
304 struct scsi_target
*starget
= scsi_target(sdev
);
307 spin_lock_irqsave(shost
->host_lock
, flags
);
309 starget
->target_busy
--;
310 if (unlikely(scsi_host_in_recovery(shost
) &&
311 (shost
->host_failed
|| shost
->host_eh_scheduled
)))
312 scsi_eh_wakeup(shost
);
313 spin_unlock(shost
->host_lock
);
314 spin_lock(sdev
->request_queue
->queue_lock
);
316 spin_unlock_irqrestore(sdev
->request_queue
->queue_lock
, flags
);
320 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
321 * and call blk_run_queue for all the scsi_devices on the target -
322 * including current_sdev first.
324 * Called with *no* scsi locks held.
326 static void scsi_single_lun_run(struct scsi_device
*current_sdev
)
328 struct Scsi_Host
*shost
= current_sdev
->host
;
329 struct scsi_device
*sdev
, *tmp
;
330 struct scsi_target
*starget
= scsi_target(current_sdev
);
333 spin_lock_irqsave(shost
->host_lock
, flags
);
334 starget
->starget_sdev_user
= NULL
;
335 spin_unlock_irqrestore(shost
->host_lock
, flags
);
338 * Call blk_run_queue for all LUNs on the target, starting with
339 * current_sdev. We race with others (to set starget_sdev_user),
340 * but in most cases, we will be first. Ideally, each LU on the
341 * target would get some limited time or requests on the target.
343 blk_run_queue(current_sdev
->request_queue
);
345 spin_lock_irqsave(shost
->host_lock
, flags
);
346 if (starget
->starget_sdev_user
)
348 list_for_each_entry_safe(sdev
, tmp
, &starget
->devices
,
349 same_target_siblings
) {
350 if (sdev
== current_sdev
)
352 if (scsi_device_get(sdev
))
355 spin_unlock_irqrestore(shost
->host_lock
, flags
);
356 blk_run_queue(sdev
->request_queue
);
357 spin_lock_irqsave(shost
->host_lock
, flags
);
359 scsi_device_put(sdev
);
362 spin_unlock_irqrestore(shost
->host_lock
, flags
);
365 static inline int scsi_device_is_busy(struct scsi_device
*sdev
)
367 if (sdev
->device_busy
>= sdev
->queue_depth
|| sdev
->device_blocked
)
373 static inline int scsi_target_is_busy(struct scsi_target
*starget
)
375 return ((starget
->can_queue
> 0 &&
376 starget
->target_busy
>= starget
->can_queue
) ||
377 starget
->target_blocked
);
380 static inline int scsi_host_is_busy(struct Scsi_Host
*shost
)
382 if ((shost
->can_queue
> 0 && shost
->host_busy
>= shost
->can_queue
) ||
383 shost
->host_blocked
|| shost
->host_self_blocked
)
390 * Function: scsi_run_queue()
392 * Purpose: Select a proper request queue to serve next
394 * Arguments: q - last request's queue
398 * Notes: The previous command was completely finished, start
399 * a new one if possible.
401 static void scsi_run_queue(struct request_queue
*q
)
403 struct scsi_device
*sdev
= q
->queuedata
;
404 struct Scsi_Host
*shost
;
405 LIST_HEAD(starved_list
);
408 /* if the device is dead, sdev will be NULL, so no queue to run */
413 if (scsi_target(sdev
)->single_lun
)
414 scsi_single_lun_run(sdev
);
416 spin_lock_irqsave(shost
->host_lock
, flags
);
417 list_splice_init(&shost
->starved_list
, &starved_list
);
419 while (!list_empty(&starved_list
)) {
421 * As long as shost is accepting commands and we have
422 * starved queues, call blk_run_queue. scsi_request_fn
423 * drops the queue_lock and can add us back to the
426 * host_lock protects the starved_list and starved_entry.
427 * scsi_request_fn must get the host_lock before checking
428 * or modifying starved_list or starved_entry.
430 if (scsi_host_is_busy(shost
))
433 sdev
= list_entry(starved_list
.next
,
434 struct scsi_device
, starved_entry
);
435 list_del_init(&sdev
->starved_entry
);
436 if (scsi_target_is_busy(scsi_target(sdev
))) {
437 list_move_tail(&sdev
->starved_entry
,
438 &shost
->starved_list
);
442 spin_unlock(shost
->host_lock
);
443 spin_lock(sdev
->request_queue
->queue_lock
);
444 __blk_run_queue(sdev
->request_queue
);
445 spin_unlock(sdev
->request_queue
->queue_lock
);
446 spin_lock(shost
->host_lock
);
448 /* put any unprocessed entries back */
449 list_splice(&starved_list
, &shost
->starved_list
);
450 spin_unlock_irqrestore(shost
->host_lock
, flags
);
455 void scsi_requeue_run_queue(struct work_struct
*work
)
457 struct scsi_device
*sdev
;
458 struct request_queue
*q
;
460 sdev
= container_of(work
, struct scsi_device
, requeue_work
);
461 q
= sdev
->request_queue
;
466 * Function: scsi_requeue_command()
468 * Purpose: Handle post-processing of completed commands.
470 * Arguments: q - queue to operate on
471 * cmd - command that may need to be requeued.
475 * Notes: After command completion, there may be blocks left
476 * over which weren't finished by the previous command
477 * this can be for a number of reasons - the main one is
478 * I/O errors in the middle of the request, in which case
479 * we need to request the blocks that come after the bad
481 * Notes: Upon return, cmd is a stale pointer.
483 static void scsi_requeue_command(struct request_queue
*q
, struct scsi_cmnd
*cmd
)
485 struct request
*req
= cmd
->request
;
488 spin_lock_irqsave(q
->queue_lock
, flags
);
489 scsi_unprep_request(req
);
490 blk_requeue_request(q
, req
);
491 spin_unlock_irqrestore(q
->queue_lock
, flags
);
496 void scsi_next_command(struct scsi_cmnd
*cmd
)
498 struct scsi_device
*sdev
= cmd
->device
;
499 struct request_queue
*q
= sdev
->request_queue
;
501 /* need to hold a reference on the device before we let go of the cmd */
502 get_device(&sdev
->sdev_gendev
);
504 scsi_put_command(cmd
);
507 /* ok to remove device now */
508 put_device(&sdev
->sdev_gendev
);
511 void scsi_run_host_queues(struct Scsi_Host
*shost
)
513 struct scsi_device
*sdev
;
515 shost_for_each_device(sdev
, shost
)
516 scsi_run_queue(sdev
->request_queue
);
519 static void __scsi_release_buffers(struct scsi_cmnd
*, int);
522 * Function: scsi_end_request()
524 * Purpose: Post-processing of completed commands (usually invoked at end
525 * of upper level post-processing and scsi_io_completion).
527 * Arguments: cmd - command that is complete.
528 * error - 0 if I/O indicates success, < 0 for I/O error.
529 * bytes - number of bytes of completed I/O
530 * requeue - indicates whether we should requeue leftovers.
532 * Lock status: Assumed that lock is not held upon entry.
534 * Returns: cmd if requeue required, NULL otherwise.
536 * Notes: This is called for block device requests in order to
537 * mark some number of sectors as complete.
539 * We are guaranteeing that the request queue will be goosed
540 * at some point during this call.
541 * Notes: If cmd was requeued, upon return it will be a stale pointer.
543 static struct scsi_cmnd
*scsi_end_request(struct scsi_cmnd
*cmd
, int error
,
544 int bytes
, int requeue
)
546 struct request_queue
*q
= cmd
->device
->request_queue
;
547 struct request
*req
= cmd
->request
;
550 * If there are blocks left over at the end, set up the command
551 * to queue the remainder of them.
553 if (blk_end_request(req
, error
, bytes
)) {
554 /* kill remainder if no retrys */
555 if (error
&& scsi_noretry_cmd(cmd
))
556 blk_end_request_all(req
, error
);
560 * Bleah. Leftovers again. Stick the
561 * leftovers in the front of the
562 * queue, and goose the queue again.
564 scsi_release_buffers(cmd
);
565 scsi_requeue_command(q
, cmd
);
573 * This will goose the queue request function at the end, so we don't
574 * need to worry about launching another command.
576 __scsi_release_buffers(cmd
, 0);
577 scsi_next_command(cmd
);
581 static inline unsigned int scsi_sgtable_index(unsigned short nents
)
585 BUG_ON(nents
> SCSI_MAX_SG_SEGMENTS
);
590 index
= get_count_order(nents
) - 3;
595 static void scsi_sg_free(struct scatterlist
*sgl
, unsigned int nents
)
597 struct scsi_host_sg_pool
*sgp
;
599 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
600 mempool_free(sgl
, sgp
->pool
);
603 static struct scatterlist
*scsi_sg_alloc(unsigned int nents
, gfp_t gfp_mask
)
605 struct scsi_host_sg_pool
*sgp
;
607 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
608 return mempool_alloc(sgp
->pool
, gfp_mask
);
611 static int scsi_alloc_sgtable(struct scsi_data_buffer
*sdb
, int nents
,
618 ret
= __sg_alloc_table(&sdb
->table
, nents
, SCSI_MAX_SG_SEGMENTS
,
619 gfp_mask
, scsi_sg_alloc
);
621 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
,
627 static void scsi_free_sgtable(struct scsi_data_buffer
*sdb
)
629 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
, scsi_sg_free
);
632 static void __scsi_release_buffers(struct scsi_cmnd
*cmd
, int do_bidi_check
)
635 if (cmd
->sdb
.table
.nents
)
636 scsi_free_sgtable(&cmd
->sdb
);
638 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
640 if (do_bidi_check
&& scsi_bidi_cmnd(cmd
)) {
641 struct scsi_data_buffer
*bidi_sdb
=
642 cmd
->request
->next_rq
->special
;
643 scsi_free_sgtable(bidi_sdb
);
644 kmem_cache_free(scsi_sdb_cache
, bidi_sdb
);
645 cmd
->request
->next_rq
->special
= NULL
;
648 if (scsi_prot_sg_count(cmd
))
649 scsi_free_sgtable(cmd
->prot_sdb
);
653 * Function: scsi_release_buffers()
655 * Purpose: Completion processing for block device I/O requests.
657 * Arguments: cmd - command that we are bailing.
659 * Lock status: Assumed that no lock is held upon entry.
663 * Notes: In the event that an upper level driver rejects a
664 * command, we must release resources allocated during
665 * the __init_io() function. Primarily this would involve
666 * the scatter-gather table, and potentially any bounce
669 void scsi_release_buffers(struct scsi_cmnd
*cmd
)
671 __scsi_release_buffers(cmd
, 1);
673 EXPORT_SYMBOL(scsi_release_buffers
);
675 static int __scsi_error_from_host_byte(struct scsi_cmnd
*cmd
, int result
)
679 switch(host_byte(result
)) {
680 case DID_TRANSPORT_FAILFAST
:
683 case DID_TARGET_FAILURE
:
684 cmd
->result
|= (DID_OK
<< 16);
687 case DID_NEXUS_FAILURE
:
688 cmd
->result
|= (DID_OK
<< 16);
700 * Function: scsi_io_completion()
702 * Purpose: Completion processing for block device I/O requests.
704 * Arguments: cmd - command that is finished.
706 * Lock status: Assumed that no lock is held upon entry.
710 * Notes: This function is matched in terms of capabilities to
711 * the function that created the scatter-gather list.
712 * In other words, if there are no bounce buffers
713 * (the normal case for most drivers), we don't need
714 * the logic to deal with cleaning up afterwards.
716 * We must call scsi_end_request(). This will finish off
717 * the specified number of sectors. If we are done, the
718 * command block will be released and the queue function
719 * will be goosed. If we are not done then we have to
720 * figure out what to do next:
722 * a) We can call scsi_requeue_command(). The request
723 * will be unprepared and put back on the queue. Then
724 * a new command will be created for it. This should
725 * be used if we made forward progress, or if we want
726 * to switch from READ(10) to READ(6) for example.
728 * b) We can call scsi_queue_insert(). The request will
729 * be put back on the queue and retried using the same
730 * command as before, possibly after a delay.
732 * c) We can call blk_end_request() with -EIO to fail
733 * the remainder of the request.
735 void scsi_io_completion(struct scsi_cmnd
*cmd
, unsigned int good_bytes
)
737 int result
= cmd
->result
;
738 struct request_queue
*q
= cmd
->device
->request_queue
;
739 struct request
*req
= cmd
->request
;
741 struct scsi_sense_hdr sshdr
;
743 int sense_deferred
= 0;
744 enum {ACTION_FAIL
, ACTION_REPREP
, ACTION_RETRY
,
745 ACTION_DELAYED_RETRY
} action
;
746 char *description
= NULL
;
749 sense_valid
= scsi_command_normalize_sense(cmd
, &sshdr
);
751 sense_deferred
= scsi_sense_is_deferred(&sshdr
);
754 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
) { /* SG_IO ioctl from block level */
755 req
->errors
= result
;
757 if (sense_valid
&& req
->sense
) {
759 * SG_IO wants current and deferred errors
761 int len
= 8 + cmd
->sense_buffer
[7];
763 if (len
> SCSI_SENSE_BUFFERSIZE
)
764 len
= SCSI_SENSE_BUFFERSIZE
;
765 memcpy(req
->sense
, cmd
->sense_buffer
, len
);
766 req
->sense_len
= len
;
769 error
= __scsi_error_from_host_byte(cmd
, result
);
772 req
->resid_len
= scsi_get_resid(cmd
);
774 if (scsi_bidi_cmnd(cmd
)) {
776 * Bidi commands Must be complete as a whole,
777 * both sides at once.
779 req
->next_rq
->resid_len
= scsi_in(cmd
)->resid
;
781 scsi_release_buffers(cmd
);
782 blk_end_request_all(req
, 0);
784 scsi_next_command(cmd
);
789 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
790 BUG_ON(blk_bidi_rq(req
));
793 * Next deal with any sectors which we were able to correctly
796 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
798 blk_rq_sectors(req
), good_bytes
));
801 * Recovered errors need reporting, but they're always treated
802 * as success, so fiddle the result code here. For BLOCK_PC
803 * we already took a copy of the original into rq->errors which
804 * is what gets returned to the user
806 if (sense_valid
&& (sshdr
.sense_key
== RECOVERED_ERROR
)) {
807 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
808 * print since caller wants ATA registers. Only occurs on
809 * SCSI ATA PASS_THROUGH commands when CK_COND=1
811 if ((sshdr
.asc
== 0x0) && (sshdr
.ascq
== 0x1d))
813 else if (!(req
->cmd_flags
& REQ_QUIET
))
814 scsi_print_sense("", cmd
);
816 /* BLOCK_PC may have set error */
821 * A number of bytes were successfully read. If there
822 * are leftovers and there is some kind of error
823 * (result != 0), retry the rest.
825 if (scsi_end_request(cmd
, error
, good_bytes
, result
== 0) == NULL
)
828 error
= __scsi_error_from_host_byte(cmd
, result
);
830 if (host_byte(result
) == DID_RESET
) {
831 /* Third party bus reset or reset for error recovery
832 * reasons. Just retry the command and see what
835 action
= ACTION_RETRY
;
836 } else if (sense_valid
&& !sense_deferred
) {
837 switch (sshdr
.sense_key
) {
839 if (cmd
->device
->removable
) {
840 /* Detected disc change. Set a bit
841 * and quietly refuse further access.
843 cmd
->device
->changed
= 1;
844 description
= "Media Changed";
845 action
= ACTION_FAIL
;
847 /* Must have been a power glitch, or a
848 * bus reset. Could not have been a
849 * media change, so we just retry the
850 * command and see what happens.
852 action
= ACTION_RETRY
;
855 case ILLEGAL_REQUEST
:
856 /* If we had an ILLEGAL REQUEST returned, then
857 * we may have performed an unsupported
858 * command. The only thing this should be
859 * would be a ten byte read where only a six
860 * byte read was supported. Also, on a system
861 * where READ CAPACITY failed, we may have
862 * read past the end of the disk.
864 if ((cmd
->device
->use_10_for_rw
&&
865 sshdr
.asc
== 0x20 && sshdr
.ascq
== 0x00) &&
866 (cmd
->cmnd
[0] == READ_10
||
867 cmd
->cmnd
[0] == WRITE_10
)) {
868 /* This will issue a new 6-byte command. */
869 cmd
->device
->use_10_for_rw
= 0;
870 action
= ACTION_REPREP
;
871 } else if (sshdr
.asc
== 0x10) /* DIX */ {
872 description
= "Host Data Integrity Failure";
873 action
= ACTION_FAIL
;
875 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
876 } else if ((sshdr
.asc
== 0x20 || sshdr
.asc
== 0x24) &&
877 (cmd
->cmnd
[0] == UNMAP
||
878 cmd
->cmnd
[0] == WRITE_SAME_16
||
879 cmd
->cmnd
[0] == WRITE_SAME
)) {
880 description
= "Discard failure";
881 action
= ACTION_FAIL
;
883 action
= ACTION_FAIL
;
885 case ABORTED_COMMAND
:
886 action
= ACTION_FAIL
;
887 if (sshdr
.asc
== 0x10) { /* DIF */
888 description
= "Target Data Integrity Failure";
893 /* If the device is in the process of becoming
894 * ready, or has a temporary blockage, retry.
896 if (sshdr
.asc
== 0x04) {
897 switch (sshdr
.ascq
) {
898 case 0x01: /* becoming ready */
899 case 0x04: /* format in progress */
900 case 0x05: /* rebuild in progress */
901 case 0x06: /* recalculation in progress */
902 case 0x07: /* operation in progress */
903 case 0x08: /* Long write in progress */
904 case 0x09: /* self test in progress */
905 case 0x14: /* space allocation in progress */
906 action
= ACTION_DELAYED_RETRY
;
909 description
= "Device not ready";
910 action
= ACTION_FAIL
;
914 description
= "Device not ready";
915 action
= ACTION_FAIL
;
918 case VOLUME_OVERFLOW
:
919 /* See SSC3rXX or current. */
920 action
= ACTION_FAIL
;
923 description
= "Unhandled sense code";
924 action
= ACTION_FAIL
;
928 description
= "Unhandled error code";
929 action
= ACTION_FAIL
;
934 /* Give up and fail the remainder of the request */
935 scsi_release_buffers(cmd
);
936 if (!(req
->cmd_flags
& REQ_QUIET
)) {
938 scmd_printk(KERN_INFO
, cmd
, "%s\n",
940 scsi_print_result(cmd
);
941 if (driver_byte(result
) & DRIVER_SENSE
)
942 scsi_print_sense("", cmd
);
943 scsi_print_command(cmd
);
945 if (blk_end_request_err(req
, error
))
946 scsi_requeue_command(q
, cmd
);
948 scsi_next_command(cmd
);
951 /* Unprep the request and put it back at the head of the queue.
952 * A new command will be prepared and issued.
954 scsi_release_buffers(cmd
);
955 scsi_requeue_command(q
, cmd
);
958 /* Retry the same command immediately */
959 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
, 0);
961 case ACTION_DELAYED_RETRY
:
962 /* Retry the same command after a delay */
963 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
, 0);
968 static int scsi_init_sgtable(struct request
*req
, struct scsi_data_buffer
*sdb
,
974 * If sg table allocation fails, requeue request later.
976 if (unlikely(scsi_alloc_sgtable(sdb
, req
->nr_phys_segments
,
978 return BLKPREP_DEFER
;
984 * Next, walk the list, and fill in the addresses and sizes of
987 count
= blk_rq_map_sg(req
->q
, req
, sdb
->table
.sgl
);
988 BUG_ON(count
> sdb
->table
.nents
);
989 sdb
->table
.nents
= count
;
990 sdb
->length
= blk_rq_bytes(req
);
995 * Function: scsi_init_io()
997 * Purpose: SCSI I/O initialize function.
999 * Arguments: cmd - Command descriptor we wish to initialize
1001 * Returns: 0 on success
1002 * BLKPREP_DEFER if the failure is retryable
1003 * BLKPREP_KILL if the failure is fatal
1005 int scsi_init_io(struct scsi_cmnd
*cmd
, gfp_t gfp_mask
)
1007 struct request
*rq
= cmd
->request
;
1009 int error
= scsi_init_sgtable(rq
, &cmd
->sdb
, gfp_mask
);
1013 if (blk_bidi_rq(rq
)) {
1014 struct scsi_data_buffer
*bidi_sdb
= kmem_cache_zalloc(
1015 scsi_sdb_cache
, GFP_ATOMIC
);
1017 error
= BLKPREP_DEFER
;
1021 rq
->next_rq
->special
= bidi_sdb
;
1022 error
= scsi_init_sgtable(rq
->next_rq
, bidi_sdb
, GFP_ATOMIC
);
1027 if (blk_integrity_rq(rq
)) {
1028 struct scsi_data_buffer
*prot_sdb
= cmd
->prot_sdb
;
1031 BUG_ON(prot_sdb
== NULL
);
1032 ivecs
= blk_rq_count_integrity_sg(rq
->q
, rq
->bio
);
1034 if (scsi_alloc_sgtable(prot_sdb
, ivecs
, gfp_mask
)) {
1035 error
= BLKPREP_DEFER
;
1039 count
= blk_rq_map_integrity_sg(rq
->q
, rq
->bio
,
1040 prot_sdb
->table
.sgl
);
1041 BUG_ON(unlikely(count
> ivecs
));
1042 BUG_ON(unlikely(count
> queue_max_integrity_segments(rq
->q
)));
1044 cmd
->prot_sdb
= prot_sdb
;
1045 cmd
->prot_sdb
->table
.nents
= count
;
1051 scsi_release_buffers(cmd
);
1052 cmd
->request
->special
= NULL
;
1053 scsi_put_command(cmd
);
1056 EXPORT_SYMBOL(scsi_init_io
);
1058 static struct scsi_cmnd
*scsi_get_cmd_from_req(struct scsi_device
*sdev
,
1059 struct request
*req
)
1061 struct scsi_cmnd
*cmd
;
1063 if (!req
->special
) {
1064 cmd
= scsi_get_command(sdev
, GFP_ATOMIC
);
1072 /* pull a tag out of the request if we have one */
1073 cmd
->tag
= req
->tag
;
1076 cmd
->cmnd
= req
->cmd
;
1077 cmd
->prot_op
= SCSI_PROT_NORMAL
;
1082 int scsi_setup_blk_pc_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1084 struct scsi_cmnd
*cmd
;
1085 int ret
= scsi_prep_state_check(sdev
, req
);
1087 if (ret
!= BLKPREP_OK
)
1090 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1092 return BLKPREP_DEFER
;
1095 * BLOCK_PC requests may transfer data, in which case they must
1096 * a bio attached to them. Or they might contain a SCSI command
1097 * that does not transfer data, in which case they may optionally
1098 * submit a request without an attached bio.
1103 BUG_ON(!req
->nr_phys_segments
);
1105 ret
= scsi_init_io(cmd
, GFP_ATOMIC
);
1109 BUG_ON(blk_rq_bytes(req
));
1111 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
1115 cmd
->cmd_len
= req
->cmd_len
;
1116 if (!blk_rq_bytes(req
))
1117 cmd
->sc_data_direction
= DMA_NONE
;
1118 else if (rq_data_dir(req
) == WRITE
)
1119 cmd
->sc_data_direction
= DMA_TO_DEVICE
;
1121 cmd
->sc_data_direction
= DMA_FROM_DEVICE
;
1123 cmd
->transfersize
= blk_rq_bytes(req
);
1124 cmd
->allowed
= req
->retries
;
1127 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd
);
1130 * Setup a REQ_TYPE_FS command. These are simple read/write request
1131 * from filesystems that still need to be translated to SCSI CDBs from
1134 int scsi_setup_fs_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1136 struct scsi_cmnd
*cmd
;
1137 int ret
= scsi_prep_state_check(sdev
, req
);
1139 if (ret
!= BLKPREP_OK
)
1142 if (unlikely(sdev
->scsi_dh_data
&& sdev
->scsi_dh_data
->scsi_dh
1143 && sdev
->scsi_dh_data
->scsi_dh
->prep_fn
)) {
1144 ret
= sdev
->scsi_dh_data
->scsi_dh
->prep_fn(sdev
, req
);
1145 if (ret
!= BLKPREP_OK
)
1150 * Filesystem requests must transfer data.
1152 BUG_ON(!req
->nr_phys_segments
);
1154 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1156 return BLKPREP_DEFER
;
1158 memset(cmd
->cmnd
, 0, BLK_MAX_CDB
);
1159 return scsi_init_io(cmd
, GFP_ATOMIC
);
1161 EXPORT_SYMBOL(scsi_setup_fs_cmnd
);
1163 int scsi_prep_state_check(struct scsi_device
*sdev
, struct request
*req
)
1165 int ret
= BLKPREP_OK
;
1168 * If the device is not in running state we will reject some
1171 if (unlikely(sdev
->sdev_state
!= SDEV_RUNNING
)) {
1172 switch (sdev
->sdev_state
) {
1175 * If the device is offline we refuse to process any
1176 * commands. The device must be brought online
1177 * before trying any recovery commands.
1179 sdev_printk(KERN_ERR
, sdev
,
1180 "rejecting I/O to offline device\n");
1185 * If the device is fully deleted, we refuse to
1186 * process any commands as well.
1188 sdev_printk(KERN_ERR
, sdev
,
1189 "rejecting I/O to dead device\n");
1194 case SDEV_CREATED_BLOCK
:
1196 * If the devices is blocked we defer normal commands.
1198 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1199 ret
= BLKPREP_DEFER
;
1203 * For any other not fully online state we only allow
1204 * special commands. In particular any user initiated
1205 * command is not allowed.
1207 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1214 EXPORT_SYMBOL(scsi_prep_state_check
);
1216 int scsi_prep_return(struct request_queue
*q
, struct request
*req
, int ret
)
1218 struct scsi_device
*sdev
= q
->queuedata
;
1222 req
->errors
= DID_NO_CONNECT
<< 16;
1223 /* release the command and kill it */
1225 struct scsi_cmnd
*cmd
= req
->special
;
1226 scsi_release_buffers(cmd
);
1227 scsi_put_command(cmd
);
1228 req
->special
= NULL
;
1233 * If we defer, the blk_peek_request() returns NULL, but the
1234 * queue must be restarted, so we schedule a callback to happen
1237 if (sdev
->device_busy
== 0)
1238 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1241 req
->cmd_flags
|= REQ_DONTPREP
;
1246 EXPORT_SYMBOL(scsi_prep_return
);
1248 int scsi_prep_fn(struct request_queue
*q
, struct request
*req
)
1250 struct scsi_device
*sdev
= q
->queuedata
;
1251 int ret
= BLKPREP_KILL
;
1253 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
)
1254 ret
= scsi_setup_blk_pc_cmnd(sdev
, req
);
1255 return scsi_prep_return(q
, req
, ret
);
1257 EXPORT_SYMBOL(scsi_prep_fn
);
1260 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1263 * Called with the queue_lock held.
1265 static inline int scsi_dev_queue_ready(struct request_queue
*q
,
1266 struct scsi_device
*sdev
)
1268 if (sdev
->device_busy
== 0 && sdev
->device_blocked
) {
1270 * unblock after device_blocked iterates to zero
1272 if (--sdev
->device_blocked
== 0) {
1274 sdev_printk(KERN_INFO
, sdev
,
1275 "unblocking device at zero depth\n"));
1277 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1281 if (scsi_device_is_busy(sdev
))
1289 * scsi_target_queue_ready: checks if there we can send commands to target
1290 * @sdev: scsi device on starget to check.
1292 * Called with the host lock held.
1294 static inline int scsi_target_queue_ready(struct Scsi_Host
*shost
,
1295 struct scsi_device
*sdev
)
1297 struct scsi_target
*starget
= scsi_target(sdev
);
1299 if (starget
->single_lun
) {
1300 if (starget
->starget_sdev_user
&&
1301 starget
->starget_sdev_user
!= sdev
)
1303 starget
->starget_sdev_user
= sdev
;
1306 if (starget
->target_busy
== 0 && starget
->target_blocked
) {
1308 * unblock after target_blocked iterates to zero
1310 if (--starget
->target_blocked
== 0) {
1311 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO
, starget
,
1312 "unblocking target at zero depth\n"));
1317 if (scsi_target_is_busy(starget
)) {
1318 if (list_empty(&sdev
->starved_entry
))
1319 list_add_tail(&sdev
->starved_entry
,
1320 &shost
->starved_list
);
1324 /* We're OK to process the command, so we can't be starved */
1325 if (!list_empty(&sdev
->starved_entry
))
1326 list_del_init(&sdev
->starved_entry
);
1331 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1332 * return 0. We must end up running the queue again whenever 0 is
1333 * returned, else IO can hang.
1335 * Called with host_lock held.
1337 static inline int scsi_host_queue_ready(struct request_queue
*q
,
1338 struct Scsi_Host
*shost
,
1339 struct scsi_device
*sdev
)
1341 if (scsi_host_in_recovery(shost
))
1343 if (shost
->host_busy
== 0 && shost
->host_blocked
) {
1345 * unblock after host_blocked iterates to zero
1347 if (--shost
->host_blocked
== 0) {
1349 printk("scsi%d unblocking host at zero depth\n",
1355 if (scsi_host_is_busy(shost
)) {
1356 if (list_empty(&sdev
->starved_entry
))
1357 list_add_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1361 /* We're OK to process the command, so we can't be starved */
1362 if (!list_empty(&sdev
->starved_entry
))
1363 list_del_init(&sdev
->starved_entry
);
1369 * Busy state exporting function for request stacking drivers.
1371 * For efficiency, no lock is taken to check the busy state of
1372 * shost/starget/sdev, since the returned value is not guaranteed and
1373 * may be changed after request stacking drivers call the function,
1374 * regardless of taking lock or not.
1376 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1377 * (e.g. !sdev), scsi needs to return 'not busy'.
1378 * Otherwise, request stacking drivers may hold requests forever.
1380 static int scsi_lld_busy(struct request_queue
*q
)
1382 struct scsi_device
*sdev
= q
->queuedata
;
1383 struct Scsi_Host
*shost
;
1384 struct scsi_target
*starget
;
1390 starget
= scsi_target(sdev
);
1392 if (scsi_host_in_recovery(shost
) || scsi_host_is_busy(shost
) ||
1393 scsi_target_is_busy(starget
) || scsi_device_is_busy(sdev
))
1400 * Kill a request for a dead device
1402 static void scsi_kill_request(struct request
*req
, struct request_queue
*q
)
1404 struct scsi_cmnd
*cmd
= req
->special
;
1405 struct scsi_device
*sdev
;
1406 struct scsi_target
*starget
;
1407 struct Scsi_Host
*shost
;
1409 blk_start_request(req
);
1412 starget
= scsi_target(sdev
);
1414 scsi_init_cmd_errh(cmd
);
1415 cmd
->result
= DID_NO_CONNECT
<< 16;
1416 atomic_inc(&cmd
->device
->iorequest_cnt
);
1419 * SCSI request completion path will do scsi_device_unbusy(),
1420 * bump busy counts. To bump the counters, we need to dance
1421 * with the locks as normal issue path does.
1423 sdev
->device_busy
++;
1424 spin_unlock(sdev
->request_queue
->queue_lock
);
1425 spin_lock(shost
->host_lock
);
1427 starget
->target_busy
++;
1428 spin_unlock(shost
->host_lock
);
1429 spin_lock(sdev
->request_queue
->queue_lock
);
1431 blk_complete_request(req
);
1434 static void scsi_softirq_done(struct request
*rq
)
1436 struct scsi_cmnd
*cmd
= rq
->special
;
1437 unsigned long wait_for
= (cmd
->allowed
+ 1) * rq
->timeout
;
1440 INIT_LIST_HEAD(&cmd
->eh_entry
);
1442 atomic_inc(&cmd
->device
->iodone_cnt
);
1444 atomic_inc(&cmd
->device
->ioerr_cnt
);
1446 disposition
= scsi_decide_disposition(cmd
);
1447 if (disposition
!= SUCCESS
&&
1448 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
)) {
1449 sdev_printk(KERN_ERR
, cmd
->device
,
1450 "timing out command, waited %lus\n",
1452 disposition
= SUCCESS
;
1455 scsi_log_completion(cmd
, disposition
);
1457 switch (disposition
) {
1459 scsi_finish_command(cmd
);
1462 scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
);
1464 case ADD_TO_MLQUEUE
:
1465 scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
);
1468 if (!scsi_eh_scmd_add(cmd
, 0))
1469 scsi_finish_command(cmd
);
1474 * Function: scsi_request_fn()
1476 * Purpose: Main strategy routine for SCSI.
1478 * Arguments: q - Pointer to actual queue.
1482 * Lock status: IO request lock assumed to be held when called.
1484 static void scsi_request_fn(struct request_queue
*q
)
1486 struct scsi_device
*sdev
= q
->queuedata
;
1487 struct Scsi_Host
*shost
;
1488 struct scsi_cmnd
*cmd
;
1489 struct request
*req
;
1492 printk("scsi: killing requests for dead queue\n");
1493 while ((req
= blk_peek_request(q
)) != NULL
)
1494 scsi_kill_request(req
, q
);
1498 if(!get_device(&sdev
->sdev_gendev
))
1499 /* We must be tearing the block queue down already */
1503 * To start with, we keep looping until the queue is empty, or until
1504 * the host is no longer able to accept any more requests.
1510 * get next queueable request. We do this early to make sure
1511 * that the request is fully prepared even if we cannot
1514 req
= blk_peek_request(q
);
1515 if (!req
|| !scsi_dev_queue_ready(q
, sdev
))
1518 if (unlikely(!scsi_device_online(sdev
))) {
1519 sdev_printk(KERN_ERR
, sdev
,
1520 "rejecting I/O to offline device\n");
1521 scsi_kill_request(req
, q
);
1527 * Remove the request from the request list.
1529 if (!(blk_queue_tagged(q
) && !blk_queue_start_tag(q
, req
)))
1530 blk_start_request(req
);
1531 sdev
->device_busy
++;
1533 spin_unlock(q
->queue_lock
);
1535 if (unlikely(cmd
== NULL
)) {
1536 printk(KERN_CRIT
"impossible request in %s.\n"
1537 "please mail a stack trace to "
1538 "linux-scsi@vger.kernel.org\n",
1540 blk_dump_rq_flags(req
, "foo");
1543 spin_lock(shost
->host_lock
);
1546 * We hit this when the driver is using a host wide
1547 * tag map. For device level tag maps the queue_depth check
1548 * in the device ready fn would prevent us from trying
1549 * to allocate a tag. Since the map is a shared host resource
1550 * we add the dev to the starved list so it eventually gets
1551 * a run when a tag is freed.
1553 if (blk_queue_tagged(q
) && !blk_rq_tagged(req
)) {
1554 if (list_empty(&sdev
->starved_entry
))
1555 list_add_tail(&sdev
->starved_entry
,
1556 &shost
->starved_list
);
1560 if (!scsi_target_queue_ready(shost
, sdev
))
1563 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1566 scsi_target(sdev
)->target_busy
++;
1570 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1571 * take the lock again.
1573 spin_unlock_irq(shost
->host_lock
);
1576 * Finally, initialize any error handling parameters, and set up
1577 * the timers for timeouts.
1579 scsi_init_cmd_errh(cmd
);
1582 * Dispatch the command to the low-level driver.
1584 rtn
= scsi_dispatch_cmd(cmd
);
1585 spin_lock_irq(q
->queue_lock
);
1593 spin_unlock_irq(shost
->host_lock
);
1596 * lock q, handle tag, requeue req, and decrement device_busy. We
1597 * must return with queue_lock held.
1599 * Decrementing device_busy without checking it is OK, as all such
1600 * cases (host limits or settings) should run the queue at some
1603 spin_lock_irq(q
->queue_lock
);
1604 blk_requeue_request(q
, req
);
1605 sdev
->device_busy
--;
1607 if (sdev
->device_busy
== 0)
1608 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1610 /* must be careful here...if we trigger the ->remove() function
1611 * we cannot be holding the q lock */
1612 spin_unlock_irq(q
->queue_lock
);
1613 put_device(&sdev
->sdev_gendev
);
1614 spin_lock_irq(q
->queue_lock
);
1617 u64
scsi_calculate_bounce_limit(struct Scsi_Host
*shost
)
1619 struct device
*host_dev
;
1620 u64 bounce_limit
= 0xffffffff;
1622 if (shost
->unchecked_isa_dma
)
1623 return BLK_BOUNCE_ISA
;
1625 * Platforms with virtual-DMA translation
1626 * hardware have no practical limit.
1628 if (!PCI_DMA_BUS_IS_PHYS
)
1629 return BLK_BOUNCE_ANY
;
1631 host_dev
= scsi_get_device(shost
);
1632 if (host_dev
&& host_dev
->dma_mask
)
1633 bounce_limit
= *host_dev
->dma_mask
;
1635 return bounce_limit
;
1637 EXPORT_SYMBOL(scsi_calculate_bounce_limit
);
1639 struct request_queue
*__scsi_alloc_queue(struct Scsi_Host
*shost
,
1640 request_fn_proc
*request_fn
)
1642 struct request_queue
*q
;
1643 struct device
*dev
= shost
->shost_gendev
.parent
;
1645 q
= blk_init_queue(request_fn
, NULL
);
1650 * this limit is imposed by hardware restrictions
1652 blk_queue_max_segments(q
, min_t(unsigned short, shost
->sg_tablesize
,
1653 SCSI_MAX_SG_CHAIN_SEGMENTS
));
1655 if (scsi_host_prot_dma(shost
)) {
1656 shost
->sg_prot_tablesize
=
1657 min_not_zero(shost
->sg_prot_tablesize
,
1658 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS
);
1659 BUG_ON(shost
->sg_prot_tablesize
< shost
->sg_tablesize
);
1660 blk_queue_max_integrity_segments(q
, shost
->sg_prot_tablesize
);
1663 blk_queue_max_hw_sectors(q
, shost
->max_sectors
);
1664 blk_queue_bounce_limit(q
, scsi_calculate_bounce_limit(shost
));
1665 blk_queue_segment_boundary(q
, shost
->dma_boundary
);
1666 dma_set_seg_boundary(dev
, shost
->dma_boundary
);
1668 blk_queue_max_segment_size(q
, dma_get_max_seg_size(dev
));
1670 if (!shost
->use_clustering
)
1671 q
->limits
.cluster
= 0;
1674 * set a reasonable default alignment on word boundaries: the
1675 * host and device may alter it using
1676 * blk_queue_update_dma_alignment() later.
1678 blk_queue_dma_alignment(q
, 0x03);
1682 EXPORT_SYMBOL(__scsi_alloc_queue
);
1684 struct request_queue
*scsi_alloc_queue(struct scsi_device
*sdev
)
1686 struct request_queue
*q
;
1688 q
= __scsi_alloc_queue(sdev
->host
, scsi_request_fn
);
1692 blk_queue_prep_rq(q
, scsi_prep_fn
);
1693 blk_queue_softirq_done(q
, scsi_softirq_done
);
1694 blk_queue_rq_timed_out(q
, scsi_times_out
);
1695 blk_queue_lld_busy(q
, scsi_lld_busy
);
1699 void scsi_free_queue(struct request_queue
*q
)
1701 blk_cleanup_queue(q
);
1705 * Function: scsi_block_requests()
1707 * Purpose: Utility function used by low-level drivers to prevent further
1708 * commands from being queued to the device.
1710 * Arguments: shost - Host in question
1714 * Lock status: No locks are assumed held.
1716 * Notes: There is no timer nor any other means by which the requests
1717 * get unblocked other than the low-level driver calling
1718 * scsi_unblock_requests().
1720 void scsi_block_requests(struct Scsi_Host
*shost
)
1722 shost
->host_self_blocked
= 1;
1724 EXPORT_SYMBOL(scsi_block_requests
);
1727 * Function: scsi_unblock_requests()
1729 * Purpose: Utility function used by low-level drivers to allow further
1730 * commands from being queued to the device.
1732 * Arguments: shost - Host in question
1736 * Lock status: No locks are assumed held.
1738 * Notes: There is no timer nor any other means by which the requests
1739 * get unblocked other than the low-level driver calling
1740 * scsi_unblock_requests().
1742 * This is done as an API function so that changes to the
1743 * internals of the scsi mid-layer won't require wholesale
1744 * changes to drivers that use this feature.
1746 void scsi_unblock_requests(struct Scsi_Host
*shost
)
1748 shost
->host_self_blocked
= 0;
1749 scsi_run_host_queues(shost
);
1751 EXPORT_SYMBOL(scsi_unblock_requests
);
1753 int __init
scsi_init_queue(void)
1757 scsi_sdb_cache
= kmem_cache_create("scsi_data_buffer",
1758 sizeof(struct scsi_data_buffer
),
1760 if (!scsi_sdb_cache
) {
1761 printk(KERN_ERR
"SCSI: can't init scsi sdb cache\n");
1765 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1766 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1767 int size
= sgp
->size
* sizeof(struct scatterlist
);
1769 sgp
->slab
= kmem_cache_create(sgp
->name
, size
, 0,
1770 SLAB_HWCACHE_ALIGN
, NULL
);
1772 printk(KERN_ERR
"SCSI: can't init sg slab %s\n",
1777 sgp
->pool
= mempool_create_slab_pool(SG_MEMPOOL_SIZE
,
1780 printk(KERN_ERR
"SCSI: can't init sg mempool %s\n",
1789 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1790 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1792 mempool_destroy(sgp
->pool
);
1794 kmem_cache_destroy(sgp
->slab
);
1796 kmem_cache_destroy(scsi_sdb_cache
);
1801 void scsi_exit_queue(void)
1805 kmem_cache_destroy(scsi_sdb_cache
);
1807 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1808 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1809 mempool_destroy(sgp
->pool
);
1810 kmem_cache_destroy(sgp
->slab
);
1815 * scsi_mode_select - issue a mode select
1816 * @sdev: SCSI device to be queried
1817 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1818 * @sp: Save page bit (0 == don't save, 1 == save)
1819 * @modepage: mode page being requested
1820 * @buffer: request buffer (may not be smaller than eight bytes)
1821 * @len: length of request buffer.
1822 * @timeout: command timeout
1823 * @retries: number of retries before failing
1824 * @data: returns a structure abstracting the mode header data
1825 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1826 * must be SCSI_SENSE_BUFFERSIZE big.
1828 * Returns zero if successful; negative error number or scsi
1833 scsi_mode_select(struct scsi_device
*sdev
, int pf
, int sp
, int modepage
,
1834 unsigned char *buffer
, int len
, int timeout
, int retries
,
1835 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1837 unsigned char cmd
[10];
1838 unsigned char *real_buffer
;
1841 memset(cmd
, 0, sizeof(cmd
));
1842 cmd
[1] = (pf
? 0x10 : 0) | (sp
? 0x01 : 0);
1844 if (sdev
->use_10_for_ms
) {
1847 real_buffer
= kmalloc(8 + len
, GFP_KERNEL
);
1850 memcpy(real_buffer
+ 8, buffer
, len
);
1854 real_buffer
[2] = data
->medium_type
;
1855 real_buffer
[3] = data
->device_specific
;
1856 real_buffer
[4] = data
->longlba
? 0x01 : 0;
1858 real_buffer
[6] = data
->block_descriptor_length
>> 8;
1859 real_buffer
[7] = data
->block_descriptor_length
;
1861 cmd
[0] = MODE_SELECT_10
;
1865 if (len
> 255 || data
->block_descriptor_length
> 255 ||
1869 real_buffer
= kmalloc(4 + len
, GFP_KERNEL
);
1872 memcpy(real_buffer
+ 4, buffer
, len
);
1875 real_buffer
[1] = data
->medium_type
;
1876 real_buffer
[2] = data
->device_specific
;
1877 real_buffer
[3] = data
->block_descriptor_length
;
1880 cmd
[0] = MODE_SELECT
;
1884 ret
= scsi_execute_req(sdev
, cmd
, DMA_TO_DEVICE
, real_buffer
, len
,
1885 sshdr
, timeout
, retries
, NULL
);
1889 EXPORT_SYMBOL_GPL(scsi_mode_select
);
1892 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1893 * @sdev: SCSI device to be queried
1894 * @dbd: set if mode sense will allow block descriptors to be returned
1895 * @modepage: mode page being requested
1896 * @buffer: request buffer (may not be smaller than eight bytes)
1897 * @len: length of request buffer.
1898 * @timeout: command timeout
1899 * @retries: number of retries before failing
1900 * @data: returns a structure abstracting the mode header data
1901 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1902 * must be SCSI_SENSE_BUFFERSIZE big.
1904 * Returns zero if unsuccessful, or the header offset (either 4
1905 * or 8 depending on whether a six or ten byte command was
1906 * issued) if successful.
1909 scsi_mode_sense(struct scsi_device
*sdev
, int dbd
, int modepage
,
1910 unsigned char *buffer
, int len
, int timeout
, int retries
,
1911 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1913 unsigned char cmd
[12];
1917 struct scsi_sense_hdr my_sshdr
;
1919 memset(data
, 0, sizeof(*data
));
1920 memset(&cmd
[0], 0, 12);
1921 cmd
[1] = dbd
& 0x18; /* allows DBD and LLBA bits */
1924 /* caller might not be interested in sense, but we need it */
1929 use_10_for_ms
= sdev
->use_10_for_ms
;
1931 if (use_10_for_ms
) {
1935 cmd
[0] = MODE_SENSE_10
;
1942 cmd
[0] = MODE_SENSE
;
1947 memset(buffer
, 0, len
);
1949 result
= scsi_execute_req(sdev
, cmd
, DMA_FROM_DEVICE
, buffer
, len
,
1950 sshdr
, timeout
, retries
, NULL
);
1952 /* This code looks awful: what it's doing is making sure an
1953 * ILLEGAL REQUEST sense return identifies the actual command
1954 * byte as the problem. MODE_SENSE commands can return
1955 * ILLEGAL REQUEST if the code page isn't supported */
1957 if (use_10_for_ms
&& !scsi_status_is_good(result
) &&
1958 (driver_byte(result
) & DRIVER_SENSE
)) {
1959 if (scsi_sense_valid(sshdr
)) {
1960 if ((sshdr
->sense_key
== ILLEGAL_REQUEST
) &&
1961 (sshdr
->asc
== 0x20) && (sshdr
->ascq
== 0)) {
1963 * Invalid command operation code
1965 sdev
->use_10_for_ms
= 0;
1971 if(scsi_status_is_good(result
)) {
1972 if (unlikely(buffer
[0] == 0x86 && buffer
[1] == 0x0b &&
1973 (modepage
== 6 || modepage
== 8))) {
1974 /* Initio breakage? */
1977 data
->medium_type
= 0;
1978 data
->device_specific
= 0;
1980 data
->block_descriptor_length
= 0;
1981 } else if(use_10_for_ms
) {
1982 data
->length
= buffer
[0]*256 + buffer
[1] + 2;
1983 data
->medium_type
= buffer
[2];
1984 data
->device_specific
= buffer
[3];
1985 data
->longlba
= buffer
[4] & 0x01;
1986 data
->block_descriptor_length
= buffer
[6]*256
1989 data
->length
= buffer
[0] + 1;
1990 data
->medium_type
= buffer
[1];
1991 data
->device_specific
= buffer
[2];
1992 data
->block_descriptor_length
= buffer
[3];
1994 data
->header_length
= header_length
;
1999 EXPORT_SYMBOL(scsi_mode_sense
);
2002 * scsi_test_unit_ready - test if unit is ready
2003 * @sdev: scsi device to change the state of.
2004 * @timeout: command timeout
2005 * @retries: number of retries before failing
2006 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2007 * returning sense. Make sure that this is cleared before passing
2010 * Returns zero if unsuccessful or an error if TUR failed. For
2011 * removable media, UNIT_ATTENTION sets ->changed flag.
2014 scsi_test_unit_ready(struct scsi_device
*sdev
, int timeout
, int retries
,
2015 struct scsi_sense_hdr
*sshdr_external
)
2018 TEST_UNIT_READY
, 0, 0, 0, 0, 0,
2020 struct scsi_sense_hdr
*sshdr
;
2023 if (!sshdr_external
)
2024 sshdr
= kzalloc(sizeof(*sshdr
), GFP_KERNEL
);
2026 sshdr
= sshdr_external
;
2028 /* try to eat the UNIT_ATTENTION if there are enough retries */
2030 result
= scsi_execute_req(sdev
, cmd
, DMA_NONE
, NULL
, 0, sshdr
,
2031 timeout
, retries
, NULL
);
2032 if (sdev
->removable
&& scsi_sense_valid(sshdr
) &&
2033 sshdr
->sense_key
== UNIT_ATTENTION
)
2035 } while (scsi_sense_valid(sshdr
) &&
2036 sshdr
->sense_key
== UNIT_ATTENTION
&& --retries
);
2038 if (!sshdr_external
)
2042 EXPORT_SYMBOL(scsi_test_unit_ready
);
2045 * scsi_device_set_state - Take the given device through the device state model.
2046 * @sdev: scsi device to change the state of.
2047 * @state: state to change to.
2049 * Returns zero if unsuccessful or an error if the requested
2050 * transition is illegal.
2053 scsi_device_set_state(struct scsi_device
*sdev
, enum scsi_device_state state
)
2055 enum scsi_device_state oldstate
= sdev
->sdev_state
;
2057 if (state
== oldstate
)
2063 case SDEV_CREATED_BLOCK
:
2107 case SDEV_CREATED_BLOCK
:
2114 case SDEV_CREATED_BLOCK
:
2149 sdev
->sdev_state
= state
;
2153 SCSI_LOG_ERROR_RECOVERY(1,
2154 sdev_printk(KERN_ERR
, sdev
,
2155 "Illegal state transition %s->%s\n",
2156 scsi_device_state_name(oldstate
),
2157 scsi_device_state_name(state
))
2161 EXPORT_SYMBOL(scsi_device_set_state
);
2164 * sdev_evt_emit - emit a single SCSI device uevent
2165 * @sdev: associated SCSI device
2166 * @evt: event to emit
2168 * Send a single uevent (scsi_event) to the associated scsi_device.
2170 static void scsi_evt_emit(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2175 switch (evt
->evt_type
) {
2176 case SDEV_EVT_MEDIA_CHANGE
:
2177 envp
[idx
++] = "SDEV_MEDIA_CHANGE=1";
2187 kobject_uevent_env(&sdev
->sdev_gendev
.kobj
, KOBJ_CHANGE
, envp
);
2191 * sdev_evt_thread - send a uevent for each scsi event
2192 * @work: work struct for scsi_device
2194 * Dispatch queued events to their associated scsi_device kobjects
2197 void scsi_evt_thread(struct work_struct
*work
)
2199 struct scsi_device
*sdev
;
2200 LIST_HEAD(event_list
);
2202 sdev
= container_of(work
, struct scsi_device
, event_work
);
2205 struct scsi_event
*evt
;
2206 struct list_head
*this, *tmp
;
2207 unsigned long flags
;
2209 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2210 list_splice_init(&sdev
->event_list
, &event_list
);
2211 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2213 if (list_empty(&event_list
))
2216 list_for_each_safe(this, tmp
, &event_list
) {
2217 evt
= list_entry(this, struct scsi_event
, node
);
2218 list_del(&evt
->node
);
2219 scsi_evt_emit(sdev
, evt
);
2226 * sdev_evt_send - send asserted event to uevent thread
2227 * @sdev: scsi_device event occurred on
2228 * @evt: event to send
2230 * Assert scsi device event asynchronously.
2232 void sdev_evt_send(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2234 unsigned long flags
;
2237 /* FIXME: currently this check eliminates all media change events
2238 * for polled devices. Need to update to discriminate between AN
2239 * and polled events */
2240 if (!test_bit(evt
->evt_type
, sdev
->supported_events
)) {
2246 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2247 list_add_tail(&evt
->node
, &sdev
->event_list
);
2248 schedule_work(&sdev
->event_work
);
2249 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2251 EXPORT_SYMBOL_GPL(sdev_evt_send
);
2254 * sdev_evt_alloc - allocate a new scsi event
2255 * @evt_type: type of event to allocate
2256 * @gfpflags: GFP flags for allocation
2258 * Allocates and returns a new scsi_event.
2260 struct scsi_event
*sdev_evt_alloc(enum scsi_device_event evt_type
,
2263 struct scsi_event
*evt
= kzalloc(sizeof(struct scsi_event
), gfpflags
);
2267 evt
->evt_type
= evt_type
;
2268 INIT_LIST_HEAD(&evt
->node
);
2270 /* evt_type-specific initialization, if any */
2272 case SDEV_EVT_MEDIA_CHANGE
:
2280 EXPORT_SYMBOL_GPL(sdev_evt_alloc
);
2283 * sdev_evt_send_simple - send asserted event to uevent thread
2284 * @sdev: scsi_device event occurred on
2285 * @evt_type: type of event to send
2286 * @gfpflags: GFP flags for allocation
2288 * Assert scsi device event asynchronously, given an event type.
2290 void sdev_evt_send_simple(struct scsi_device
*sdev
,
2291 enum scsi_device_event evt_type
, gfp_t gfpflags
)
2293 struct scsi_event
*evt
= sdev_evt_alloc(evt_type
, gfpflags
);
2295 sdev_printk(KERN_ERR
, sdev
, "event %d eaten due to OOM\n",
2300 sdev_evt_send(sdev
, evt
);
2302 EXPORT_SYMBOL_GPL(sdev_evt_send_simple
);
2305 * scsi_device_quiesce - Block user issued commands.
2306 * @sdev: scsi device to quiesce.
2308 * This works by trying to transition to the SDEV_QUIESCE state
2309 * (which must be a legal transition). When the device is in this
2310 * state, only special requests will be accepted, all others will
2311 * be deferred. Since special requests may also be requeued requests,
2312 * a successful return doesn't guarantee the device will be
2313 * totally quiescent.
2315 * Must be called with user context, may sleep.
2317 * Returns zero if unsuccessful or an error if not.
2320 scsi_device_quiesce(struct scsi_device
*sdev
)
2322 int err
= scsi_device_set_state(sdev
, SDEV_QUIESCE
);
2326 scsi_run_queue(sdev
->request_queue
);
2327 while (sdev
->device_busy
) {
2328 msleep_interruptible(200);
2329 scsi_run_queue(sdev
->request_queue
);
2333 EXPORT_SYMBOL(scsi_device_quiesce
);
2336 * scsi_device_resume - Restart user issued commands to a quiesced device.
2337 * @sdev: scsi device to resume.
2339 * Moves the device from quiesced back to running and restarts the
2342 * Must be called with user context, may sleep.
2345 scsi_device_resume(struct scsi_device
*sdev
)
2347 if(scsi_device_set_state(sdev
, SDEV_RUNNING
))
2349 scsi_run_queue(sdev
->request_queue
);
2351 EXPORT_SYMBOL(scsi_device_resume
);
2354 device_quiesce_fn(struct scsi_device
*sdev
, void *data
)
2356 scsi_device_quiesce(sdev
);
2360 scsi_target_quiesce(struct scsi_target
*starget
)
2362 starget_for_each_device(starget
, NULL
, device_quiesce_fn
);
2364 EXPORT_SYMBOL(scsi_target_quiesce
);
2367 device_resume_fn(struct scsi_device
*sdev
, void *data
)
2369 scsi_device_resume(sdev
);
2373 scsi_target_resume(struct scsi_target
*starget
)
2375 starget_for_each_device(starget
, NULL
, device_resume_fn
);
2377 EXPORT_SYMBOL(scsi_target_resume
);
2380 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2381 * @sdev: device to block
2383 * Block request made by scsi lld's to temporarily stop all
2384 * scsi commands on the specified device. Called from interrupt
2385 * or normal process context.
2387 * Returns zero if successful or error if not
2390 * This routine transitions the device to the SDEV_BLOCK state
2391 * (which must be a legal transition). When the device is in this
2392 * state, all commands are deferred until the scsi lld reenables
2393 * the device with scsi_device_unblock or device_block_tmo fires.
2394 * This routine assumes the host_lock is held on entry.
2397 scsi_internal_device_block(struct scsi_device
*sdev
)
2399 struct request_queue
*q
= sdev
->request_queue
;
2400 unsigned long flags
;
2403 err
= scsi_device_set_state(sdev
, SDEV_BLOCK
);
2405 err
= scsi_device_set_state(sdev
, SDEV_CREATED_BLOCK
);
2412 * The device has transitioned to SDEV_BLOCK. Stop the
2413 * block layer from calling the midlayer with this device's
2416 spin_lock_irqsave(q
->queue_lock
, flags
);
2418 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2422 EXPORT_SYMBOL_GPL(scsi_internal_device_block
);
2425 * scsi_internal_device_unblock - resume a device after a block request
2426 * @sdev: device to resume
2428 * Called by scsi lld's or the midlayer to restart the device queue
2429 * for the previously suspended scsi device. Called from interrupt or
2430 * normal process context.
2432 * Returns zero if successful or error if not.
2435 * This routine transitions the device to the SDEV_RUNNING state
2436 * (which must be a legal transition) allowing the midlayer to
2437 * goose the queue for this device. This routine assumes the
2438 * host_lock is held upon entry.
2441 scsi_internal_device_unblock(struct scsi_device
*sdev
)
2443 struct request_queue
*q
= sdev
->request_queue
;
2444 unsigned long flags
;
2447 * Try to transition the scsi device to SDEV_RUNNING
2448 * and goose the device queue if successful.
2450 if (sdev
->sdev_state
== SDEV_BLOCK
)
2451 sdev
->sdev_state
= SDEV_RUNNING
;
2452 else if (sdev
->sdev_state
== SDEV_CREATED_BLOCK
)
2453 sdev
->sdev_state
= SDEV_CREATED
;
2454 else if (sdev
->sdev_state
!= SDEV_CANCEL
&&
2455 sdev
->sdev_state
!= SDEV_OFFLINE
)
2458 spin_lock_irqsave(q
->queue_lock
, flags
);
2460 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2464 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock
);
2467 device_block(struct scsi_device
*sdev
, void *data
)
2469 scsi_internal_device_block(sdev
);
2473 target_block(struct device
*dev
, void *data
)
2475 if (scsi_is_target_device(dev
))
2476 starget_for_each_device(to_scsi_target(dev
), NULL
,
2482 scsi_target_block(struct device
*dev
)
2484 if (scsi_is_target_device(dev
))
2485 starget_for_each_device(to_scsi_target(dev
), NULL
,
2488 device_for_each_child(dev
, NULL
, target_block
);
2490 EXPORT_SYMBOL_GPL(scsi_target_block
);
2493 device_unblock(struct scsi_device
*sdev
, void *data
)
2495 scsi_internal_device_unblock(sdev
);
2499 target_unblock(struct device
*dev
, void *data
)
2501 if (scsi_is_target_device(dev
))
2502 starget_for_each_device(to_scsi_target(dev
), NULL
,
2508 scsi_target_unblock(struct device
*dev
)
2510 if (scsi_is_target_device(dev
))
2511 starget_for_each_device(to_scsi_target(dev
), NULL
,
2514 device_for_each_child(dev
, NULL
, target_unblock
);
2516 EXPORT_SYMBOL_GPL(scsi_target_unblock
);
2519 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2520 * @sgl: scatter-gather list
2521 * @sg_count: number of segments in sg
2522 * @offset: offset in bytes into sg, on return offset into the mapped area
2523 * @len: bytes to map, on return number of bytes mapped
2525 * Returns virtual address of the start of the mapped page
2527 void *scsi_kmap_atomic_sg(struct scatterlist
*sgl
, int sg_count
,
2528 size_t *offset
, size_t *len
)
2531 size_t sg_len
= 0, len_complete
= 0;
2532 struct scatterlist
*sg
;
2535 WARN_ON(!irqs_disabled());
2537 for_each_sg(sgl
, sg
, sg_count
, i
) {
2538 len_complete
= sg_len
; /* Complete sg-entries */
2539 sg_len
+= sg
->length
;
2540 if (sg_len
> *offset
)
2544 if (unlikely(i
== sg_count
)) {
2545 printk(KERN_ERR
"%s: Bytes in sg: %zu, requested offset %zu, "
2547 __func__
, sg_len
, *offset
, sg_count
);
2552 /* Offset starting from the beginning of first page in this sg-entry */
2553 *offset
= *offset
- len_complete
+ sg
->offset
;
2555 /* Assumption: contiguous pages can be accessed as "page + i" */
2556 page
= nth_page(sg_page(sg
), (*offset
>> PAGE_SHIFT
));
2557 *offset
&= ~PAGE_MASK
;
2559 /* Bytes in this sg-entry from *offset to the end of the page */
2560 sg_len
= PAGE_SIZE
- *offset
;
2564 return kmap_atomic(page
, KM_BIO_SRC_IRQ
);
2566 EXPORT_SYMBOL(scsi_kmap_atomic_sg
);
2569 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2570 * @virt: virtual address to be unmapped
2572 void scsi_kunmap_atomic_sg(void *virt
)
2574 kunmap_atomic(virt
, KM_BIO_SRC_IRQ
);
2576 EXPORT_SYMBOL(scsi_kunmap_atomic_sg
);